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Abstract

Additive nonparametric regression estimation via back�tting and marginal

integration under common bandwidth selection criterion: Small sample

performance.

In this paper, we conducted a Monte Carlo investigation to reveal some charac-

teristics of �nite sample distributions of the back�tting (B) and Marginal Integration

(MI) estimators for an additive bivariate regression. We are particularly interested in
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providing some evidence on how the di¤erent methods for the selection of bandwidth,

such as the plug-in method, in�uence the �nite sample properties of the MI and B

estimators. We are particularly concerned with the performance of these estimators

when bandwidth selection is done based in data driven methods, since in this case the

aymptotics properties of these estimators are currently unavailable. The impact of

ignoring the dependency between regressors is also investigated. Finally, di¤erently

from what occurs at the present time, when the B and MI estimators are used ad-hoc,

our objective is to provide information that allows for a more accurate comparison of

these two competing alternatives in a �nite sample setting.

2



1 Introduction

The estimation of additive nonparametric regressions has been recently discussed

in several studies. The hypothesis of additivity is of practical and theoretical interest.

From a practical viewpoint, this supposition facilitates interpretation and reduces

the computational demand for an unrestricted nonparametric regression. Theoreti-

cally speaking, it guarantees rates of convergence for nonparametric estimators that

are reasonably quick and independent from the dimensionality problem identi�ed by

Friedman & Stuetzle (1981).1 In addition, with this hypothesis, there is no need to

assume some kind of hardly justi�able metric when the variables are measured in

di¤erent units or are highly correlated (Buja, Hastie & Tibshirani 1989). Currently,

there are four viable estimators for an additive nonparametric model - the Back�t-

ting estimator (B-estimator), the Marginal Integration estimator (MI-estimator), a

two stage estimator (2S-estimator) and the method called Smooth Back�tting.2 The

B-estimator is based on Friedman & Stuetzle (1981); however, it became popular

1Let (X;Y ) be a random vector with joint density f , X 2 Rd, Y 2 R, d is a �nite positive integer.

Our goal is to estimate E(Y jX = x) = m(x). Stone (1985) has shown if an additive constraint is

imposed in m(x), i.e., E(Y jX = x) = �+

dX
i=1

mi (xi) with E (mi (xi)) = 0, each of regressions mi (�)

can be estimated at their optimal rate ns=(2s+1) where s is the degree of smoothers of m (which

does not depende on d).
2The estimators di¤er in how the additivity constraint is used to produce �nal estimators of mi:
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through the studies carried out by Hastie & Tibshirani (1986, 1990). Its properties

were studied in Buja, Hastie & Tibshirani (1989) and Opsomer & Ruppert (1997).

At present, little is known about the statistical properties of the B-estimator. In

general, it is still not possible to construct asymptotically valid con�dence intervals

for the estimated regression, even when the bandwidth hn ! 0 at a desired rate. The

knowledge about the B-estimator properties is even scarcer, when hn is chosen by

minimizing the criterion functions most widely used in the literature. Consequently,

in practice, little is known about the asymptotic properties and in �nite samples of

the B-estimator. The MI-estimator was introduced in the seminal articles written by

Linton & Nielsen (1995) and Linton & Härdle (1996). One of the most attractive

properties of the MI-estimator is that it can be shown to be asymptotically normal

when the regressor speci�c bandwidth hn converges to zero at a preset rate. Never-

theless, its asymptotic distribution is still unknown when hn is chosen by data driven

methods currently available in the literature, such as cross validation and several

plug-in methods, including those proposed by Silverman (1986) and Opsomer & Rup-

pert (1998). The di¢ culty in establishing the asymptotic normality in this setting

is two-fold. Firstly, data driven hn are stochastic sequences that may interact detri-

mentally with regressors and the regressand, which creates an additional di¢ culty in

establishing the asymptotic normality of the MI-estimator. Secondly, data driven hn

are chosen by minimizing a criterion function (loss or risk). For the most widely used
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criterion functions, the resulting optimal sequence of hn, do not converge to zero at

the rate that is necessary to obtain asymptotic normality. Just like the B-estimator,

little is known, in practice, about both asymptotic and �nite sample distributional

properties of the MI-estimator. The 2S-estimator (Kim et al 1999) is also ns=(2s+1)

asymptotically normal under some conditions on the rate of convergence of the band-

widths, but like the MI estimator the 2S-estimator rely on nonstochastic bandwidth.

