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ABSTRACT

We report on an analysis of 308.3 hr of high-speed photometry targeting the pulsating DA white dwarf
EC14012-1446. The data were acquired with the Whole Earth Telescope during the 2008 international observing run
XCOV26. The Fourier transform of the light curve contains 19 independent frequencies and numerous combination
frequencies. The dominant peaks are 1633.907, 1887.404, and 2504.897 μHz. Our analysis of the combination am-
plitudes reveals that the parent frequencies are consistent with modes of spherical degree l = 1. The combination am-
plitudes also provide m identifications for the largest amplitude parent frequencies. Our seismology analysis, which
includes 2004–2007 archival data, confirms these identifications, provides constraints on additional frequencies, and
finds an average period spacing of 41 s. Building on this foundation, we present nonlinear fits to high signal-to-noise
light curves from the SOAR 4.1 m, McDonald 2.1 m, and KPNO 2 m telescopes. The fits indicate a time-averaged
convective response timescale of τ0 = 99.4 ± 17 s, a temperature exponent N = 85 ± 6.2, and an inclination angle
of θi = 32.◦9 ± 3.◦2. We present our current empirical map of the convective response timescale across the DA
instability strip.

Key words: asteroseismology – stars: evolution – stars: individual (EC14012-1446) – stars: oscillations – white
dwarfs
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1. INTRODUCTION

Stellar seismology, also known as asteroseismology, provides
us with a unique tool for probing the interiors of stars, allowing
us to study fundamental problems in stellar evolution such
as energy transport, thermodynamics, and magnetism. White
dwarfs, the evolutionary endpoint of most stars, are particularly
important targets for asteroseismology. They are structurally
simple: an electron degenerate carbon/oxygen core surrounded
by thin non-degenerate layers of hydrogen and helium. DA white
dwarfs represent ∼80% of all white dwarfs (Eisenstein et al.
2006), and they have a nearly pure layer of hydrogen on top of
a layer of helium. DB white dwarfs lack this hydrogen layer,
having a layer of nearly pure helium overlying a carbon/oxygen
core. Lacking substantial nuclear reactions, white dwarfs simply
cool as they age, passing through specific temperature ranges
(the DBV and DAV instability strips) within which they pulsate.
These pulsators are otherwise normal objects, so what we learn
about their structure can be applied to the entire population of
stellar remnants and further applied to our understanding of their
main-sequence progenitors.

In this paper, we focus on combining asteroseismology of
the DAV EC14012-1456 with nonlinear analysis of its light
curve to provide an empirical description of its convection
zone. Convection is one of the largest remaining sources of
theoretical uncertainty in astrophysical modeling. Convection
is traditionally treated through mixing length theory (MLT;
Böhm-Vitense 1958). MLT is a simple, local, time-independent
description first applied to stellar modeling by Biermann (1932).
It describes the motions of “average” convective cells with a
mean size l = α Hp, where Hp is the local pressure scale height
and α is an adjustable free parameter. MLT is clearly incomplete;
we know turbulent flows are complex and there is no reason
why α should remain constant throughout the convection zone
of a single star, and certainly not for stars of different masses,
chemical compositions, or evolutionary phases. As an example
for white dwarfs, Bergeron et al. (1995) and Tremblay et al.
(2010) show that model parameters such as flux, line profiles,
energy distribution, color indices, and equivalent widths are
extremely sensitive to the assumed MLT parameterization.
Bergeron et al. (1995) find systematic uncertainties ranging from
25% for effective temperatures to 11% for mass and radius. The
use of MLT to treat convective energy transport in white dwarf
atmospheres thus represents a significant source of physical
uncertainty in calculations of their atmospheric structure. We
rely on these models to supply the information about white
dwarf interiors, masses, and temperatures needed to calibrate
white dwarf cooling sequences. This in turn produces detailed
age estimates for white dwarfs (Ruiz & Bergeron 2001) and an
estimate of the age of the Galactic disk (Winget et al. 1987;
Harris et al. 2006). An observational test of MLT that leads to
an improved description of convection is an important goal that
will have implications beyond the study of white dwarfs.

