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ABSTRACT

In this work, we present the construction of a tool for model checking graph gram-
mars, VeriGraph. The verification is done by first executing a specification written as a
graph grammar, resulting in a state space, and then checking properties of this specifica-
tion with a CTL model checker. These functions are built with low coupling, and can be
used in conjunction, as we do here, or reused for other implementations as needed. The
tool focuses on flexibility, so it can be used to test new ideas about system simulation and
verification techniques using graph grammars.

The graph grammar approach we use is the double pushout approach. We present a
brief review of the theory, including the its main structures and algorithms for rewriting.
Using double pushout as our approach poses some restrictions on the rewriting, which we
take advantage to write a simple algorithm that is O(V E) on the number of nodes N and
edges E of the left hand side of a rule. We then use this structure to build a state space of
the executed grammar.

The model checker uses a state-transition system based on the graph grammar state
space to check for properties expressed in computational tree logic (CTL). We review
CTL’s semantics and present an algorithm to perform the satisfaction verification of a
CTL formula. The state-transition system is built by using the names of the production
that can be applied to a state as the atomic propositions of that state. We discuss the
limitations of this method and propose possible solutions to it.

The system is developed in Haskell. We review the relevant features of the language
that we used when building this application. The algorithm and structure representation
used in graph grammar and model checking are presented with code listings. We then
present the integration and one experiment to give a notion of how the developed system
performs.

We plan to continue the development of this tool, and we present what we plan to
work on next, such as the implementation of second order graph grammar execution,
critical pair analysis, and linear time logic implementation, and general improvements.

Keywords: Model Checking, Graph Grammars, Temporal Logic.





RESUMO

VeriGraph: uma ferramenta para verificaçao de modelos de gramáticas de grafos

Neste trabalho é apresentada a construção de uma ferramenta para a verificação de
modelos de gramáticas de grafos, VeriGraph. A verificação é feita a partir da execução de
uma gramática de grafos, que resulta em um espaço de estados que é usado para verificar
propriedades especificadas em CTL. A funcionalidades do sistema são construídas com
baixa acoplamento, e podem ser usadas em conjunto, como aqui fazemos, ou isolada-
mente em outras implementações. A ferramenta é construída com foco em flexibilidade,
para que possa ser usada para testar novas idéias sobre simulação verificação de sistemas
usando gramáticas de grafos.

Nós usamos o método de reescrita de grafos baseado em double pushout, do qual
apresentamos uma breve revisão da teoria, e algoritmos e estruturas usadas na reescrita. O
uso de double pushout implica em limitações no processo de reescrita, e nós usamos estas
limitações para construir um algoritmo de complexidade O(V E) do número de nodos N
e arestas E no lado esquerdo da produção. Nós usamos estas estruturas para construir o
espaço de estados da execução.

O verificador de modelos usa um sistema de transição de estados basedo no espaço
de estados da gramática de grafos para executar a verificação de propriedades expressas
como fórmulas em lógica de árvores computacionais (CTL). Nós revisamos a semântica
do CTL, e apresentamos um algoritmo para executar a verificação de satisfação de uma
fórmula. A construção do sistema de transição de estados é feita usando os nomes das re-
gras que podem ser aplicadas a um dado estado como proposições atômicas deste estado.
Este modelo tem limitações, que são discutidas junto com possíveis melhorias.

O sistema foi desenvolvido em Haskell. Nós revisamos as principais funcionalidades
da linguagem que usamos na implementação. Os algoritmos e estruturas usados na im-
plementação são apresentados junto com as listagens de código relevantes. Por fim, ap-
resentamos a integração de ambos os módulos, e um experimento para dar a noção da
performance do sistema.

É planejado continuar o desenvolvimento desta ferramenta, e nós apresentamos quais
as funcionalidades que pretendemos desenvolver no futuro, como execução de gramáticas
de grafos de segunda ordem, análise de par crítico, e implementação de novas formas de
model checking, além de melhorias gerais.

Keywords: Verificação de modelos, Gramáticas de Grafos, Logicas Temporais.
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1 INTRODUCTION

1.1 Motivation

There are a few tautologies in life. The famed “Death and Taxes” English saying
first appeared in (DEFOE, 1840): “Things as certain as Death and Taxes, can be more
firmly believ’d.” To those facts of life, we can certainly add a more recent development,
Murphy’s Law (BLOCH, 2003). The infamous law states that it is the nature of “things”
to go wrong. Large software projects are prone to failures, and we can find news of some
catastrophic incidents, like the Ariane-5 satellite launcher, in which a illegal conversion
from a 64-bit floating point number into a 16-bit integer number resulted in the explosion
of the rocket, and the loss of a significant amount of money.

What Murphy’s Law fails to state is that it may take some time for “things” to fail, and
pretty obvious errors can be easily avoided. It is our responsibility, as software engineers
and architects, to ensure that our systems work properly for as long as possible, and when
it fails, it does not threaten life, property and the public image of our company. Ad-hoc
techniques, such as peer reviewing, can sometimes catch these failures, and can fail even
when done judiciously. In the satellite launcher’s case, the failure would be an easy catch
for an automated verification system.

The Verites project (RIBEIRO et al., 2014) aims to develop new techniques for Test,
Verification and Validation (TV&V) of computational systems, and tools to support the
developed techniques. One common technique for TV&V is the modeling of the system
under verification as a graph grammar, and either checking for structural properties (static
verification) without executing the grammar, or executing the grammar to simulate the
system, and checking for properties of the system under execution (dynamic verification).

Tools that check for properties of systems modeled as graph grammars exist, but are
limited. Some excel in static property verification, but lack or have limited support for
dynamic property verification, or vice-versa; to make things worse, these tools are incom-
patible with the others, which forces the modeler to build more than one model if checking
both static and dynamic properties of a grammar is required. This work lies within the
scope of the Verites project, and aims at building a TV&V software from scratch that has
the following objectives:

• Combine static verification and dynamic verification in a single program;

• Cerve as a test bed for new ideas in the field, in special, second-order graph gram-
mars, a model recently developed to simulate software evolution (MACHADO,



22

2012);

• Be as efficient as possible while having a simple and flexible implementation.

The last objective above prioritizes simplicity over efficiency slightly, to guarantee
the second objective: it is better to have a code that can be changed easily but is a little
inefficient, than to have complex and efficient code that does not allow for significant
changes. Besides, it is possible to create a new iteration of the software that is more
efficient once we understand what needs to be done in the first place.

The work described here is the work we’ve done over the last year; during this time, we
developed several of the features needed to simulate the execution of a graph grammar.
My work, exclusive to this monograph, is to develop a computational tree logic (CTL)
model checker for VeriGraph. The work was done jointly with Ricardo Herdt; the division
of work is described in Chapter 4.

1.2 Goals

The goal of my work in this context is to build the dynamic verification module of
this system. This is done by a model checking algorithm that takes the execution of a
grammar and a property expressed in temporal logic, and verifies if the property holds for
the execution.

1.3 Contribution

The work executed contributes with a Haskell implementation of a tool for model
checking graph grammars, and an algorithm for checking CTL formulas using as a model
a simulated system that can be used independently of the tool.

1.4 Structure of this work

In Chapter 2 we present graph transformations and state space generation; in Chapter
3, we present the theory behind model checking and how to transform the state space
of a graph grammar into a model for CTL model checking; in Chapter 4 we present the
system implementation. In the conclusion, we discuss what we expect to build in the
future. Appendix A contains the full code listing for the work developed.
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2 GRAPH GRAMMARS

The study of graph transformations began in the 1960s, as a generalization on term
rewriting. The idea of a graph transformation is one of rule-based transformation of
graphs: system states are represented as graphs, and the behavior of the system is rep-
resented by rule applications. Rule applications are local – applied to a specific part of
the graph –, allowing for more than one rule to be applied at the same time; this makes
graph transformation an adequate model to represent systems with non-deterministic be-
havior.

In this chapter, we focus on the double pushout approach for graph transformation,
among the many available in the literature. The chapter focus on the intuition behind the
technique, and we skip any theory that is not necessary for our objectives; if the reader
is interested in the formalization of the approach, we recommend the reading of (EHRIG
et al., 2010).

This chapter is organized in the following way: Section 2.1 contains the preliminary
definitions for the rest of this chapter; Section 2.2 presents the double pushout (DPO)
approach; Section 2.3 presents the algorithm for state space generation.

2.1 Preliminary definitions

A graph is a structure composed of a set of nodes connected to each other by edges.

Definition 1 (Graph). A graph is a tuple G = 〈V,E, s, t〉 where V is the set of nodes,
E ⊆ V × V is the set of edges, and s, t : E → V associate, respectively, the source and
target of each edge.

Notation 1. We may refer to nodes and edges in a graph as elements, when no distinction
is required. The sets of nodes V and edges E of a graph G are respectively refereed as VG
and EG. We may say that an element is in a graph (e ∈ G) if either e ∈ VG or e ∈ EG.

Notation 2. We may apply set operations directly on graphs. When we do, it is assumed
that the operation will be applied on both set V and E on both graphs, e.g. G − H will
generate the graph G′ = 〈VG−VH , EG−EH , s

′, t′〉. It’s also possible to apply operations
on graphs and sets; in this case, the operation will be applied to the appropriate set (V
and/or E), and the appropriate set can be inferred from the context.

Example 1. Figure 2.1 depicts a graph and a possible visualization.
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V = {1, 2, 3, 4, 5, 6}
E = {a : (1, 2); b : (2, 3); c : (2, 4); d : (4, 1); e : (5, 5)}
s = {a 7→ 1, b 7→ 2, c 7→ 2, d 7→ 4, e 7→ 5}
t = {a 7→ 2, b 7→ 3, c 7→ 4, d 7→ 1, e 7→ 5}

Figure 2.1: An example graph in its set form (left) and graphical form (right).

A graph morphism is a mapping of nodes and edges of a graph to, respectively, nodes
and edges of another graph, preserving the structure of the input graph.

Definition 2 (Graph morphism). Let G = 〈V,E, s, t〉 and G′ = 〈V ′, E ′, s′, t′〉 be graphs.
A graph morphism f : G → G′ is a pair of functions 〈fV , fE〉 with types fV : V → V ′

and fE : E → E ′ such that s′ ◦ fE = fV ◦ s and t′ ◦ fE = fV ◦ t.

A morphism is said to be injective (surjective, bijective) if both fV and fE are injective
(surjective, bijective). Graphs G,H are isomorphic if there is a total bijective morphism
(isomorphism) between them. We denote it by G ∼= G′.

Example 2. Figure 2.2 depicts a graph morphism f between graph G and G′. Gray
dashed lines are the node mappings, while gray solid lines map the edges.

Figure 2.2: An example of graph morphism.

An equivalence relation between two graphs can be defined by a graph isomorphism.

Definition 3. Graphs G and G′ are equivalent when a morphism m : G→ G′ exists and
is an isomorphism. An equivalence is depicted G ∼=m G′, or simply G ∼= G′ if the specific
morphism is omitted.
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The collection of all graphs with all possible graph morphisms form the category
Graph. It’s assumed that the reader has basic knowledge of category theory; otherwise,
the user is refereed to (HERRLICH; STRECKER, 1973). The DPO method is called an
algebraic method, since it relies on categories to provide the background theory.

It’s important to be able to categorize the elements of a graph according to what they
represent. To achieve that, we use morphisms with a fixed target T .

Definition 4 (Graph typing). A graph G typed over a graph type T is a pair (G, t), where
t : G→ T is a morphism, called typing morphism.

We can define the morphisms of typed graphs over T .

Definition 5 (Typed morphism). A typed morphism over T is a graph morphismm : G→
G′ such that the following diagram commutes.

G G′

T

m

t t′

The category of all T -typed graphs and T -typed morphisms is called T-Graph. The
effect of adding typing to morphisms is that an element in the source graph can be mapped
to an element in the destination graph only if they are of the same type. It is more intuitive
and less cluttered to represent the types of each graph by the shape of the elements when
representing a graph graphically, thus for the rest of the text, we will represent types on
nodes by different shapes, and types on edges by black lines with different formats (solid,
dashed, dotted. . . ). Gray lines will be used to represent morphisms.

Example 3. Figure 2.3 depicts a typed morphism over T , by depicting the full morphisms
and the graphical notation: gray dashed lines show the specific mappings of each mor-
phism.

2.2 The double pushout approach

This approach was first introduced in (EHRIG; PFENDER; SCHNEIDER, 1973), and
was the first use of a categorial approach to graph rewriting. In this approach, productions
or rules are represented by a pair of morphisms with the same origin.

Definition 6 (Graph production). A span is a pair of morphisms 〈l, r〉 with the same
source, as shown by the following diagram

L
l
� K

r
� R

A production is a span in T-Graph, in which l and r are total. The collection of all
productions is called P .
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(a) Full morphism

(b) Shape representation

Figure 2.3: A typed morphism over T .

A production r : L
l
� K

r
� R describes how to modify a graph locally. The graph

L is the pattern graph (or simply pattern) that must be found in the target graph G, and
the graph R (also known as replacement graph, or simply replacement) is the graph that
replaces the pattern found, generating the graph H . The graph K, known as the interface
graph, describes what is kept during the transformation. Both l and r are inclusions of K
in the respective targets. Elements in L−K (in L but not in l(K)) are deleted during the
rule application, while elements in R −K are created. Whenever possible, we represent
the interface of a production by double pointed line between L and R.

Example 4. The Figure 2.4 shows a graph rule that matches a circle and a square con-
nected by an arrow, deletes the square and the arrow, and adds a new circle to the target
graph. Above, a circle is connected to a square, and this structure must be found in the
target graph. In the center, the invariant is the circle, both the square and the arrow are
deleted during the rewrite. To the right, a second circle is created in the graph. We use the
dashed gray arrow to denote the mappings of the morphisms l and r (Figure 2.4a). The
shorthand representation of the same production (Figure 2.4b).

To apply a production p : L
l
� K

r
� R to a state graph G, one must find a match of
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(a) Full representation

(b) Short representation

Figure 2.4: A graph production.

L into G, which is a morphism m : L→ G. The rewriting is defined as a double pushout
diagram on T-Graph. The precise definition of a pushout is outside the scope of this text;
the reader may refer to (HERRLICH; STRECKER, 1973, pp.138-150) to find it.

Definition 7 (Graph derivation). Let G be a graph in T-Graph, p : L
l
� K

r
� R a

production in T-Graph and m : L→ G a match. A graph derivation (or graph rewriting)
from G to H exists if the diagram

L K R

G D H

l r

l′ r′

m′m k

can be constructed in T-Graph, where (l′,m) is a pushout of (l, k) and (r′,m′) is a
pushout of (k, r).

A derivation from G to H with rule p and match m has the notation G
p,m
=⇒ H in the

following text, or simply G
p

=⇒ H , if the match is omitted.

Example 5. Figure 2.5 shows the derivation of graph H . The dashed gray lines represent
the specific mapping of each morphism.



28

Figure 2.5: The derivation of a graph G with the production in Figure 2.4.

The first step to rewrite a graph is find a morphism m : L → G, that matches the
elements of L with the elements of G, marking that region for rewriting. The match is
calculated by solving the subgraph homomorphism problem for L and G, or the subgraph
isomorphism problem if the application requires an injective match. These problems are
known to be intractable in the general case (MEHLHORN, 1984). Several solutions for
these problems exist in the literature, and among them we chose to adapt the algorithm
described in (RUDOLF, 2000), which finds all possible solutions with a constraint satis-
faction algorithm. The algorithm itself and the adaptations made are outside the scope of
this text.