Thus, the same comments made about MI estimator apply to 2S-estimator. Smooth

Back�tting was proposed by Mammen, Linton & Nielsen (1999) and Nielsen & Sper-

lich (2005). This method outperforms the method analyzed in Opsomer and Ruppert

and the asymptotic properties are also known under weak conditions.3

To make currently available (asymptotic) distributional results useful we have to

adapt them to the case in which hn is a data dependent stochastic sequence. An

alternative is to provide experimental evidence of the performance of the estimators

based on several methods for the selection of bandwidth hn by means of a Monte

Carlo investigation. Therefore, in this paper, we will conduct a Monte Carlo inves-

tigation in order to show some characteristics of the distributions in �nite samples

of B and MI-estimators for an additive bivariate regression. We are particularly

interested in providing some evidence of how the di¤erent methods for the selection

3In this paper we just compare two estimators: Back�tting (B-estimator) and Marginal Integra-

tion (MI-estimator).
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of bandwidth hn, such as plug-in methods, impact the �nite sample properties of

these estimators. Also, we attempt to o¤er some evidence of the behavior of di¤erent

estimators of hn relatively to the optimal sequence of hn that minimizes a chosen loss

function. The impact of ignoring the dependency between regressors in the estimation

of the bandwidth is also investigated. This is common practice and should impact

estimators�performance. Finally, di¤erently from what occurs currently when the

B and MI-estimators are used ad-hoc, the aim is to provide users with information

that allows for a more accurate selection of which estimator should be used in a �nite

sample setting. Besides this introduction the paper has �ve more sections. Section

2 describes the speci�cation of the model and the two estimators under analysis in

a uni�ed format. Section 3 describes the methods for the selection of bandwidth hn

under study. Section 4 presents the data-generating process to be used in the Monte

Carlo investigation. Section 5 discusses the results of the analysis. Section 6 provides

a brief conclusion.
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2 Speci�cation of the Model and the Estimators under Analysis

The statistical model considered here is that of a bivariate additive nonparametric

regression adjusted by a local linear smoother. It is assumed that
�
(yt; xt; zt)

0	n
t=1
form

a sequence of realizations of a random vector IID (Y;X;Z) with E(Y j X = x; Z =

z) = m1(x) +m2(z) , V (Y jX = x; Z = z) = �2 and E(m1 (X)) = E(m2(Z)) = 0.

m1 (�) and m2 (�) are real valued functions with some regularity conditions (see Buja,

Hastie & Tibshirani 1989), including a suitably chosen degree of di¤erentiability.

It is convenient for our purposes to de�ne the following vectors: Y = (Y1; :::; Yn)
0,

X = (X1; :::; Xn)
0, Z = (Z1; :::; Zn)

0, �!m1(X) = (m1 (X1) ; :::;m1 (Xn))
0, �!m2(Z) =

(m2 (Z1) ; :::;m2 (Zn))
0, ekt = (0; :::; 1; :::; 0)

0 is a vector of length k, where number one

appears in the tth position of the vector, and for any constant c, �!c n = (c; :::; c)0

is a vector of length n. We denote the marginal densities of X and Z by fX (x)

and fZ(z) and the joint maginal density of (X;Z) by fXZ (x; z). Also, we denote

by Kd : Rd ! R a d-variate symmetric kernel function with d = 1; 2 and by h1n and

h2n the bandwidths associated with the estimation of m1 and m2, respectively. By

using the previously introduced notation, de�ne two estimating weight functions as:

s1(x) : R! Rn : s1(x) = e2
0

1 (RX(x)
0VX(x)RX(x))

�1
RX(x)

0VX(x)
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and

s2(z) : R! Rn : s2(z) = e2
0

1 (RZ(z)
0VZ(z)RZ(z))

�1
RZ(z)

0VZ(z) (1)

where VX(x) = diag
n
K1

�
Xt�x
h1n

�on
t=1
, RX (x) =

��!
1n; x�

�!
1nx

�
and similarly for

Z:

Let S1 and S2 represent the matrices whose rows are the smoothers at X and Z:

S1 =

0BBBBBBBBBBBBBB@

s1(x1)

:

:

:

s1 (xn)

1CCCCCCCCCCCCCCA
and S2 =

0BBBBBBBBBBBBBB@

s2(z1)

:

:

:

s2 (zn)

1CCCCCCCCCCCCCCA
De�ne the vector of the values estimated at points X1; :::; Xn by bm = bm1 + bm2,

where bm1 and bm2 are the solutions to the following system of estimating equations:

2664 In S�1

S�2 In

3775
2664 bm1

bm2

3775 =
2664 S�1
S�2

3775Y (2)

where In is an identity matrix of dimension n and S�d = (In�110=n)Sd, d = 1; 2.4

In practice, the system is solved by using the back�tting algorithm, however, in
4The adjustment of the smoothers is necessary to guarantee the uniqueness of the solutions (if

they exist), see Hastie & Tibshirani(1990).
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the bivariate case, when the local linear estimator is used, the back�tting algorithm

converges to an explicit solution to �!m1(X) and
�!m2(Z) given by

�!mb
1(X) =

�
In � (In � S�1S�2)

�1 (In � S�1)
�
Y

and

�!mb
2(Z) =

�
In � (In � S�2S�1)

�1 (In � S�2)
�
Y (3)

if the inverses exist. The existence of these estimators and their stochastic prop-

erties are still, in general, unknown; however, by using the local linear estimator,

Opsomer & Ruppert(1997,1998) derived a series of results (for large samples), which

is shown below. In our case, there is a solution if:

A1: The kernel K is bounded, continuous, has compact support and its �rst

derivate has a �nite number of sign changes over its support. In addition, �j(K) �R
ujK(u)du = 0 for all odd j and �2(K) 6= 0.

A2: The densities f(x; z), fX(x) and fZ(z) are bounded, continuous and have

compact support, and their �rst derivates have a �nite number of sign changes over

their supports. Also, fX(x) > 0 and fZ(z) > 0 for all (x; z) 2 supp(f) and

sup

���� f(x; z)

fX(x)fZ(z)
� 1
���� < 1:

A3: When n!1, h1n, h2n ! 0 and nh1n= log(n), nh2n= log(n)!1.

A4: The second derivates of m1 and m2 exist and are bounded and continuous.
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The MI estimator for a bivariate regression function (for an additive model) was

proposed in Linton & Nielsen (1995) and it is based on the fact that for any functionQ

such that
Z
dQ(z) = 1;

Z
m(x; z)dQ(z) = m1(x) + c1 where c1 =

Z
m2(z)dQ(z) and

similarly for
Z
m2(z)dQ(z) and similarly for

Z
m(x; z)dQ(x). Assuming (yi; xi; zi)

are independent and identically distributed, E(�ijxi;zi) = 0 and V ar(�ijxi;zi) = �2,

and (xi;zi) has joint density f(x; z) and marginals fX(x) and fZ(z). The idea of the

MI estimator using a bivariate local linear estimator at X = x, Z = z is to �nd an

estimator for bm(x; z;h1n; h2n) = e3
0
1 (X(x; z)

0W (x; z)X (x; z))�1X(x; z)0W (x; z)Y,

where X(x; z) =
��!
1 n; X ��!x ; Z ��!z

�
and

W(x; z) = diag

�
1

h1nh2n
K2

�
1

h1n
(Xt � x) ;

1

h2n
(Zt � z)

��n
t=1

. (4)

using Q(�) to be the empirical distribution function. We then de�ne the matrix

bm(X;Z) =

0BBBBBBBBBBBBBBBBBB@

bm(x1; z1) bm(x1; z2) : : : bm(x1; zn)
bm(x2; z1) bm(x2; z2) : : : bm(x2; zn)

: : : :

: : : :

: : : :

bm(xn; z1) bm(xn; z2) : : : bm(xn; zn)

1CCCCCCCCCCCCCCCCCCA

.

The MI estimator for �!mmi
1 (X) and

�!mmi
2 (Z), using the identity function as linking

function and without considering an intercept (see Linton & Nielsen,1995 and Linton
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& Hardle, 1996), is respectively given by �!mmi
1 (X) =

1
n
bm(X;Z)�!1 n, and �!mmi

2 (Z) =

1
n
bm(X;Z)0�!1 n. The weighting functions Q1 and Q2 (see Linton & Nielsen, 1995)

used for the estimation were the empirical distribution functions Fxn(x) and Fzn(z)

that converge in distribution to FX(x) and FZ(z) respectively. The approximations

provided in Linton & Nielsen(1995, p.95) are still valid when the empirical functions

are written in lieu of Q. Particularly, when x and z are independent, the empirical

functions will be the optimal weighting functions in the sense that they minimize the

variances of the asymptotic approximations.

