
FEDERAL UNIVERSITY OF RIO GRANDE DO SUL
INFORMATICS INSTITUTE

BACHELOR OF COMPUTER SCIENCE

RAFAEL MAURICIO PESTANO

Towards a Software Metric for OSGi

Graduation Thesis

Advisor: Prof. Dr. Cláudio Fernando Resin
Geyer
Coadvisor: Prof. Dr. Didier DONSEZ

Porto Alegre
December 2014

FEDERAL UNIVERSITY OF RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de CIC: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If I have seen farther than others,
it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON

ACKNOWLEDGMENTS

I would like to thank my family for all the support and love. I would like to thank my wife
and daughter, they gave me all the strength needed in the hard times. I would like to say thanks
to my brother Marcos Mauricio Pestano who always inspired me. I would like to thank my
mother for all the support and love. I would like to say thanks to a hero, who unfortunately left
us during this work, which is my Father Celso Morales Pestano, a great example of person and
source of inspiration.

I would like to thank the Federal University of Rio Grande do Sul (UFRGS) and Informatics
Institute for providing an education of excellence. I’d like to say special thanks to Prof. Dr.
Cláudio Fernando Resin Geyer and João Claudio Américo for all patience and support on this
work. Also would like to say thanks to Prof. Dr. Didier Donzes for all ideas and all kind of
information he provided during this work.

Finally I would like to say thanks to everyone who helped me to reach here.

CONTENTS

ABSTRACT . 7

RESUMO . 8

LIST OF FIGURES . 9

LIST OF TABLES . 10

LIST OF ABBREVIATIONS AND ACRONYMS 11

1 INTRODUCTION . 12

1.1 Context . 12

1.2 Objectives . 13

1.3 Organization . 13

2 BASIC CONCEPTS . 14

2.1 Software Quality . 14

2.1.1 External Quality . 14

2.1.2 Internal Quality . 14

2.1.3 Quality Measurement . 15

2.1.4 Software Metrics . 16

2.1.5 Program Analysis . 17

2.1.6 Quality Analysis Tools . 18

2.2 Java and OSGi . 19

2.2.1 The Java language . 20

2.2.2 The OSGi service platform . 21

2.2.3 Vanilla Java vs OSGi . 24

2.3 JBoss Forge . 26

2.3.1 Introduction . 26

2.3.2 Forge Plugin . 26

2.3.3 Facets . 27

2.3.4 Project Locator . 28

2.3.5 Applications . 28

3 DESIGNING AN OSGI BUNDLE INTROSPECTION TOOL 29

3.1 Introduction . 29

3.2 Design Decisions . 29

3.3 Identifying OSGi Projects and Bundles . 31
3.4 Collecting Bundle Information . 31
3.5 Quality Calculation . 33
3.5.1 Quality Labels . 33
3.5.2 Metrics Defined . 33
3.5.3 Quality Formula . 35
3.5.4 Bundle Quality . 35
3.5.5 Project Quality . 36
3.5.6 Project metric quality . 37

4 IMPLEMENTING AN OSGI BUNDLE INTROSPECTION TOOL 38
4.1 Implementation Overview . 38
4.2 Bundle and Project Identification . 39
4.3 Retrieving bundle information . 40
4.4 Intrabundle Reports . 41
4.5 Intrabundle Quality . 43
4.5.1 Internal quality . 44
4.5.2 External quality . 45
4.6 Validation . 46

5 BUNDLE INTROSPECTION RESULTS . 47
5.1 Analyzed Projects . 47
5.2 Projects Quality Results . 48
5.2.1 General Quality Comparison . 48
5.2.2 Metrics Qualities Comparison . 49
5.2.3 Projects Qualities by Size . 50
5.3 Results . 52

6 CONCLUSION . 54
6.1 Future Work . 54

REFERENCES . 56

APPENDIX APPENDIXAINTRABUNDLE USAGE . 59
A.1 Setup environment . 59
A.2 Begin Introspection . 60

APPENDIX APPENDIXBINTRABUNDLE INTERFACES 62
B.1 OSGiProject . 62
B.2 OSGiModule . 62
B.3 OSGiProject . 64

ABSTRACT

Todays software applications are becoming more complex, bigger, dynamic and harder to
maintain. One way to overcome modern systems complexities is to build modular applica-
tions so we can divide it into small blocks which collaborate to solve bigger problems, the so
called divide to conquer. Another important aspect in the software industry that helps building
large applications is the concept of software quality because its well known that higher quality
softwares are easier to maintain and evolve at long term.

The Open Services Gateway Initiative(OSGi) is a very popular solution for building Java
modular applications. It is very hard to measure the quality of OSGi systems due to its particular
characteristics like service oriented, intrinsic modularity and component based approach.

In this work will be presented a tool called Intrabundle that analyses OSGi projects and
measure their internal quality. The tool extracts useful information that is specific to this kind
of project and organize the analyzed data into Human readable reports in various formats.

Yet it’s also proposed 6 metrics based on good practices inside OSGi world which are ap-
plied to 10 real OSGi projects that vary in size, teams and domain.

Keywords: OSGi. java. quality. metrics. modularity. intrabundle.

RESUMO

As aplicações de software hoje em dia estão cada vez mais complexas, maiores, dinâmicas
e mais difíceis de manter. Uma maneira de superar as complexidades dos sistemas modernos é
através de aplicações modulares as quais são divididas em partes menores que colaboram entre
si para resolver problemas maiores, o famoso dividir para conquistar. Outro aspecto importante
na industria de software que ajuda a construir aplicações grandes é o conceito de qualidade de
software já que é sabido que, quanto maior a qualidade do software, mais facil de mante-lo e
evolui-lo a longo prazo será.

The Open Services Gateway Initiative(OSGi) é uma solução bastante popular para se criar
aplicações modulares em Java porém é muito dificil medir a qualidade interna de sistemas OSGi
devido a suas caracteristicas particulares como arquitetura orientada a serviços e componentes
assim como modularidade intrínseca.

Neste trabalho será apresentada uma ferramenta chamada Intrabundle que analisa projetos
OSGi e mede sua qualidade interna. A ferramenta extrai informações úteis que são específicas
desse tipo de projeto e organiza os dados extraídos em relatórios em diversos formatos.

Ainda foram propostas métricas de qualidade baseadas em boas práticas conhecidas do
mundo OSGi que serão aplicadas em 10 projetos reais que variam em tamanho, equipes e
domínio.

Palavras-chave: OSGi. java. quality. metrics. modularity. intrabundle.

LIST OF FIGURES

2.1 Internal and external quality audience . 15
2.2 Intrabundle PMD rule violation . 19
2.3 Intrabunde PMD ruleset . 19
2.4 JVM architecture . 20
2.5 OSGi architecture . 21
2.6 Module Layer . 23
2.7 OSGi bundle Lifecycle . 23
2.8 Lifecycle Layer . 24
2.9 Service Layer . 24
2.10 Java jar hell . 25
2.11 Bundle classpath . 25
2.12 Forge initial screen . 26

4.1 Intrabundle architecture . 39
4.2 Intrabundle general report . 42
4.3 Intrabundle general report - detailed section 42
4.4 Intrabundle metrics report . 43
4.5 Intrabundle metrics report - detailed section 43
4.6 Intrabundle code coverage . 44
4.7 Intrabundle internal quality . 45
4.8 Intrabundle integration tests . 46

A.1 Forge start . 59
A.2 Intrabundle installation . 60
A.3 Navigating to project . 60
A.4 Fire commands . 61
A.5 osgi-scan . 61

LIST OF TABLES

2.1 Quality characteristics to be considered 16
2.2 Common Software metrics . 17
2.3 Quality analysis tools . 18

3.1 Extracted data from OSGi projects . 32

4.1 Supported types of OSGi projects . 39

5.1 OSGi projects analyzed by Intrabundle 47
5.2 Projects general quality . 49
5.3 Projects quality by metrics . 49
5.4 Projects qualities by number of bundles 51
5.5 Projects qualities by number of LoC . 52

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

CISQ Consortium for IT Software Quality

GUI Graphic User Interface

ISO International Organization for Standardization

IEC International Electrotechnical Commission

IDE Integrated Development Environment

JDK Java Development Kit

JVM Java Virtual Machine

LOC Lines of Code

KLOCKilo Lines of Code

MQP Maximum Quality Points

QP Quality Points

SPI Service Provider Interface

TQP Total Quality Points

12

1 INTRODUCTION

This chapter will drive the reader through the context and motivation of this work followed
by the objectives and later the organization of this text is presented.

1.1 Context

One of the pillars of sustainable software development is its quality which can basically be
defined as internal and external. External quality focuses on how software meets its specifi-
cation and works accordingly to its requirements. Internal quality is aimed on how well the
software is structured and designed. To measure external quality there is the need to execute the
software1 either by an end user accessing the system or an automated process like for example
functional testing or performance testing. Internal quality however can be verified by either
statical analysis, that is mainly the inspection of the source code itself, or by dynamic analysis

which means executing the software like for example automated whitebox testing2.

With good software quality in mind we take applications to another level where maintain-
ability is increased, correctness is enhanced, defects are identified in early development stages,
which can lead up to 100 times reduced costs (BEOHM et al., 2001).

A well known and successful way to structure software architecture is to modularize its
components allowing easier evolution of the system. Smaller decoupled pieces of components
are typically easier to maintain than classical applications. In the Java ecosystem there is a
moving to modularize the JDK and Java applications with the project Jigsaw (KRILL, 2012)
and also a recent interest in microservices (KNORR, 2014) arise. Although all this interest in
modular application today, the only practical working and well known solution for modular Java
applications is OSGi (HALL et al., 2011), a very popular component-based and service-oriented
framework for building Java modular applications. OSGi is the de facto standard solution for
this kind of software since early 2000’s and have being used as basis of most JavaEE3 applica-
tion servers4, the open source IDE Eclipse(ECLIPSE, 2006), Atlassian Jira and Confluence to
cite a few big players using OSGi.

In the context of software quality and Java modular applications using OSGi there is no
known standard way neither well known tools to measure OSGi projects internal quality (Hamza
et al., 2013) (WANG et al., 2012). Some work have been done by (Gama and Donsez, 2012)
and (WANG et al., 2012), both focus on OSGi services reliability and general project quality
is not their objective. For external quality the classical approaches like automated testing are

1Also known as dynamic analysis.
2Whitebox testing is the detailed investigation of internal logic and structure of the code (KHAN et al., 2012).
3A Java platform dedicated for enterprise applications which are usually secure and robust systems that display,

manipulate and store large amounts of complex data maintained by an organization.
4Java application servers are like an extended virtual machine for running applications, transparently handling

connections to the database, connections to the Web client, managing components like Enterprise Java Beans(EJB)
and so on.