Brickhill (1992) was the first to realize that a pulsating
white dwarf’s photospheric flux is modulated relative to the
flux entering at the bottom of the convection zone by an
amount that depends on the convection zone’s thickness. The
local convection zone depth is a function of the local effective

∗ Based on observations obtained at the Southern Astrophysical Research
(SOAR) telescope, which is a joint project of the Ministério da Ciência,
Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S.
National Optical Astronomy Observatory (NOAO), the University of North
Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

temperature, and this varies during a pulsation cycle. The result
is a distortion of the observed light curve, with narrow peaks and
wider valleys (Figure 1). Convective light curve fitting exploits
these nonlinearities to recover the thermal response timescale
of the convection zone. Mathematical details of this technique
can be found in Montgomery (2005c) and Montgomery et al.
(2010b). For our purposes, applying convective light curve
fitting to a target star requires three ingredients: (1) a pulsator
with a nonlinear light curve, (2) precise knowledge of the star’s
pulsation frequencies and (l, m) values, and (3) high signal-to-
noise light curves for use in the actual fitting process.

Asteroseismology provides the tools to identify white dwarf
pulsation (l, m) values. White dwarfs are g-mode pulsators, and
each pulsation mode can be described by a spherical harmonic
of degree l, radial overtone k, and azimuthal number m, where
m takes integer values between −l and l. Given a sufficient
sample of excited pulsation modes, we can match the observed
frequencies with theoretical models. An important diagnostic
for g-mode pulsators is the mean period spacing between modes
of the same (l, m) but consecutive radial overtone k (e.g., the k
and k + 1 modes). The mean period spacing depends mainly on
stellar mass. Deviations of individual spacings from this mean
value provide information on the thickness of the hydrogen
and/or helium layers and on the chemical profile of the core
(Montgomery 2009). We note here that the actual value of the
radial overtone k cannot be determined observationally, but must
be inferred from theoretical models.

A second diagnostic is given by the presence of multiplets.
The multiplet components have the same (k, l) and are further
described by the azimuthal index m, which takes integer values
between −l and l. To first order, the frequency difference
relative to the m = 0 component of the multiplet is given by
δνklm = −m Ω (1 − Ckl), where Ω is the rotation period and
Ckl is a coefficient that depends on the pulsation eigenfunctions
evaluated in the nonrotating case. In the high-k asymptotic limit
for g-modes, Ckl ∼ 1/�(� + 1), although models predict it to
vary by ≈10% over the range of observed periods in EC14012.
Multiplet structure is a strong indication of a mode’s l value.
We expect a triplet for l = 1, a quintuplet for l = 2, and
so on. The observed frequency differences (splittings) are a
measure of the stellar rotation rate as sampled by a given
mode. Deviations from equal frequency splitting within a single
multiplet and changes in splittings from one multiplet to the next
reveal information about differential rotation and magnetic field
strength.

Applying convective light curve fitting to a wide sample of
pulsating white dwarfs provides an empirical map of how the
convective response timescale varies as a function of effective
temperature, and this can be compared with theoretical models,
both MLT and hydrodynamic. The Whole Earth Telescope
(WET) is engaged in a long-term project to provide such
a description of convection across the hydrogen atmosphere
DAV (Teff ≈ 11,100–12,200 K) and the helium atmosphere
DBV (Teff ≈ 22,000–29,000 K) instability strips. We present
here our results for the DAV pulsator EC14012-1446. Our
goals are three-fold: determine accurate frequency and (l, m)
identifications, obtain several nights of high-quality light curves,
and apply convective light curve fitting to obtain EC14012-
1446’s convective response timescale. In the following, we
present the resulting data set and our analysis of the Fourier
transforms (FTs), discuss the identified frequencies and (l, m)
values, perform nonlinear light curve fits, and present the
convective parameters for EC14012-1446.
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Figure 1. Portion of a high signal-to-noise SOAR light curve of EC14012-1446, showing the narrow peaks and broader valleys indicative of convective mixing. The
error bars for each point are indicated by the size of the points. The dominant pulsation period is ≈600 s (1 mmi ≈1 mmag).

Figure 2. Final light curve of EC14012-1446 from XCOV26, representing the combination of all data listed in Table 1. The top five panels cover 400,000 s (4.63 days)
each. The bottom panel displays the entire light curve, with time in days. The dominant pulsation period is ≈600 s.