The de�nitions provided above consider h1n and h2n as known nonstochastic se-

quences that converge to zero at a speci�ed rate. For the B-estimator, Opsomer

& Ruppert(1997) show that when, n ! 1, h1n, h2n ! 0 and nh1n
logn

, nh2n
logn

! 1

it is possible to obtain an asymptotic approximation to the conditional bias and

conditional variance of �!mb
1(Xi) and

�!mb
2(Zi), where

�!mb
1(Xi) and

�!mb
2(Zi) are the

ith elements of �!mb
1(X) and

�!mb
2(Z), respectively.

5 For the MI-estimator, Linton &

Nielsen (1995) show that when h1n, h2n ! 0 and nh1nh22n, nh2nh
2
1n ! 1, then

p
nh1n (

�!mmi
1 (Xi)� E (�!mmi

1 (Xi))) and
p
nh2n (

�!mmi
2 (Zi)� E (�!mmi

2 (Zi))) are asymp-

totically normal, where �!mmi
1 (Xi) and

�!mmi
2 (Zi) are the ith elements of

�!mmi
1 (X) and

�!mmi
2 (Z), respectively.

6

5The approximation is valid under another three suppositions (see Opsomer & Ruppert,1997).
6It is possible to show that the data-driven bandwidth selection methods currently used in the
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3 Methods for Data Driven Bandwidth Selection

One of the most important steps in estimating the nonparametric regression

models is the selection of smoothing parameters or bandwidths hn. In essence, once

the smoother is selected, the selection of the smoothing parameters is tantamount to

the selection of the smooth itself (see Martins-Filho & Bin, 1999 and Silva, 2001).

In this paper, two methods for the automatic selection of the bandwidth hn7 are

considered. These two methods are variants of plug in methods8, that use analytical

optimization.

An appropriate error criterion (see Ruppert & Wand, 1994 and Ruppert, Sheather

& Wand, 1995) is the weighted conditional MISE given by (in the case of X)

literature, including cross validation and several plug-in methods, do not produce sequences fh1ng

and fh2ng that converge to zero at the desired rates. For proofs, see Martins-Filho (2001).
7The focus is on hn �xed within the support used.
8An alternative would be the use of cross validation. However, Jones, Marron & Sheather (1996)

comment that plug-in methods are better than cross validation methods, in simulation studies and

asymptotically. Park, Byeong, Marron (1990), Simono¤ (1996) and Opsomer and Ruppert (1998)

have shown cross-validation methods possess several undesirable properties. The plug-in methods

demand less computational time, do not show undersmoothing of the cross validation method, and

the rate of convergence
�bhn � hn� ! 0 when bhn is chosen by plug-in methods is quicker than the

rate of convergence of
�ehn � hn�! 0 when ehn is obtained by cross validation.
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MISE (bmp (�;hn) jX1; :::; Xn) = E

Z �
fbmp(x;hn)�m(x)g2 j X1; ::; Xn

�
fX(x)dx:

(5)

where fX(x) represents the density of X with support [a; b]. Also, assume that

the errors are homoskedastic with variance �2. For p odd Ruppert & Wand (1994)

show that

MISE (bmp (�;hn) jX1; :::; Xn) =

"
hp+1n �p+1

�
K(p)

�
(p+ 1)!

#2 Z
m(p+1)(x)2fX(x)dx+

R(K(p))�
2(b� a)

nhn
+ op

�
h2p+2n + (nhn)

�1� : (6)

where �j(K) =
R
ujK(u)du, K(p)(u) = fjMp(u)j = jNpjgK(u), Np is a matrix

(p + 1) � (p + 1) whose (i; j)th is equal to �i+j�2(K), Mp(u) is the same as Np but

with the �rst column replaced by (1; u; u2; :::; up)0 and R(K(p)) � �0

�
K2
(p)

�
. The

minimizer of (6) is asymptotically

ehn = " (p+ 1) (p!)2R
�
K(p)

�
�2(b� a)

2n�p+1
�
K(p)

�2 R
m(p+1)(u)2fX(u)du

#1j(2p+3)
(7)

if
R
m(p+1)(u)2fX(u)du is di¤erent from zero. A convenient error criterion, which

uses only the �tted values at the observation points, is the conditional MASE, dis-
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cussed by Hardle, Hall & Marron(1988). In the univariate case, the MASE of m can

be written as9

MASE (bmp (�;hn) jX1; :::; Xn) =
1

n

nX
i=1

E
��
fbmp(x;hn)�m(x)g2 j X1; ::; Xn

�	
. (8)

The basic principle of plug-in methods is the direct estimation of the estimates

of �2 and of the functionals that appear in the expressions describing the values of

the smoothing parameters hn, after the criterion to be used for the nonparametric

estimation has been minimized.