The existence of a match does not guarantee that a derivation can be done, because
there is the possibility of a match force the left diagram not to form a pushout. Two
application conditions must be fulfilled for a rewrite to be possible in the DPO approach:

• Identification condition: a match m : L→ G does not map a deleted element and a
preserved element, or two deleted elements, in L to the same element in G.

• Dangling edge condition: a match m does not map a node n to a node m(n) that is
connected to an edge outside the image of m.

Violations of such conditions are illustrated in Figure 2.6. The dotted elements show the
errors in each case.
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(a) Identification condition (b) Dangling condition

Figure 2.6: Examples of violations of (a) identification condition and (b) dangling condi-
tion.

Our algorithm for rewriting a graph is depicted in Algorithm 1.

input : a graph G = 〈VG, EG, sG, tG〉, a production p : L
l
� K

r
� R, and a match

m : L→ G
output: the rewritten graph H = 〈VH , EH , sH , tH〉

1 H ← G ;
2 for e ∈ m(L− l(K)) | e ∈ EG do
3 if e 6∈ EH then
4 fail;
5 else
6 H ← H − {e};
7 end
8 end
9 for n ∈ m(L−K) | n ∈ VG do

10 if (∃e ∈ EH | sH(e) = n ∨ tH(e) = n) ∨ (e 6∈ VH) then
11 fail;
12 else
13 H ← H − {n};
14 end
15 end
16 for n ∈ k(K) | n ∈ G do
17 if n 6∈ H then
18 fail;
19 end
20 end
21 for n ∈ m′(R− r(K)) | n ∈ VR do
22 H ← H ∪ {n};
23 end
24 for e ∈ m′(R− r(K)) | e ∈ ER do
25 H ← H ∪ {e};
26 end
27 return H

Algorithm 1: The rewrite algorithm.
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The algorithm works by decomposing the rewriting into basic set operations: deletion,
preservation and creation of elements. By ensuring that the deletions occur before the
everything else (lines 2-15), we can check for violations of the identification condition
(lines 16-20), and by ensuring that edges are deleted before nodes, we guarantee that we
can check for violations of the dangling edge condition during the deletion of edges.

2.3 State space generation

Now that we laid out the basic theory behind algebraic graph rewriting, we can discuss
system simulation and state space generation. We begin by the definition of a graph
grammar.

Definition 8. A graph grammar is a tuple G = 〈G0, P, π〉 where P is a set of production
names, π : P → P if a function that maps a name to its production and G0 is the initial
state (or initial graph) of the grammar.

Example 6. Figure 2.7 shows a complete graph grammar depicting a train system. The
production moveTrain simulates the train movement between stations;
embarkPassenger simulates the passenger in a station embarking the train in the sta-
tion; disembarkPassenger simulates the passenger disembarking at a station. G0

represents the system state at the beginning of the simulation. The lines between the pas-
senger and the station represent his current location (solid line) and destination (dotted
line).

To use a graph grammar as a computation abstraction, we model the behavior of the
system in the productions, and the initial state of the system as G0. The sequence of
derivationsGn

p,m
=⇒ Gn+1, generating new statesGn+1 for the system, models the behavior

of the system. At any state Gi, any production pj : Lj

lj
� Kj

rj
� Rj can be applied

provided a match mij : Lj → Gi exists and a derivation is possible (does not violate
the application conditions). A production that fulfills these requirements is called a valid
production.

Production applications on a system may generate graphs that are isomorphic to each
other. To avoid representing isomorphic graphs more than once, it is useful to work with
equivalence classes of graphs (derivations) instead of concrete graphs (concrete deriva-
tions).

Definition 9 (Equivalence class). An equivalence class of a set (collection) S is the quo-
tient set (collection) of S under the equivalence relation ∼, denoted [a] for a ∈ S, such
that [a] = {x ∈ S | a ∼ x}

Definition 10 (Rewrite equivalence). Two rewrites δ1 : G
p

=⇒ G′ and δ2 : H
q

=⇒ H ′ are
said equivalent if

• H ∈ [G]∼=

• H ′ ∈ [G′]∼= and

• p = q
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Figure 2.7: A grammar depicting a train system.

Such equivalence is denoted by δ1 ≡ δ2.

Definition 11 (Equivalence class of graphs and derivations). An equivalence class of
graphs is the quotient class of the class of all graphs under isomorphism. Such class
is denoted [G]∼=in which G is the canonical graph that represents the class.

An equivalence class of derivations is the quotient class of the class of all derivations
under equivalence. Such class is denoted [δ]≡ where δ : G

p
=⇒ H is the canonical

derivation that represents the class, and G,H are canonical graphs.

Notation 3. For the remainder of this chapter, the equivalence classes of graphs are called
states and the equivalence classes of derivations are called transitions.

A system can be simulated by sequentially applying a random valid production to the
current state (generating a new state), and replacing the current state by the new state for
the next iteration. This is interesting, since these simulations may reveal faulty transitions
on the system, but due to the random selection of productions, this is not guaranteed to
happen. A better way of verifying the system for faults is to iteratively build all possible
future states from a given initial state, generating a transition system, or state space. A
state space can be defined inductively, as follows.

Definition 12 (State space). A state space of a graph grammar G = 〈G0, P, π〉 is a tuple
S = 〈S, T, χ0, χ1〉 where S is a collections of states, T ⊆ S × P × S is a collection of
transitions labeled over P , and χ0, χ1 : T → S are functions that map the source and
target of a transition, respectively. S and T are defined inductively as:
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• [G0]∼= ∈ S

• for each [G]∼= ∈ S, if δ : G
p

=⇒ G′, then [G′]∼= ∈ S and [δ]≡ ∈ T

Example 7. Figure 2.8 depicts the full state space generated by the graph grammar in
Example 6. It contains 53 states.

It is clear from this definition above that a transition system forms a graph like struc-
ture, with states acting as nodes and transitions acting as edges. Creating an algorithm
from this definition is very straightforward.

The state space permits the visualization of all possible computations that may take
place in a system in execution, which is very useful for checking for faulty transitions.
In small systems, this inspection can be done manually, but in large systems (with tran-
sitions in low tens and above), it would be better to have an automated method to check
whether the system behaves correctly. For that purpose, we may employ a model checker,
a tool that allows us to specify the expected system behavior and check it against the
actual modeled behavior by inspecting the possible sequences of transitions against the
specification.

A state space is possibly infinite, i.e., it is always possible to build a new state for the
system. One example is a graph grammar that in which a node is matched, and another
is added to the state, as depicted in Figure 2.9. Although the theory of graph grammars
allows for infinite transition systems, we may set a limit on the number of iterations used
to build a bounded state space, which poses limitations on the capacity of verification of
such systems. We will discuss this on Chapter 3.

2.4 Final remarks

In this chapter, we have reviewed the basic theory and intuition on graph grammars.
In special, we have seen how a graph grammar generates a state space, which we will use
in Chapter 3 to build a model to be checked.
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Figure 2.8: The full state space geneerated by the execution of the grammar in Figure 2.7
.
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Figure 2.9: An example of an grammar that generates an infinite space state.
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3 MODEL CHECKING

As stated in Section 2.3, manually checking transition systems with many transitions
by eye inspection can be hard, and automation can be used to verify such systems. This
automation is implemented in a model checker. A model checker performs the verification
of properties of a given system model by using a formal framework. Model checking is
largely discussed in the literature, where several methods and case studies are presented.
This chapter treats exclusively of the verification of systems modeled as graph grammars,
using CTL, a type of temporal logic. For a thorough discussion on model checking,
we suggest the reading of (CLARKE; GRUMBERG; PELED, 1999; KATOEN; BAIER,
2008).

Model checking can be used for formally verifying properties of a system, among
them safety – “something bad never happens” – and liveness – “something good will
eventually happen” – (LAMPORT, 1977). For example, the question “Will trains never
collide?” is a safety question in regards to the Example 6, while the question “Will all the
passengers arrive at their destinations?” is a liveness question for the same example1.

In this chapter, we initially present the idea behind a model checker on Section 3.1.
We then present model checking using CTL in Section 3.2, and present the syntax, the
model and semantics. Lastly, we discuss how to use a graph grammar state space for
verifying CTL properties in Section 3.3.

3.1 Model checking

According to (KATOEN; BAIER, 2008, Section 1.2):

Model checking is an automated technique that, given a finite-state model
of a system and a formal property, systematically checks whether this prop-
erty holds for (a given state in) that model.

Model checking is a verification technique that explores all possible system states
in a systematic manner, to verify that the system satisfies some property. The model is
generated by system simulation, and the property is defined in an appropriate temporal
logic. In our work, the simulation is generated by the state space of a graph grammar, and
the logic used is CTL. This chapter discusses CTL and the use of a state space as a system
model.

1The system shown in Figure 2.7 has only one train (so it will never collide with itself), but we can
replace the initial state with one with more trains.
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3.2 Computational Tree Logic

Since the work of Aristotle we can see logicians dabbling with the idea of formaliz-
ing time in logic. Little development was done until Arthur Prior’s Time and Modality
(PRIOR, 1957) that formalized time with a type of modal logic, with two time operators:
“some time in the future” and “some time in the past”. In his work, Prior presents the time
as a linear sequence of events, which was further expanded to allow for branching time
(alternations in the unfolding of events), after a letter from Saul Kripke. In formal ver-
ification, the first system proposed by Prior has an equivalent in Linear Temporal Logic
(LTL) (PNUELI, 1977), that suffers from a similar limitation: time is considered linear,
and if branching time is present, all alternate sequences of events must validate the for-
mula under verification. CTL (EMERSON; HALPERN, 1985) appears in this context as
a more complete alternative to LTL, since it allows for the quantification over the tem-
poral operators. To compare both in plain English, LTL allows for the verification of the
statement “In the future, cars will fly”, but not the statement “It is possible that, in the
future, cars will fly”, since the second is existentially quantified: there is the possibility
of some future in which cars were replaced by jet-packs for personal transportation, and
research in flying cars will halt; thus cars will never fly in this alternate future.

A formula in CTL is defined by the following syntax.

Definition 13 (Syntax of CTL). The language of well-formed formulas for CTL is gener-
ated by the grammar

ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ϕ⇔ ϕ | (ϕ) |
AXϕ | AFϕ | AGϕ | A[ϕUϕ] | EXϕ | EFϕ | EGϕ | E[ϕUϕ]

where p ∈ P and P is a set of atomic formulas.

Example 8. The formulas AF AX a, A[EF a U AX b] and AF AG a are well-formed
CTL formulas. The formula A[Xv U b] is not a well-formed CTL formula, since X must
be preceded by either A or E.

Operators ¬, ∧, ∨,⇒ and ⇐⇒ work as the same operators in classical logic, and are
resolved in the same way. The remainig operators (AX,AF,AG,AU,EX,EF,EG,EU )
are called temporal operators. We will discuss their meaning after we define CTL seman-
tics, in Definition 17.

Not all operators in Definition 13 above are needed to implement the complete se-
mantics of CTL; for instance, the formula p ∧ q can be converted to ¬(¬p ∨ ¬q) by De
Morgan’s Law, reducing the set of implemented operators by one. In Section 3.2.1 we dis-
cuss one of the possible reductions to a minimal set of operators. The length of a formula
is the number of symbols it contains.

Definition 14. The length of a formula is defined by structural induction over ϕ′ as

length(ϕ′ ∈ {>,⊥} ∪ P ) = 1

length(ϕ′ ∈ {¬ϕ,AXϕ,AFϕ,AGϕ}) = 1 + length(ϕ)

length(ϕ′ ∈ {EXϕ,EFϕ,EGϕ, (ϕ)}) = 1 + length(ϕ)

length(ϕ′ ∈ {ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 ⇒ ϕ2}) = 1 + length(ϕ1) + length(ϕ2)

length(ϕ′ ∈ {ϕ1 ⇔ ϕ2, A[ϕ1Uϕ2], E[ϕ1Uϕ2]}) = 1 + length(ϕ1) + length(ϕ2)
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Example 9. The lengths of the well-formed CTL formulas in Example 8 are 3, 5 and 3,
respectively.

The set of subformulas Ψ of a CTL formula ϕ, is defined by induction over the struc-
ture of the CTL grammar.

Definition 15 (CTL Subformulas). The set of subformulas Ψ of a CTL formula ϕ′ is
defined as

Ψ(ϕ′ ∈ {>,⊥} ∪ P ) = {ϕ′}
Ψ(ϕ′ ∈ {¬ϕ, (ϕ), AXϕ,AFϕ,AGϕ}) = {ϕ′} ∪Ψ(ϕ)

Ψ(ϕ′ ∈ {EXϕ,EFϕ,EGϕ}) = {ϕ′} ∪Ψ(ϕ)

Ψ(ϕ′ ∈ {ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 ⇒ ϕ2}) = {ϕ′} ∪Ψ(ϕ1) ∪Ψ(ϕ2)

Ψ(ϕ′ ∈ {ϕ1 ⇔ ϕ2, A[ϕ1Uϕ2], E[ϕ1Uϕ2]}) = {ϕ′} ∪Ψ(ϕ1) ∪Ψ(ϕ2)

Example 10. The subformulas of the well-formed formulas in Example 8 are

• Ψ(AF AX a) = {a,AX a,AF AX a}

• Ψ(A[EF a U AX b]) = {b, AX b, a, EF a,A[EF a U AX b]}

• Ψ(AF AG a) = {a,AG a,AF AG a}

A CTL formula is interpreted over a transition system.

Definition 16 (Transition System). A transition system (or model) is a tripleM = 〈S,→
, L〉 where

• S is a set of states

• →⊆ S × S is a transition relation;

• L : S → 2P is a function that maps a state to its labels

Example 11. Figure 3.1 shows a model in its graphical representation. Squares repre-
sent states, arrows represent the transitions and the letters separated by inside the states
represent the atomic formulas satisfied in each state.

A transition system represents the flow of time of the system, represented by the tran-
sition relation. In a system with branching (out degree of a state ≥ 2), the system repre-
sents possible sequences of events. What we see in the definition of transition system is
that they form another graph-like structure, with states as nodes, and→ builds the set of
edges.

A path inM is a (possibly infinite) sequence of states π = [s0, s1, s2, . . . , si−1, si, si+1, . . . ]
such that si → si+1 for all i ≥ 0. We say that a path starts in s if s0 = s. We say that s′ is
in the future of s if s′ is in a path that starts in s.

With the syntax and model, when can define the semantics of each operator.
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Figure 3.1: A model in its graphical representation.

