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Abstract

The relationship between the evolution of genes and languages has been studied for over three decades. These studies rely
on the assumption that languages, as many other cultural traits, evolve in a gene-like manner, accumulating heritable
diversity through time and being subjected to evolutionary mechanisms of change. In the present work we used genetic
data to evaluate South American linguistic classifications. We compared discordant models of language classifications to the
current Native American genome-wide variation using realistic demographic models analyzed under an Approximate
Bayesian Computation (ABC) framework. Data on 381 STRs spread along the autosomes were gathered from the literature
for populations representing the five main South Amerindian linguistic groups: Andean, Arawakan, Chibchan-Paezan,
Macro-Jê, and Tupı́. The results indicated a higher posterior probability for the classification proposed by J.H. Greenberg in
1987, although L. Campbell’s 1997 classification cannot be ruled out. Based on Greenberg’s classification, it was possible to
date the time of Tupı́-Arawakan divergence (2.8 kya), and the time of emergence of the structure between present day
major language groups in South America (3.1 kya).
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Nı́vel Superior (CAPES); and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, PRONEX), Brazil. These funding agencies had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: francisco.salzano@ufrgs.br

Introduction

The patterns of genetic and linguistic variation have been

compared for over three decades. These studies rely on the

hypothesis that languages, as many other cultural traits, evolve in a

gene-like manner, accumulating diversity through time and being

subjected to evolutionary mechanisms of change [1,2]. However, it

should be mentioned that language, as a culturally mediated trait,

is also transmitted horizontally (between unrelated individuals) in a

Lamarckian way. This fact may lead to its undergoing a faster

mutation rate and being subject to additional evolutionary forces

[1,3–5]. Thus, linguistic and genetic evolution may or may not

agree [1,6–13].

Studies involving Native American language and gene parallel

evolutions are scarce ([3,8,9,12,14,15] and references therein), but

have brought relevant contributions to our understanding of the

peopling of the Americas. However, some important parameters,

such as population size differences, demographic fluctuations, or

gene flow among demes, were not considered [8,12,15,16].

In the present work, we revisited the problem considered by

Salzano et al. [3] –i.e. use of genetic data to evaluate different

native language classifications in South America – comparing

discordant models with the current patterns of genetic variation.

We propose realistic evolutionary models based on the Coalescent

[17] and developed under a robust statistical framework, the

Approximate Bayesian Computation (ABC; [18,19]). Differently

from earlier studies, this approach considers variances in

population effective size through time, among demes, and gene

flow; dates fission events, and can handle a large set of genetic

markers (in the present case, 381 microsatellite loci).

In this analysis, we addressed three main questions: (a) Which

language classification better fits the current South American

genome-wide diversity? (b) How old are the interpopulation

branch connections? and (c) Do the divergence dates between

language groups, as estimated by genetic and linguistic data,

agree?

Subjects and Methods

Linguistic classifications
From the six classifications that cover South Native American

languages: Loukotka [20], Rodrigues [21], Greenberg [22],

Campbell [23], Urban [24], and Lewis [25]; only three could be

used here, since Rodrigues’ and Urban’s classification are

restricted to certain groups and Lewis’ to recent branches (which

are identical among these classifications). Five major South

American linguistic groups were considered: Andean, Arawakan,

Chibchan-Paezan, Macro-Jê, and Tupı́.

Loukotka [20], Greenberg [22], and Campbell [23] recognize

roughly the same large language groups:

1) Andean: distributed along the Andean Cordillera (mainly

Chile, Peru, and Bolivia). Examples: Aymara and Quechua;
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2) Arawakan: distributed along most of the equatorial latitude.

Includes the Piapoco and Wayuu;

3) Chibchan-Paezan: occupying the extreme northwestern

territories of the subcontinent. Examples: Arhuaco, Kogi,

and Waunana;

4) Macro-Jê: found in Central and Eastern Brazil (example,

Kaingang); and

5) Tupı́: distributed from the Amazon Forest southwards.

Guarani is its most southern group.