2. OBSERVATIONS AND REDUCTIONS

EC14012-1446 (WD1401-147, B = 15.67) is a high-
amplitude, multiperiodic DAV pulsator discovered by Stobie
et al. (1995) and observed extensively by Handler et al. (2008).
Our XCOV26 observations span 2008 March 25 to April 29,
achieving 80% coverage during the central five days of the
run (Figure 2). Twenty-seven telescopes distributed around the
globe participated in XCOV26, 15 of which contributed a total
of 71 runs (Table 1) on EC14012-1446. The observations were
obtained with different CCD photometers, each with distinct
effective bandpasses. We minimize the bandpass issues by using

CCDs with similar detectors where possible and employing a red
cutoff filter (BG40 or S8612) to normalize wavelength response
and reduce extinction effects.

Standard procedure for a WET run calls for observers to
transfer raw images and calibration files to WET headquarters
for analysis at the end of each night. CCD data reduction follows
the steps outlined in Provencal et al. (2009). We corrected each
image for bias and thermal noise, and normalized by the flat
field. Aperture photometry using the IRAF photometry pipeline
described by Kanaan et al. (2002) was performed on each image,
utilizing a range of aperture sizes for the target and selected
comparison stars. We used the WQED pipeline (Thompson
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Table 1
Journal of XCOV26 Observations EC14012-1446

Run Name Telescope Detector Date Length
(m) (hr)