13

sufficient because this kind of quality aims in the behavior and not the design so technology
and architecture is usually not taken into account.

1.2 Objectives

The main objective of this work is to create a tool to extract software metrics and measure
internal quality of OSGi projects. These metrics must reflect good practices in the OSGi world.
The main difference the proposed metrics have compared to classical software metrics is that
the first will be based on modularity attributes that only exists in modular applications. The tool
applies and validates the metrics on real OSGi projects and finally the resulting qualities are
analyzed.

1.3 Organization

This text is organized in the following way. First chapter was already presented. The second
chapter introduces the main concepts and technologies used in this work and is divided into three
main sections. The first is focused in the area of software quality like quality measurement,
quality metrics, program analysis and quality analysis tools. The second section of chapter two
presents Java and OSGi, how standard Java and OSGi can be different in respect to quality
metrics. The third section introduces Forge, a tool used as basis for the implemented tool
presented in this work. The third chapter presents the design of Intrabundle, an OSGi code
introspection tool to measure internal quality. Forth chapter shows how Intrabundle works and
is implemented. The fifth chapter analyzes the results Intrabundle produces and validates them
to decide if this work has a valid contribution or not. The last chapter presents the conclusions
and future work on this subject.

14

2 BASIC CONCEPTS

This chapter presents an overview of the concepts and technologies that were studied and
used on the development of this work. In section 2.1 - Software Quality, will be presented
general aspects of software quality such as quality measurement, software metrics, program

analysis and some tools that are used in this area.
Section 2.2 - Java and OSGi will introduce OSGi a framework for build service oriented

Java modular applications. Finally section 2.3 will introduce JBoss Forge, a Java framework
used as runtime1 for Intrabundle2.

2.1 Software Quality

There has been many definitions of software quality (KAN, 2002, p. 23) and there is even an
ISO norm for it, the ISO/IEC 25010 (ISO25010, 2011). All this definitions agree that the main
motivation to perform continuous software quality management is to avoid software failures
and increase maintainability in the sense that the more quality a program has the easier will be
to maintain, the less bugs or abnormal behavior it will have and the more it will conform with
its functional and non functional requirements3.

Software quality can be divided in two groups, the external and internal quality.

2.1.1 External Quality

When we talk about external quality we are aiming to the user view which is the one that
sees the software working and use it. This kind of quality is usually enforced through software
testing. External quality can also be mapped to functional requirements so the greater external
quality is the more usable and less defects it will have for example.

2.1.2 Internal Quality

The opposite is internal or structural quality that aims to how the software is architected
internally which is the perspective of the programmer and non functional requirements. So
the higher internal quality the better the code is structured, efficient, robust and maintainable it
should be. Image 2.1 illustrates internal and external quality and its target audience.

1Is software designed to support the execution of computer programs written in some computer language.
2A Java based project that will be presented later on this work.
3Functional and non functional requirements can be simply defined as what the software does and how the

software will do respectively.

15

Figure 2.1: Internal and external quality audience

2.1.3 Quality Measurement

Quality measurement focuses on quantifying software desirable characteristics and each
characteristic can have a set of measurable attributes, for example high cohesion is a desirable
characteristic and LOC - lines of code is a measurable attribute related to cohesion. Quality
measurement is close related to internal quality and in most cases is performed via static code
analysis where program code is inspected to search for quality attributes to be measured but
in some cases a dynamic analysis, where the program analysis is done during software execu-
tion, can be performed to measure characteristics that can be perceived only when software is
running, for example performance or code coverage4.

In the extent of this work the characteristics of software to be considered and measured later
are listed and described in table 2.1:

4A technique that measures the code lines that are executed for a given set of software tests, its also considered
a software metric.

16

Table 2.1: Quality characteristics to be considered

Characteristic Description OSGi example
Reliability the degree to which a system or component per-

forms its required functions under stated condi-
tions for a specified period of time.

Bundles should not have stale
service references.

Performance Effi-
ciency

Performance relative to the amount of resources
used under stated conditions for a specified pe-
riod of time.

Bundle startup time, also bun-
dle dependency can decrease
performance.

Security the degree of protection of information and data
so that unauthorized persons or systems cannot
read, access or modify them.

Bundles should declare per-
missions

Maintainability The degree to which the product can be modi-
fied.

Modules should be loosely
coupled, bundles should pub-
lish only interfaces etc.

Source: CISQ (2013)

2.1.4 Software Metrics

A software metric is the measurement of a software attribute which in turn is a quantitative
calculation of a characteristic. Software metrics can be classified into three categories: prod-
uct metrics5, process metrics6, and project metrics7. Software quality metrics are a subset of
software metrics that focus on the quality aspects of the product, process, and project (KAN,
2002).

2.1.4.1 Good Software Metrics

Good metrics may have the following aspects:

• Linear: metric values should follow an intuitive way to compare its values like for ex-
ample higher values should correspond to better quality whereas lower values to worse
quality and vice versa;

• Independent: two metric values should not interfere on each other;

• Repeatable: this is a very important aspect in continuous quality management where
software is changing all the time and we want to measure quality on every change;

• Accurate: the metric should be meaningful and should help answer how good a software

5Product metrics describe the characteristics of the product such as size, complexity, design features, perfor-
mance.

6Process metrics can be used to improve software development and maintenance.Examples include the effec-
tiveness of defect removal during development and response time of bug fixing.

7Project metrics describe the project characteristics and execution. Examples include the number of software
developers, cost, schedule, and productivity.

17

attribute is, for example using latency8 to calculate response time9 in a web application
isn’t accurate.

2.1.4.2 Common Software Metrics

The table 2.2 below shows some well known software metrics and its description:

Table 2.2: Common Software metrics

Metric Description
Cyclomatic com-
plexity

It is a quantitative measure of the complexity of
programming instructions.

Cohesion measure the dependency between units of code
like for example classes in object oriented pro-
graming or modules in modular programming
like OSGi.

Coupling measures how well two software components
are data related or how dependent they are.

Lines of code
(LOC)

used to measure the size of a computer program
by counting the number of lines in the text of
the program’s source code.

Code coverage measures the code lines that are executed for a
given set of software tests

Function point
analysis (FPA)

used to measure the size (functions) of software.

Source: SQA (2012)

2.1.5 Program Analysis

Program analysis is the process of automatically analyzing the behavior of computer pro-
grams. Two main approaches in program analysis are static program analysis and dynamic
program analysis. Main applications of program analysis are program correctness, program
optimization and quality measurement.

2.1.5.1 Static Program Analysis

Is the analysis of computer software that is performed without actually executing programs
(Wichmann et al., 1995). In this kind of analysis source code is inspected and valuable infor-
mation is collected based on its internal structure and components.

8The delay incurred in communicating a message, the time the message spends “on the wire”
9The total time it takes from when a user makes a request until they receive a response

18

2.1.5.2 Dynamic Program Analysis

Is a technique that analyze the system’s behavior on the fly, while it is executing. The main
objectives of this kind of analyze is to catch memory leaks10, identify arithmetic errors and
extract code coverage and measure performance.

2.1.6 Quality Analysis Tools

The table 2.3 lists some code quality analysis tools in the Java ecosystem:

Table 2.3: Quality analysis tools

Name Description Type
SonarQube An open source platform for continuous inspec-

tion of code quality.
static

FindBugs An open-source static bytecode analyzer for
Java.

static

Checkstyle A static code analysis tool used in software
development for checking if Java source code
complies with coding rules.

static

PMD A static ruleset based Java source code analyzer
that identifies potential problems.

static

ThreadSafe A static analysis tool for Java focused on find-
ing concurrency bugs.

static

InFusion Full control of architecture and design quality. static
JProfiler helps you resolve performance bottlenecks, pin

down memory leaks and understand threading
issues

dynamic

JaCoCo A free code coverage library for Java. dynamic
Javamelody Java or Java EE application Monitoring in QA

and production environments.
dynamic

Introscope An application management solution that helps
enterprises keep their mission-critical applica-
tions high-performing and available 24x7.

dynamic

Figure 2.2 shows the execution of static analysis on Intrabundle using PMD, note that it
is based on rules and Intrabundle break some of them(intentionally) like Unused variables,
EmptyCatchBlock so PMD consider them compile failure and the project cannot be compiled
until the rules are fixed in code:

10Resources that are hold on system’s memory and aren’t released.

http://www.sonarqube.org
http://findbugs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://pmd.sourceforge.net/
http://www.contemplateltd.com/threadsafe
http://www.intooitus.com/products/infusion
https://www.ej-technologies.com/products/jprofiler/overview.html
http://www.eclemma.org/jacoco/
https://code.google.com/p/javamelody/
http://www-304.ibm.com/partnerworld/gsd/solutiondetails.do?solution=23517&expand=true

19

Figure 2.2: Intrabundle PMD rule violation

The rules are totally customizable via xml configuration, Intrabundle PMD rules are shown
in Figure 2.3:

Figure 2.3: Intrabunde PMD ruleset

Source: intrabundle ruleset (2014)

2.2 Java and OSGi

In the context of JavaTM programming language (Arnold et al., 2005), which accordingly to
IEEE spectrum of this year is the most popular programming language (IEEE Spectrum, 2014),

20

and modular applications11 this section will introduce the Java language and OSGi framework.

2.2.1 The Java language

Java is a general purpose object oriented12 programming language created by Sun Microsys-
tems in 1995 which aims on simplicity, readability and universality. Java runs on top of the so
called JVM, the acronym for Java Virtual Machine, which is an abstract computing machine13

and platform-independent execution environment that execute Java byte code14. The JVM con-
verts java byte code into host machine language(e.g. linux, windows etc...) allowing Java
programs to "run everywhere" independently of operating system or platform. JVM imple-
mentations are different for each platform but the generated bytecode is the same, Figure 2.4
illustrates how JVM works:

Figure 2.4: JVM architecture

Source: Adapted from AppServers (2012)

Other aspects of Java are listed below:

• Type safe15;

• Dynamic: during the execution of a program, Java can dynamically load classes;

11A software design technique that emphasizes separating the functionality of a program into independent,
interchangeable modules which represent a separation of concerns and improves maintainability.

12Object-oriented programming(OOP) integrates code and data using the concept of an "object" which is a piece
of software that holds state and behavior.

13Also known as Virtual Machine which is an emulation of a particular computer system.
14The intermediate output of the compilation of a program written in Java that can be read by the JVM.
15Type safety is the extent to which a programming language discourages or prevents type errors.

21

• Strong memory management(no explicit pointer);

• Automatic garbage collection to release unused objects from memory;

• Robust: extensive compile-time checking so bugs can be found early;

• Multithreaded16;

• Distributed: networking capability is inherently integrated into Java.