Despite this agreement, each of these linguists employed

different methods to classify the relationships between these

groups. Greenberg [22] used multilateral comparisons, examining

many languages simultaneously to detect similarities in a small

number of basic words and grammatical elements. Campbell [23]

used a more orthodox analysis: the comparative method,

considering that proposals of remote linguistic relationships are

only plausible when a series of other possible explanations have

been eliminated. And finally, Loukotka [20] made use of two

different methods in his classification: the lexicostatistical in some

and the comparative in other cases.

May be due to these different methodologies, there are

differences between the three language classifications. Campbell

[23], recognizes similarities between the Andean and Maipurean

(Arawakan in the above-mentioned classification), grouping them

in a stock named Quechumaran. He also noticed resemblances

between the Tupı́ and Macro-Jê languages, while also proposing a

third group, which would be that composed by the Chibchan-

Paezan languages. The deeper relationship between these three

groups is not resolved.

Greenberg [22] clustered the Tupı́ together with the Arawakan

in a group called Equatorial-Tucanoan. He did not clarify the

relationship between this group and the remaining three, but

assembled those in a large group called Amerindian, including all

the native languages spoken in South and Central America, and a

few from North America.

Loukotka’s [20] classification agrees with Greenberg’s [22] in

relation to the close relationship between the Tupı́ and Arawakan.

However, Loukotka groups the Chibchan-Paezan with the

Andean languages. The relationship of these two groups and their

connections with the Macro-Jê are not detailed. Table S1

(Supporting Information) provides a more detailed classification

of the languages belonging to each of these groups according to

these and additional authors.

In 2007 a close collaborator of Greenberg, Merritt Ruhlen,

published a posthumous revision of his Amerindian linguistic

family classification [26]. This work considered all the previous

criticisms from other scholars and also new studies, making this

new classification somewhat closer to Loukotka’s proposition.

Given this proximity, the present work will not make use of this

more recent study, although it can be seen in comparison to the

others in Table S1.

Genetic markers
Starting from the 678 autosomal microsatellite loci (STRs)

reported in [10], 297 were removed from the analyses due to a

high (.5%) percentage of missing data for at least one of the

populations studied here. The remaining 381 STRs were

formatted for the genetic analyses software employed here by

using the PGDSpider [27] and in-house written scripts (STR IDs

are listed in Table S2).

Populations and samples
From an initial set of 30 populations studied in [10], five were

selected to represent the above-mentioned major linguistic groups

as follows: Aymara (2n = 18; Andean), Piapoco (2n = 13; Arawak-

an), Kogi (2n = 17; Chibchan-Paezan), Kaingang (2n = 7; Jean),

Guarani (2n = 10; Tupı́). See Table S1 for a detailed classification

of these languages and [10] for alternative language names and

geographic coordinates of each population.

The selection of a single population to represent a whole

linguistic group was based on two assumptions. First, the

discrepancies between the three linguistic classifications were

observed only at deep branches (involving the final relationship

among the five language groups); and second, this procedure

reduces the number of parameters of the complex demographic

models used here, what is important for both statistical and

computational reasons [19].

Ethical approval for the original study from which the STR

information was obtained was given in Brazil (Kaingang, Guarani)

by the Brazilian National Ethics Commission (CONEP Resolution

no. 123/98); in Colombia (Piapoco, Kogi) by the Ethics Commis-

sion of Universidad de Antioquia, Medellin, Colombia; and in

Chile (Aymara) by the Ethic Commission of Universidad de Chile,

Santiago, Chile. Individual and tribal informed oral consent was

obtained from all participants, since they were illiterate, and they

were obtained according to the Helsinki Declaration. The ethics

committees approved the oral consent procedure, as well as the

use of these samples in population and evolutionary studies.