The plug-in method proposed in Linton & Nielsen(1995) is based upon the follow-

ing rule of thumb (ROT):

hinROT =

8><>: e�2R(K(1))(bi � ai)

�2(K(1))2
�b�1 + b�2�2

9>=>;
1=5

n�1=5, (9)

where i = 1; 2, bi and ai denote the sample maximum and minimum of the regressor

of interest, b�1 and b�2 are the coe¢ cients of x2=2 and z2=2 obtained from an ordinary

least-squares regression of y on a constant, x, z, x2=2, z2=2 and xz, and e�2 is obtained
from the residuals of this regression. This rule is asymptotically optimal in terms of

the AMISE criterion (see equation 7), when p = 1, x and z are independent and

9Note that (8) is a discrete approximation to (5).
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the bivariate regression model m(x; z) is a quadratic function. b�1 and b�2 are merely
approximations to the second derivate that will appear in (7) when p = 1.

Another plug-in method used was proposed in Opsomer & Ruppert (1998). The

aim, in this case, is to choose h1n; h2n 2 R such that

MASE(h1n; h2n j X;Z) =
1

n

nX
i=1

E (bm(Xi; Zi)�m(Xi; Zi) j X;Z)2 . (10)

From the corollary 4.2 by Opsomer & Ruppert (1997), the asymptotic approxima-

tion to the conditional MASE given in (10)above, when the additive model is �tted

by local linear regression, denoted by AMASE, is given by:

AMASE(h1n; h2n j X;Z) =
�2(K(1))

4

2 �
h41n�11 + h

2
1nh

2
2n�12 + h

4
2n�22

�
+

�2R(K(1))

�
bx � ax
nh1n

+
bz � az
nh2n

�
(11)

where

�11 =
1

n

nX
i=1

�
t0iD

2m1 + v
0
iE
�
m
(2)
1 (Xi) j Z

��2
,

�22 =
1

n

nX
i=1

�
v0iD

2m2 + t
0
iE
�
m
(2)
2 (Zi) j X

��2
,

�12 =
1

n

nX
i=1

�
t0iD

2m1 + v
0
iE
�
m
(2)
1 (Xi) j Z

���
v0iD

2m2 + t
0
iE
�
m
(2)
2 (Zi) j X

��2

and t0i and vj represent the ith row and the jth column of (I�T�12)
�1, provided

the inverse matrix exists and [T�12]ij =
1
n

fXZ(Xi;Zj)

fX(Xi)fZ(Zj)
� 1

n
.
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By denoting the values of the bandwindths that minimizeAMASE by h1nAMASE and

h2nAMASE and under the assumption of independence betweenX and Z, it is possible

to write

h1nAMASE =

�
R(K(1))�

2 (b1 � a1)
n�2(K(1))2�11

�1j5
and

h2nAMASE =

�
R(K(1))�

2 (b2 � a2)
n�2(K(1))2�22

�1j5
: (12)

The estimation strategy used consists in obtaining the estimates for �2 and �ii, i = 1; 2

and directly substitute them in (12). The plug-in rule (PI) used was: �2 was es-

timated by b�2 = 1
n

Pn
i=1

�
yt � bmb

1 (Xi)� bmb
2 (Zi)

�2
where bmb

1 (Xi) and bmb
2 (Zi) are

the solutions to the back�tting algorithm given in (3) and b�11 and b�22 were es-
timated by equation (9) proposed by Opsomer & Ruppert(1998), that is, b�11 =
1
n
TrV

(2)�
1 YYTV

(2)�0
1 and b�22 = 1

n
TrV

(2)�
2 YY0V

(2)�0
2 where

V
(2)
1 = S

(2)
1 (In � S�2S�1)

�1 (In � S�2) , V
(2)
2 = S

(2)
2 (In � S�1S�2)

�1 (In � S�1) ,

V
(2)�
1 = (I� 110=n)V(2)

1 , V
(2)�
2 = (I� 110=n)V(2)

2 (13)

and S(2)1 and S(2)2 represent the matrices whose rows can be written as
�
s
(2)
1;x

�0
=

2!e403 (RX(x)
0VX(x)RX(x))

�1RX(x)
0VX(x) and

�
s
(2)
2;z

�0
= 2!e403 (RZ(z)

0VZ(z)RZ(z))
�1RZ(z)

0VZ(z).