2.2.2 The OSGi service platform

OSGi is a component based service oriented platform specification maintained by OSGi

Alliance17 that runs on top of Java. As of November 2014 the specification is at version 6 and
currently has four implementations18. It is composed by OSGi framework and OSGi standard

services. The framework is the runtime that provides the basis of all OSGi module system
functionalities like modules management for example. Standard services define some reusable
apis and extension points to easy development of OSGi based applications. Figure 2.5 illustrates
OSGi platform architecture:

Figure 2.5: OSGi architecture

16Multithreading is a program’s capability to perform several tasks simultaneously.
17A non profit worldwide consortium of technology innovators.
18Apache Felix, Eclipse Equinox, Knopflerfish and ProSyst.

http://felix.apache.org
http://eclipse.org/equinox/
http://www.knopflerfish.org
http://www.prosyst.com

22

2.2.2.1 Bundles

Bundles are the building blocks of OSGi applications. A bundle19 is a group of Java classes
and resources packed as .jar extension with additional metadata in manifest MANIFEST.MF file
describing its module boundaries like for example the packages it imports and exports. Below
is an OSGi manifest file example:

Bundle-Name: Hello World

Bundle-SymbolicName: org.wikipedia.helloworld

Bundle-Description: A Hello World bundle

Bundle-ManifestVersion: 2

Bundle-Version: 1.0.0

Bundle-Activator: org.wikipedia.Activator

Export-Package: org.wikipedia.helloworld;version="1.0.0"

Import-Package: org.acme.api;version="1.1.0"

Looking at manifest OSGi can ensure its most important aspect, modularity, so for example
our Hello World bundle will only be started(later we will explore bundle lifecycle) if and only
if there is a bundle (in resolved or installed state) that exports org.acme.api package, this is
called explicit boundaries.

With OSGi, you modularize applications into bundles. Each bundle is a tightly coupled,
dynamically loadable collection of classes packed in JARs20, and configuration files that ex-
plicitly declare any external dependencies. All these characteristics are provided in OSGi by
three conceptual layers that will be briefly presented here, Module, Lifecycle and Service.

2.2.2.2 Module layer

This layer is the basis for others as modularization is the key concept of OSGi. The module
layer defines OSGi module concept - bundle, which is a JAR file with extra metadata. It also
handles the packaging and sharing of Java packages between bundles and the hiding of packages
from other bundles. The OSGi framework dynamically resolves dependencies among bundles
and performs bundle resolution to match imported and exported packages. This layer ensures
that class loading happens in a consistent and predictable way.

19Also known as module.
20acronym for Java Archive, a file that used to aggregate many Java class files and associated metadata and

resources (text, images, etc.) into one file to distribute.

23

Figure 2.6: Module Layer

Source: OSGi conceptual layers (2011)

2.2.2.3 Lifecycle layer

Provides access to the underlying OSGi framework through the Bundle Context object. This
layer handles the lifecycle of individual bundles so you can manage your application dynami-
cally, including starting and stopping bundles to manage and evolve them over time. Bundles
can be dynamically installed, started, updated, stopped and uninstalled. Figure 2.7 shows bun-
dle lifecycle and its possible states where transitions are performed by OSGi commands like
start or stop for example and states are represented in squares:

Figure 2.7: OSGi bundle Lifecycle

If OSGi were a car, module layer would provide modules such as tire, seat, etc, and the

24

lifecycle layer would provide electrical wiring which makes the car run.

Figure 2.8: Lifecycle Layer

Source: OSGi conceptual layers (2011)

2.2.2.4 Service layer

This layer provides communication among modules and their contained components. Ser-
vice providers publish services21 to service registry, while service clients search the registry to
find available services to use. The registry is accessible to all bundles so they can publish its
services as well consume services from other bundles.

This is like a service-oriented architecture (SOA) which has been largely used in web ser-
vices. Here OSGi services are local to a single VM, so it is sometimes called SOA in a VM.

Figure 2.9: Service Layer

2.2.3 Vanilla Java vs OSGi

The main motivation behind OSGi and advantage over standard Java application, as illus-
trated before, is the modularity. The main issue with Java default runtime is the way Java classes

21A Service is an operation offered as an interface that stands alone in the model, without encapsulating state
(Evans and Fowler, 2003).

25

are loaded, it is the root cause that inhibits modularity in classical Java applications. In standard
Java, user classes22 are loaded by a classloader23 from the same classpath24 which is commonly
referred as a flat classpath. A flat classpath is the main cause of a well known problem in Java
applications, the Jar Hell25. Figure 2.10 is an example of Jar hell where multiple JARs contain-
ing overlapping classes(consider each shape as being a Java class) and/or packages are merged
based on their order of appearance in the class path.

Figure 2.10: Java jar hell

Source: (HALL et al., 2011, p. 7)

In the OSGi environment instead of a flat classpath each bundle has its classloader and its
classpath. See Figure 2.11 where Bundle A’s classpath is defined as the union of its bundle
classpath with its imported packages, which are provided by bundle B’s exports.

Figure 2.11: Bundle classpath

Source: (HALL et al., 2011, p. 59)

In OSGi runtime we can say we have a graph of classpaths that allows powerful versioning
mechanisms so for example we can have multiple versions of the same class or resource loaded

22Classes that are defined by developers and third parties and that do not take advantage of the extension mech-
anism.

23A class loader is an object that is responsible for loading classes.
24classpath tells Java virtual machine where to look in the filesystem for files defining these classes
25A term used to describe all the various ways in which the classloading process can end up not working.

26

at the same time(used by different bundles). This enables independent evolution of dependent
artifacts which, in the Java world, is unique to OSGi environments (semantic versioning, 2010).

2.3 JBoss Forge

2.3.1 Introduction

JBoss Forge is a modular26 plugin based general purpose command line tool(CLI). Forge
can be started through command line or be integrated in an IDE. Figure 2.12 shows Forge initial
screen:

Figure 2.12: Forge initial screen

Forge runs on any operating system that can run Java and have built in startup scripts27 for
Windows, Linux and MacOS.

2.3.2 Forge Plugin

A Forge plugin can be as simple as a tool to print files to the console, or as complex as
deploying an application to a server, tweeting the status of your latest source-code commit, or
even sending commands to a home-automation system.

Every plugin offers a set o commands that may be restricted by a facet.

2.3.2.1 Example

Below is a simple Forge plugin named hello-world with a command named sayHello that
prints "Hello World" when executed:

26Forge runtime is based on JBoss modules which is a technology, like OSGi but not so popular, for building
modular applications.

27Executable files that initiate a process or system.

http://forge.jboss.org/1.x/
https://docs.jboss.org/author/display/MODULES/Introduction

27

Listing 2.1: Forge plugin example

@Alias("hello-world")

public class HelloWorldPlugin implements Plugin {

@Command(value = "sayHello")

public void countBundles(PipeOut out) {

out.println("Hello World");

}

}

Plugin is just a marker interface so Forge can identify plugins. To fire the sayHello command
one have to start forge, install the HelloPlugin and then can use the command by typing hello-

world sayHello in Forge console and so "Hello World" should be printed in console.

2.3.3 Facets

A Facet in the Forge environment is responsible for restricting the usage of a plugin. It is
in fact an interface28 with a method with return type boolean that must decide if the facet is
installed.

2.3.3.1 Example

Below is an example of facet that restricts the usage of hello-world plugin, in the example
the command should be only available when user is in a directory named hello otherwise Forge
will claim that the command does not exist in current context.

Listing 2.2: Forge facet example

public class HelloFacet implements Facet {

@Inject

Project project;

@Override

public boolean isInstalled() {

return project.getProjectRoot().getName().equals("hello");

}

}

28In object oriented programming is a contract that defines which methods the implementors of the interface
must provide.

28

So the idea of a facet is that it is active when isInstalled method return true. In case of
HelloFacet only when user current directory is named "hello". To get user current directory we
ask forge, through dependency injection, for the current project. Project is a Java object that
holds information of the current user project like its directory.

To activate the facet we must annotate HelloWorld plugin with RequiresFacet:

Listing 2.3: Forge plugin with facet example

@Alias("hello-world")

@RequiresFacet(HelloFacet.class)

public class HelloWorldPlugin implements Plugin {

@Command(value = "sayHello")

public void countBundles(PipeOut out) {

out.println("Hello World");

}

}

2.3.4 Project Locator

A project locator is a component responsible for creating Java objects that represent use-
ful information in the forge runtime, they are called project in forge. Forge calls all locators
available when user change directory in command line and the first locator that is matched will
create a Java object representing the current Project. Its the same idea of facets but instead of
restricting plugin commands it creates object and made them available for Forge runtime. That
was how we could inject current user project in HelloFacet before.

2.3.5 Applications

Forge can be used as a command line tool or integrated in main IDEs like Eclipse, Netbeans
or IntelliJ. To be used as command line tool one must download a zip distribution containing a
forge executable that runs on main operating systems29.

Forge has an important role on this work as it was the ground for creating Intrabundle, a tool
based on forge runtime that will be introduced later.

29As forge runs on top of Java, Forge inherits its universality.

29

3 DESIGNING AN OSGI BUNDLE INTROSPECTION TOOL

This chapter discusses the design of the tool created in this work. It is splited in the following
sections: The first section introduces Intrabundle, the second talks about design decisions, next
section will specify the data the tool is collecting, later the metrics created will be explained
and finally the quality calculation will be specified.

3.1 Introduction

It was clear in previous chapters that modular and non modular applications have many
differences and specific features, hence the need for dedicated approach for quality analysis.
This chapter presents the design of a tool called Intrabundle (intrabundle github, 2014), an
open source Java based application created in the context of this work. Intrabundle introspects
OSGi projects thought static code analysis. It collects useful information from OSGi projects
and later calculates its internal quality.

3.2 Design Decisions

To analyze and extract data from large code bases of OSGi projects, which can vary from
KLOCs to thousands of KLOCs, there was the need of a lightweight approach. Some functional

requirements were:

• Analyze different formats of OSGi projects like Maven1, Eclipse projects and BND 2;

• It should be able to dive deep into projects source code like counting methods calls,
differentiate classes and interfaces and so on;

• Get general informations like project version, revision or latest commit in source reposi-
tory;

• Should be easy to analyze lots of projects through its interface;

• Should output a detailed quality report so the extracted information can be analyzed.

and the following non functional requirements:

• Only open sourced projects3 because we focus on internal quality where the code is im-
portant;

• The tool should be lightweight to analyze real, complex and huge OSGi projects;

• Find and Introspect manifest files where valuable OSGi information rely;

• Should be testable;

1Maven is a build tool for Java.
2BND is a tool to easy OSGi projects development and bundle management and configuration.
3Projects that have its source code made available with a license in which the copyright holder provides the

rights to study, change and distribute the software to anyone and for any purpose.

http://maven.apache.org/index.html
http://bndtools.org/

30

• Fast;

• Use Java to leverage the author’s experience in the language;

• Use a good file system API4 because file manipulation is one of the most frequent tasks
the tool should perform.