Overview of demographic and genetic modeling
Three demographic scenarios (Figure 1) were modeled with

Fastsimcoal 1.1.2 [28], which is a simulator of genetic diversity

based on the Coalescent [17]. All scenarios presented the same

configuration between times T0 and T1: a small ancestral

population of effective size N0 (at T0) undergoes exponential

growth until it reaches effective size N1 (at T1), time in which the

ancestral population undergoes subdivision for the first time as

depicted in Figure 1. Further structure arises at T2 separating

populations that diverged more recently. For each pair of

populations in such fission events, an independent T2 value was

sampled from the prior distribution in each simulation, with a

restriction, no sampled value for the date of a more recent fission

event (T2) could represent older dates than T1. Symmetric gene

flow was allowed to happen among any pair of populations at a

rate of m, that is the probability of a gene in the source population

to be sent to the sink population. As for T2, m may also assume

different values for each pair of populations. Current average

deme size was represented by NP, which was assumed to be

Gamma (10, 10/NP) distributed. The populations were thus

allowed to have different sizes and different susceptibility to

genetic drift. Time was measured in years, with a generation time

of 25 years. Effective population sizes are given in number of

diploid individuals. Prior distributions (based on results from

recent Native American evolutionary studies) for the main model

parameters are given in Table 1.

Under a strict stepwise mutation model (SMM), the average

STR mutation rate (u) was set to 6.461024 per generation [32].

Since the observed variance between different loci may affect

population genetic statistics, and to take this point into consider-

ation, mutation rates were allowed to vary according to the

Gamma distribution (a,a/u; where a is a hyperparameter drawn

from an uniform 1–20 distribution). Thus u was allowed to vary in

each simulation and among loci by several orders of magnitude,

depending on sampled a values.

Gene/Language Relationships in the Americas
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Model choice
The first approach to compare the scenarios was to see if they

could generate simulated populations that closely matched the

observed data in relation to the distribution of the genetic diversity

observed in the 381 loci sampled. The posterior probability of

each modeled scenario was then calculated under the ABC

framework [18,19] using the ABCtoolbox [33]. Briefly, for each

scenario, 100,000 simulations were generated with Fastsimcoal

using the empirical sampling configuration and the previously

described models. For each simulation a certain value for each

model parameter was sampled from the prior distribution (Table 1)

using Fastsimcoal for simulating genetic diversity. Pairwise and

global RST, a FST analogue for STR data which takes into account

the difference between STR allelic sizes, were then calculated for

each simulated sample and for the empirical dataset with the

Arlequin 3.5.1.2 command line version [34] yielding a total 11

summary-statistics. This procedure was conducted with the

ABCsampler software implemented with the ABCtoolbox.

The reference tables containing the model parameters used to

generate the 100,000 simulations under each scenario and

corresponding summary-statistics were then compared to the

empirical dataset with the ABCestimator software, also imple-

mented with the ABCtoolbox. This software compares the vectors

defined by the summary-statistics estimated for each simulated

data set (S) with that estimated for the empirical data (S*) by

calculating Euclidian distances d= ||S-S*|| between them. Half a

percent (0.5%) of the simulations matching closest the empirical

data were retained for the estimation of the marginal densities of

each model. These are then used for the assessment of the

posterior odds (Bayes factors; [35]) for each model given the

observed data.

To check for potential biases in model choice, 100 additional

simulations were generated under each scenario and used as

pseudo-empirical data. The same procedure was performed for the

empirical data for each of these 300 simulations and the rate of

false model inference could then be calculated.

Figure 1. Alternative demographic models tested against the genetic variation in 381 autosomal STRs. Parameters are explained in
Table 1. Current average deme size (NP) and gene flow (m) between populations are not shown.
doi:10.1371/journal.pone.0064099.g001

Table 1. Prior distributions of selected model parameters.