hawa20080325-09 Hawaii 2.2 E2V ccd47-10 2008 Mar 25 6.2
saao20080326-21 SAAO 1.0 UCT CCD 2008 Mar 26 5.9
tene20080327-20 Tenerife 0.8 TK1024 2008 Mar 27 3.0
saao20080327-20 SAAO 1.0 UCT CCD 2008 Mar 27 7.5
saao20080328-20 SAAO 1.0 UCT CCD 2008 Mar 28 7.3
saao20080329-20 SAAO 1.0 UCT CCD 2008 Mar 29 7.2
tene20080330-03 Tenerife 0.8 TK1024 2008 Mar 30 2.9
saao20080330-20 SAAO 1.0 UTC CCD 2008 Mar 30 7.5
saao20080331-20 SAAO 1.0 UTC CCD 2008 Mar 31 7.1
mcdo20080401-05 McDonald 2.1 E2V ccd57-10 2008 Apr 1 6.1∗
saao20080401-20 SAAO 1.0 UTC CCD 2008 Apr 1 5.4
loia20080403-00 Loia 1.52 EEV 1300×1340B 2008 Apr 3 1.1
ctio20080403-01 CTIO 0.9 Tek2K3 2008 Apr 3 7.5
soar20080403-02 SOAR 4.1 2K×4K MIT/Lincoln Lab CCD 2008 Apr 3 7.6∗
sara20080403-05 SARA 1.0 CCD 2008 Apr 3 6.3
mcdo20080403-08 McDonald 2.1 E2V ccd57-10 2008 Apr 3 3.0
saao20080403-20 SAAO 1.0 UCT CCD 2008 Apr 3 6.8
salt20080403-21 SALT 10.0 CCD 2008 Apr 3 1.0
soar20080404-01 SOAR 4.1 CCD 2008 Apr 4 7.7∗
salt20080404-02 SALT 10.0 E2V 44-82 2008 Apr 4 0.7
ctio20080404-02 CTIO 0.9 Tek2K3 2008 Apr 4 7.0
mcdo20080404-05 McDonald 2.1 E2V ccd57-10 2008 Apr 4 5.4∗
sara20080404-10 SARA 1.0 CCD 2008 Apr 4 0.6
saao20080404-21 SAAO 1.0 UTC CCD 2008 Apr 4 6.4
salt20080404-21 SALT 10.0 E2V 44-82 2008 Apr 4 1.0
soar20080405-01 SOAR 4.1 2K×4K MIT/Lincoln Lab CCD 2008 Apr 5 4.7∗
salt20080405-02 SALT 10.0 E2V 44-82 2008 Apr 5 1.0
ctio20080405-03 CTIO 0.9 Tek2K3 2008 Apr 5 6.3
mcdo20080405-09 McDonald 2.1 E2V ccd57-10 2008 Apr 5 1.7
mtjo20080405-11 Mt. John 1.0 E2V ccd57-10 2008 Apr 5 3.3
boao20080405-14 BOAO 1.8 SITe SI424AB CCD 2008 Apr 5 4.4
salt20080405-21 SALT 10.0 E2V 44-82 2008 Apr 5 1.0
saao20080405-22 SAAO 1.0 UTC CCD 2008 Apr 5 3.1
salt20080406-01 SALT 10.0 E2V 44-82 2008 Apr 6 1.0
soar20080406-02 SOAR 4.1 2K×4K MIT/Lincoln Lab CCD 2008 Apr 6 7.3∗
mcdo20080406-09 McDonald 2.1 E2V ccd57-10 2008 Apr 6 2.0
ctio20080407-02 CTIO 0.9 Tek2K3 2008 Apr 6 6.2
mcdo20080407-08 McDonald 2.1 E2V ccd57-10 2008 Apr 7 3.1
boao20080407-15 BOAO 1.8 SITe SI424AB CCD 2008 Apr 7 4.0
saao20080407-20 SAAO 1.0 UTC CCD 2008 Apr 7 5.9
salt20080407-20 SALT 10.0 E2V 44-82 2008 Apr 7 1.0
salt20080408-01 SALT 10.0 E2V 44-82 2008 Apr 8 1.0
ctio20080408-02 CTIO 0.9 Tek2K3 2008 Apr 8 1.8
mcdo20080408-09 McDonald 2.1 E2V ccd57-10 2008 Apr 8 1.5
luli20080408-14 Lulin 1.0 E2V CCD36-40 2008 Apr 8 2.6
saao20080408-20 SAAO 1.0 UTC CCD 2008 Apr 8 4.9
ctio20080409-02 CTIO 0.9 Tek2K3 2008 Apr 9 6.6
mcdo20080409-09 McDonald 2.1 E2V ccd57-10 2008 Apr 9 0.6
ctio20080410-02 CTIO 0.9 Tek2K3 2008 Apr 10 6.9
boao20080410-14 BOAO 1.8 SITe SI424AB CCD 2008 Apr 10 3.0
ctio20080411-02 CTIO 0.9 Tek2K3 2008 Apr 11 6.6
mcdo20080411-09 McDonald 2.1 E2V ccd57-10 2008 Apr 11 1.5
mcdo20080412-06 McDonald 2.1 E2V ccd57-10 2008 Apr 12 0.3
kpno20080412-07 KPNO 2.0 E2V ccd47-10 2008 Apr 12 3.7
ctio20080413-02 CTIO 0.9 Tek2K3 2008 Apr 13 4.4
mcdo20080413-06 McDonald 2.1 E2V ccd57-10 2008 Apr 13 4.7
ctio20080414-02 CTIO 0.9 Tek2K3 2008 Apr 14 7.1
kpno20080414-04 KPNO 2.0 E2V ccd47-10 2008 Apr 14 2.4
lash20080414-08 Las Cumbres 2.0 E2V CCD42-40 2008 Apr 14 3.4
mcdo20080414-09 McDonald 2.1 E2V ccd57-10 2008 Apr 14 1.7
luli20080414-17 Lulin 1.0 E2V CCD36-40 2008 Apr 14 2.4
ctio20080415-02 CTIO 0.9 Tek2K3 2008 Apr 15 6.6
lash20080415-09 Las Cumbres 2.0 E2V CCD42-40 2008 Apr 15 3.8
luli20080415-16 Lulin 1.0 E2V ccd36-40 2008 Apr 15 4.3
mabu20080415-20 Mt. Abu 1.2 TEK CCD 2008 Apr 15 1.3
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Table 1
(Continued)

Run Name Telescope Detector Date Length
(m) (hr)

mabu20080416-20 Mt. Abu 1.2 TEK CCD 2008 Apr 16 2.2
kpno20080417-09 KPNO 2.0 E2V ccd47-10 2008 Apr 17 2.8
kpno20080418-07 KPNO 2.0 E2V ccd47-10 2008 Apr 18 3.9
braz20080426-04 LNA 1.6 WI106 CCD 2008 Apr 26 2.1
braz20080427-05 LNA 1.6 WI106 CCD 2008 Apr 27 1.9
braz20080428-04 LNA 1.6 WI106 CCD 2008 Apr 28 1.9
braz20080429-05 LNA 1.6 WI106 CCD 2008 Apr 29 1.2

Note. ∗ High signal-to-noise light curves used for light curve fitting. All other observations were used to obtain accurate frequency information.