The following tools were evaluated to implement the tool:

1. Build a standalone Java client application using javaFX5;

2. Create an Eclipse plugin6;

3. Create a Maven plugin7;

4. Build the tool on top of JBoss Forge;

5. Build a Java project on top of OSGi platform;

6. Extend an existing static/internal analysis tool like PMD.

The chosen among the above options was JBoss Forge, due to the following facts:

• Works inside and outside eclipse;

• Works regardless of build tool;

• As a command line tool its very lightweight and can analyze multiple OSGi projects at
the same time;

• The programing model is based on top of the so called CDI8 so managing Objects lifecy-
cle and events is handled by CDI automatically;

• Forge has a very well established and documented file system manipulation API based on
java.io;

• Forge is very flexible so generating quality reports is a matter of using a report framework
inside it;

• Is modular, each plugin has its own classpath;

• The author already had experience with JBoss Forge and CDI.

Creating an eclipse plugin for analyzing OSGi projects could be not as lightweight as forge
plugin. We would need eclipse started and OSGi projects imported inside IDE so the eclipse
plugin could identify the project resources.

JavaFX would require use standard Java file system manipulation api(java.io) which has
many caveats and pitfalls so for example its easy to create a memory leak or too many files

4An API expresses a software component in terms of its operations, inputs, outputs, and underlying types.
5JavaFX is a set of graphics and media packages that enables developers to design, create, test, debug, and

deploy rich client applications.
6Eclipse plug-ins are software components with the objective to extend Eclipse IDE.
7Maven is a build tool that consists of a core engine which provides basic project-processing capabilities and

build-process management, and a host of plugins which are used to execute the actual build tasks.
8Context and Dependency Injection for the Java platform. CDI is a dependency injection framework where

instead of dependencies construct themselves they are injected by some external means, in case CDI.

http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
https://wiki.eclipse.org/FAQ_What_is_a_plug-in%3F

31

opens error. Also with JavaFX there the need to implement the interface/GUI which is already
well done in Eclipse or Forge.

Maven plugins are limited to maven projects.
Although an OSGi based tool would be benefited by modularity and service oriented ar-

chitecture it would have the same limitations of a standalone JavaFX application and also the
author’s experience with OSGi projects is not as advanced as in Forge environment.

PMD9 has a very limited API so it could be hard to generate reports or analyze multiple
projects using it.

3.3 Identifying OSGi Projects and Bundles

To collect data and calculate quality of project we first need to identify those projects. In
the case of OSGi projects the tool must be capable of find OSGi projects and its bundles, the
module itself. In the extent of this work, OSGi projects are collections of OSGi bundles in the
same directory but its also important to say that OSGi bundles can be installed from anywhere
from the file system or network.

There are many formats of OSGi projects and each one may require a different algorithm to
be identified. In this work we will be concerned with the following types of OSGi projects:

• Standard Maven projects10;

• Maven projects using BND tools11;

• Standard BND Tools project12;

• Standard Eclipse Java projects13;

• Package based bundles14.

3.4 Collecting Bundle Information

After identifying OSGi bundles and OSGi projects Intrabundle needs to extract useful infor-
mation from them. Table 3.1 shows which attributes the tool must collect from OSGi projects:

9A very nice tool for static code analysis. It is based on rules that can be created via xml or xpath expression.
When a rule is violated it can output warns or errors to the console.

10Each project is a bundle and its meta data is in maven resources folder.
11Each project is a bundle and bundle meta data is in pom.xml configuration file.
12Each project is a bundle and meta data is in bnd file.
13Each project is a bundle and its meta data is in META-INF folder.
14In this kind of OSGi projects each package is a bundle and meta data is in the same package.

32

Table 3.1: Extracted data from OSGi projects

Name Description
Loc Lines of code.
Declarative services Verifies if bundles uses declarative services15.
Ipojo Verify if bundles uses Ipojo16

Blueprint Verify if bundles uses Blueprint17

Stale References Looks for possible Stale services references.
Publishes Interface Verifies if bundle exposes only its inter-

faces(API).
Declares permission Verifies if bundle declares permission.
Number of classes Counts bundle’s classes.
Number of abstract
classes

Counts bundle’s abstract classes.

Number of interfaces Counts bundle’s interfaces.
Bundle dependencies Gather bundle dependencies.
Required bundles Gather bundle required bundles.

Here is the justification of each attribute:

• LoC is being extracted because it is an indicative of high or low cohesion, if the compo-
nent has too much lines of code its an evidence that it is probably doing more work then
it should.

• IPojo, Blueprint and Declarative Services are recommended for managing OSGi ser-
vices because they hide the "dirty work" of publishing and consuming services which
sometimes may lead to incorrect behavior.

• Stale Services References refers to code that may retain OSGi service references from
being collected by Java garbage collection18 even when the providing bundles are gone
(Gama and Donsez, 2012).

• Bundle dependencies and Required bundles are closed related to coupling19 between
bundles. The less bundles a bundle depends the better it will be to maintain it as changes
to other components will not affect it.

• Publishes Interface verifies if a bundle is exposing only its API and hide the implemen-
tation details from consumers. It is a good practice having functionalities that are inde-
pendent of their respective implementations, this allows definitions and implementations
to vary without compromising each other.

• Declares permission is a security software attribute in OSGi projects and may restrict
access to bundles.

18Is the process of looking at memory, identifying which objects are in use and which are not, and deleting the
unused objects.

19Which is a measure of how closely connected two software components are.

33

• Number of classes, interfaces and abstract classes are being collected to support the cal-
culation of other attributes.

3.5 Quality Calculation

The data collected earlier will be materialized into six metrics that will be used to calculate
OSGi projects quality. We saw on section 2.1.4 that a software metric is a quantitative calcula-
tion of a software attribute. This section shows which metrics were created and how bundle and
project quality is calculated based on the metrics.

3.5.1 Quality Labels

Every created metric in this work can be classified into the following quality labels:

1. STATE OF THE ART: Metric fully satisfies good practices;

2. VERY GOOD: Satisfies most recommendations;

3. GOOD: Satisfies recommendations;

4. REGULAR: Satisfies some recommendations;

5. ANTI PATTERN: Does not satisfies any recommendation and follows some bad prac-
tices.

3.5.2 Metrics Defined

The first two metrics defined were adapted from classical software metrics. Loc and bundle
dependencies are intended to represent cohesion and coupling respectively. The next metric is
Uses framework, it was proposed by the authors as we think it is good practice to use a frame-
work to handle OSGi service registration and retrieval. Next one is declares permission which
was the chosen attribute representing security software characteristic. Next metric defined is
Stale references and was chosen to represent software reliability as it may lead to memory leaks.
Stale references is being measured as the authors think it is important to have bundle without
Stale references. Publishes interfaces metric is being measured as a good practice taken from
(Knoernschild et al., 2012). Below we define each metric and its formula:

The first metric defined is LoC, its the simplest one. LoC is based on bundle lines of
code(excluding comments) meaning that the less lines of code more cohesion the bundle has
and easier to maintain it should be. This metric is an estimation, there is no exact LoC number
because it depends on the context20. To classify LoC metric we use the following rule:

20If your algorithm is trying solve a very complex problem then it probably will have lots of lines of code and
not necessarily have a low cohesion.

34

LoC =



STATE OF THE ART if LoC <= 700,

VERY GOOD if LoC <= 1000,

GOOD if LoC <= 1500,

REGULAR if LoC <= 2000,

ANTI PATTERN if LoC > 2000.

Second metric is Publishes interfaces meaning that bundles should hide its implementation
and expose only it’s API. It is a good practice expose only the API and hide the implementation
details from consumers. This is considered an Usability pattern (Knoernschild et al., 2012).
Here is how this metric is calculated:

Publishes interfaces =

STATE OF THE ART if publishes only interfaces,

REGULAR if not publishes only interfaces,

Next metric is Bundle dependencies, it evaluates the coupling between bundles. The less
coupled a bundle is the more reusable and maintainable it is. It is considered a base pattern
called Manage Relationships in (Knoernschild et al., 2012). Here is how this metric is calcu-
lated by Intrabundle:

Bundle dependencies =



STATE OF THE ART if Bundle dependencies = 0,

VERY GOOD if Bundle dependencies <= 3,

GOOD if Bundle dependencies <= 5,

REGULAR if Bundle dependencies <= 9,

ANTI PATTERN if Bundle dependencies >= 10.

Next one is Uses framework, in complex application it is important to use a framework to
manage bundle services. This metrics takes into account 3 well known frameworks by OSGi
applications: IPojo, Declarative services and Blueprint:

Uses framework =

STATE OF THE ART if uses framework,

REGULAR if not using framework,

Next metric is Stale references, it focus on a very common problem in OSGi which can
lead to resource and memory leaks (Gama and Donsez, 2011). Intrabundle calculates this met-
ric by counting specific method calls to OSGi services in a bundle. What Intrabundle does is an
approximation and may lead to false positives. To get a real value for this software attribute one
have to calculate it by dynamic analysis like done in (Gama and Donsez, 2012):

NC = ∑
n
i=1 where n = number of classes a bundle have.

35

NS = ∑
n
i=1 where n = number of stale references found.

Stale references =



STATE OF THE ART no stale references,

VERY GOOD NS
NC < 0.1,

GOOD NS
NC < 0.25,

REGULAR NS
NC < 0.5,

ANTI PATTERN NS
NC >= 0.5.

In other words if no stale references are found then this metric receives a state of the art

quality label, if less then 10% of bundle classes have stale references (number of get and unget
doesn’t match) then it receives very good quality label, if > 10% and < 25% then it is good, if
the number of stale references is between 25% and 50% its is regular but if it has 50% or more
classes with stale references then its considered an anti pattern.

The last metric created in this work is Declares permission, it is concerned with security.
In this metric Intrabundle searches for permissions.perm file in the bundle, if it finds then the
metric is considered state of the art:

Declares permission =

STATE OF THE ART if declares permission,

REGULAR if does not declares permission,

3.5.3 Quality Formula

OSGi project quality and bundle quality are calculated by Intrabundle using the quality
labels. Each quality label adds points to bundle and project final quality which is based on
percentage of quality points(QP) obtained. State of the art adds 5QP, Very good 4QP, Good

3QP, Regular 2QP and Anti pattern 1QP.