Parameter1 Distribution Range References

T0 – Time for the onset of expansion Uniform 10,000–19,000 [29,30]

T1 –Time for the first emergence of structure Uniform 800–6,400 [23,31]

T2 –Time for the second emergence of structure Uniform 800–6,400 [23,31]

N0 – Ancestral effective population size Uniform 2–1,000 [29]

N1 – Effective population (continental) size Uniform 1,000–100,000 [29]

NP – Current effective deme size Gamma (10, 10/NP) 50–1,000 [29]

m- symmetric migration rate Uniform 0.00001–0.001. [29]

1Time is given in years before present and effective population size in number of diploid individuals (2n). T1 and T2 prior distributions may present deviations from
uniformity, since T1.T2.
doi:10.1371/journal.pone.0064099.t001

Gene/Language Relationships in the Americas
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An additional methodology for inferring model posterior

probabilities is that proposed by Pritchard et al. [36], which could

be described as follows: From the initial 100,000 simulations

conducted according to each model, the 100 with smallest

associated Euclidian distances to the empirical dataset were

retained. This set of 300 simulations was then ranked by ascending

Euclidian distances and the posterior probability of a given model

was then computed as the proportion of simulations performed

under this model included among the 100 first simulations.

Model parameter estimates
The posterior distributions of the selected parameters (T0, T1,

T2, N0, N1, and NP) of the model with higher posterior odds were

inferred according to the same framework used for model choice,

but with a new reference table with 500,000 simulations. The

ABCestimator [33] computes point estimates (mode and median)

and confidence intervals (highest posterior density interval) for

these distributions. It also checks for potential bias using, in our

case, 1,000 pseudo-empirical data, generating a quantiles distri-

bution of the known parameter values in relation to the inferred

posterior confidence interval [33], which is then examined

statistically for its uniformity according to a Kolmogorov-Smirnov

test with a= 0.05 using R [37]. Visual histogram examination was

also performed. R was also used to calculate the parameter

regression against the summary-statistics, which indicates the

proportion of the parameter variance explained by it [38].

Results

The empirical distribution for the 11 summary-statistics –

namely pairwise and global RSTs – estimated using the genetic

variation of the 381 STRs in the above-mentioned Amerindian

populations could be reproduced in the bulk of simulations

generated, with no particular better performance for any model.

The inference is that all modeled scenarios were able to capture

the reality of the STR genome-wide diversity.

Table 2 describes the posterior odds of each scenario according

to the two adopted methods to infer posterior probabilities [35,36].

Both indicate a higher posterior probability for Greenberg’s

model, followed by Campbell’s. Loukotka’s model presented

virtually no correspondence with the tested genome-wide diversity.

To control for the quality of the model inference, we used the

reference table containing the 300 simulations, each 100 generated

under a specific model. The known correct model was properly

inferred 86% of the times among all inferences performed with the

pseudo-empirical data, a rate much higher than that expected by

chance (,33%); the conclusion is that the model fitting procedure

was strongly reliable.

Figure 2 presents the prior (with all 500,000 runs), retained

(0.5%) best simulations and posterior distributions for the selected

parameters (T0, T1, T2, N0, N1, and NP) of the demographic

model based on Greenberg’s language classification. Their

characteristics (point estimates and confidence intervals) are given

in Table 3 together with the indicators of estimation accuracy.

Root mean squared errors (Table 3) indicate that the median was

more accurate than the mode in all measures.

Figure 3 shows the histograms of the posterior quantiles of the

model parameters. T1, T2, and NP present sharp distributions

(Figure 2), ideal for ABC estimation. Most of the parameters also

present uniform posterior quantiles distribution in the pseudo-

empirical dataset (Figure 3) and corresponding Kolmogorov-

Smirnov non-significant p-values (Table 3). T2 and NP also show

high R2 values (Table 3) suggesting their estimate may be very

reliable. In spite of that R2 for T1 was low. To further test the

reliability of the T1 estimate, we evaluated the effect of including

four additional summary-statistics in its estimation, namely mean

and standard deviation of both heterozygosity (H) and number of

alleles per locus (K). After this procedure, R2 presented a higher

value (0.16) and its posterior distribution gave a narrower high

posterior density interval (HPDI = 2,835–5,571 years before

present-YBP) mostly overlapping with the previous estimate

(Table 3). To standardize the analyses performed for parameters’

estimation, we will consider only the first estimate for T1 and will

use the second one just in this step for assuring quality.