Definition 17 (Semantics of CTL). The satisfaction of a formula by a given model M
and state s, writtenM, s |= ϕ, is defined as

• (M, s |= >) , (M, s 6|= ⊥)

• (M, s |= p) iff p ∈ L(s)

• (M, s |= ϕ1 ∧ ϕ2) iff (M, s |= ϕ1) and (M, s |= ϕ2)

• (M, s |= ϕ1 ∨ ϕ2) iff (M, s |= ϕ1) or (M, s |= ϕ2)

• (M, s |= ϕ1 ⇒ ϕ2) iff (M, s |= ¬ϕ1 ∨ ϕ2)

• (M, s |= ϕ1 ⇔ ϕ2) iff (M, s |= ϕ1 ⇒ ϕ2) and (M, s |= ϕ2 ⇒ ϕ1)

• (M, s |= (ϕ)) iff (M, s |= ϕ)

• (M, s |= AXϕ) iff for all s′ such that s→ s′, (M, s′ |= ϕ)

• (M, s |= AFϕ) iff for all paths starting in s, there is an i ≥ 0 such that (M, si |=
ϕ)

• (M, s |= AGϕ) iff for all paths starting in s and for all i ≥ 0, (M, si |= ϕ)

• (M, s |= A[ϕ1Uϕ2]) iff for all paths starting in s there is a j ≥ 0 such that
(M, sj |= ϕ2) and for all 0 ≤ i < j (M, si |= ϕ1)

• (M, s |= EXϕ) iff exists s′ such that s→ s′, (M, s′ |= ϕ)

• (M, s |= EFϕ) iff exists a path starting in s, there is an i ≥ 0 such that (M, si |=
ϕ)

• (M, s |= EGϕ) iff exists a path starting in s and for all i ≥ 0, (M, si |= ϕ)

• (M, s |= E[ϕ1Uϕ2]) iff exists a path starting in s there is a j ≥ 0 such that
(M, sj |= ϕ2) and for all 0 ≤ i < j (M, si |= ϕ1)
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For a formula ϕ with A to hold on a model, all paths starting at the initial state must
satisfy ϕ. For E , only one path need to satisfy ϕ.

The temporal operators check wheter the formula ϕ holds in a path. The operator X
check if the next state of a given state satisfies ϕ. F checks if some state in the future of
the initial state satisfies ϕ. G checks wheter all states in the initial state’s future satisfy ϕ
holds. U verifies if, in a path, all states satisfy ϕ1 until ϕ2 is satisfied.

Example 12. Figure 3.2 shows a model that satisfies a. Figure 3.3 show a model sat-
isfying AX a. Figure 3.4 shows a model satisfying EF a. Figure 3.5 shows a model
satisfying E[a U b]. The initial state is the gray state; dashed lines represent many sim-
ilar paths and the dotted lines represent that the paths starting in the source state might
continue.

Figure 3.2: A model satisfying the formula a.

Figure 3.3: A model satisfying the formula AX a.

Example 13. We would like to express the question “Will users embark the train?” in
CTL, based in our state space. In Section 3.3, we establish that the name of the rules
applied to a given state in the state space correspond to the atoms in the model. Thus,
the question may be rephrased as “Will users eventually embark the train?”, which can be
expressed as (M, s0 |= EF embarkPassenger). Other examples:

1. “will the train enter a loop?”: if the train is not embarking and disembarking pas-
sengers; (M, s0 |= EG(¬embarkPassenger ∧ ¬disembarkPassenger)).

2. “Will passengers disembark the train?”: no one wants to be stuck forever in a train;
(M, s0 |= EF (embarkPassenger ⇒ AFdisembarkPassenger)).

Formula 1 holds for the state space generated by the grammar in Figure 2.7. Formula
1 does not.
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Figure 3.4: A model satisfying the formula EF a.

3.2.1 Important equivalences for CTL

Some CTL operators can be written in terms of another operators, like AGϕ ≡
¬EF¬ϕ (for all paths, and all states in those paths, ϕ holds is equivalent to that “there’s
not a future in which ϕ is not satisfied”). First we define the equivalence of formulas.

Definition 18. Two CTL formulas ϕ and φ are said equivalent (ϕ ≡ φ) if for all models
M and any initial state s inM , (M, s |= ϕ) iff (M, s |= φ) .

Several of those equivalences can be found in the literature, so we will only list them
in this section. Proofs for the equivalences can be found in (HUTH; RYAN, 2000).

¬AFϕ ≡ EG¬ϕ
¬EFϕ ≡ AG¬ϕ
¬AXϕ ≡ EX¬ϕ
AXϕ ≡ ¬EX¬ϕ
EGϕ ≡ ¬AF¬ϕ
AFϕ ≡ A[>Uϕ]

EFϕ ≡ E[>Uϕ]

AGϕ ≡ ¬EF¬ϕ
A[ϕUφ] ≡ ¬(E[¬φU(¬ϕ ∧ ¬φ)] ∨ EG¬φ)

These equivalences are very useful to build a minimal core of operators. In fact, it
has been proved that, to express any formula in CTL, the only operators required are
at least one of {AX,EX}, at least one of {EG,AF,AU}, at least one of {∧,∨}, ¬
and EU (MARTIN, 2002). From the definitions above, we can define a minimal core
{>,∧,¬, EX,EU,AF}.
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Figure 3.5: A model satisfying the formula E[a U b].

3.2.2 CTL satisfaction algorithm

With these definitions, it’s possible to write the CTL satisfaction algorithm. The algo-
rithm follows one described in (HUTH; RYAN, 2000, pp. 224–229), which we transcribe
here.

The CTL satisfaction algorithm SAT works by labeling each state with all possible
subformulas of an input CTL formula ϕ that the state satisfies. The formula is satisfied
in the model if the initial state is labeled with ϕ. The actual labeling is done by, given a
set of states S ′ ⊆ S, excluding from it all elements that don’t satisfy the input formula. If
subformulas are evaluated in ascending size order, we benefit from having all subformulas
of an input formula already solved, so we are able to reuse them.

The algorithm is presented in Algorithm 2, and uses auxiliary function in Algorithms
3–7.

Example 14. We want to know if the model in Figure 3.6 (which is the same model as
the one in Figure 3.1, with labels added in the states) satisfies the Formula a ⇒ EX b in
the state 0.

The resolution of SAT(M, a⇒ AX b) is

SAT(M, a⇒ AX b) = SAT(M,¬a ∨ AX b) = SAT(M,¬a) ∪ SAT(M, AX b)

= (S − SAT(M, a)) ∪ SAT(M,¬EX¬b)
= (S − SAT(M, a)) ∪ (S − SAT(M, EX¬b))

= (S − SAT(M, a)) ∪ (S − SATEX(¬b,M))

The result of SAT(M, a) is the set {s0}. The result of S−SAT(M, a) = {s0, s1, s3, s4, s5}−
{s0} = {s1, s3, s4, s5}. The function SATEX(¬b,M) works by first finding the set of
states that satisfy ¬b (Algorithm 5, line 3), then finding set of states that are antecessors
of nodes in X (Algorithm 5, line 5). The solution for SAT(M,¬b) is

SAT(M,¬b) = S − SAT(M, b) = {s0, s1, s3, s4, s5} − {s1, s3} = {s0, s4, s5}
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1 function SAT(φ,M)
input : a formula φ, and a state spaceM = 〈S,→, L〉
output: a set of states that satisfy φ

2 switch φ do
3 case > return S;
4 case ⊥ return ∅;
5 case p return {s ∈ S | φ ∈ L(s)};
6 case ¬ϕ return S − SAT(ϕ,M);
7 case ϕ1 ∧ ϕ2 return SAT(ϕ1,M) ∩ SAT(ϕ2,M);
8 case ϕ1 ∨ ϕ2 return SAT(ϕ1,M) ∪ SAT(ϕ2,M);
9 case ϕ1 ⇒ ϕ2 return SAT(¬ϕ1 ∨ ϕ2,M);

10 case ϕ1 ⇐⇒ ϕ2 return SAT(ϕ1 ⇒ ϕ2 ∧ ϕ2 ⇒ ϕ1,M);
11 case AXϕ return SAT(¬EX¬ϕ,M);
12 case AFϕ return SATAF(ϕ,M);
13 case AGϕ return SAT(¬EF¬ϕ,M);
14 case A[ϕ1Uϕ2] return SAT(¬(E[¬ϕ2U(¬ϕ1 ∧ ¬ϕ2)] ∨ EG¬ϕ2),M);
15 case EXϕ return SATEX(ϕ,M);
16 case EFϕ return SAT(E[>Uϕ],M);
17 case EGϕ return SAT(¬AF¬ϕ1,M);
18 case E[ϕ1Uϕ2] return SATEU(ϕ1, ϕ2,M);
19 case (ϕ) return SAT(ϕ,M);
20 endsw

Algorithm 2: The SAT function.

1 function preE(Y,M)
input : set of states Y , and a state spaceM = 〈S,→, L〉
output: A set of states that are antecessors of the states in Y

2 return {s ∈ S | exists s′, (s→ s′ and s′ ∈ Y )}
Algorithm 3: The auxiliary function preE .

1 function preA(Y,M)
input : set of states Y , and a state spaceM = 〈S,→, L〉
output: A set of states that are antecessors only to states in Y

2 return {s ∈ S | for all s′, (s→ s′ implies that s′ ∈ Y )}
Algorithm 4: The auxiliary function preA

1 function SATEX(φ,M)
input : a formula φ, and a state spaceM = 〈S,→, L〉
output: a set of states that satisfy φ

33 X := SAT(φ,M);
55 Y := preE(X,M);
6 return Y

Algorithm 5: The SATEX function.
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1 function SATAF(φ,M)
input : a formula φ, and a state spaceM = 〈S,→, L〉
output: a set of states that satisfy AFφ

33 X := S;
55 Y := SAT(φ,M) ;
6 while X 6= Y do
88 X := Y ;

1010 Y := Y ∪ preA(Y,M) ;
11 end
12 return Y

Algorithm 6: The SATAF function.

1 function SATEU(φ1, φ2,M)
input : a formula φ, and a state spaceM = 〈S,→, L〉
output: a set of states that satisfy φ

33 W := SAT(φ1,M) ;
55 X := S ;
77 Y := SAT(φ2,M) ;
8 while X 6= Y do

1010 X := Y ;
1212 Y := Y ∪ (W ∩ preE(Y)) ;
13 end
14 return Y

Algorithm 7: The SATEU function.
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Figure 3.6: Model in Figure 3.1, with labels on the states.

Then we solve SATEX(¬b,M) = {s1, s3, s4}. The final solution is given by

SAT(M, a⇒ AX b) = (S − SAT(M, a)) ∪ (S − SATEX(¬b,M))

= (S − {s0}) ∪ (S − {s1, s3, s4})
= {s1, s3, s4, s5} ∪ {s0, s5} = {s0, s1, s3, s4, s5}

Since s0 is in the set of states that satisfy a⇒ AX b, the formula is satisfied.

3.3 Model checking graph grammars

The missing piece to model check a graph grammar is how to transform the graph
grammar state space (Definition 12) into a CTL (Definition 16). The main structural
difference between both is that a graph grammar state space is labeled in the transitions,
while the CTL model is labeled in the states, therefore a translation step is required.

Definition 19 (Translation from state space to a model). To convert a state space S =
〈SS, T, χ0, χ1〉 to a modelM = 〈SM,→, L〉, we define the following translations:

• SM = SS

• for all [G]≡
p

=⇒ [G′]≡ ∈ T , [G]≡ → [G′]≡ ∈→

• for all [G]≡
p

=⇒ [G′]≡ ∈ T , p ∈ L([G]≡)

Example 15. Figure 3.7 shows the model generated by the state space in Figure 3.7a, ac-
cording to the rules in Definition 19. The state space generation was cut after 5 iterations,
and the nodes without atoms were cut from the CTL model.

The schema above defines that a state in the state space is a state in the model, and that
transitions in the state space define the transition relation in the model. The labeling of
nodes is done by the name of the productions whose patterns can be found in the source
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(a) The limited state space generated by the graph grammar in Figure 2.7.

(b) CTL model generated by the state space on Example 3.7a.

Figure 3.7: Graph Grammar translation into a CTL model.
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Figure 3.8: The conversion from a simple state space to a model.

state of the transition, i.e., if a production can be applied to a state, the production’s name
is an atomic proposition in the model.

We are interested in checking two types of specifications in a graph grammar: the se-
quence of transformations it can have and states that have a certain internal conformation
(conditions). The first is already verifiable by the schema above, with some limitations
(see below). To find conditions, we can use a production that does not change the graph

(c : K
t
� K

t
� K, where t is a graph isomorphism). This way, only a match of the

condition is performed, and the state is tagged with the condition’s name for the model
checker.

As observed in Section 2.3, the state space of a graph grammar can be infinite (un-
bounded number of states), but for a model checker, models need to be finite to check for
properties. In case of a grammar that has an infinite space state – like the one presented
in Figure 2.9 –, or very large grammars in general, we can limit the state space genera-
tion, but this only allows the verification of properties that represent deviations from the
system specification. Also, in case we don’t find such deviations, we can not assert that
such deviations will not occur in the future, since we did not verify the future states of the
system. Other technique that can be applied is bounded model checking (CLARKE et al.,
2001).

The translation schema in Definition 19 is very similar to the one used in Groove
(RENSINK, 2008). One issue with this schema is that it is not possible to guarantee the
sequentiality of computations, i.e. a formula ϕ ⇒ EXφ can hold for a model even if ϕ
and φ are never executed in sequence. For a concrete example, see Figure 3.8, which sat-
isfies the formula r1 ⇒ EXr2, but r2 does not happen after r1, but after r0. This happens
because the atomic proposition are pulled from the transition (in the graph grammar state
space) to its source state (in the state-transition system), forgetting which transition in the
state-transition system is generated by the production application of interest. There are
ways to work around this problem: we can use only conditions as atomic formulas, avoid-
ing this situation by always looking at the internal node conformation. This approach is
readily available in the system, but is not complete, since it does not allow for the ver-
ification of computation sequences. The development of a logic that “follow paths” –
considers the path labels instead or in conjuntction with the node labels – requires further
study.
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3.4 Final Remarks

This chapter we reviewed the concepts of formal verification, and one of the systems
used in it, CTL, and discussed a schema for translating a graph grammar state space
into a model. We then discussed some of the limitations of such schema, and of graph
grammars as formal methods of verification in regards to resources consumed, presenting
some alternatives to attenuate these limitations. Some of these alternatives may be unfit
to the system in development, as the objectives of the project prioritize simplicity and
flexibility, so solutions that create complexity must be avoided.
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4 IMPLEMENTATION

In this chapter, we will see how we implemented the structures presented in the pre-
vious two chapters. We start with the choice of language in Section 4.1, followed by
the implementation of graph transformation in Section 4.2 and CTL model checking in
Section 4.3. The two subsystems were developed independently from each other, and we
look at the integration of both in Section 4.4. Lastly, we look at some some experiments
to measure the execution time and memory usage of the system in Section 4.5.

VeriGraph was developed in conjunction with Ricardo Herdt. My individual contri-
bution in this work is the architecture of the system, and the design and implementation
of the rewriting and state space modules, and the implementation of the CTL satisfaction
algorithm. Here we also present some modules that are not developed by myself, but
developed jointly with Ricardo, or fully by him. In Figure 4.1 we have a depiction of the
system architecture’s block diagram and contributions: I contributed fully with modules
in dark gray, partially with modules in light gray, and Ricardo’s individual contributions
are in white.

4.1 Haskell

VeriGraph is implemented in Haskell (JONES, 2003). Haskell is a pure functional
language that uses the Hindley-Milner type system (MILNER, 1978) with type classes.
It’s assumed that the user has some knowledge of Haskell, otherwise we recommend
(LIPOVAČA, 2011) as a good introductory text.