3.5.4 Bundle Quality

Bundle final quality is calculated as a function of Total Quality Points TQP, which is the
total points obtained in all created metric, and Maximum Quality Points MQP that is the max-
imum points a bundle can have. MQP is equal to all metrics classified as State of the art. Here
is the formula:

MQP = ∑
n
i=1 5 where n = number of metrics.

T QP = ∑
n
i=1 q(i) where n = number of metrics and q(i) is QP obtained in metric i.

36

f (q) = T QP
MQP ;

if 1 <= f (q)> 0.9 then State of Art;
if 0.9 <= f (q)> 0.75 then Very Good;
if 0.75 <= f (q)> 0.6 then Good;
if 0.6 <= f (q)> 0.4 Regular;
if 0.4 <= f (q) then Anti Pattern;

In terms of percentage of points obtained, more than 90% of TQP is considered State of Art,
between 90% and 75% is Very good quality, from 60% to 75% is Good, 40% to 60% is Regular
and less than 40% of TQP a bundle is considered Anti pattern in terms of software quality.

For example imagine we have three metrics and a bundle has 5QP(State of the art)in one
metric and 3QP(Good quality label) in the other two metrics. In this case the MQP is 15 (5*3)
and TQP is 11 (5 + 3 + 3). In this example the bundle quality is 11/15 (73%) which maps to
Good quality label.

3.5.5 Project Quality

In Intrabundle the quality of an OSGi project uses the same formula of bundle quality. The
only difference is in MQP and TQP which in this case are based on bundle’s quality instead of
metrics. In project quality the maximum point is calculated considering all bundle’s quality as
State of the art, so for example if we have 3 bundles the MQP will be 15. TQP is just the sum
of all bundles quality, here is the formula Intrabundle uses for project quality:

MQP = ∑
n
i=1 5 where n = number of bundles in the project.

T QP = ∑
n
i=1 q(i) where n = number of bundles and q(i) is QP obtained by bundle i.

f (q) = T QP
MQP ;

if 1 <= f (q)> 0.9 then State of Art;
if 0.9 <= f (q)> 0.75 then Very Good;
if 0.75 <= f (q)> 0.6 then Good;
if 0.6 <= f (q)> 0.4 Regular;
if 0.4 <= f (q) then Anti Pattern;

In terms of percentage it’s also the same rule used for bundle’s quality. For example if a
project has 3 bundles, one has 5QP (State of the art) and other two has 3QP (good) then MQP
for this case is 15 (5*3) and TQP is 11 (5 + 3 + 3). In this example project final quality is 11/15
(73%) which maps to Good quality label.

37

3.5.6 Project metric quality

The last way to measure quality using Intrabundle is to analyze the project quality on each
metric. The project quality in a metric is the sum of all bundles qualities on that metric. The
total points a bundle can have in a metric is considering all bundles State of the art on that
metric. The quality label for a project metric quality is also defined as percentage of points
obtained from maximum points:

MQP = ∑
n
i=1 5 where n = number of bundles in the project.

T QP = ∑
n
i=1 q(i) where n = number of bundles and q(i) is QP obtained by bundle i in the

metric.

f (q) = T QP
MQP ;

if 1 <= f (q)> 0.9 then State of Art;
if 0.9 <= f (q)> 0.75 then Very Good;
if 0.75 <= f (q)> 0.6 then Good;
if 0.6 <= f (q)> 0.4 Regular;
if 0.4 <= f (q) then Anti Pattern;

So for example if a project has 3 bundles, one has 5QP (State of the art) in LoC and other
two has 3QP (good) then MQP is 15 (5 * 3) and TQP is 11 (5 + 3 + 3). In this example project
final quality on LoC is 11/15 (73%) which maps to Good quality label.

38

4 IMPLEMENTING AN OSGI BUNDLE INTROSPECTION TOOL

This chapter describes how Intrabundle was implemented and architecture overview is pre-
sented. Objects and classes that composes it will be detailed. First section gives a general
overview of Intrabundle’s components, second section explains how OSGi bundles and projects
are identified by the tool, next section shows how useful information is being collected and how
this information is gathered by reports. Last section gives an overview of how Intrabundle’s
quality is being maintained.

4.1 Implementation Overview

Intrabundle is composed by 3 Forge plugins, see section 2.3.2 for details about Forge plug-
ins. The first is BundlePlugin which extracts OSGi bundle information, second is OSGiPlugin

that has a vision of all bundles composed by the project. Third is OSGiScan a plugin responsible
for scanning OSGi bundles recursively in file system.

Intrabundle also provides 2 facets, see section 2.3.3 for details about Forge facets. Bundle-

Facet and OSGiFacet, both restricts commands provided by BundlePlugin and OSGiPlugin in
the context of OSGi bundle and project respectively. BundleFacet is active when user enter
on a directory that is an OSGiBundle and OSGiFacet is active when user enters on a directory
that contains at least one OSGiBundle. When BundleFacet is active then OSGiFacet is disabled
meaning that only BundlePlugin commands will be active.

Another important component in Intrabundle architecture is the Project Locator, see section
2.3.4 for details about Forge locators. Intrabundle provides 2 locators. The first is BundlePro-

jectLocator that creates a Forge project object named OSGiModule representing and gather-
ing data related to OSGi bundle. BundleLocator is activated when user is at an OSGi bundle
directory. The second is OSGiProjectLocator which creates a Forge project object named OS-

GiProject representing an OSGi project which is a collection of bundles. OSGiProject locator is
activated when user is in a directory that has at least one child directory that is an OSGiBundle.

Another component in the architecture is MetricsCalculator that calculates bundle and
OSGi project quality based on data contained on OSGiProject and OSGiModule objects. To
calculate projects qualities Intrabundle creates the Metric and MetricPoints objects. Metric-
Points has a list of Metrics and the quality is calculated in MetricPoints object based on all
metrics it has. The final quality is represented by a Java object called MetricScore which holds
the quality label presented in 3.5.1. Figure 4.1 gives an overview of Intrabundle architecture:

39

Figure 4.1: Intrabundle architecture

4.2 Bundle and Project Identification

Intrabundle implements its facets and locators to identify OSGi bundles and OSGi projects.
To do that the tool searches for OSGi meta data in MANIFEST file1. So identifying bundles is
as simple as locating the Manifest and verifies if it’s content has OSGi information. The main
problem is that the manifest location can vary depending on the project format. Table 4.1 lists
the types of OSGi projects and the location of Manifest file:

Table 4.1: Supported types of OSGi projects

Type Manifest location
Maven projects /src/main/resource/META-INF.
Maven using BND
tools

pom.xml2 with maven-bundle-
plugin.

Standard Eclipse Java
projects

/META-INF

Standard BND Tools bnd.bnd file in any subfolder.
Package based bundles each package has a manifest.

1The manifest is a special file that can contain information about the files packaged in a JAR file. By tailoring
this "meta" information that the manifest contains, you enable the JAR file to serve a variety of purposes.

40

4.3 Retrieving bundle information

Section 3.4 described which information the tool extracts. Now its presented how that is
done.

LoC is a classical software metric that was adapted in this work to OSGi Bundles and its cal-
culation is straight forward. The tool just sum the bundle .java files lines of code. It is important
to note that comments are excluded from this calculation. IPojo, Blueprint and Declarative
Services are extracted by looking for specific file configurations(xml files) or annotations that
each technology uses. Stale Services references are detected via approximation, Intrabundle
counts the number of services gets and ungets3 for each class a bundle has. If the number of
gets and ungets are equal then the class have no stale references, otherwise it is considered
as having stale references. Bundle dependencies are calculated by looking at OSGi Manifest
file in exported and imported packages. If bundle A imports package x.y.z and bundle B ex-

ports package x.y.z we say that bundle A depends on bundle B. Required bundles just counts
the number of required bundles declared in manifest. Publishes interfaces looks at bundle
exported packages, if all exported packages contains only interfaces we say that bundle only
publishes interfaces. Declares permission verifies if bundle implements security by contract
searching for permission.perm file inide OSGI-INF bundle directory.

Each information retrieved by Intrabundle is usually mapped to a Forge command, see List-
ing 4.1 which is the command that prints bundle exported packages, an information used to
calculate bundle dependency and publish interfaces metric, to the Forge console:

3Operations that consume and release a service reference respectively.

41

Listing 4.1: Exported packages command

@Command(value = "exportedPackages",help = "list bundle exportedpackages

")

public void exportedPackages(PipeOut out){

if(bundle.getExportedPackages().isEmpty()){

out.println(messageProvider.getMessage("module.

noExportedPackages"));

}

else{

for (String s : bundle.getExportedPackages()) {

out.println(s);

}

}

}

All the logic is inside bundle variable which is of type OSGiModule4, that is an immutable
object5, in method getExportedPackages. All information described in table 3.1, except bun-
dle dependency, is calculated inside OSGiModule object. Bundle dependency is Calculated
by OSGiProject because it has all modules and can calculate its dependencies. OSGiModule,
OSGiProject and MetricCalculation Java interface are presented in appendix B.

4.4 Intrabundle Reports

The tool generates two reports based on information it collects from bundles so it can be
analyzed carefully in one place. The reports can be generated in various formats (txt, pdf, html,
csv and excel). Figure 4.2 shows an example report:

4The bundle variable is created by Bundle Locator, a Forge locator, when user navigates to a directory which is
an OSGi bundle, as explained in section 2.3.4.

5Is an object whose state cannot be modified after it is created. A good practice and core principle in domain
driven design (Evans and Fowler, 2003).

42

Figure 4.2: Intrabundle general report

The first section of the report gives an overall idea of the project, second part lists informa-
tion of each bundle, see Figure 4.3

Figure 4.3: Intrabundle general report - detailed section

Another report Intrabundle generates is a metric report that details the punctuation of each
metric, see Figure 4.4:

43

Figure 4.4: Intrabundle metrics report

As in general report, in metrics report the first section of the report gives an overall idea of
the project, second part lists information of each bundles, see Figure 4.5

Figure 4.5: Intrabundle metrics report - detailed section

All reports generated by Intrabundle can be found online (intrabundle reports, 2014).

4.5 Intrabundle Quality

In this section we will see how Intrabundle’s quality is managed and how some concepts of
section 2.1 were applied to the project. As the project is not OSGi based we can’t apply Intra-
bundle’s metrics on itself so we used classical approaches to assure the quality of the project.

44

4.5.1 Internal quality

Intrabundle internal quality is managed by PMD and JaCoCo. PMD is an static analysis tool
and JaCoCo a dynamic analysis one. Both were presented in section 2.1.6 with the objective to
guarantee non functional requirements.