The rule of thumb (ROT) described above was used to estimate the matrices VX(x)

and VZ(z) which appear in
�
s
(2)
1;x

�0
and

�
s
(2)
2;z

�0
. The direct plug-in rule (DPI) used
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is described in page 612 (Opsomer and Ruppert, 1998). We obtain the estimates for

�2 and �ii, i = 1; 2 using second-order approximations.10

10The PI rule used estimates �2 and �ii, i = 1; 2 using �rst-order approximations.
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4 The Data Generating Process

The data used in the study were generated by a bivariate additive nonpara-

metric regression model �tted by local linear regression, with varying correlation to

evaluate the robustness to lack of independence between regressors. It is assumed

that
�
(yt; xt; zt)

0	n
t=1

form a sequence of realizations of a <3- valued random vector

(Y;X;Z) and f�tgnt=1 is a sequence of realizations of a random variable with distrib-

ution N(0; 1). The model used here can be described by

Yt = m1(Xt) +m2(Zt) + �t (14)

wherem1(xt) = �6xt+36x2t�53x3t+22x5t ,m2(zt) = sin(zt),11 Xt = St, Zt = 5�Wt,

with fWt; Stgnt=1 generated by a joint density function with the desired correlation,

given by
�
Wt

St

�
N

0BB@�0:50:5
�
;

0BB@ 1=9 c=9

c=9 1=9

1CCA
1CCA, where c = 0 (independence), :25 (�low�

correlation), :75 (�high�correlation).

The existence of a solution to the back�tting algorithm is generally unknown,

but in the case in which local linear estimators are used, Opsomer & Ruppert (1997,

1998) derived a series of su¢ cient conditions that guarantee the existence of a single

solution in the bivariate case (see conditions A1 to A4 described in section 2).

11We chose functions that have very di¤erent curvatures.
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Because of A2 we rejected all observations for which one of the regressors exceeded

�1:5� of the mean (or equivalently outside the interval [0,1]), and in this case, we

replaced them by new observations that fell within these limits. We considered sam-

ples of 100, 150 and 200 observations12, each of which was replicated 1600, 1200 and

800 times, respectively.

In this study, a Gaussian kernel13 was used. Some important results within this

context are given next. For the Gaussian kernel, we obtain: �1(K(1)) = 0, �2(K(1)) = 1

and R(K(1)) = (2
p
�)�1.

12We chose small samples for two reasons. First, the small sample sizes reduce the computational

burden in a Monte Carlo setting. Second, we want to evaluate the estimators under very undesirable

conditions.
13A choice as an Epanechnikov kernel or any kernel with compact support would be desirable

since it would satisfy assmption A2 (compact support) that is necessary to guarantee some of the

theoretical results regarding these estimators. However, the MI estimator is often not de�ned in this

case due to the singularity of the matrix W (x; z). Linton and Nielsen (1995) and Linton and Härdle

(1996) used a Gaussian kernel in their applications even tough they have an explicit assumption on

kernel support compactness.
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5 Results

A simulation study was carried out to evaluate and compare the performance of

the B and MI-estimators in �nite samples for a bivariate additive regression. Such

study is necessarily restrictive because there are many possibilities regarding the se-

lection of the regression function, the density of regressors, the correlation between

them, the error density, the sample size, the type of polynominal regression, the kernel

function, the chosen bandwidth, the type of squared error criterion function, among

other factors.

By looking at �gure 2 by Opsomer & Ruppert(1997, p.191) we can note that the

correlation 0.75 is outside the bounds set by assumption A2 of the referred article

(p.190), when one normal bivariate distribution is used. Apparently, this does not

a¤ect the convergence. This supports the idea that correlation within these bounds,

although su¢ cient, is not a necessary condition for the convergence of back�tting

estimators. The kernel function used also does not satisfy condition A1. Likewise,

this does not seem to a¤ect the application of the results derived by Opsomer &

Ruppert(1997).

The primary aim of the article is to compare the performance of B and MI-

estimators in �nite samples. For this purpose, we computed the average squared error

ASE = 1
n

Pn
t=1 (bm1(Xt) + bm2(Zt)�m1(Xt)�m2 (Zt))

2 in the simulation studies.
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After that, we calculated the mean of replications in order to estimate the MASE.

By comparing the values presented in Tables 1 and 2 we observed that B-estimators

had a better performance than MI-estimators.