Haskell is a language that was first developed for academic purposes, but met some
success in the industry. It has a strong type system, which helps in development since
once the types are checked to be correct, the implementation is most likely correct. The

Figure 4.1: The system architecture’s block diagram
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language also uses call-by-need semantics (lazy evaluation), in which a value is only
computed when it is needed; in comparison, languages like OCaml have strict evaluation,
in which the value is computed immediately. The advantage of lazy evaluation is that
“dead” computations are never executed, but computing values takes more time. Perfor-
mance is still good, hitting at most 5 times the time of a comparable C implementation in
the Computer Language Benchmarks Game (http://benchmarksgame.alioth.debian.org/).

Since Haskell is a pure language, it does not allow for global mutable state, or any
kind of non-determinism in the results of each function, which includes input and output.
To overcome this limitation, Haskell provides a language feature called monads, which
we see in Section 4.1.2.

In this section, we discuss the features of the language that are used in VeriGraph.

4.1.1 Type classes

Type classes (HALL et al., 1996) were introduced in Haskell to provide overloading
of arithmetic operations. This is achieved by adding constraints to functions, which can
be only be used in conjunction with members of a given type class. It has been used with
success for implementing other language features such as Monads, because it can be used
in a way very similar to interfaces in object oriented languages. For instance, the Eq type
class is shown in Listing 4.1, which provides value comparison, and instances.

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

instance Eq Int where
x == y = intEq x y
x /= y = not (x == y)

instance Eq Float where
x == y = floatEq x y
x /= y = not (x == y)

Listing 4.1: The Eq type class

Here, we suppose that intEq and floatEq return True if the values provided are
equal. We can then use type classes to provide polymorphic functions like elem, which
checks wheter a value is in a list, in Listing 4.2.

elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem x (y:ys) = x == y || x ‘elem‘ ys

Listing 4.2: The elem function

The declaration before => defines that the polymorphic type a must be a member of
the type class Eq, which allows the elem function to be used only to compare values of
types that have a define equality. If the reader is proficient with Java, this is very similar
to what the interface Comparable does. Type classes are used in the implementation of
monads.
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4.1.2 Monads

Monads were first introduced as a way of modeling certain types of effects in cat-
egorial semantics (MOGGI, 1991), such as exceptions, state, and input/output. Wadler
(WADLER, 1993) then used these concepts as a way to implement such features in pure
functional languages.

A monad, in Haskell, is a type class with four associated functions, as seen in Listing
4.3.

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
fail :: String -> m a

Listing 4.3: The Monad type class

The return function takes a value and returns the same value inside the monad. The
operator >>= takes a monadic value and a computation that returns a monadic value, and
returns the value of the computation; this operation is called “bind”. The operator >> is
usually defined as v >> v’ = v >>= \_ -> v’, which executes the first computation,
discards its return value and then executes the second computation. fail serves to report
an error. The implementation of the Maybe monad is provided in Listing 4.4.

data Maybe a = Just a | Nothing

instance Monad Maybe where
return x = Just x

(Just x) >>= f = f x
Nothing >>= _ = Nothing

fail m = Nothing

Listing 4.4: Maybe monad implementation

Monads allow for programming in Haskell in imperative style, with the do notation.
We see the do notation in Listing 4.16.

Some standard monads:

• Maybe: A type that can return either a value in the type or a null-like value. It can
be used to represent errors.

• State s a = State { runState :: s -> (a, s)}: Represents a local shared
state s. To modify the state in the monad, two functions are provided: get ::

s returns the state stored in the monad, and put :: s -> () replaces the current
state with a new one. Working with the state monad usually revolves around get-
ting the current state, manipulating it and putting it back in the monad with put.
runState executes the monad with a initial state. We use the state monad in the
code that builds the state space.

• IO a: The monad that runs all the input/output methods in Haskell. The IO monad
has no run function.
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4.1.3 Parser Combinators

Parser combinators (HUTTON, 1992) are functions that accept parsers as inputs and
return a new parser as output. A parser is a function that accept strings as input and returns
some structure as the output.

Parsec (LEIJEN; MEIJER, 2001) is one framework for monadic combinator parsing,
probably the most well-known and successful for Haskell. Its success inspired the de-
velopment of parser combinators in other languages. A good introduction to Parsec can
be found in (O’SULLIVAN; GOERZEN; STEWART, 2008, Ch. 16). An example of a
parser combinator is the <|> operator in Parsec, which takes two parsers, parserA and
parserB, and returns a parser parserA <|> parserB that returns the result of parserA
if it parsed the string successfuly, otherwise returns the result of parserB. Parsec allows
for backtracking parsing with the operator try, that restores the input’s state to what it
was before the parser executed in case of a parsing failure.

4.2 Implementation of Graph Rewriting

In this section, we describe the main algorithms and data types used in the graph
transformation subsystem of VeriGraph, whose theory was described in Chapter 2.

4.2.1 Graphs

We start by looking at the graph structure in Listing 4.5. Full code listing for the
GraphGrammar.Graph module is presented in Appendix A.2.

data Node a = Node Int Int a deriving (Show, Read)
data Edge b = Edge Int (Int, Int) Int b deriving (Show, Read)

instance Eq (Node a) where
Node lid _ _ == Node gid _ _ = lid == gid

instance Eq (Edge b) where
Edge lid _ _ _ == Edge gid _ _ _ = lid == gid

data Digraph a b = Digraph (IntMap (Node a)) (IntMap (Edge b))
deriving (Show, Read, Eq)

Listing 4.5: Graph representation

A graph is defined as a set of nodes and a set of edges. The elements of a graph are
represented by the data types Node and Edge. Nodes and edges are parameterized, so they
can carry extra information, like labels, weights and other data; we’ll refer to this data as
the element’s payload. Since graph grammar state spaces are graphs, we use this structure
to represent them as well. Besides that, nodes are parameterized by two Int, one is the
node’s identity and the other is the node’s type, and edges are paramterized by identity,
source, target and type.

The IntMap datatype is a map type from Int to its contents. The identity of an element
is used as the key in the map. It is important to keep the keys consistent with the corre-
sponding element identities. It is easier to guarantee this if we use accessor functions, as
depicted in Listing 4.6. IntMap is preferable over lists in this implementation due to the
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efficient implementation of this structure. The structure also shares several functions with
lists, such as fold, map and filter. The biggest advantage of lists is that we don’t need to
guarantee the consistency between the element’s key and its identity.

addNode :: (Monad m) => Node a -> Digraph a b -> m (Digraph a b)
addNode n@(Node id _ _) g@(Digraph nm em) =

if id ‘IM.member‘ nm
then fail $ "addNode: node " ++ show id ++ " already in digraph"
else return $ Digraph (IM.insert id n nm) em

addEdge :: (Monad m) => Edge b -> Digraph a b -> m (Digraph a b)
addEdge e@(Edge id (s, t) _ _) g@(Digraph nm em)

| id ‘IM.member‘ em =
fail $ "addEdge: edge " ++ show id ++ " already in digraph"

| s ‘IM.member‘ nm && t ‘IM.member‘ nm =
return $ Digraph nm (IM.insert id e em)

| otherwise =
fail $ "addEdge: edge points to nodes not found in digraph"

removeNode :: (Monad m) => Node a -> Digraph a b -> m (Digraph a b)
removeNode n@(Node id _ _) g@(Digraph nm em)

| id ‘IM.notMember‘ nm =
fail $ "removeNode: node " ++ show id ++ " not in digraph"

| IM.fold
(\(Edge eid (s, t) _ _) acc -> acc || s == id || t == id)
False em =
fail $ "removeNode: node " ++ show id ++ " has some edge

pointing to it"
| otherwise =
return $ Digraph (IM.delete id nm) em

removeEdge :: (Monad m) => Edge b -> Digraph a b -> m (Digraph a b)
removeEdge e@(Edge id _ _ _) g@(Digraph nm em) =

if id ‘IM.member‘ em
then return $ Digraph nm (IM.delete id em)
else fail $ "removeEdge: edge " ++ show id ++ " not in digraph"

keepNode :: (Monad m) => Node a -> Digraph a b -> m (Digraph a b)
keepNode (Node nid _ _) g@(Digraph ns es) =

if nid ‘IM.member‘ ns
then return g
else fail $ "keepNode: node " ++ show nid ++ " does not exist"

keepEdge :: (Monad m) => Edge b -> Digraph a b -> m (Digraph a b)
keepEdge (Edge eid _ _ _) g@(Digraph ns es) =

if eid ‘IM.member‘ es
then return g
else fail $ "keepEdge: edge " ++ show eid ++ " does not exist"

Listing 4.6: Graph accessor functions

In Listing 4.6 we see monadic actions being used. The functions removeNode, removeEdge
, keepNode and keepEdge check if the target element exists in the graph, and fail in case it
does not. Also, removeNode checks if the target node is connected to an edge, and fail in
case it is. Ordering the application of these functions as described in Algorithm 11 allows
us to detect violations of the (DPO) application conditions.

1The order is removeEdge, removeNode, keepNode, keepEdge, addNode, addEdge.
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A typed graph is a pair of graphs, as in Listing 4.7.

data TypedDigraph a b = TypedDigraph (Digraph a b) (TGraph a b)
deriving (Show, Read, Eq)

Listing 4.7: Typed graph representation

TGraph is a type synonym for Digraph, used to differentiate the type graph. To encode
the type morphism, we store the identity of the type in the typed element.

Graph elements have a type class to unify access to the common features of elements:
payload, identity and type. The GraphElement type class and the two instances are pre-
sented in Listing 4.8.

class GraphElement a where
type Payload a :: *
payload :: a -> Payload a
elemId :: a -> Int
typeId :: a -> Int

instance GraphElement (Node a) where
type Payload (Node a) = a
payload (Node _ _ q) = q
elemId (Node i _ _) = i
typeId (Node _ t _) = t

instance GraphElement (Edge a) where
type Payload (Edge a) = a
payload (Edge _ _ _ q) = q
elemId (Edge i _ _ _) = i
typeId (Edge _ _ t _) = t

Listing 4.8: GraphElement definition and instances

We see two features being applied in the above listing: type classes and type fam-
ilies. Type families is a language extension that can be best described as “type level
functions”, since it allows to replace a type family with a concrete type associated with
some other type, avoiding some errors related to the monomorphism restriction intro-
duced in Haskell’s type system. For more on type families, we suggest the reading of
(SCHRIJVERS et al., 2008) (a gentle introduction can be found at (KISELYOV; JONES;
SHAN, 2010)). In this case, type families are used to limit the output type of the payload
function; otherwise the function type would be a -> b, which is an invalid type in the
Hindley-Milner type system.

A graph morphism is depicted in Listing 4.9.

type Morphism = ([(Int, Int)], [(Int, Int)])

Listing 4.9: The representation of a morphism

A morphism is a pair of lists of pairs. The first list represent the node mappings, and
the second one the mapping of edges, both referring to the identities of the elements in
the graph.

The module also contains some helper functions, that can be checked in Appendix
A.2.
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4.2.2 Rules

The rule (production) representation is depicted in Listing 4.10.

type NodeAction a = (Maybe (Node a), Maybe (Node a))
type EdgeAction a = (Maybe (Edge a), Maybe (Edge a))

data MatchType = Normal | Mono | Epi | Iso
deriving (Show, Read, Eq)

data Rule a b = Rule String MatchType [NodeAction a] [EdgeAction b]
deriving (Show,Read)

emptyRule = Rule [] Normal [] []

Listing 4.10: Rule’s representation

Similar to morphisms, productions (p : L
l
� K

r
� R) are composed of two lists of

mappings. We encode the set l(K) − K of elements that are deleted (r(K) − K of the
elements that are created) as mappings that contain Nothing on the right (left). K is the
set of actions that does not contain Nothing on either side. The functions in Listing 4.11
allow us to extract the graphs L, R and K. Function left returns L, right returns R and
glue returns K.

left :: (Eq a, Eq b) => Rule a b -> TGraph a b -> TypedDigraph a b
left (Rule n mt nr er) t = let

f e = fst e /= Nothing
ns = toElemList fst $ filter f nr
es = toElemList fst $ filter f er
in TypedDigraph (fromLists ns es) t

right :: (Eq a, Eq b) => Rule a b -> TGraph a b -> TypedDigraph a b
right (Rule n mt nr er) t = let

f e = snd e /= Nothing
ns = toElemList snd $ filter f nr
es = toElemList snd $ filter f er
in TypedDigraph (fromLists ns es) t

glue :: (Eq a, Eq b) => Rule a b -> TGraph a b -> TypedDigraph a b
glue (Rule n mt nr er) t = let

f e = snd e == fst e
ns = toElemList fst $ filter f nr
es = toElemList fst $ filter f er
in TypedDigraph (fromLists ns es) t

toElemList :: (Action a -> Maybe a) -> [Action a] -> [a]
toElemList f = map (fromJust . f)

Listing 4.11: Auxiliary functions for Rule

For rewriting, we need to extract the actions as functions, therefore, we also define the
functions to extract it, in Listing 4.12

addAction (Nothing, Just t) = True
addAction _ = False

removeAction (Just s, Nothing) = True
removeAction _ = False
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keepAction (Just s, Just t) = True
keepAction _ = False

nodeAction :: (Monad m, Eq a) => NodeAction a -> (Digraph a b -> m (
Digraph a b))

nodeAction (Nothing, Just n) = addNode n
nodeAction (Just n, Nothing) = removeNode n
nodeAction (Just n, Just n’) = if n /= n’

then const $ fail "Node transformation is unhandled"
else keepNode n

nodeAction (Nothing, Nothing) = return

edgeAction :: (Monad m, Eq b) => EdgeAction b -> (Digraph a b -> m (
Digraph a b))

edgeAction (Nothing, Just e) = addEdge e
edgeAction (Just e, Nothing) = removeEdge e
edgeAction (Just e, Just e’) = if e /= e’

then const $ fail "Edge transformation is unhandled"
else keepEdge e

edgeAction (Nothing, Nothing) = return

actionSet :: (Monad m, Eq a, Eq b) => Rule a b -> [Digraph a b -> m
(Digraph a b)]

actionSet (Rule n mt na ea) = let
nodeActions f = map nodeAction . filter f
edgeActions f = map edgeAction . filter f
knSet = nodeActions keepAction na
keSet = edgeActions keepAction ea
anSet = nodeActions addAction na
aeSet = edgeActions addAction ea
dnSet = nodeActions removeAction na
deSet = edgeActions removeAction ea
in deSet ++ dnSet ++ knSet ++ keSet ++ anSet ++ aeSet

Listing 4.12: Function extraction for rules

Functions addAction, removeAction and keepAction serve to filter the actions that
add, remove and keep nodes, respectively. nodeAction and edgeAction translate an
action to the appropriate function seen in Listing 4.6. actionSet perform the conversion
from a production into a list of functions, ordered to catch violations of the application
conditions2.

The production application is done by the applyRule function in Listing 4.13.
applyActions :: Monad m => [a -> m a] -> a -> m a
applyActions as g = foldM (\g f -> f g) g as

applyRule :: (Monad m, Eq a, Eq b) => Rule a b -> TypedDigraph a b
-> m (TypedDigraph a b)

applyRule m tg = let (TypedDigraph g t) = tg
actions = actionSet m

in do g’ <- applyActions actions g
return $ TypedDigraph g’ t

Listing 4.13: Rule application to a typed graph

2To recap: delete edges, delete nodes, keep nodes, keep edges, create nodes and finally create edges.
The reason for it was presented in Section 2.2
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Function applyActions executes a fold inside the monad, taking a initial graph and
a list of actions, and applies the functions of the list to the current graph; the graph for
the first application is the initial graph and the graph for the following applications is the
graph generated by the previous application. applyRule takes a production and a typed
graph, and extracts the functions to be applied, and uses applyActions to apply them to
the initial graph.