& Mullally 2009) to examine each nightly light curve for
photometric quality, remove outlying points, divide by a suitable
comparison star, and correct for differential extinction. Our
observational technique is therefore not sensitive to oscillations
longer than a few hours. The result is light curves with amplitude
variations represented as fractional intensity (mmi). The unit is
a linear representation of the fractional intensity of modulation
(1 mmi ≈1 mmag). We present our FTs in units of modulation
amplitude (1 mma = 1 × 10−3 ma = 0.1% = 1 ppt).

The final reduction step combines the individual light curves
to produce the complete light curve for EC14012-1446. We as-
sume EC14012-1446 oscillates about a mean light level. This
assumption allows us to carefully assess overlapping segments
from different telescopes and identify and correct any vertical
offsets. As discussed in detail in Provencal et al. (2009), we
find no significant differences between the noise levels of am-
plitude spectra using (1) the combination of all light curves
including overlapping segments from different telescopes,
(2) the combination of light curves where we retain only higher
signal-to-noise observations in overlapping segments, and
(3) combining all light curves using data weighted by telescope
aperture.

The final XCOV26 light curve contains 308.3 hr of high-
speed photometry. Our coverage is not complete, and this incom-
pleteness produces spectral leakage in the amplitude spectrum.
To quantify this, we sampled a single sinusoid using exactly
the same times as the original data. The resulting amplitude
spectrum, or “spectral window,” is the pattern produced in the
XCOV26 FT by a single frequency. The FT and spectral window
of the complete light curve are given in Figure 3.

3. FREQUENCY IDENTIFICATION

3.1. Stability

Following Provencal et al. (2009), we begin by examining the
stability of EC14012-1446’s pulsation amplitudes and frequen-
cies throughout the run. Amplitude and/or frequency variations
produce artifacts in FTs, and greatly complicate the identifica-
tion of intrinsic pulsation frequencies (Kepler et al. 2003). We
divide the data set into three chunks, each spanning ≈185 hr
(7.8 days). The FT of each chunk is given in Figure 4. Several
of the dominant frequencies are consistent to within measure-
ment error, but we do find evidence of amplitude variations in a
number of frequencies.

We calculated spectrograms for the five largest amplitude
frequencies to further explore the nature of these amplitude
variations (Figure 5). A spectrogram quantifies the behavior
of frequencies and amplitudes as a function of time. Our
spectrograms are generated by dividing the total light curve into

multiple 5 day segments, each of which overlap by 4.95 days.
The FT of each segment is a measurement of frequencies and
amplitudes centered on a specific time. Each panel in Figure 5 is
an amalgam, where each segment FT corresponds to a vertical
line. The x-axis is time, the y-axis is frequency, and amplitude
is represented by color and is normalized to an amplitude of
1. The bottom panel in Figure 5 gives the pattern generated
by a single sinusoid sampled with exactly the same times as
the segment light curves (a time-dependent spectral window).
The results show a slow 18σ increase in the amplitude of the
dominant 1633.907 μHz (612 s) peak, from ≈22 to ≈31 mma,
over the course of the run. We also find a similar increase in the
1548.146 μHz (645 s) peak. The 2308 μHz (433 s) peak shows
a 25% decrease in amplitude during the middle of the run and a
large apparent decrease at the end of the run. The amplitudes of
the remaining two frequencies are consistent to within 3σ .

3.2. The XCOV26 Fourier Transform

Armed with amplitude stability information for the five
largest peaks, we are ready to take a careful look at EC14012-
1446’s XCOV26 FT. We use Period04 (Lenz & Breger 2005) for
Fourier analysis and nonlinear least-squares fitting to select the
statistically significant peaks in the XCOV26 FT. As detailed in
Provencal et al. (2009), we adopt the criterion that a peak must
have an amplitude at least four times greater than the mean
noise level in the given frequency range. We define “noise”
as the frequency-dependent mean amplitude after prewhitening
by the dominant frequencies. This is a conservative estimate,
as it is impossible to ensure that all of the “real” frequencies
are removed when calculating the noise level. This is certainly
true for EC14012-1446, where the peaks above ≈3000 μHz are
mainly combination frequencies. Figure 6 displays the mean
amplitude, specified as the square root of the simple mean
power using a boxcar of 100 μHz, after prewhitening by 62
frequencies, as a function of frequency. Our noise is somewhat
frequency dependent, but is near 0.2 mma.