4.5.1.1 Example

PMD was already illustrated at Chapter 2 as an example of static analysis tool. JaCoCo is
used to calculate code coverage to track files and methods that automated tests are covering.
Figure 4.6 shows JaCoCo code coverage report for Intrabundle:

Figure 4.6: Intrabundle code coverage

We have also used InFusion (described in Figure 2.3) to calculate Intrabundle internal qual-
ity:

45

Figure 4.7: Intrabundle internal quality

4.5.2 External quality

Intrabunde external quality is assured by automated whitebox tests so we can verify if In-
trabundle is working as expected, if it meets its functional requirements.

4.5.2.1 Example

As of November 2014 Intrabundle performs 65 integration tests which can be defined as
automated tests aimed to detect any inconsistencies between the software units that are inte-
grated together. In this kind of automated tests the system must be running and in case of
Intrabundle we also need the Forge runtime up during tests. That is done by Arquillian (dan,
2011), an integration testing platform. The tests are also executed online on each commit6 by
Travisci7, a technique called continuous integration. Figure 4.8 shows the result of integration
tests execution:

6A command that pushes software changes to version control.
7An online continuous integration server.

https://travis-ci.org/rmpestano/intrabundle

46

Figure 4.8: Intrabundle integration tests

4.6 Validation

In order to validate our implementation and if proposed metrics make sense we will generate
Intrabundle reports on top 10 real OSGi projects. These reports will be analyzed and we will
try to infer useful information and tendencies from them. The reports must gather information
that make it possible to compare and confront data in the most variable scenarios.

47

5 BUNDLE INTROSPECTION RESULTS

Intrabundle was used to introspect and apply its metrics to 10 real OSGi projects, the projects
are all open sourced and vary in size, teams and domain.

5.1 Analyzed Projects

In this section is presented an overview of projects that were analyzed during this work.
Table 5.1 shows projects in terms of size. We’ve chosen projects that vary in size, are from
different organizations (Apache, Eclipse, etc), they solve different problems and are all open
source.

Table 5.1: OSGi projects analyzed by Intrabundle

Name No of bundles LoC LoC/bundle Analisys
time(sec)

BIRT 129 (217) 2,226,436 17,259 73.9
Dali 35 (46) 1,058,160 30,233 56.9
Jitsi 155 (158) 607,144 3,917 29.6
JOnAS 117 (122) 366,940 3,136 27.5
Karaf 58 (60) 93,743 1,616 8.6
Openhab 181 (184) 347,492 1,919 23.2
OSEE 183 (190) 873,690 4774 10.3
Pax CDI 21 (22) 19,480 927 2.5
Tuscany Sca 138 (140) 243,494 1,764 23.2
Virgo 36 (49) 77,859 2,162 5.6
Sum 1051 4,962,094 4721 261.3(~4min)

Note that number of bundle in parenthesis is considering bundles with zero lines of code
which, in the extent of this work, are not considered for quality analysis. Also note that lines
of code is considering only .java files excluding comment lines. Analysis time column is the
time in seconds to extract data and generate reports using Intrabundle osgi-scan 12 command
on the root directory of each projects. The environment the reports were generated was: Sony
Vaio laptop eg series, Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz, 4GB RAM, OS Ubuntu
12.04, Java version "1.7.0_67".

Below is a brief description of each project:

1. BIRT: Is an open source software project that provides the BIRT technology platform
to create data visualizations and reports that can be embedded into rich client and web
applications, especially those based on Java and Java EE;

2. Dali: The Dali Java Persistence Tools Project provides extensible frameworks and tools
for the definition and editing of Object-Relational (O/R) mappings for Java Persistence

http://eclipse.org/birt/
https://eclipse.org/webtools/dali/
https://jitsi.org/
http://jonas.ow2.org/xwiki/bin/view/Main/
http://karaf.apache.org/
http://www.openhab.org/
https://eclipse.org/osee/
http://team.ops4j.org/wiki/display/paxcdi/
http://tuscany.apache.org/sca-overview.html
http://www.eclipse.org/virgo/

48

API (JPA) entities;

3. Jitsi: Is an audio/video Internet phone and instant messenger written in Java. It sup-
ports some of the most popular instant messaging and telephony protocols such as SIP,
Jabber/XMPP (and hence Facebook and Google Talk), AIM, ICQ, MSN, Yahoo! Mes-
senger;

4. JOnAS: Is a leading edge open source Java EE 6 Web Profile certified OSGi Enterprise
Server;

5. Karaf: Apache Karaf is a small OSGi based runtime which provides a lightweight con-
tainer onto which various components and applications can be deployed;

6. Openhab: An open source home automation software for integrating different home
automation systems and technologies into one single solution that allows over-arching
automation rules and that offers uniform user interfaces;

7. OSEE: The Open System Engineering Environment is an integrated, extensible tool en-
vironment for large engineering projects. It provides a tightly integrated environment
supporting lean principles across a product’s full life-cycle in the context of an overall
system engineering approach;

8. Pax CDI: Brings the power of Context and Dependency Injection (CDI) to the OSGi
platform;

9. Tuscany SCA: Is a programming model for abstracting business functions as components
and using them as building blocks to assemble business solutions;

10. Virgo: Is a completely module-based Java application server that is designed to run enter-
prise Java applications and Spring-powered applications with a high degree of flexibility
and reliability.

5.2 Projects Quality Results

In this section will be presented the resulting qualities of analyzed projects and some com-
parisons. First comparison groups analyzed projects comparing their bundle quality and metric

quality. Later the projects are separated by groups in terms of size of LoC and number of
bundles.

All projects quality reports that provided data for all comparisons are available online, see
(intrabundle reports, 2014) for detailed information.

5.2.1 General Quality Comparison

The first table shows general projects qualities, it is ordered by quality points percentage.
Its important to note that each projects maximum quality points (MQP) is different because it
depends on the number of bundles, see 3.5.5 for further information:

49

Table 5.2: Projects general quality

Name TQP MQP Points percent Quality label
Pax CDI 84 105 80% Very Good
Openhab 666 905 73.6% Good
Virgo 132 180 73.3% Good
Karaf 211 290 72.8% Good
OSEE 596 915 65.1% Good
Tuscany Sca 433 690 62.8% Good
JOnAS 356 585 60.9% Good
Jitsi 414 775 53.4% Regular
Dali 86 175 49.1% Regular
BIRT 315 645 48.8% Regular

The winner on general category, considering Intrabundle metrics, is Pax CDI project which
obtained 80% of quality points and received a Very Good quality label. Pax CDI is a project
from OPS4J - Open Participation Software for Java which is a community that is trying to build
a new, more open model for open source development, where not only the usage is ppen and
free, but the participation is open as well.

5.2.2 Metrics Qualities Comparison

The next category analyzes how good the projects are on each metric. It’s important to note
that each project maximum quality points (MQP) in a metric depends on the number of bundles,
see section 3.5.6 for more details. Values in table 5.3 are the total quality points (TQP) obtained.
Values in parenthesis are the percentage of MQP of table values and after the parenthesis is the
quality label that the percentage represents (as described in 3.5.6):

Table 5.3: Projects quality by metrics

Name MQP LoC Publishes interfaces Uses framework Bundle dependency Stale references Declares permission
BIRT 645 294 (45.6%) regular 393 (60.9%) good 258 (40%) regular 307 (47.6%) regular 644 (99.8%) state of the

art
261 (40.5%) regular

Dali 175 74 (42.3%) regular 175 (100%) state of the
art

70 (40%) regular 65 (37.1%) anti pattern. 174 (99.4%) state of the
art

70 (40%) regular

Jitsi 775 492 (63.5%) good 775 (100%) state of the
art

310 (40%) regular 459 (59.2%) regular 473 (61%) good 310 (40%) regular

JOnAS 585 358 (61.2%) good 480 (82.1%) very good 252 (43.1%) regular 481 (82.2%) very good 573 (97.9%) state of the
art

234 (40%) regular

Karaf 290 212 (73.1%) good 257 (88.6%) very good 158 (54.5%) regular 290 (100%) state of the
art

278 (95.9%) state of the
art

116 (40%) regular

Openhab 905 672 (74.3%) good 791 (87.4%) very good 806 (89.1%) very good 664 (73.4%) good 901 (99.6%) state of the
art

362 (40%) regular

OSEE 915 584 (63.8%) good 909 (99.3%) state of the
art

573 (62.6%) good 529 (57.8%) regular 881 (96.3%) state of the
art

366 (40%) regular

Pax CDI 105 85 (81%) very good 105 (100%) state of the
art

66 (62.9%) good 103 (98.1%) state of the
art

98 (93.3%) state of the
art

42 (40%) regular

Tuscany SCA 690 472 (68.4%) good 684 (99.1%) state of the
art

288 (41.7%) regular 451 (65.4%) good 682 (98.8%) state of the
art

276 (40%) regular

Virgo 180 127 (76.1%) very good 180 (100%) state of the
art

78 (43.3%) regular 176 (97.8%) state of the
art

162 (90%) state of the
art

72 (40%) regular

Average 64.9% - good 91.7% - state of the art 51.7% - regular 71.8% - good 93.2% - state of the art 40.05% - regular

Following are the champions on each metric:

• LoC: Pax CDI has Very Good quality label on LoC;

50

• Publishes interfaces: Dali, Jitsi, Pax CDI and Virgo are all tied on metric points (100%)
and are labeled State of Art on this metric;

• Uses framework: Openhab is Very Good (almost State of the art) on this metric;

• Bundle dependency: Karaf is leading with 100% and is State of the art on this metric
followed by Pax CDI and Virgo which are also State of the art (>=90%) but not with
100% of quality points;

• Stale references: Birt is leading on this metric, it has only one (probably) stale reference
class among its 2 million line of code. Openhab loses by 0.2% with 2 stale references on
its 300 thousands of lines of code.

• Declares permission: Birt is the only analyzed project that has a bundle which declares
permission.

Some interesting facts can be observed looking at table 5.3:

Birt was the only project to use OSGi permission mechanism among analyzed projects. In
fact with 40.5%1 means that only one Birt bundle declared permission which was
org.eclipse.birt.report.engine.emitter.postscript.

Eclipse Dali project has the worst dependency quality metric which a sign that its bundles
are high coupled, as opposed to Karaf which may have low coupled bundles.

Projects that use a framework for managing services usually has less stale references be-
cause they are not likely to code for publish or consume service as a framework is doing that
for them.

Jitsi has more Stale references which may affect its reliability. Although it has lots of stale
references compared to other projects it received a Good quality label which means that this
metric formula is not well dimensioned and may be revisited in future.

It looks like publishing only interfaces for hiding implementation is a well known and dis-
seminated good practice as we have good punctuation on this metric in most analyzed projects.

We have evidences that Pax CDI has the more cohesive bundles as they have less lines of
code then bundles of other projects. We may infer that most bundles are high cohesive as they
receive good quality label on LoC metric.