4.2.3 Rewriting

During rewriting, we would like to avoid identity collision in the graph, in which we
create a node with an id that is already in use, overriding the old element. The rewrite
function handles it, as presented in Listing 4.14.

rewrite :: (Monad m, Eq a, Eq b) => Rule a b -> TypedDigraph a b ->
Morphism -> m (TypedDigraph a b)

rewrite rule tGraph match = let (TypedDigraph graph _) = tGraph
ns = renameStart $ nodes graph
es = renameStart $ edges graph
renamedRule = rename ns es rule

match
in applyRule renamedRule tGraph

renameStart :: GraphElement e => [e] -> Int
renameStart es = 1 + (maximum $ map elemId es)

lookup’ i = maybe i id . lookup i

renameNode :: [(Int, Int)] -> Node a -> Node a
renameNode nm (Node id t p) = Node (lookup’ id nm) t p

renameEdge nm em (Edge id st t p) = Edge (lookup’ id em)
(double (\x -> lookup’ x nm) st) t p

renameAction :: GraphElement e => (e -> e) -> Action e -> Action e
renameAction f = double (liftM f)

double :: (a -> b) -> (a, a) -> (b, b)
double f (x, y) = (f x, f y)

rename :: (Eq a, Eq b) => Int -> Int -> Rule a b -> Morphism -> Rule
a b

rename ns es (Rule n mt nr er) (nm, em) = Rule n mt
(map nodeRename nr) (map edgeRename er)

where
elemIds :: (Eq e, GraphElement e) => [e] -> [Int]
elemIds = map elemId

addElements :: (Eq e, GraphElement e) => [Action e] -> [
e]

addElements = map (fromJust . snd) . filter ((== Nothing
) . fst)

idMap :: (Eq e, GraphElement e) => [Action e] -> [Int]
-> [(Int, Int)]

idMap xs ys = zip (elemIds $ addElements xs) ys
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nodeIdMap = (idMap nr [ns..]) ++ nm
edgeIdMap = (idMap er [es..]) ++ em

nodeRename = renameAction (renameNode nodeIdMap)
edgeRename = renameAction (renameEdge nodeIdMap

edgeIdMap)

Listing 4.14: The rewrite function, and auxiliary functions

The rename function handles the renaming of the rule. It takes two numbers, one to
start the renaming of nodes, the other to start the renaming of the edges. These two values
are determined by the renameStart function, that returns the largest identifier in the set,
incremented by 1. With the rule elements renamed, the applyRule function in the last
section is called to run the rewrite.

4.2.4 Graph matching

The graph matching algorithm works by generating a sequence of functions that check
wheter a given element in the mapped graphs does not violates the structural properties of
a morphism, as explained in Definition 2. The function signatures are in Listing 4.15 The
matching algorithm takes into account the type of matching we want to use: a Normal

match is an subgraph morphism, a Mono match is a subgraph isomorphism, an Epi match
is a graph morphism and an Iso match is a graph isomorphism. One increment that
we did in the algorithm, is to include information from the rule to avoid violating the
application conditions. We also used the type information from the grammar to limit the
number of possible matches by removing from the possible matches for each element in
L the elements in G that do not have the same type.

findMatches :: D.MatchType -> D.TypedDigraph a b -> D.TypedDigraph a
b -> [D.Morphism]

findMatchesR :: D.Rule a b -> D.MatchType -> D.TypedDigraph a b -> D
.TypedDigraph a b -> [D.Morphism]

Listing 4.15: Graph matching functions

The time and memory measurements for the algorithm with and without these condi-
tions are presented in section 4.5.

4.2.5 State space generation

The state space is generated by the function runStateSpace in Listing 4.16.

runStateSpace :: (Eq a, Eq b, MonadIO m) => Int -> TypedDigraph a b
-> [Rule a b] -> m (StateSpace a b)

runStateSpace n g r = buildGraph $ do i <- createNode g 1
mkStateSpace n i g r

mkStateSpace :: (Eq a, Eq b, MonadIO m) => Int -> Int ->
TypedDigraph a b -> [Rule a b] -> SSBuilder a b m ()

mkStateSpace 0 _ _ _ = return ()
mkStateSpace n i g r = do

forM_ r $ \r’ ->
do let (Rule _ mt _ _) = r’

forM_ (findMatchesR r’ mt (left r’ $ tpg g) g) $ \m -> do
t <- rewrite r’ g m
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i’ <- putState i t (r’, m)
if i’ == 0

then return ()
else mkStateSpace (n - 1) i’ t r

Listing 4.16: The state space building function

The function receives the iteration limit, the initial graph and a list of rules. The state
space creation works by depth first, finding all matches to all rules in the grammar and
applying the rewrite. If the rewrite fails (due to violations of the application conditions),
it is not added to the state. If it succeed, the state and the transition are added to the
state space by the putState function. This function takes care of checking for if the
state being put is isomorphic to another state. In such case, the function only adds the
new transition, and returns 0. Otherwise, the new state is added, and the identity of the
new node is returned. If a new identity is returned, mkStateSpace calls itself recursively
with the generated graph, reducing the iteration count. When the iteration count reaches
zero, the iteration stops. buildGraph will execute the State monad, and is defined in the
GraphGrammar.Builder.Graph module on Appendix A.9.

4.2.6 Other modules

4.2.6.1 Grammar serialization

To be able to read a grammar file, we use the Show and Read type classes. Show

provides a way to transform a data structure into a String, and when derived implic-
itly (using the deriving) keyword) will print the structure of the data. Read provides a
way of reading a String into a data structure, and when defined implicitly will read the
string provided by Show. Currently, the system reads the format provided Show that is
stored in a file. The serialization and unserialization of this data is handled in the module
GraphGrammar.Serialized in Appendix A.7.

4.2.6.2 Graph modeling language output

To be able to see the states, state space and model, we use the graph modeling language
(GML) file format, that can be opened in several graph visualization tools. The GML
generation is handled by the GraphGrammar.GML module on Appendix A.8.

4.3 CTL implementation

The CTL implementation is composed of the model, syntax semantics, parser and
translation. The graph grammar state space and CTL model figures in this text were
generated by running the grammar in VeriGraph and opening the files for visualization
and layouting in the yEd graph editor (WIESE; EIGLSPERGER; KAUFMANN, 2004).
The theory for this implementation is presented in Chapter 3.

4.3.1 Model

The model for our CTL implementation is a graph. To keep implementation indepen-
dent from the graph grammar, we decided to build another graph instance, that is similar
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to the one previously seen. With this decision, we opened up the possibility of separating
this subsystem from the graph rewriting implementation. The implementation can be seen
in the module Logic.Modal.Graph in Appendix A.11.

4.3.2 Parser

The syntax representation of CTL is defined in the module Logic.CTL.Base in Ap-
pendix A.13.

data CTL = Literal Bool -- true, false
| Atom String -- p
| Not CTL -- ~p
| And CTL CTL -- f && f
| Or CTL CTL -- f || f
| Implies CTL CTL -- f -> f
| AllNext CTL -- AX f
| SomeNext CTL -- EX f
| AllFuture CTL -- AF f
| SomeFuture CTL -- EF f
| AllGlobal CTL -- AG f
| SomeGlobal CTL -- EG f
| AllUntil CTL CTL -- A[f U f]
| SomeUntil CTL CTL -- E[f U f]
deriving (Show, Eq, Read)

Literal contains a boolean literal, Atom contains an atomic proposition. Not, And,
Or and Implies represent the logic operators ¬, ∧, ∨ and ⇒, respectively. The All*
constructors represent the A∗ operator in CTL and the Some* operators, the E∗ oper-
ators. *Next, *Future *Global and *Until represent the operators ∗X , ∗F , ∗G and
∗U , respectively. To the right of each constructor, we see the implemented syntax of the
operators.

The parser was developed with Parsec. For the implementation, the syntax in Defini-
tion 13 must be factored as a right recursive grammar, below.

ϕ1 ::= A[ϕ1 U ϕ1] | E[ϕ1 U ϕ1] | ϕ2 → ϕ1 | ϕ2

ϕ2 ::= ϕ3&&ϕ2 | ϕ3||ϕ2 | ϕ3

ϕ3 ::=∼ ϕ3 | AXϕ3 | AFϕ3 | AGϕ3 | EXϕ3 | EFϕ3 | EGϕ3 | (ϕ1) | p

The parser implementation is in Appendix A.14.

4.3.3 Semantics

The CTL semantics implementation is a translation of the Algorithms 2–7, as we
can see in Appendix A.15. The ctlSat is the implementation of the SAT function in
Algorithm 2, and uses pattern matching to mimic the definition of the algorithm.

4.4 Integration

In this section, we talk about the integration of the subsystems for graph rewriting
and CTL satisfaction to form the model checker. The integration is done in the main
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Figure 4.2: Grammar used in the experiments

program, which is shown in Appendix A.17. The function reads the grammar from the
file indicated in the command line in the command line, and generates the state space
from that grammar. It then translates it into a CTL model with the function translate

(Appendix A.16. Rules are entered in the command line also, between quotes. Each
formula is parsed, and then checked in the generated model.

4.5 Experiments

For our experiments, we defined an grammar with infinite state space that is a little
more complex than the grammar presented in Figure 2.9; the grammar is depicted in
Figure 4.2. The grammar is one of the worst case situations for matching, since the type
is the simplest possible, not allowing the algorithm to cut many branches of the search
tree early.

The experiment was designed to measure how the number of elements of the graph
affect the performance of the system in the worst case. A normal use case will usually
execute faster. All rules are set to Normal matches. The was run by varying the depth
of the state space from 10 to 100 in steps of 10, and repeated three times. We took
measures of the time used to execute and the peak memory usage during execution. The
experiments were done in a Intel Core i3-2120 running at 3.3 GHz, with 8GB of memory.
The operating system is Fedora 20 64 bit.

The mean time and memory usage are presented in the table below, and plotted in
Figure 4.3.
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Iteration size time (s) memory (kb)
rule no rule rule no rule

10 0.02 0.02 5576 5608
20 0.16 0.14 8520 8760
30 0.71 0.73 16460 17332
40 2.42 2.62 33832 33784
50 6.24 6.46 62440 62536
60 13.98 14.32 119864 120844
70 27.95 28.74 159812 158796
80 51.24 52.78 269268 269296
90 91.14 96.74 347136 348156
100 151.38 156.5 564204 565232

From the results, we conclude that more the rule information affects the execution
time and memory usage slightly, as we expected. We would need to run experiments with
more complex grammars to reveal how this modification results in faster execution of the
grammar. Comparisson with other tools was not done.

4.6 Final remarks

In this chapter, we saw how VeriGraph was implemented. VeriGraph is now under-
going a major remodeling to be closer to the theory presented in Chapter 2. The CTL
implementation is isolated from the graph grammar code, and can be used with the new
system. One of the major limitations of the system is the graph grammar input format.
Ideally, we want to enter the grammar as either a standard graph grammar language or
visually. The project will, at some point, be headed into the direction of loading the graph
grammar file formats from other tools, like GROOVE. Visual inputs are more complex,
since graphical interfaces are not a strong point of Haskell, but are still feasible with ports
of GTK for Haskell.



63

 0.01

 0.1

 1

 10

 100

 1000

 0  1  2  3  4  5  6  7  8  9

lo
g
 t

im
e
 (

s
)

Depth of iteration

Time without rule information matching
Time with rule information matching

(a) Execution time

 1000

 10000

 100000

 1e+06

 0  1  2  3  4  5  6  7  8  9

lo
g
 m

e
m

o
ry

 (
k
b
)

Depth of iteration

Memory without rule information matching
Memory with rule information matching

(b) Peak memory usage

Figure 4.3: Measurements for the experiment



64



65

5 CONCLUSIONS AND FUTURE WORK

In this monograph, we reviwed graph grammars and CTL model checking, and de-
cribed the developement of VeriGraph, a CTL model checker for typed graph grammars.
The tool was developed in Haskell, and the implementation favored correctness and archi-
tectural flexibility rather than fast execution. Despite its steep learning curve, choosing
Haskell allowed us to keep the implementation close to the DPO graph transformation
approach.

Some interesting aspects of our implementation lie in the rewriting algorithm, that
converts the rewrite into a set of atomic graph transformation actions, and the use of rule
information to improve the matching algorithm. Both take advantage of the limitations
implied by the application conditions of the DPO approach to avoid violating such con-
ditions. We have also found some issues with the translation from a graph grammar state
space to a CTL model, which we discuss in Section 3.3.

We conclude this work wanting to release this tool as soon as some features in Section
5.1 are implemented.

5.1 Future work

To improve VeriGraph, we would like to implement the following features:

• Implementation of negative application conditions;

• Implementation of second-order graph grammars;

• CTL∗ model checker to unify the backends;

• Model checking for second order graph grammars;

• Critical pair analisys for first- and second-order graph grammars;

• Loading of grammars from well known file formats used in other tools;

• Single pushout and sesqui pushout tranformation;

• Matching algorithm with GPU acceleration (CHAKRAVARTY et al., 2011);

• User interface for graph and production edition.
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AppendixA

A.1 GraphGrammar

1 module GraphGrammar ( module GraphGrammar.Graph
2 , module GraphGrammar.StateSpace
3 , module GraphGrammar.Rule
4 , runSerializedGrammar
5 ) where
6
7 import Control.Monad.IO.Class
8
9 import GraphGrammar.Graph

10 import GraphGrammar.Rule
11 import GraphGrammar.Match
12 import GraphGrammar.Transformation
13 import GraphGrammar.StateSpace
14 import GraphGrammar.Serialized
15
16 unserializeString :: MonadIO m => String -> m (Serialized String

String)
17 unserializeString s = do system <- liftIO $ readFile s
18 return $ unserialize system
19
20 runSerializedGrammar :: MonadIO m => Int -> String -> m (StateSpace

String String)
21 runSerializedGrammar l s = do (Serialized graphs rules) <-

unserializeString s
22 runStateSpace l (head graphs) rules

A.2 GraphGrammar.Graph

1 {-# LANGUAGE TypeFamilies #-}
2 module GraphGrammar.Graph
3 ( Edge (..)
4 , Node (..)
5 , Digraph (..)
6 , TypedDigraph (..)
7 , GraphElement (..)
8 , Morphism (..)
9 , TGraph