To confirm our uncertainty estimates, we calculated Monte
Carlo simulations using the routine provided in Period04. This
routine generates a set of light curves using the original times,
the fitted frequencies and amplitudes, and added Gaussian noise.
A least-squares fit is performed on each simulated light curve,
with the distribution of fit parameters giving the uncertainties.
Our Monte Carlo results are consistent with our mean amplitude
noise estimates of ≈0.2 mma.

Our frequency selection procedure involves identifying the
largest amplitude resolved peak in the FT, fitting a sinusoid
with that frequency to the data set, subtracting the fit from
the light curve, recomputing the FT, examining the residuals,
and repeating the process until no significant power remains.
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Figure 3. FT of the 2008 EC14012-1446 photometry observations (note vertical scale in each panel). Solid dots label 14 modes containing 19 independent frequencies.
Arrows indicate a sample of combination frequencies (for example F1+F2). Unlabeled peaks are second-order (for example F1+F2) and third-order (for example
F1+F2+F3) combinations. The spectral window is plotted in the last panel. Tables 2 and 3 list exact frequency identifications.

This technique, known as prewhitening, must be employed
with an abundance of caution, especially since we are aware
of amplitude and/or frequency modulation in our data set. The
modulation will create artifacts that masquerade as additional
frequencies. To illustrate, let us examine the region of dominant
power at 1633.907 μHz (Figure 7). Comparison of the original
FT (top panel) with the spectral window (bottom panel) demon-
strates that most of the signal is concentrated at 1633.907 μHz.
We fit a sinusoid to the data to determine frequency, ampli-
tude, and phase, and subtract the result from the original light
curve. The second panel of Figure 7 shows the prewhitened FT.
Careful examination reveals two residual peaks (at 1633.450
and 1624.015 μHz identified with arrows) that are clearly not
components of the spectral window. A third peak at 1622 μHz
is part of a window pattern associated with 1633.450 μHz,
but the alias pattern is asymmetric. Panel 3 shows the re-
sults of prewhitening by a simultaneous fit of 1633.907 and
1633.450 μHz. Both frequencies are removed, and 1622 μHz is
diminished, leaving 1624.015 μHz. We next subtract a simul-
taneous fit of 1633.907, 1633.450, and 1624.015 μHz, with the
results displayed in panel 4 of Figure 7. No significant power
remains. However, a red flag is raised: the separation between
1633.907 and 1633.450 μHz is 0.457 μHz, the inverse of which
is the run length. The 1633.450 μHz peak is a manifestation of

the amplitude changes observed in Figure 5 and is not included
in our final frequency list.

Similar analyses of several other frequencies turned out to be
unexpectedly complex. The power at 1775 μHz (labeled “5” in
Figure 3) is unresolved. Figure 8 establishes that prewhitening
this peak requires four closely spaced frequencies, with fre-
quency differences very similar to the inverse of the run length.
This is a clear signature of amplitude and/or frequency instabil-
ity. Figure 9 shows the spectrogram of this region using the same
criteria as the spectrograms in Figure 5. Unlike the slow ampli-
tude increase observed with the 1633 μHz peak, the 1775 μHz
peak undergoes remarkably sudden variations, on timescales of
a few days. We also find a decrease in its frequency of 1.2 μHz
(5σ ) over the course of the run. A second region of power at
1860 μHz displays similar behavior. Both peaks are labeled in
Table 2.

Our final identifications result from a simultaneous nonlinear
least-squares fit of 19 independent frequencies, amplitudes, and
phases as well as 68 combination frequencies. Combination
frequencies are fixed with respect to their parents but their
amplitudes and phases are allowed to vary. Table 2 lists 19
identified independent frequencies, with consideration to those
exhibiting amplitude and/or frequency modulation. The list
includes a doublet with a splitting of 9.9 μHz associated with the
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Figure 4. FTs of the EC14012-1446 data set subdivided into three chunks of ≈185 hr each. The labels in the right of each panel give the time segment covered by each
chunk. The black points in the bottom panel identify the five largest amplitude modes. Some changes in each FT can be explained as differences in the window structure
and effective resolution for each chunk. In particular, the final chunk has the least data coverage. We do find evidence of amplitude and/or frequency variations during
the run. All peaks with frequencies higher than ≈3000 μHz are combination peaks.