Bundle coupling seen to be good among analyzed projects as the average quality on bundle
dependency was good.

5.2.3 Projects Qualities by Size

In the tables below the projects are separated by size as we believe that comparing projects
with large code base with minor sized projects is unfair. It is easier to keep good practices in
new projects as opposed to bigger projects where teams are usually larger, a person hardly will

1When a bundle does not declares permission it receives 2 metric points (regular label). So if a project has all
bundles with regular label it will have 40% of MQP.

51

know every detail, multiple versions are being worked in parallel and so on. In this section
we separate analyzed projects by LoC and number of bundles. Table 5.4 separates projects by
bundles where small projects range from 0 to 100 bundles and large projects has more then 100
bundles.

Table 5.4: Projects qualities by number of bundles

(a) Less then 100 bundles

Name TQP MQP Points percent Quality label No of Bundles
Pax CDI 84 105 80% Very Good 21
Virgo 132 180 73.3% Good 36
Karaf 211 290 72.8% Good 58
Dali 86 175 49.1% Regular 35

(b) 100 or more bundles

Name TQP MQP Points percent Quality label No of Bundles
Openhab 666 905 73.6% Good 181
OSEE 596 915 65.1% Good 183
Tuscany Sca 433 690 62.8% Good 138
JOnAS 356 585 60.9% Good 117
Jitsi 414 775 53.4% Regular 155
BIRT 315 645 48.8% Regular 129

For small projects there is no news, Pax CDI still winning. For larger projects Openhab is
the new champion with a good quality in large code base. It is also interesting to note that we
have three small projects among the five first positions in the quality rank.

The next table compares projects by LoC dividing them into small, medium and large sized.
In this comparison small projects range from 0 to 100,000 lines of code, medium sized range
from 100,001 to 500,000 LoC and large projects are the ones with more than half million lines
of code:

52

Table 5.5: Projects qualities by number of LoC

(a) Up to 100,000 LoC

Name TQP MQP Points percent Quality label LoC
Pax CDI 84 105 80% Very Good 19,480
Virgo 132 180 73.3% Good 77,859
Karaf 211 290 72.8% Good 93,743

(b) Between 100,001 and 500,00 LoC

Name TQP MQP Points percent Quality label LoC
Openhab 666 905 73.6% Good 347,492
Tuscany Sca 433 690 62.8% Good 243,494
JOnAS 356 585 60.9% Good 366,940

(c) More then 500,00 LoC

Name TQP MQP Points percent Quality label LoC
OSEE 596 915 65.1% Good 873,690
Jitsi 414 775 53.4% Regular 607,144
Dali 86 175 49.1% Regular 1,058,160
BIRT 315 645 48.8% Regular 2,226,436

In small category there is no surprise, Pax CDI is still leading. Openhab is the king of
medium projects and OSSE is the winner among the larger group.

Note that the worse qualities are in larger projects as we expected. The two projects with
more the one million LoC have the worst qualities measured by Intrabundle. The opposite is
also valid and can be observed in small group table.

5.3 Results

In this section we summarize the results obtained by Intrabundle in previous sections. The
first thing to note is that Intrabundle could analyze big projects in a small amount of time. It
analyzed more than 1000 bundles and almost 5 million lines of code and generated detailed
reports in a few minutes.

We noted that smaller projects are easier to keep good practices and that reflected on the
resulting qualities where the smaller projects were on the top. We also noted that good quality
is possible in bigger projects, as proved by Openhab.

Bundle cohesion seem to be good on most analyzed projects as they obtained good quality
points on LoC metric.

Publishes Interfaces metric received the higher quality points and proved to be a very dis-
seminated good practice among OSGi projects.

As opposed to Publishing only interfaces, the permission by contract is not being adopted
in analyzed projects and received the worst punctuation.

Stale references metric was not well dimensioned as projects received good punctuation(State

53

of the art) although Stale references were found on most projects. This metric is close related
to memory leaks and system reliability but was too relaxed in comparison to its importance.

About coupling, the bundle dependency metric showed that in most analyzed projects the
bundles are low coupled. Most projects received Good quality label on this metric.

Although using a framework for service management is a good practice, it is not so popular
in projects we used as example. Maybe this metric need to be revisited because not all bundles
publish or consume services.

54

6 CONCLUSION

This work presented the design and implementation of a tool called Intrabundle. The tool
extracts useful information from OSGi projects to calculate its internal quality based on static
code analysis. The focus of the analysis was internal design and architecture of components
where OSGi application really differs from classical Java systems.

All basic concepts were presented and it became clear that new approaches were needed
to extract quality from OSGi applications. Metrics were defined based on good practice in the
context of Java modular applications. A quality calculation system was created to measure
projects quality attributes. In the end real OSGi projects varying from KLOCs to thousands of
KLOCs, from application servers to IDEs were analyzed using the metrics proposed.

Intrabundle’s quality was also a concern of this work so classical good practices like inte-
gration tests, static and dynamic analysis were applied to the tool as well as good programming
techniques like immutable objects, dependency injection, visitors and lazy loading. The tool
proved to be very useful and performed really well, taking just seconds to analyze and gener-
ate reports from huge OSGi projects. Some tendencies were verified like that is hard to keep
good practices on bigger projects, as well as some OSGi specific quality aspects could also be
observed.

We notice during experiments that Stale reference and Uses framework metrics were not
well dimensioned so they should be revisited and calibrated. We also notice that calculating
number of lines is a too subjective metric as it may depend on the context of the problem or the
technology. We think that metrics should have a configurable coefficient to adjust metrics to its
context.

The objective of this work was met. Basic aspects were studied, designed and implemented.
The implementation was discussed and detailed. A fully working tool was created and pre-
sented. It provided detailed reports and reliable results that made it possible to make important
assumptions about analyzed projects. We think the quality metrics defined for OSGi projects
were valid and useful. The tool could verify if projects were applying good or bad practices in
the context of modular applications.

6.1 Future Work

Some metrics were defined and we think more metrics can be created from the information
already been collected. More data can be collected to enrich the analysis. Also providing an
interpretation and troubleshooting of the results is an interesting functionality to add in Intra-
bundle. Providing a SPI1 to easy the creation and the addition of new metrics in the tool is also
a goal for future. This SPI could also help to configure metrics depending on the context so for
example if declares permission is not important for your project then it should not influence in

1Is an API intended to be implemented or extended by a third party

55

bundle quality calculation.
Migrating to Forge 2 is a goal as it has better integration with IDEs as Forge 1, version used

in this work. Some metrics may have more importance for some projects then others. Making
metrics more dynamic providing a way to give weight to them is also a future goal.

As modularity is gaining focus and becoming popular we feel that the tool can be extended
to other modular environments. The only difference may be how modules will be identified on
those non OSGi modular applications, like JBoss Forge for example. Most metrics proposed
measure attributes that are present in every modular system and so may be also used in this
possible new version.

56

REFERENCES

Kan S. H. Metrics and Models in Software Quality Engineering. 2nd Edition [S.l]: Addison
Wesley, 2002. p. 113-114

Evans, E.; Fowler, M. Domain-Driven Design: Tackling Complexity in the Heart of Software.
1st Edition, [S.l]: Prentice Hall, August 2003. p. 75

Arnold K.; Gosling J.; Holmes D. THE JavaTM Programming Language. 4th Edition.
[S.l]:Addison Wesley Professional, 2005.

Hall, R. S.; Pauls K.; McCulloch S.; Savage D. OSGi in Action:Creating Modular Applications
in Java. 1st Edition, Stamford: Manning Publications Co., May 2011.

Knoernschild, K.; Martin, R. C.; Kriens, P. Java Application Architecture: Modularity Pat-
terns with Examples Using OSGi. 1st Edition, [S.l]: Prentice Hall, March 2012.

GAMA, K.; DONSEZ, D. Towards Dependable Dynamic Component-based Applications.
[s.n.], Grenoble, October 2011. p. 94

BEOHM, B.; BASILI, V. R. Software Defect Reduction Top 10 List. Computer, Los Angeles,
v. 34, no. 1, pp 135-137, January 2001.

WANG, T.; WEI, J.; ZHANG, W.; ZHONG, H. A Framework for Detecting Anomalous Ser-
vices in OSGi-based Applications. IEEE SCC 2012, Honolulu, June 2012. p. 1-2

KHAN, M. E.; KHAN, F. A Comparative Study of White Box, Black Box and Grey Box Test-
ing Techniques. International Journal of Advanced Computer Science and Applications,
New York, v. 3, no. 6, pp 12-15, June 2012.

Wichmann, B. A.; Canning, A. A.; Clutterbuck, D. L.; Winsbarrow, L. A.; Ward, N. J.; Marsh,
D. W. R. Industrial Perspective on Static Analysis. Software Engineering Journal, [S.l], v.
10, pp 69–75, Mar 1995.

KNORR, E. What microservices architecture really means. InfoWorld, Avail-
able at: http://www.infoworld.com/article/2682502/application-development/
application-development-what-microservices-architecture-really-means.html. Accessed
in: November 18 2014.

TAVARES, A. L. C.; VALENTE, M. T. A Gentle Introduction to OSGi. ACM SIGSOFT Soft-
ware Engineering Notes, Belo Horizonte, V. 33, no. 5, September 2008.

http://www.infoworld.com/article/2682502/application-development/application-development-what-microservices-architecture-really-means.html
http://www.infoworld.com/article/2682502/application-development/application-development-what-microservices-architecture-really-means.html

57

KRILL, P. Project Jigsaw delayed until Java 9. InfoWorld, Available at: http://www.infoworld.
com/article/2617584/java/project-jigsaw-delayed-until-java-9.html. Accessed in: November
21 2014.

GAMA, K.; DONSEZ, D. Service Coroner: A Diagnostic Tool for Locating OSGi
Stale References. Available at: http://www-adele.imag.fr/Les.Publications/intConferences/
ECBSE2008Gam.pdf. Accessed in: November 01 2014.

HAMZA, S.; SADOU, S.; FLEURQUIN, R. Measuring Qualities for OSGi Component-Based
Applications. International Conference on Quality Software, Najing, pp 25-34, July 2013.

Dan Allen. Arquillian - A Component Model for Integration Test-
ing. Jaxenter, Mar 2011. Available at: http://jaxenter.com/
arquillian-a-component-model-for-integration-testing-103003.html. Accessed in: Novem-
ber 19 2014.

IEEE Spectrum. Top 10 Programming Languages. Spectrum’s 2014 Ranking, Jul 2014. Avail-
able at: http://spectrum.ieee.org/computing/software/top-10-programming-languages. Ac-
cessed in: November 19 2014.

CISQ. Specification for Automated Quality Characteristic Measures. CISQ quality
standard version 2.1. Available at: http://it-cisq.org/wp-content/uploads/2012/09/
CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf. Accessed in:
November 14 2014.