The remaining parameter posterior point estimates (T0, N0, and

N1) are likely not reliable, since these parameters are poorly

explained by the summary statistics (R2,10%) (see [38]). The

posterior distributions of these parameters did not present clear

peaks (Figure 2) and almost no difference from the prior

distributions (Tables 1 and 3). However, they present no bias

according to the posterior quantiles distribution (Figure 3), except

for T0, which showed a significant p-value for the Kolmogorov-

Smirnov test (Table 3).

Discussion

Campbell’s [23], Greenberg’s [22], and Loukotka’s [20]

classifications present marked differences on the relationships of

the five South American major linguistic groups. Studies have

been conducted to assess which of these propositions presented

better correlation with the population relationships suggested by

the genetic data. Campbell’s and Greenberg’s had received genetic

support previously ([39] and [40]; [7] and [12], respectively), while

Loukotka’s classification has not received any. Our results agree

with these previous results, since Loukotka’s is significantly

rejected by the genetic variation observed in a large dataset of

fast-evolving autosomal markers widespread along the human

genome, while Greenberg’s classification receives the greatest

support although it is just slightly more adequate than Campbell’s

(Table 2). The difference between the Loukotkas and the

Greenberg’s models that may explain why the former is

significantly worst fitted to the data is probably the grouping of

Andean with Chibchan-Paezan languages.

Comparisons between linguistic and genetic models are very

informative for the understanding of human evolution, and may

contribute to the knowledge of language evolutionary dynamics;

but it should be remembered that they start from quite different

methodological assumptions [2]. The main Native American

linguistic varieties are classified in well-established language

families, but the connection among them to establish major

lineages remain controversial. Greenberg’s linguistic classification

[22] and its multilateral or mass comparison approach have been

Table 2. Posterior probability of three linguistic classifications
for South American languages given the genetic diversity of
381 autosomal STRs.

Linguistic
classification Posterior probability (%)

Method I [35] Method II [36]

Campbell [23] 40.3 43.0

Greenberg [22] 59.1 51.0

Loukotka [20] 00.6 6.0

doi:10.1371/journal.pone.0064099.t002
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harshly criticized from a methodological point of view [41–43].

According to Greenberg [22], with the exception of the Na-Dene

and Eskimo-Aleut language groups, all other Native American

languages belong to the single macro-family, named Amerind.

This classification was regarded as reductionist by some scholars

[44]. In this context, an important issue to consider is the pace of

change; language, like other cultural traits, can change in a single

generation [5]. The reconstruction of remote language families

could be very different if the time period considered is 10,000 or

200,000 YBP [45]. Apart from these caveats and criticisms, it is

noteworthy that Reich et al. [46] using information from,365,000

SNPs genotyped in individuals from 69 Siberian and Native

American populations, suggested that the latter descend from at

least three streams of Asian gene flow, a compatible scenario with

the three major linguistic divisions originally proposed by Green-

berg (Amerind, Eskimo–Aleut and Na-Dene).

Figure 2. Prior (black), posterior (red) and retained (blue) simulations distributions of time (in generations) and size (2n) of
parameters of the demographic model based on Greenberg’s [22] language classification.
doi:10.1371/journal.pone.0064099.g002

Table 3. Posterior characteristics of the parameters of the model designed based on Greenberg’s [22] classification given the
genetic diversity of 381 autosomal STRs.

Parameter Posterior distribution Estimation accuracy

R2 2 RMSE 3
P-value 4

Mode Median HPDI1 (95%) Mode Median

T0 10,905 14,040 10,136–18,683 0.00 3,625 2,675 0.00

T1 2,779 3,094 1,480–5,294 0.03 1,300 1,000 0.05

T2 2,666 2,812 800–4,382 0.40 925 850 0. 71

N0 52 419 2–985 0.00 423 292 0.47

N1 19,905 45,852 2,492–96,020 0.00 40,407 28,474 0.92

NP 967 912 709–1,000 0.74 117 106 0.57

1Highest posterior density interval, which is the continuous interval of parameter values with highest posterior density.
2Coefficient of determination (R2) obtained when regressing the parameter against the summary-statistics.
3Root mean squared error.
4P-value considering Kolmogorov-Smirnoff’s test for uniformity of posterior quantiles.
doi:10.1371/journal.pone.0064099.t003
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Greenberg’s classification links the Tupı́ and Arawakan in the

Equatorial-Tucanoan group and denies any closer relationship

between the Tupı́ and the Macro-Jê or Arawakan and Andean, as

proposed Campbell [23]; or between the Chibchan-Paezan and

the Andean, as suggested Loukotka [20].