1633.907 μHz peak (labeled 1 in Figure 3), a triplet at 1887 μHz
with an average splitting of 3.8 μHz (labeled 2 in Figure 3),
and a second doublet with a splitting of 3.1 μHz at 2504 μHz
(labeled 4 in Figure 3). Table 3 presents the largest amplitude
combination frequencies (see Section 4.1).

4. MODE IDENTIFICATION

Our ultimate goal is to use EC14012-1446’s nonlinear
light curve to extract the star’s convective parameters. The
requirements for convective light curve fitting include precise
knowledge of the target star’s frequencies and amplitudes, as
well as a good idea of the (l, m) values for these frequencies.
The parameter space to be explored to determine the best
convective light curve fit is greatly constrained by knowledge of
(l, m) indices for the excited pulsations. Montgomery’s first
application of this technique focused on the DA pulsators
G29-38 and GD154 (Montgomery 2005a). In the data sets used,
these objects were dominated by a single pulsation mode, so
the number of potential (l, m) identifications was small enough
that all possibilities could be explored. Montgomery et al.
(2010b) recently expanded this work to the multiperiodic
pulsator GD358, a well-studied object with detailed (l, m) iden-
tifications of its pulsation modes (Provencal et al. 2009; Metcalfe
et al. 2000; Winget et al. 1994). While XCOV26 provided pre-

cise frequencies and amplitudes for the modes in EC14012-1446
(see Table 2), we lack prior (l, m) identifications. Even limiting
ourselves to l = 1 and 2, as these are the spherical degrees most
often observed in pulsating white dwarfs, yields a total num-
ber of possible combinations of order (2l + 1)19, a very large
number indeed. In this section, we will rely on analysis of the
combination frequencies and the support of asteroseismology to
constrain (l, m) identifications in EC14012-1446.

4.1. Combination Frequencies

Combination frequencies are typically observed in the FTs
of moderate to large amplitude pulsators (e.g., Provencal et al.
2009; Dolez et al. 2006; Handler et al. 2002); they are identified
by their relationships, which must be exact within measurement
error. Combination frequencies can be integer multiples of
a single parent (harmonics) or sums (or differences) of any
two modes. These frequencies are not independent, but result
from nonlinear effects most likely associated with the surface
convection zone (Brickhill 1992; Brassard et al. 1995; Wu 2001;
Ising & Koester 2001). Wu (2001) shows that the observed
amplitudes of combination frequencies depend on geometric
factors such as the (l, m) indices of the parent(s) and the
inclination of the pulsation axis to the line of sight. EC14012-
1446’s FT contains a rich distribution of combinations that
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Figure 5. Spectrogram of the five largest amplitude modes in EC14012-1446’s
FT, arranged in order of decreasing period. The bottom panel gives the time-
varying spectral window for a sample frequency at 1000 μHz (the pattern given
by a single sinusoid sampled at exactly the same times as the data). Each
panel is normalized to an amplitude of 1. We find a slow amplitude increase
in the 1633.907 μHz (612 s) and 1548.146 μHz (645 s) peaks. In addition, the
2308 μHz (433 s) peak shows a decrease in amplitude during the middle of the
run.

(A color version of this figure is available in the online journal.)

involve 13 of the 19 independent frequencies listed in Table 2.
Our goal is to exploit the geometric sensitivities to provide (l, m)
constraints for these frequencies.

Wu (2001) and Yeates et al. (2005) lay the foundations
for our analysis by describing analytical expressions for the
predicted amplitudes and phases of combination frequencies.
These quantities depend on the inclination angle θ of the
pulsation axis to the line of sight, the (l, m) indices of the
parent mode(s), the amplitudes of the parent mode(s), and
parameters describing the convection zone. To minimize the
dependence on the convective parameters and focus on the
geometric factors (l, m) and θ , our analysis follows Yeates
et al. (2005) and considers only combination frequencies that
are the sum of two parent frequencies. We combine a genetic
algorithm (Charbonneau 1995) with Wu’s (2001) formulae, and
incorporate an improved treatment of limb darkening taken
directly from the models of Koester (Montgomery et al. 2010b).
For a single run of the code, the best simultaneous fit to the
observed amplitudes of the parent and combination frequencies
utilizes multiple generations and minimizes the root-mean-