Table 1. MASE estimates using back�tting with bandwidths PI and the true

AMASE

hPI hAMASE

14n = 100 n = 150 n = 200 n = 100 n = 150 n = 200

� = 0 0:606 0:474 0:396 0:324 0:288 0:262

� = 0:25 0:600 0:476 0:404 0:323 0:287 0:265

� = 0:75 0:592 0:470 0:400 0:321 0:282 0:258

14The bandwidth h2nPI had over�ow problems in the simulation study. The data-generating

process was repeated three times when � = 0 and once when � = 0:25 and � = 0:75.
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Table 2. MASE estimates using Marginal Integration with ROT bandwidths and

the true AMASE

hROT hAMASE

n = 100 n = 150 n = 200 n = 100 n = 150 n = 200

� = 0 2:189 0:842 0:629 0:583 0:466 0:365

� = 0:25 1530:530 0:948 1:950 0:679 0:468 0:386

� = 0:75 11:551 5:186 7:095 3:041 5:979 2:879

By analyzing Tables 1 and 2, it is possible to observe a series of important facts.16

Firstly, note that the denial of the independence hypothesis between regressors does

not a¤ect the estimation made with the back�tting algorithm, no matter if the cor-

relation between regressors is low (� = 0:25) or high (� = 0:75). This does not

occur when the Marginal Integration is used. In this case, the impact of ignoring

dependency remarkably in�uences the results obtained.

Also, note that the bandwidths used in this Monte Carlo investigation are cho-

sen so as to minimize MASE. Thus, the comparison between estimators should be

made using the MASE criterion. However, if the median of the replications is used

15Frequently the MI estimator is not de�ned. The problem emerges due to the singularity of the

W (x; z) matrix. When the bandwidths were numerically too small we found large ASE0s for those

replications. It�s reasonable to expect that for larger samples this problem would disappear.
16As a general result we can notice that increases in sample sizes reduce MASE for all estimators.
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to compare the estimators the results show visible di¤erences. The results obtained

were somehow expected. Opsomer & Ruppert(1997, p.198) comment that there is an

interesting di¤erence between both estimators when X and Z are independent. In

this case, it is natural to expect that the asymptotic bias of estimators of an additive

model for estimating one of the component functions does not depend on the behavior

of the other function. Opsomer & Ruppert(1997) show that the B estimator has such

property, whereas the MI estimator does not. Except if the bias e¤ects of the compo-

nent functions happen to o¤set each other, this will likely result in an increased bias

relative to the back�tting estimator. The comparison between asymptotic variances

is more straightforward due to the similar format of the expressions for both estima-

tors. In this case, it is possible to show that the asymptotic variance of B-estimators

is always smaller than that of MI-estimators, unless X and Z are independent.

The comparison between both estimators is clearer when the true bandwidths

h1nAMASE and h2nAMASE are used. In a simulation study like this nothing is unknown

in (12), that is, there will be no �noise�inherent to the estimation process when the

two estimators are compared. In this case, there noticeably exist strong signs of the

superiority of B-estimators.

In an attempt to clarify the superiority of B-estimators, theMASEof these estima-

tors was calculated using the bandwidths hinROT , i = 1; 2, directly. These bandwidths
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were constructed in a format that is appropriate for the estimation via Marginal In-

tegration. We suspect that even when using an appropriate rule for the estimation of

MI-estimators, the performance of B-estimators would still be superior, which could

be con�rmed here. Nevertheless, something amazing occurred, as can be observed

when we compare Tables 3 and 1 . Apparently, the estimation of the second deriva-

tive made in Opsomer & Ruppert(1998) deteriorates the performance of B-estimators

in �nite samples instead of improving it. Albeit unexpected, the result is interesting,

since little is known about the properties of this estimator in �nite samples. Table

4 shows the results using the DPI bandwidth proposed in Opsomer and Ruppert

(1998). Among all estimated bandwidths used in this study the DPI bandwidth

emerges as the best alternative. This superiority is based on an evaluation of the

estimators�ASE.