10 , empty
11 , null
12 , fromLists
13 , node
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14 , edge
15 , addNode
16 , addEdge
17 , removeNode
18 , removeEdge
19 , keepNode
20 , keepEdge
21 , insNode
22 , insEdge
23 , delNode
24 , delEdge
25 , nodes
26 , edges
27 , findNode
28 , source
29 , target
30 , hasEdge
31 , sourceID
32 , targetID
33 , srcType
34 , tarType
35 ) where
36
37 import Control.Monad
38
39 import Prelude hiding (null)
40
41 import Data.IntMap (IntMap)
42 import qualified Data.IntMap as IM
43 import qualified Data.List as L
44 import Assorted.PrettyPrint
45
46 data Edge a = Edge Int (Int, Int) Int a deriving (Show, Read)
47 instance Eq (Edge a) where
48 Edge lid _ _ _ == Edge gid _ _ _ = lid == gid
49
50 data Node a = Node Int Int a deriving (Show, Read)
51 instance Eq (Node a) where
52 Node lid _ _ == Node gid _ _ = lid == gid
53
54 class GraphElement a where
55 type Payload a :: *
56 payload :: a -> Payload a
57 elemId :: a -> Int
58 typeId :: a -> Int
59
60 instance GraphElement (Node a) where
61 type Payload (Node a) = a
62 payload (Node _ _ q) = q
63 elemId (Node i _ _) = i
64 typeId (Node _ t _) = t
65
66 instance GraphElement (Edge a) where
67 type Payload (Edge a) = a
68 payload (Edge _ _ _ q) = q
69 elemId (Edge i _ _ _) = i
70 typeId (Edge _ _ t _) = t
71
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72 data Digraph a b = Digraph (IntMap (Node a)) (IntMap (Edge b))
deriving (Show, Read, Eq)

73
74 data TypedDigraph a b = TypedDigraph (Digraph a b) (TGraph a b)
75 deriving (Show, Read, Eq)
76
77 type TGraph a b = Digraph a b
78
79 empty :: Digraph a b
80 empty = Digraph (IM.empty) (IM.empty)
81
82 null :: Digraph a b -> Bool
83 null (Digraph nm em) =
84 IM.null nm && IM.null em
85
86 fromLists :: [Node a] -> [Edge b] -> Digraph a b
87 fromLists ns es = Digraph (fromElementList ns) (fromElementList es)
88
89
90 fromElementList :: GraphElement a => [a] -> IntMap a
91 fromElementList = IM.fromList . map (\x -> (elemId x, x))
92
93 node :: Int -> Digraph a b -> Maybe (Node a)
94 node i (Digraph n _) = IM.lookup i n
95
96 edge :: Int -> Digraph a b -> Maybe (Edge b)
97 edge i (Digraph _ e) = IM.lookup i e
98
99 addNode :: (Monad m) => Node a -> Digraph a b -> m (Digraph a b)

100 addNode n@(Node id _ _) g@(Digraph nm em) =
101 if id ‘IM.member‘ nm
102 then fail $ "addNode: node " ++ show id ++ " already

in digraph"
103 else return $ Digraph (IM.insert id n nm) em
104
105 addEdge :: (Monad m) => Edge b -> Digraph a b -> m (Digraph a b)
106 addEdge e@(Edge id (s, t) _ _) g@(Digraph nm em)
107 | id ‘IM.member‘ em =
108 fail $ "addEdge: edge " ++ show id ++ " already in

digraph"
109 | s ‘IM.member‘ nm && t ‘IM.member‘ nm =
110 return $ Digraph nm (IM.insert id e em)
111 | otherwise =
112 fail $ "addEdge: edge points to nodes not found in

digraph"
113
114 removeNode :: (Monad m) => Node a -> Digraph a b -> m (Digraph a b)
115 removeNode n@(Node id _ _) g@(Digraph nm em)
116 | id ‘IM.notMember‘ nm =
117 fail $ "removeNode: node " ++ show id ++ " not in

digraph"
118 | IM.fold
119 (\(Edge eid (s, t) _ _) acc -> acc || s == id || t

== id)
120 False em =
121 fail $ "removeNode: node " ++ show id ++ " has some

edge pointing to it"
122 | otherwise =
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123 return $ Digraph (IM.delete id nm) em
124
125 removeEdge :: (Monad m) => Edge b -> Digraph a b -> m (Digraph a b)
126 removeEdge e@(Edge id _ _ _) g@(Digraph nm em) =
127 if id ‘IM.member‘ em
128 then return $ Digraph nm (IM.delete id em)
129 else fail $ "removeEdge: edge " ++ show id ++ " not

in digraph"
130
131 keepNode :: (Monad m) => Node a -> Digraph a b -> m (Digraph a b)
132 keepNode (Node nid _ _) g@(Digraph ns es) =
133 if nid ‘IM.member‘ ns
134 then return g
135 else fail $ "keepNode: node " ++ show nid ++ " doesn

’t exist"
136
137 keepEdge :: (Monad m) => Edge b -> Digraph a b -> m (Digraph a b)
138 keepEdge (Edge eid _ _ _) g@(Digraph ns es) =
139 if eid ‘IM.member‘ es
140 then return g
141 else fail $ "keepEdge: edge " ++ show eid ++ " doesn

’t exist"
142
143 findNode :: Int -> Digraph a b -> Maybe (Node a)
144 findNode id (Digraph nm _) =
145 IM.lookup id nm
146
147 nodes :: Digraph a b -> [(Node a)]
148 nodes (Digraph nm _) = map snd $ IM.toList nm
149
150 edges :: Digraph a b -> [(Edge b)]
151 edges (Digraph _ em) = map snd $ IM.toList em
152
153 source :: Edge b -> Digraph a b -> Node a
154 source e d =
155 let (Just n) = findNode (sourceID e) d
156 in n
157
158 target :: Edge b -> Digraph a b -> Node a
159 target e d =
160 let (Just n ) = findNode (targetID e) d
161 in n
162
163 sourceID :: Edge b -> Int
164 sourceID (Edge _ (src, _) _ _) = src
165
166 targetID :: Edge b -> Int
167 targetID (Edge _ (_, tar) _ _) = tar
168
169 hasEdge :: TypedDigraph a b -> Node a -> Bool
170 hasEdge (TypedDigraph dg _) n =
171 let
172 nid = elemId n
173 found = L.find (\(Edge _ (s, t) _ _) -> s == nid ||

t == nid) $ edges dg
174 in case found of
175 Just _ -> True
176 Nothing -> False
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177
178 nodePayload :: Node a -> a
179 nodePayload (Node _ _ p) = p
180
181 insNode :: Node a -> Digraph a b -> Digraph a b
182 insNode n@(Node id _ _) g@(Digraph nm em) =
183 if id ‘IM.member‘ nm
184 then g
185 else Digraph (IM.insert id n nm) em
186
187 insEdge :: Edge b -> Digraph a b -> Digraph a b
188 insEdge e@(Edge id (s, t) _ _) g@(Digraph nm em)
189 | id ‘IM.member‘ em =
190 g
191 | s ‘IM.member‘ nm && t ‘IM.member‘ nm =
192 Digraph nm (IM.insert id e em)
193 | otherwise =
194 g
195
196 delNode :: Node a -> Digraph a b -> Digraph a b
197 delNode n@(Node id _ _) g@(Digraph nm em)
198 | id ‘IM.notMember‘ nm =
199 g
200 | IM.fold
201 (\(Edge eid (s, t) _ _) acc -> acc || s == id || t

== id)
202 False em =
203 g
204 | otherwise =
205 Digraph (IM.delete id nm) em
206
207 delEdge :: Edge b -> Digraph a b -> Digraph a b
208 delEdge e@(Edge id _ _ _) g@(Digraph nm em) =
209 if id ‘IM.member‘ em
210 then Digraph nm (IM.delete id em)
211 else g
212
213 findNodeType :: Int -> TypedDigraph a b -> Maybe Int
214 findNodeType id td@(TypedDigraph (Digraph nm em) _) =
215 let n = IM.lookup id nm
216 in case n of
217 Nothing -> Nothing
218 Just (Node _ tid _) -> Just tid
219
220 srcType :: Edge b -> TypedDigraph a b -> Maybe Int
221 srcType (Edge _ (s, _) _ _) l =
222 findNodeType s l
223
224 tarType :: Edge b -> TypedDigraph a b -> Maybe Int
225 tarType (Edge _ (_, t) _ _) l =
226 findNodeType t l
227
228 type Morphism = ([(Int, Int)], [(Int, Int)])

A.3 GraphGrammar.Rule

1 module GraphGrammar.Rule ( Action (..)
2 , Rule (..)
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3 , MatchType (..)
4 , emptyRule
5 , applyRule
6 , left
7 ) where
8
9 import Control.Monad

10
11 import Data.Maybe
12 import qualified Data.List as L
13 import Data.IntMap hiding (map, filter)
14
15 import GraphGrammar.Graph
16
17 import Assorted.PrettyPrint
18
19 type Action a = (Maybe a, Maybe a)
20 type NodeAction a = Action (Node a)
21 type EdgeAction a = Action (Edge a)
22
23 data MatchType = Normal | Mono | Epi | Iso
24 deriving (Show, Read, Eq)
25
26 data Rule a b = Rule String MatchType [NodeAction a] [EdgeAction b]
27 deriving (Show,Read)
28
29 emptyRule = Rule [] Normal [] []
30
31 addNodeAction :: Node a -> Node a -> Rule a b -> Rule a b
32 addNodeAction ln rn m@(Rule n mt nal eal) =
33 if (Just ln, Just rn) ‘L.notElem‘ nal
34 then Rule n mt ((Just ln, Just rn) : nal) eal
35 else m
36
37
38 addEdgeAction :: Edge b -> Edge b -> Rule a b -> Rule a b
39 addEdgeAction le re m@(Rule n mt nal eal) =
40 Rule n mt nal ((Just le, Just re) : eal)
41
42
43 nodeAction :: (Monad m, Eq a) => NodeAction a -> (Digraph a b -> m (

Digraph a b))
44 nodeAction (Nothing, Just n) = addNode n
45 nodeAction (Just n, Nothing) = removeNode n
46 nodeAction (Just n, Just n’) = if n /= n’
47 then const $ fail "Node transformation is unhandled"
48 else keepNode n
49 nodeAction (Nothing, Nothing) = return
50
51 edgeAction :: (Monad m, Eq b) => EdgeAction b -> (Digraph a b -> m (

Digraph a b))
52 edgeAction (Nothing, Just e) = addEdge e
53 edgeAction (Just e, Nothing) = removeEdge e
54 edgeAction (Just e, Just e’) = if e /= e’
55 then const $ fail "Edge transformation is unhandled"
56 else keepEdge e
57 edgeAction (Nothing, Nothing) = return
58
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59 addAction (Nothing, Just t) = True
60 addAction _ = False
61
62 removeAction (Just s, Nothing) = True
63 removeAction _ = False
64
65 keepAction (Just s, Just t) = True
66 keepAction _ = False
67
68 left :: (Eq a, Eq b) => Rule a b -> TGraph a b -> TypedDigraph a b
69 left (Rule n mt nr er) t = let
70 f e = fst e /= Nothing
71 ns = toElemList fst $ filter f nr
72 es = toElemList fst $ filter f er
73 in TypedDigraph (fromLists ns es) t
74
75 right :: (Eq a, Eq b) => Rule a b -> TGraph a b -> TypedDigraph a b
76 right (Rule n mt nr er) t = let
77 f e = snd e /= Nothing
78 ns = toElemList snd $ filter f nr
79 es = toElemList snd $ filter f er
80 in TypedDigraph (fromLists ns es) t
81
82 glue :: (Eq a, Eq b) => Rule a b -> TGraph a b -> TypedDigraph a b
83 glue (Rule n mt nr er) t = let
84 f e = snd e == fst e
85 ns = toElemList fst $ filter f nr
86 es = toElemList fst $ filter f er
87 in TypedDigraph (fromLists ns es) t
88
89 toElemList :: (Action a -> Maybe a) -> [Action a] -> [a]
90 toElemList f = map (fromJust . f)
91
92 actionSet :: (Monad m, Eq a, Eq b) => Rule a b -> [Digraph a b -> m

(Digraph a b)]
93 actionSet (Rule n mt na ea) = let
94 nodeActions f = map nodeAction . filter f
95 edgeActions f = map edgeAction . filter f
96 knSet = nodeActions keepAction na
97 keSet = edgeActions keepAction ea
98 anSet = nodeActions addAction na
99 aeSet = edgeActions addAction ea

100 dnSet = nodeActions removeAction na
101 deSet = edgeActions removeAction ea
102 in deSet ++ dnSet ++ knSet ++ keSet ++ anSet ++ aeSet
103
104 applyActions :: Monad m => [a -> m a] -> a -> m a
105 applyActions as g = foldM (\g f -> f g) g as
106
107 applyRule :: (Monad m, Eq a, Eq b) => Rule a b -> TypedDigraph a b

-> m (TypedDigraph a b)
108 applyRule m tg = let (TypedDigraph g t) = tg
109 actions = actionSet m
110 in do g’ <- applyActions actions g
111 return $ TypedDigraph g’ t

A.4 GraphGrammar.Transformation
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1 module GraphGrammar.Transformation ( rewrite ) where
2
3 import Data.Maybe
4 import Data.List
5 import Data.IntMap (IntMap,keys,fromList)
6
7 import GraphGrammar.Graph
8 import GraphGrammar.Rule
9 import GraphGrammar.Match (findMatches)

10
11 import Assorted.PrettyPrint
12
13 import Control.Monad
14
15 rewrite :: (Monad m, Eq a, Eq b) => Rule a b -> TypedDigraph a b ->

Morphism -> m (TypedDigraph a b)
16 rewrite rule tGraph match = let (TypedDigraph graph _) = tGraph
17 ns = renameStart $ nodes graph
18 es = renameStart $ edges graph
19 renamedRule = rename ns es rule

match
20 in applyRule renamedRule tGraph
21
22 renameStart :: GraphElement e => [e] -> Int
23 renameStart es = 1 + (maximum $ map elemId es)
24
25 lookup’ i = maybe i id . lookup i
26
27 renameNode :: [(Int, Int)] -> Node a -> Node a
28 renameNode nm (Node id t p) = Node (lookup’ id nm) t p
29
30 renameEdge nm em (Edge id st t p) = Edge (lookup’ id em)
31 (double (\x -> lookup’ x nm) st) t p
32
33 renameAction :: GraphElement e => (e -> e) -> Action e -> Action e
34 renameAction f = double (liftM f)
35
36 double :: (a -> b) -> (a, a) -> (b, b)
37 double f (x, y) = (f x, f y)
38
39 rename :: (Eq a, Eq b) => Int -> Int -> Rule a b -> Morphism -> Rule

a b
40 rename ns es (Rule n mt nr er) (nm, em) = let
41 elemIds :: (Eq e, GraphElement e) => [e] -> [Int]
42 elemIds = map elemId
43
44 addElements :: (Eq e, GraphElement e) => [Action e] -> [e]
45 addElements = map (fromJust . snd) . filter ((== Nothing) . fst)
46
47 idMap :: (Eq e, GraphElement e) => [Action e] -> [Int] -> [(Int,

Int)]
48 idMap xs ys = zip (elemIds $ addElements xs) ys
49
50 nodeIdMap = (idMap nr [ns..]) ++ nm
51 edgeIdMap = (idMap er [es..]) ++ em
52
53 nodeRename = renameAction (renameNode nodeIdMap)
54 edgeRename = renameAction (renameEdge nodeIdMap edgeIdMap)
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55 in Rule n mt (map nodeRename nr) (map edgeRename er)

A.5 GraphGrammar.Match

1 module GraphGrammar.Match
2 ( findMatches
3 , findMatchesR
4 , isSurjective
5 , findIsoMorphisms
6 , isIsomorphic
7 )
8 where
9