Notice that for the first time a study relating genetics and

language in South America employed the ABC, a statistical

framework that allows the use of realistic models which include

gene flow and variances in effective population sizes along time

and among populations, as well as the use of methods for

controlling the quality of the estimates. Therefore, the relationship

between any pair of population groups more likely reflects

common origin rather than recent gene flow.

As explained in the results, the posterior estimates of T0, N0,

and N1 in the model based on Greenberg’s classification were not

very informative given their confidence intervals being very similar

to the prior distributions (Fig. 2 and Table 3) and also not very

reliable given their very low coefficients of determination (R2).

However, since the focus of this investigation was to unravel

between-population relationships, these parameters are not of

interest and could be considered ‘nuisance parameters’ (see [19]),

i.e. they are not of immediate interest but must be accounted for in

the analysis of the other parameters.

On the other hand, T2, NP and possibly T1 estimates from

Greenberg’s scenario seem to be reliable based on the R2 values

(Table 3). The current effective deme size (NP, 709 to 1,000

diploid individuals) matches Ray’s et al. [29] estimates, which

range from 751 to 904. T1 and T2 are exclusive to our models, and

it is not possible to compare them with other genetic estimates.

The Tupı́ and Arawakan divergence (T2) was estimated to have

happened from 800 to 4,382 years ago, with a higher probability

of having occurred 2,812 years before present, while the time for

the first emergence of structure in South Amerindian groups (T1),

indicative of a most recent common ancestor, was dated from

1,480 to 5,294 YBP, with a higher probability at 3,094 years ago

(Table 3).

How do these values compare with those obtained from

linguistic information? Quechua, an Andean language, emerged

1,150 years before present according to Campbell [23]. The

Arawakan group appears to have been formed at 3,000 [24] to

4,000 [47] years ago. The origin of the Chibchan-Paezan

languages is dated at sometime between 3,000 and 5,600 before

present [23]. Swadesh [48] and Brown [31] estimates for the

Figure 3. Quantile distributions (x-axis) of the known parameter values as inferred from the posterior distributions for 1,000
pseudo-observed data sets generated under Greenberg’s [22] model.
doi:10.1371/journal.pone.0064099.g003
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Chibchan languages emergence are included in this range (5,000

and 4,484 respectively). Jê languages origin is dated between 3,000

to 6,856 years before present according to different authors

[24,48,49]; more specifically the Kaingang might have emerged

3,000 years ago [24]. The origin of the Tupi-Guarani is dated at

some point between 2,000 and 5,000 YBP [24], while Guarani,

according to Noelli [50] is 2,000 years old.

Confidence intervals in our genomic approach are large, and

those calculated using linguistic data have not been obtained

through rigorous statistical criteria. All in all, however, the

numbers are not very different, pointing to a relative concordance

between the interpopulation genomic and linguistic splits.

Conclusion

The questions raised in the introduction can now be answered.

(a) Greenberg’s language classification [22] presents a better fit to

the current genome-wide diversity in South America when

compared to those of the other linguists, although Campbell’s is

also compatible with the genomic data; (b) We estimated the time

for the emergence of the structure between present day major

language groups in South America around 3,100 ago, while the

Tupı́ and Arawakan languages fission seem to have been more

recent, around 2,800 years ago; and (c) Although confidence

intervals are large, there is general agreement between split times

estimated through genomic and linguistic data.

Supporting Information
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study. When available, the date of origin of the language is given

in parenthesis.

(DOCX)

Table S2 Identification numbers of the 381 STR used in our
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24. Urban G (1998) A História da cultura brasileira segundo as lı́nguas nativas. In:
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