Table 3. MASE estimates using back�tting with ROT bandwidth

hnROT

n = 100 n = 150 n = 200

� = 0 0:436 0:376 0:328

� = 0:25 0:437 0:371 0:338

� = 0:75 0:434 0:367 0:325
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Table 4. MASE estimates using back�tting with DPI bandwidths and the true

AMASE17

hROT

n = 100 n = 150 n = 200

� = 0 0:344 0:306 0:274

� = 0:25 0:349 0:298 0:279

� = 0:75 0:346 0:298 0:266

Figures 1 to 3 show the densities 18 of log (hinAMASE)�log(hinPI), log(hinAMASE)�

log(hinROT ) and log (hinAMASE) � log(hinDPI), i = 1; 2 for the levels of correlation

used and for the samples sized 100, 150 and 200, each of which was replicated 800,

600 and 400 times, respectively. As can be observed, the densities for the di¤erent

levels of correlation are quite close. Seemingly the level of correlation between the

covariates has little e¤ect on the estimated bandwidths, which justi�es the use of

independence assumption in the computation of hnPI , hnROT and hnDPI . Estimators

h1nPI and h1nDPI display a very small bias (undersmoothing) in the estimation of m1

(low-degree polynomial) whereas estimator h1nROT has a stronger bias, causing an

oversmoothing in the estimation of m1. In this case, both estimators have a similar

variability. Estimators h1nPI and h1nROT have a marked bias in the estimation of m2

17The samples were replicated 800, 600 and 400 times, respectively.
18Estimated by Sheather-Jones (1991) bandwidth.
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(undersmoothing)19, however, the bias of estimators h2nPI is stronger and also those

densities display more variability. Estimator hnDPI shows a small bias (oversmooth-

ing) in the estimation of m2 Estimators hnROT and hnDPI have a similar variability

in the estimation of m1 and m2
20. Overall the estimator hnDPI has better relative

performance than the other bandwidth estimators used.

19m2 is a sine function (therefore less subject to �rst-order approximations than m1). How much

under or oversmoothing occurs depends largely on the degree of curvature of the md that compose

the models. When there is more curvature the degree of undersmoothing and oversmoothing seems

to increase.
20Note that the performance of both estimators improves as the sample size increases.
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Figure 1: Density of the PI estimators for the three levels of correlation
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Figure 2: Density of the ROT estimators for the three levels of correlation
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6 Conclusions

The current literature proposes, basically, four methods for the estimation of

an additive nonparametric regression. In this paper we compared estimator B and

MI. The comparison made by means of a Monte Carlo investigation suggests that

the B-estimator has a superior performance to the MI- estimator. This superiority is

based on the evaluation of the estimators�ASE under true and estimated bandwidths.

Although the simulation study presented here has a reduced scope, this is con�rmed

in a more comprehensive study, see Martins-Filho(2001).21

The estimator proposed by Linton & Nielsen is based on an excellent idea, but it

involves the product of the bandwidths. In the bivariate case, if the estimates for the

two bandwidths are undersmoothed or oversmoothed the e¤ect will be magni�ed. In

addition, as mentioned in Silva(2001, p.16), the estimation via Marginal Integration

is computationally more demanding 22, which is inconvenient to the users. In fact, the

MI-estimator presents problems associated with unrestricted multivariate regressions,

21Aside from the bandwidths used in this article, it is also used cross validation.
22The di¤erence between the simulation studies was remarkable. For samples sized 100 a replica-

tion with Marginal Integration lasted on average 14.5s. By using Back�tting with the bandwidth

PI it lasted on average 0.605s, 0.685 with bandwidth DPI and 0.357s when the bandwidth ROT

was used. A Pentium 4, 2.8 Ghz, 480MB of RAM was used. The programs were created in Gauss

version 3.0 and are available from the author upon request.
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which is undesirable.

The main objective of the article was to compare two alternative estimation pro-

cedures for the estimation of an additive nonparametric regression. The main �ndings

are summarized below.

1. The lack of the independence assumption between the regressors does not a¤ect

the estimation made via the back�tting algorithm. This does not happen when the

Marginal Integration is used.

2. An interesting di¤erence between the B estimator and the MI estimator occurs

when the X and Z regressors are independent. In this case, it is expected that

the asymptotic bias of estimators of an additive model for estimating one of the

component functions does not depend on the behavior of the other component. The

B-estimator has such property, while the MI-estimator does not. For this reason, in

general, the MI-estimator will present a stronger bias in relation to the B-estimator.

3. The asymptotic variance of B-estimators is always smaller than that of the

MI-estimators, unless the regressors are independent.

4. In general, the MI-estimator needs to compute a higher number of operations

than the B-estimator in order to estimate the additive components (see Kim, Linton

and Hengartner, 1999), that is, the computational demand of the MI-estimator is

greater than that of the B-estimator.

5. In the bivariate case, the MI-estimator involves the products of two bandwidths.
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If the estimates of the bandwidths are undersmoothed or oversmoothed the e¤ect will

be magni�ed. This works similarly to the curse of dimensionality.
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