10 import Control.Monad -- foldM
11 import Data.Maybe
12 import qualified GraphGrammar.Graph as D
13 import qualified GraphGrammar.Rule as D
14 import qualified Data.IntMap as IM
15 import qualified Data.List as L
16 import qualified Data.Set as S
17
18 type MapSet = (S.Set (Int, Int), S.Set (Int, Int))
19
20 findMatches :: D.MatchType -> D.TypedDigraph a b -> D.TypedDigraph a

b -> [D.Morphism]
21 findMatches mt l g =
22 findMatchesR D.emptyRule mt l g
23
24 findMatchesR :: D.Rule a b -> D.MatchType -> D.TypedDigraph a b -> D

.TypedDigraph a b -> [D.Morphism]
25 findMatchesR r mt l g =
26 let matches = matchGraphs r mt l g
27 in map (\(nm, em) -> (S.toList nm, S.toList em)) matches
28
29 type EdgeCondition b = D.Edge b -> Bool
30
31 edgeTypeCondGen :: D.Edge b -> EdgeCondition b
32 edgeTypeCondGen le = (\ge -> D.typeId le == D.typeId ge)
33
34 srcTypeCondGen :: D.TypedDigraph a b -> D.Edge b -> D.TypedDigraph a

b -> EdgeCondition b
35 srcTypeCondGen l le g =
36 (\ge -> D.srcType le l == D.srcType ge g)
37
38 tarTypeCondGen :: D.TypedDigraph a b -> D.Edge b -> D.TypedDigraph a

b -> EdgeCondition b
39 tarTypeCondGen l le g =
40 (\ge -> D.tarType le l == D.tarType ge g)
41
42 srcIDCondGen
43 :: D.Edge b
44 -> MapSet
45 -> EdgeCondition b
46 srcIDCondGen le m@(nmatches, _) =
47 (\ge ->
48 let
49 lsrc = D.sourceID le
50 gsrc = D.sourceID ge
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51 matched = L.find (\(s, t) -> s == lsrc) $ S.
toList nmatches

52 in case matched of
53 Just (_, n) -> gsrc == n
54 otherwise -> True)
55
56 :: D.Edge b
57 -> MapSet
58 -> EdgeCondition b
59 tarIDCondGen le m@(nmatches, _) =
60 (\ge ->
61 let ltar = D.targetID le
62 gtar = D.targetID ge
63 matched = L.find (\(s, t) -> s == ltar) $ S.

toList nmatches
64 in case matched of
65 Just (_, n) -> gtar == n
66 otherwise -> True)
67
68 loopCondGen :: D.Edge b -> EdgeCondition b
69 loopCondGen le =
70 (\ge ->
71 let
72 lsrc = D.sourceID le
73 ltar = D.targetID le
74 gsrc = D.sourceID ge
75 gtar = D.targetID ge
76 in if lsrc == ltar
77 then gsrc == gtar
78 else True)
79
80 generateEdgeConds
81 :: D.TypedDigraph a b
82 -> D.Edge b
83 -> D.TypedDigraph a b
84 -> MapSet
85 -> [EdgeCondition b]
86 generateEdgeConds l le g m =
87 edgeTypeCondGen le :
88 srcIDCondGen le m :
89 tarIDCondGen le m :
90 loopCondGen le :
91 []
92
93 processEdge :: [EdgeCondition b] -> D.Edge b -> Bool
94 processEdge cl e =
95 L.foldr (\c acc -> (c e) && acc) True cl
96
97 type NodeCondition a = D.Node a -> Bool
98
99 nodeTypeCondGen :: D.Node a -> NodeCondition a

100 nodeTypeCondGen ln =
101 (\n -> D.typeId ln == D.typeId n)
102
103 danglingCondGen ::
104 D.Rule a b
105 -> D.TypedDigraph a b
106 -> D.Node a
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107 -> NodeCondition a
108 danglingCondGen r g ln =
109 if toBeDeleted r (D.elemId ln)
110 then (\gn -> not $ D.hasEdge g gn)
111 else (\gn -> True)
112
113 delCondGen ::
114 D.Rule a b
115 -> D.Node a
116 -> MapSet
117 -> NodeCondition a
118 delCondGen r ln m =
119 (\gn -> (not $ isMapped gn m) ||
120 (toBeDeleted r (D.elemId ln) == mappedToDel r m gn))
121
122 isMapped :: D.Node a -> MapSet -> Bool
123 isMapped gn (nmaps, _) =
124 let found = S.filter (\(_, gnode) -> gnode == D.elemId gn)

nmaps
125 in not $ S.null found
126
127 mappedToDel :: D.Rule a b -> MapSet -> D.Node a -> Bool
128 mappedToDel r (nmaps, _) n =
129 let nmap = S.filter (\(lnid, gnid) ->
130 gnid == nid && toBeDeleted r lnid
131 ) nmaps
132 in not $ S.null nmap
133 where nid = D.elemId n
134
135 toBeDeleted :: D.Rule a b -> Int -> Bool
136 toBeDeleted r@(D.Rule _ _ nal _) nid =
137 let naction = L.find (\na ->
138 case na of
139 (Just ln, _) -> D.elemId ln == nid
140 otherwise -> False
141 ) nal
142 in case naction of
143 Just (_, Nothing) -> True
144 otherwise -> False
145
146 generateConds ::
147 D.Rule a b
148 -> D.TypedDigraph a b
149 -> D.Node a
150 -> D.TypedDigraph a b
151 -> MapSet
152 -> [NodeCondition a]
153 generateConds r l ln g m =
154 nodeTypeCondGen ln :
155 delCondGen r ln m :
156 danglingCondGen r g ln :
157 []
158
159 processNode :: [NodeCondition a] -> D.Node a -> Bool
160 processNode cl n =
161 L.foldr (\c acc -> (c n) && acc) True cl
162
163 mapGraphs
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164 :: D.Rule a b
165 -> D.MatchType
166 -> D.TypedDigraph a b -- ^ @l@, the "left side" graph
167 -> (MapSet, D.TypedDigraph a b, [D.Edge b], [D.Node a]) -- ^

@m@, what already got mapped
168 -> [(MapSet, D.TypedDigraph a b, [D.Edge b], [D.Node a])]
169 mapGraphs _ mt _ ml@((nmap, emap), D.TypedDigraph dg@(D.Digraph gnm

gem) _, [], []) =
170 case mt of
171 D.Epi -> let
172 gMappedNodes = S.fold (\(ln, gn) acc -> S.insert gn

acc) S.empty nmap
173 gMappedEdges = S.fold (\(le, ge) acc -> S.insert ge

acc) S.empty emap
174 in
175 if S.size gMappedNodes == IM.size gnm && S.size

gMappedEdges == IM.size gem
176 then [ml]
177 else []
178 D.Iso -> if D.null dg
179 then [ml]
180 else []
181 otherwise -> [ml]
182 mapGraphs r mt l (m@(nmatch, ematch),
183 g@(D.TypedDigraph dg@(D.Digraph gnm gem) tg),
184 (le:les), lns) =
185 let
186 conds = generateEdgeConds l le g m
187 edgeList = D.edges dg
188 candidates = filter (processEdge conds) $ edgeList
189 newMapSets = fmap
190 (\ge ->
191 let
192 sid = D.sourceID ge
193 tid = D.targetID ge
194 eid = D.elemId ge
195 newLNodeList = L.filter (\n

->
196 let nid = D.elemId n
197 in (nid /= D.

sourceID le) &&
(nid /= D.
targetID le)

198 ) lns
199 in
200 ((S.insert (D.sourceID le, sid) $
201 S.insert (D.targetID le, tid) $
202 nmatch,
203 S.insert (D.elemId le, eid) ematch

),
204 if mt == D.Normal || mt == D.Epi
205 then g
206 else (D.TypedDigraph (D.Digraph (IM.

delete sid $ IM.delete tid gnm)
207 (

IM
.
delete
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eid

gem
)
)

208 tg),
209 les,
210 newLNodeList)
211 ) candidates
212 in newMapSets >>= mapGraphs r mt l
213 mapGraphs r mt l (m@(nmatch, ematch),
214 g@(D.TypedDigraph dg@(D.Digraph gnm gem) tg),
215 [], (ln:lns)) =
216 let
217 conds = (generateConds r l ln g m)
218 candidates = filter (processNode conds) $ D.nodes dg
219 newMapSets = fmap
220 (\gn ->
221 let gid = D.elemId gn
222 in
223 ((S.insert (D.elemId ln, gid) nmatch

, ematch),
224 if mt == D.Normal || mt == D.Epi
225 then g
226 else D.TypedDigraph (D.Digraph (IM.

delete gid gnm) gem) tg,
227 [],
228 lns)
229 ) candidates
230 in newMapSets >>= mapGraphs r mt l
231
232 matchGraphs :: D.Rule a b -> D.MatchType -> D.TypedDigraph a b -> D.

TypedDigraph a b -> [MapSet]
233 matchGraphs r mt l@(D.TypedDigraph dl _) g =
234 map (\(m, _, _, _) -> m ) $
235 mapGraphs r mt l ((S.empty, S.empty), g, D.edges dl,

D.nodes dl)
236
237 isSurjective :: D.TypedDigraph a b -> MapSet -> Bool
238 isSurjective (D.TypedDigraph (D.Digraph gnm gem) _) m@(nmaps, emaps)

=
239 IM.size gnm == S.size nmaps && IM.size gem == S.size emaps
240
241 findIsoMorphisms :: D.TypedDigraph a b -> D.TypedDigraph a b -> [D.

Morphism]
242 findIsoMorphisms l@(D.TypedDigraph (D.Digraph lnm lem) _) g@(D.

TypedDigraph (D.Digraph gnm gem) _) =
243 if IM.size lnm /= IM.size gnm ||
244 IM.size lem /= IM.size gem
245 then []
246 else findMatchesR D.emptyRule D.Iso l g
247
248 isIsomorphic :: D.TypedDigraph a b -> D.TypedDigraph a b -> Bool
249 isIsomorphic a b = findIsoMorphisms a b /= []
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A.6 GraphGrammar.StateSpace

1 {-# LANGUAGE DoAndIfThenElse #-}
2 module GraphGrammar.StateSpace ( StateSpace (..)
3 , runStateSpace
4 ) where
5
6 import Prelude
7
8 import GraphGrammar.Builder.Graph
9 import GraphGrammar.Graph

10 import GraphGrammar.Match
11 import GraphGrammar.Rule
12 import GraphGrammar.Transformation
13 import Assorted.PrettyPrint
14
15 import Data.List
16 import Data.Maybe
17 import Data.IntMap (fromList,toList,elems)
18 import qualified Data.IntMap as IM
19
20 import Control.Monad
21 import Control.Monad.IO.Class
22
23
24 type StateSpace a b = Digraph (TypedDigraph a b) (Rule a b, Morphism

)
25 type SSBuilder a b m r = GraphBuilder (TypedDigraph a b) (Rule a b,

Morphism) m r
26
27 tpg (TypedDigraph _ t) = t
28
29 ns (Digraph n _) = n
30
31 onSnd :: (b -> c) -> (a, b) -> (a, c)
32 onSnd f (x, y) = (x, f y)
33
34 runStateSpace :: (Eq a, Eq b, MonadIO m) => Int
35 -> TypedDigraph a b -> [Rule a b] -> m (StateSpace a b)
36 runStateSpace n g r = buildGraph $ do
37 i <- createNode g 1
38 mkStateSpace n i g r
39
40
41 mkStateSpace :: (Eq a, Eq b, MonadIO m) => Int -> Int
42 -> TypedDigraph a b -> [Rule a b] -> SSBuilder a b m ()
43 mkStateSpace 0 _ _ _ = return ()
44 mkStateSpace n i g r = do
45 forM_ r $ \r’ -> do
46 let (Rule _ mt _ _) = r’
47 forM_ (findMatches mt (left r’ $ tpg g) g) $ \m -> do
48 let t’ = rewrite r’ g m
49 if t’ == Nothing
50 then return ()
51 else do
52 let (Just t) = t’
53 i’ <- putState i t (r’, m)
54 if i’ == 0
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55 then return ()
56 else mkStateSpace (n - 1) i’ t r
57
58 putState :: (Eq a, Eq b, MonadIO m) => Int
59 -> TypedDigraph a b -> (Rule a b, Morphism) -> SSBuilder a b m Int
60 putState i g e = do
61 states <- liftM (map (onSnd payload) . toList . ns) getG
62 let isos = filter snd $ map (onSnd (isIsomorphic g)) states
63 case isos of
64 [] -> do i’ <- createNode g 1
65 createEdge e 1 (i, i’)
66 return i’
67 [(i’, True)] -> do createEdge e 1 (i, i’)
68 return 0
69 _ -> error $ "Undefined case for " ++ show isos

A.7 GraphGrammar.Serialized

1 module GraphGrammar.Serialized where
2
3 import GraphGrammar.Graph
4 import GraphGrammar.Rule
5
6 data Serialized a b = Serialized [TypedDigraph a b] [Rule a b]

deriving (Show, Read)
7
8 serialize :: (Show a, Show b, Read a, Read b) => [TypedDigraph a b]

-> [Rule a b] -> String
9 serialize gs = show . Serialized gs

10
11 unserialize :: (Show a, Show b, Read a, Read b) => String ->

Serialized a b
12 unserialize = read

A.8 GraphGrammar.GML

1 module GraphGrammar.GML where
2
3 data N = N Int String deriving (Show)
4 data E = E Int Int String deriving (Show)
5 data Document = Document [N] [E] deriving (Show)
6
7 newDocument :: Document
8 newDocument = Document [] []
9

10 newNode :: (Show l) => Int -> l -> Document -> Document
11 newNode i l (Document ns es) = Document ((N i (show l)):ns) es
12
13 newEdge :: (Show l) => Int -> Int -> l -> Document -> Document
14 newEdge s t l (Document ns es) = Document ns ((E s t (show l)):es)
15
16 strN (N i l) = unlines [ "node [", "id " ++ show i, "label " ++ l, "

]" ]
17 strE (E s t l) = unlines [ "edge [", "source " ++ show s, "target "

++ show t, "label " ++ l, "]" ]
18
19 writeDocument :: Document -> String -> IO ()
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20 writeDocument (Document ns es) n = let content = ["graph [", "
directed 1"] ++ map strN ns ++ map strE es ++ ["]"]

21 in writeFile n $ unlines content

A.9 GraphGrammar.Builder.Graph

1 {-# LANGUAGE GADTs #-}
2 module GraphGrammar.Builder.Graph ( GraphBuilderT (..)
3 , GraphBuilder (..)
4 , buildGraphT
5 , buildGraphTFrom
6 , buildGraph
7 , buildGraphFrom
8 , createNode
9 , createEdge

10 , getG
11 , putG
12 , getS
13 , putS
14 ) where
15 import Prelude hiding (null,lookup,elem)
16
17 import Control.Monad.State
18 import Control.Monad.Identity
19
20 import Data.IntMap as IM hiding (empty,map,filter,(\\))
21 import Data.Maybe
22 import Data.List hiding (lookup,null)
23
24 import GraphGrammar.Graph hiding (nodes,edges,node,edge)
25 import GraphGrammar.Transformation
26
27 import Assorted.Maybe
28
29 {-| A graph builder that carries extra state (s). -}
30
31 {- allow me to help you parse the type. a is the node payload type,

b is the edge payload type, s is the carried state. Also
32 m is the embadded monad and r is the return type. -}
33 type GraphBuilderT a b s m r = StateT (Digraph a b, s) m r
34
35 type GraphBuilder a b m r = GraphBuilderT a b () m r
36
37 {-| Builds from an empty graph -}
38 buildGraphT :: (Monad m) => s -> GraphBuilderT a b s m r -> m (