ECLIPSE. Eclipse Platform Technical Overview. Available at: http://www.eclipse.org/
articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.pdf. Accessed in: November
30 2014.

SQA. Software Quality Metrics. [S.l.:s.n]. Available at: http://www.sqa.net/
softwarequalitymetrics.html. Accessed in: November 14 2014

Application Servers Info. JVM Introduction. [S.l.:s.n]. Available at: http://www.
applicationserverinfo.com/jvm-intro.html. Accessed in: December 15 2014

ISO25010:2011 System and software quality models. Systems and software Quality Re-
quirements and Evaluation (SQuaRE). Available at: http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=35733. Accessed in: November 16 2014.

Intrabundle PMD ruleset. Available at: https://github.com/rmpestano/intrabundle/tree/master/
src/test/resources/rulesets/pmd.xml. Accessed in: November 14 2014.

Intrabundle github repository. Available at: https://github.com/rmpestano/intrabundle. Ac-
cessed in: November 19 2014.

http://www.infoworld.com/article/2617584/java/project-jigsaw-delayed-until-java-9.html
http://www.infoworld.com/article/2617584/java/project-jigsaw-delayed-until-java-9.html
http://www-adele.imag.fr/Les.Publications/intConferences/ECBSE2008Gam.pdf
http://www-adele.imag.fr/Les.Publications/intConferences/ECBSE2008Gam.pdf
http://jaxenter.com/arquillian-a-component-model-for-integration-testing-103003.html
http://jaxenter.com/arquillian-a-component-model-for-integration-testing-103003.html
http://spectrum.ieee.org/computing/software/top-10-programming-languages
http://it-cisq.org/wp-content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf
http://it-cisq.org/wp-content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.pdf
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.pdf
http://www.sqa.net/softwarequalitymetrics.html
http://www.sqa.net/softwarequalitymetrics.html
http://www.applicationserverinfo.com/jvm-intro.html
http://www.applicationserverinfo.com/jvm-intro.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
https://github.com/rmpestano/intrabundle/tree/master/src/test/resources/rulesets/pmd.xml
https://github.com/rmpestano/intrabundle/tree/master/src/test/resources/rulesets/pmd.xml
https://github.com/rmpestano/intrabundle

58

Intrabundle quality reports. Available at: http://rmpestano.github.io/intrabundle/#reports. Ac-
cessed in: December 01 2014.

Semantic Versioning. Available at: http://www.osgi.org/wiki/uploads/Links/
SemanticVersioning.pdf. Accessed in: November 20 2014.

OSGi Framework Architecture - Three Conceptual Layers. Available at: http:
//www.programcreek.com/2011/07/osgi-framework-architecture-three-conceptual-layers/.
Accessed in: November 20 2014.

http://rmpestano.github.io/intrabundle/#reports
http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf
http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf
http://www.programcreek.com/2011/07/osgi-framework-architecture-three-conceptual-layers/
http://www.programcreek.com/2011/07/osgi-framework-architecture-three-conceptual-layers/

59

AppendixA INTRABUNDLE USAGE

A.1 Setup environment

In this work we provide a customized Forge distribution. This distribution downloads Intra-
bundle from its source code repository and automatically installs it in Forge environment when
Forge is started.

The only prerequisite is to have JAVA_HOME environment system variable pointing to a
Java 6 or higher installation. Below are the steps to install Intrabundle and Forge:

1. Download Intrabundle Forge distribution from sourceforge:
http://sourceforge.net/projects/intrabundle/files/latest/download;

2. unzip it to a folder, i will call it HOME in this tutorial;

3. execute HOME/bin/forge file if you are on Linux or MacOS,
on Windows execute HOME\bin\forge.bat file;

4. you should see image A.1 and image A.2 as below:

Figure A.1: Forge start

Intrabundle should be installed from its online source code repository, make sure you
have internet access during this process:

http://sourceforge.net/projects/intrabundle/files/latest/download

60

Figure A.2: Intrabundle installation

There is also an online video you can watch to get you started with Intrabundle, see (intra-
bundle github, 2014).

From now on you are ready to fire Forge and Intrabundle commands.

A.2 Begin Introspection

With Forge up and running now you can start OSGi project introspection with Intrabundle.
An example OSGi project can be found at
http://www.dcc.ufmg.br/~mtov/osgi_example.zip, it is from the article (TAVARES et al., 2008).
Unzip the downloaded project to HOME and go back to Forge console.

Navigate to folder OSGI using cd command: cd /HOME/OSGI(you can use tab for auto
completion), like in Image A.3:

Figure A.3: Navigating to project

You can see that intrabundle recognized the OSGi project, so you can fire commands at
OSGi project level like generate report or list bundles as well inspect its bundles, as in Image

http://www.dcc.ufmg.br/~{}mtov/osgi_example.zip

61

A.4:

Figure A.4: Fire commands

Another useful command Intrabundle provides is osgi-scan, it search for OSGi bundles in
file system and generate reports on top of them. To use it go back to HOME folder and fire
osgi-scan 2 command1, it must find bundles within downloaded project as is Image A.5:

Figure A.5: osgi-scan

1number argument is the depth of folders to scan

62

AppendixB INTRABUNDLE INTERFACES

B.1 OSGiProject

Listing B.1: Intrabundle OSGiProject interface

public interface OSGiProject extends Serializable{

List<OSGiModule> getModules();

Long getLinesOfCode();

Long getLinesOfTestCode();

Map<OSGiModule, List<OSGiModule>> getModulesDependencies();

String getRevision();

String getVersion();

/**

*

* @return max quality point a project can have

*/

int getMaxPoints();

}

B.2 OSGiModule

Listing B.2: Intrabundle OSGiModule interface

public interface OSGiModule extends Serializable, Comparable<OSGiModule>{

/**

*

* @return total .java files(under src or src/main/java) lines of

code

*/

Long getLinesOfCode();

/**

* @return <code>true</code> if bundle uses declarative services

specification

* <code>false</code> if it doesnt

63

*/

Boolean getUsesDeclarativeServices();

/**

* @return <code>true</code> if bundle uses Blueprint specification

* <code>false</code> if it doesnt

*/

Boolean getUsesBlueprint();

/**

*

* @return object representing bundle MANIFEST.MF or .bnd or pom.xml

with maven-bundle-plugin

*/

ManifestMetadata getManifestMetadata();

/**

*

* @return bundle activator java file

*/

FileResource<?> getActivator();

/**

*

* @return bundle imported packages

*/

List<String> getImportedPackages();

/**

*

* @return bundle exported packages

*/

List<String> getExportedPackages();

/**

*

* @return bundle required bundles

*/

List<String> getRequiredBundles();

/**

* @return <code>true</code> if bundle exported packages contains

only interfaces

* <code>false</code> if it has one or more classes

*/

Boolean getPublishesInterfaces();

64

/**

*

* @return <code>true</code> if bundle declares permissions

* <code>false</code> otherwise

*/

Boolean getDeclaresPermissions();

/**

*

* @return .java files possibly containing OSGi service stale

references

*/

List<Resource<?>> getStaleReferences();

}

B.3 OSGiProject

Listing B.3: Intrabundle MetricsCalculator interface

public interface MetricsCalculation {

/**

* this metric is based on bundle lines of code

* its based on the fact that the less lines of code

* the more cohesive the bundle is

*

* @param bundle

* @return

*/

Metric getLocMetric(OSGiModule bundle);

/**

* this metric is based on bundle dependencies

* its based on the fact that the less bundle it

* depends the less coupled it is

*

* @param bundle

* @return

*/

Metric getBundleDependencyMetric(OSGiModule bundle);

Metric getPublishesInterfaceMetric(OSGiModule bundle);

/**

65

* verifies if bundle uses a framework to manage services lifecycle,

frameworks being tracker are:

* declarativeServices, bluePrint and ipojo

*

* @param bundle

* @return Metric#STATE_OF_ART if use a framework, Metric#REGULAR if

no framework is used

*/

Metric usesFrameworkToManageServicesMetric(OSGiModule bundle);

Metric hasStaleReferencesMetric(OSGiModule bundle);

Metric getDeclaresPermissionMetric(OSGiModule bundle);

OSGiProject getCurrentOSGiProject();

MetricPoints calculateBundleQuality(OSGiModule bundle);

/**

* get most frequent project metric score on current OSGiProject

* @return

*/

MetricScore calculateProjectModeQuality();

/**

* get absolute, based on percentage, project metric score on current

OSGiProject

* @return

*/

MetricScore calculateProjectAbsoluteQuality();

List<OSGiModule> getModulesByQuality(MetricScore quality);

int getProjectQualityPonts();

double getProjectQualityPointsPercentage();

}

	Acknowledgments
	Contents
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Organization

	2 Basic Concepts
	2.1 Software Quality
	2.1.1 External Quality
	2.1.2 Internal Quality
	2.1.3 Quality Measurement
	2.1.4 Software Metrics
	2.1.5 Program Analysis
	2.1.6 Quality Analysis Tools

	2.2 Java and OSGi
	2.2.1 The Java language
	2.2.2 The OSGi service platform
	2.2.3 Vanilla Java vs OSGi

	2.3 JBoss Forge
	2.3.1 Introduction
	2.3.2 Forge Plugin
	2.3.3 Facets
	2.3.4 Project Locator
	2.3.5 Applications

	3 Designing an OSGi Bundle Introspection Tool
	3.1 Introduction
	3.2 Design Decisions
	3.3 Identifying OSGi Projects and Bundles
	3.4 Collecting Bundle Information
	3.5 Quality Calculation
	3.5.1 Quality Labels
	3.5.2 Metrics Defined
	3.5.3 Quality Formula
	3.5.4 Bundle Quality
	3.5.5 Project Quality
	3.5.6 Project metric quality

	4 Implementing an OSGi Bundle Introspection Tool
	4.1 Implementation Overview
	4.2 Bundle and Project Identification
	4.3 Retrieving bundle information
	4.4 Intrabundle Reports
	4.5 Intrabundle Quality
	4.5.1 Internal quality
	4.5.2 External quality

	4.6 Validation

	5 Bundle Introspection Results
	5.1 Analyzed Projects
	5.2 Projects Quality Results
	5.2.1 General Quality Comparison
	5.2.2 Metrics Qualities Comparison
	5.2.3 Projects Qualities by Size

	5.3 Results

	6 Conclusion
	6.1 Future Work

	References
	Appendix AppendixA Intrabundle Usage
	A.1 Setup environment
	A.2 Begin Introspection

	Appendix AppendixB Intrabundle Interfaces
	B.1 OSGiProject
	B.2 OSGiModule
	B.3 OSGiProject