Digraph a b)
39 buildGraphT = buildGraphTFrom empty
40
41 {-| Builds from an specified graph -}
42 buildGraphTFrom :: (Monad m) => Digraph a b -> s -> GraphBuilderT a

b s m r -> m (Digraph a b)
43 buildGraphTFrom g s b = do { (a, (g’, s’)) <- runStateT b (g, s);

return g’ }
44
45 buildGraphFrom :: Monad m => Digraph a b -> GraphBuilder a b m r ->

m (Digraph a b)
46 buildGraphFrom g = buildGraphTFrom g ()
47
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48 buildGraph :: Monad m => GraphBuilder a b m r -> m (Digraph a b)
49 buildGraph = buildGraphFrom empty
50
51 nodes (Digraph g _) = g
52 edges (Digraph _ e) = e
53
54 nextId m = if IM.null m then 0 else 1 + fst (findMax m)
55 nextNodeId = nextId . nodes
56 nextEdgeId = nextId . edges
57
58 getG :: Monad m => GraphBuilderT a b s m (Digraph a b)
59 getG = do { s <- get; return $ fst s }
60
61 putG :: Monad m => Digraph a b -> GraphBuilderT a b s m ()
62 putG g = do s <- get
63 put (g, snd s)
64
65 getS :: Monad m => GraphBuilderT a b s m s
66 getS = do { s <- get; return $ snd s }
67
68 putS :: Monad m => s -> GraphBuilderT a b s m ()
69 putS s = do s’ <- get
70 put (fst s’, s)
71
72 createNode :: Monad m => a -> Int -> GraphBuilderT a b s m Int
73 createNode p t = do g <- getG
74 let k = nextId $ nodes g
75 g’ <- flip addNode g $ Node k t p
76 putG g’
77 return k
78
79 createEdge :: Monad m => b -> Int -> (Int, Int) -> GraphBuilderT a b

s m Int
80 createEdge p t c = do g <- getG
81 let k = nextId $ edges g
82 g’ <- flip addEdge g $ Edge k c t p
83 putG g’
84 return k

A.10 Logic.Modal

1 module Logic.Modal ( module Logic.Modal.Graph
2 ) where
3
4 import Logic.Modal.Graph

A.11 Logic.Modal.Graph

1 {-# LANGUAGE TypeFamilies #-}
2 module Logic.Modal.Graph where
3
4 import Data.List
5
6 data Node a = Node Int [a] deriving (Show, Read, Eq)
7 data Edge a = Edge Int Int Int [a] deriving (Show, Read, Eq)
8 data Graph a = Graph [Node a] [Edge a] deriving (Show, Read, Eq)
9
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10 class Element e where
11 type Payload e :: *
12 elementId :: e -> Int
13 values :: e -> [Payload e]
14
15 instance Element (Node a) where
16 type Payload (Node a) = a
17 elementId (Node i _) = i
18 values (Node _ v) = v
19
20 instance Element (Edge a) where
21 type Payload (Edge a) = a
22 elementId (Edge i _ _ _) = i
23 values (Edge _ _ _ v) = v
24
25 src :: Edge a -> Int
26 src (Edge _ s _ _) = s
27
28 tgt :: Edge a -> Int
29 tgt (Edge _ _ t _) = t
30
31 nexts :: Graph a -> Int -> [Int]
32 nexts (Graph _ es) nId = map tgt $ filter (\x -> src x == nId) es
33
34 follows :: Graph a -> Int -> Int -> Bool
35 follows g a b = a ‘elem‘ nexts g b
36
37 prevs :: Graph a -> Int -> [Int]
38 prevs g@(Graph ns _) i = let ids = map elementId ns
39 in filter (\i’ -> i ‘elem‘ nexts g i’) ids
40
41 precedes :: Graph a -> Int -> Int -> Bool
42 precedes g a b = a ‘elem‘ prevs g b
43
44 findById :: Element a => [a] -> Int -> [a]
45 findById es i = filter (\x -> elementId x == i) es
46
47 node :: Graph a -> Int -> Node a
48 node (Graph ns _) = head . findById ns
49
50 nodes (Graph ns _) = ns
51
52 edge :: Graph a -> Int -> Edge a
53 edge (Graph _ es) = head . findById es
54
55 edges (Graph _ es) = es
56
57 pathsStartingAt :: Graph a -> Int -> [[Int]]
58 pathsStartingAt g i = let
59 ns = nexts g i
60 in if null ns then
61 return [i]
62 else do
63 n <- ns
64 ns’ <- pathsStartingAt g n
65 return $ if n ‘elem‘ ns’ then ns’ else i:ns’
66
67 successors :: Graph a -> Int -> [Int]
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68 successors g s = foldl (union) [] $ pathsStartingAt g s
69
70 elementIds :: Element a => [a] -> [Int]
71 elementIds = map elementId
72
73 nodeIds = elementIds . nodes
74 edgeids = elementIds . edges

A.12 Logic.CTL

1 module Logic.CTL ( check
2 , module Logic.CTL.Parser
3 , module Logic.CTL.Base
4 , module Logic.CTL.Semantics
5 , module Logic.Modal
6 ) where
7
8 import Logic.CTL.Parser
9 import Logic.CTL.Base

10 import Logic.CTL.Semantics
11 import Logic.Modal
12
13 check :: Graph String -> CTL -> Int -> Bool
14 check g f s0 = s0 ‘elem‘ (map elementId $ ctlSat g f)

A.13 Logic.CTL.Base

1 module Logic.CTL.Base where
2
3 data CTL = Literal Bool
4 | Atom String
5 | Not CTL
6 | And CTL CTL
7 | Or CTL CTL
8 | Implies CTL CTL
9 | AllNext CTL

10 | SomeNext CTL
11 | AllFuture CTL
12 | SomeFuture CTL
13 | AllGlobal CTL
14 | SomeGlobal CTL
15 | AllUntil CTL CTL
16 | SomeUntil CTL CTL
17 deriving (Show, Eq, Read)

A.14 Logic.CTL.Parser

1 module Logic.CTL.Parser (parseCTL) where
2
3 import Text.ParserCombinators.Parsec
4
5 import Data.List
6
7 import Logic.CTL.Base
8
9 parseCTL :: Parser CTL
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10 parseCTL = do p <- pctl1
11 eof
12 return p
13
14 pctl1 = do spaces
15 try parseAU <|> try parseEU <|> try implies
16
17 implies = do p <- pctl2
18 try (impliesCont p) <|> return p
19
20 impliesCont p = do spaces
21 string "->"
22 spaces
23 q <- pctl1
24 return $ Implies p q
25
26 parseAU = do char ’A’
27 spaces
28 char ’[’
29 spaces
30 p <- pctl1
31 spaces
32 char ’U’
33 spaces
34 q <- pctl1
35 spaces
36 char ’]’
37 return $ AllUntil p q
38
39 parseEU = do char ’E’
40 spaces
41 char ’[’
42 spaces
43 p <- pctl1
44 spaces
45 char ’U’
46 spaces
47 q <- pctl1
48 spaces
49 char ’]’
50 return $ SomeUntil p q
51
52 pctl2 = do p <- pctl3
53 try (pAndOr p) <|> return p
54
55 pAndOr p = do spaces
56 op <- binaryOP
57 spaces
58 q <- pctl2
59 return $ op p q
60
61 binaryOP = do try (do string "&&" ; return And) <|> try (do string "

||" ; return Or)
62
63 pctl3 = do try pNot <|> try pTempOp <|> try parens <|> try ident
64
65 pNot = do char ’~’
66 spaces
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67 p <- pctl3
68 return $ Not p
69
70 pTempOp = do op <- tempOp
71 spaces
72 p <- pctl3
73 return $ op p
74
75 tempOp = try ax <|> try af <|> try ag <|> try ex <|> try ef <|> try

eg
76
77 parens = do char ’(’
78 p <- pctl1
79 spaces
80 char ’)’
81 return p
82
83 ax = do { string "AX"; return AllNext }
84 ag = do { string "AG"; return AllGlobal }
85 af = do { string "AF"; return AllFuture }
86 ex = do { string "EX"; return SomeNext }
87 eg = do { string "EG"; return SomeGlobal }
88 ef = do { string "EF"; return SomeFuture }
89
90 ident = do
91 c <- letter
92 cs <- many (letter <|> digit)
93 let tIdent = c:cs
94
95 if tIdent == "true" then
96 return true
97 else if tIdent == "false" then
98 return false
99 else if any (==tIdent) reservedWords then

100 unexpected (tIdent ++ " is a reserved word")
101 else
102 return $ Atom tIdent
103
104 reservedWords = [ "AX", "AF", "AG", "EX", "EF", "EG" ]
105 true = Literal True
106 false = Literal False

A.15 Logic.CTL.Semantics

1 module Logic.CTL.Semantics where
2
3 import Data.List
4
5 import Logic.CTL.Base
6 import Logic.Modal
7
8 ctlSat :: Graph String -> CTL -> [Node String]
9 ctlSat g (Literal True) = nodes g

10 ctlSat g (Literal False) = []
11 ctlSat g (Atom v) = filter (\x -> v ‘elem‘ values x) $ nodes

g
12 ctlSat g (Not p) = nodes g \\ ctlSat g p
13 ctlSat g (And p q) = ctlSat g p ‘intersect‘ ctlSat g q
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14 ctlSat g (Or p q) = ctlSat g p ‘union‘ ctlSat g q
15 ctlSat g (Implies p q) = ctlSat g $ Or q $ Not p
16 ctlSat g (AllNext p) = ctlSat g $ Not $ SomeNext $ Not p
17 ctlSat g (AllFuture p) = afSat g p
18 ctlSat g (AllGlobal p) = ctlSat g $ Not $ SomeFuture $ Not p
19 ctlSat g (AllUntil p q) = ctlSat g $ Not (Or (SomeUntil (Not q) (

And (Not p) (Not q))) (SomeGlobal (Not q)))
20 ctlSat g (SomeNext p) = exSat g p
21 ctlSat g (SomeFuture p) = ctlSat g $ SomeUntil (Literal True) p
22 ctlSat g (SomeGlobal p) = ctlSat g $ Not $ AllFuture $ Not p
23 ctlSat g (SomeUntil p q) = euSat g p q
24
25 afSat :: Graph String -> CTL -> [Node String]
26 afSat g p = let x = elementIds $ nodes g
27 y = elementIds $ ctlSat g p
28 in nodesById g $ recurse x y
29 where recurse x y
30 | x == y = y
31 | otherwise = let x’ = y
32 y’ = y ‘union‘ preA g y
33 in recurse x’ y’
34
35 exSat :: Graph String -> CTL -> [Node String]
36 exSat g p = let x = elementIds $ nodes g
37 y = preE g x
38 in nodesById g y
39
40 euSat g p q = let w = elementIds $ ctlSat g p
41 x = elementIds $ nodes g
42 y = elementIds $ ctlSat g q
43 in nodesById g $ recurse w x y
44 where recurse w x y
45 | x == y = y
46 | otherwise = let x’ = y
47 y’ = y ‘union‘ (w ‘intersect‘ preE g

y)
48 in recurse w x’ y’
49
50 preA :: Graph a -> [Int] -> [Int]
51 preA g y = let ant = foldl union [] $ map (prevs g) y
52 condition s = nexts g s ‘subsetOf‘ y
53 in filter condition ant
54
55 preE :: Graph a -> [Int] -> [Int]
56 preE g ids = foldl union [] $ map (prevs g) ids
57
58 subsetOf :: Eq a => [a] -> [a] -> Bool
59 subsetOf as bs = all (‘elem‘ bs) as
60
61 nodesById g = map (node g)

A.16 Translation

1 module Translation where
2
3 import Data.List
4
5 import qualified GraphGrammar as Grammar
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6 import qualified Logic.Modal as Model
7
8 translate :: Grammar.StateSpace String String -> Model.Graph String
9 translate g = let gns = Grammar.nodes g

10 ges = Grammar.edges g
11 edgesConnected n = filter (\x -> Grammar.elemId n

== Grammar.sourceID x) ges
12 ruleName (Grammar.Edge _ _ _ (Grammar.Rule n _ _ _

, _)) = n
13 atoms = nub . map ruleName . edgesConnected
14 nodes = map (\n@(Grammar.Node i _ _) -> Model.Node

i $ atoms n) gns
15 edges = map (\(Grammar.Edge i (s, t) _ _) -> Model

.Edge i s t []) ges
16
17 in Model.Graph nodes edges

A.17 Main

1 module Main where
2
3 import System.Console.GetOpt
4 import System.Environment
5
6 import Control.Monad
7 import Control.Monad.IO.Class
8
9 import Text.ParserCombinators.Parsec

10
11 import GraphGrammar
12 import Logic.CTL
13 import Translation
14 import GML
15
16 main = do
17 (options, strs) <- parseOptions
18 stateSpace <- runSerializedGrammar (stepsToStop options) (head

strs)
19 let model = translate stateSpace
20
21 forM_ (tail strs) $ \f -> do
22 let f’ = parseFormula f
23
24 if check model f’ $ initialState options
25 then putStrLn $ concat ["Formula \"", f, "\" holds for state "

, show $ initialState options]
26 else putStrLn $ concat ["Formula \"", f, "\" fails to hold on

state ", show $ initialState options]
27
28 if graphicalOutput options
29 then writeStateSpace stateSpace "state_space.gml" >>
30 writeStates stateSpace >>
31 writeModel model "model.gml"
32 else return ()
33
34
35 data SystemOptions = SystemOptions { stepsToStop :: Int
36 , graphicalOutput :: Bool
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37 , initialState :: Int
38 }
39
40 parseOptions :: MonadIO m => m (SystemOptions, [String])
41 parseOptions = do args <- liftIO getArgs
42 case getOpt Permute options args of
43 (o,(h:t),[]) -> return (foldl (flip id)

defaultOptions o, (h:t))
44 (_,_,es) -> fail $ concat es ++

usageInfo header options
45 where header = "Usage: main [args] file checks"
46
47 options = [ Option [’s’] ["stop-after"] (ReqArg (\d o -> o {

stepsToStop = read d }) "n") "stops after n iterations"
48 , Option [’d’] ["draw"] (NoArg (\o -> o {

graphicalOutput = True })) "writes the state space
as a series of images"

49 , Option [’i’] ["initial-state"] (ReqArg (\d o -> o {
initialState = read d }) "n") "evaluates the formulas
for state n"

50 ]
51
52 defaultOptions = SystemOptions { stepsToStop = 10000
53 , graphicalOutput = False
54 , initialState = 0
55 }
56
57 parseFormula :: String -> CTL
58 parseFormula s = case parse parseCTL "" s of
59 Right ctl -> ctl
60 Left msg -> error $ show msg
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GLOSSARY

double pushout One technique for graph rewriting, based on category theory. 19

dynamic verification Verification done in the execution of a system. 17, 18

graph grammar A rewriting system build on graphs and graph derivations. 26

model checker A tool that performs model checking. 31, 42

model checking A method of dynamic verification. 31

second-order graph grammars A method for transforming graph transformations. 17

static verification Verifications done with on the structure of a system. 17
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