Table 2
Table of XCOV27 Independent Frequencies

ID Frequency Period Amplitude S/N Notes
(μHz) (s) (mma)

7 935.3799 ± 0.002 1069.085 2.7 ± 0.1 9
10 1021.139 ± 0.002 979.299 1.7 ± 0.1 8
9 1104.252 ± 0.001 905.591 2.2 ± 0.2 10
11 1155.925 ± 0.002 865.108 1.9 ± 0.2 8
14 1241.403 ± 0.002 805.540 1.2 ± 0.2 5
13 1418.369 ± 0.002 705.035 1.2 ± 0.2 5
3a 1521.575 ± 0.002 657.214 2.2 ± 0.2 9 a

3 1548.146 ± 0.001 645.933 7.9 ± 0.1 32
1a 1624.015 ± 0.003 615.758 3.1 ± 0.2 13 a

1 1633.907 ± 0.001 612.030 25.7 ± 0.1 104
5 1774.989 ± 0.100 563.384 7.2 ± 0.3 9 b

8 1860.248 ± 0.400 537.563 6.4 ± 0.4 11 b

2a 1883.555 ± 0.003 530.911 1.5 ± 0.2 5 a

2 1887.404 ± 0.001 529.828 20.7 ± 0.1 79
2b 1891.142 ± 0.002 528.781 3.8 ± 0.2 14 a

6 2304.745 ± 0.001 433.887 4.7 ± 0.1 23 b

4 2504.897 ± 0.001 399.218 12.7 ± 0.1 71
4a 2508.060 ± 0.002 398.715 2.1 ± 0.2 12 a

12 2856.155 ± 0.002 350.121 2.0 ± 0.2 9

Notes.
a Frequency IDs with small letters indicate components of the same multiplet.
b Frequencies displaying long timescale amplitude modulation.

Table 3
Table of Combination Frequencies

Frequency Period Amplitude S/N Parents
(μHz) (s) (mma)

253.466 ± 0.002 3945.302 2.9 ± 0.2 9 2−1
2569.286 ± 0.002 350.121 0.6 ± 0.2 4 1+7
2738.153 ± 0.002 365.210 0.9 ± 0.2 4 1+9
3096.255 ± 0.002 322.971 0.6 ± 0.2 3 2f3
3182.045 ± 0.002 314.263 2.7 ± 0.2 12 1+3
3267.794 ± 0.002 306.015 4.3 ± 0.2 13 2f1
3408.939 ± 0.002a 293.346 1.6 ± 0.2 5 6+5
3409.912 ± 0.002a 293.263 1.7 ± 0.2 4 1+5
3435.538 ± 0.002 291.075 2.0 ± 0.2 6 2+3
3494.064 ± 0.002a 286.152 0.8 ± 0.2 4 1+8
3521.306 ± 0.002 283.986 7.0 ± 0.2 33 1+2
3525.050 ± 0.002 283.684 0.9 ± 0.2 5 1+2b
3774.810 ± 0.001 264.914 2.1 ± 0.2 12 2f2
3938.646 ± 0.002 253.894 0.9 ± 0.2 5 1+6
4026.445 ± 0.002 248.358 1.4 ± 0.2 7 4+3a
4053.043 ± 0.002 246.728 0.7 ± 0.2 4 3+4
4138.800 ± 0.002 241.616 2.0 ± 0.2 8 1+4
4192.150 ± 0.002 238.541 0.7 ± 0.2 4 2+6
4279.907 ± 0.002a 233.650 2.6 ± 0.2 10 4+5
4365.040 ± 0.002a 234.464 0.9 ± 0.2 4 4+8
4365.608 ± 0.002a 229.063 1.3 ± 0.2 5 4+8
4392.348 ± 0.002 227.669 1.5 ± 0.2 7 2+4
4396.055 ± 0.002 227.477 1.8 ± 0.2 8 2b+4
4743.561 ± 0.002 210.812 0.9 ± 0.2 5 2+12
4809.633 ± 0.002 207.916 2.2 ± 0.2 12 4+6
5009.696 ± 0.002 199.613 0.7 ± 0.2 4 2f4
5155.187 ± 0.002 193.979 2.2 ± 0.2 8 1+1+2
5361.052 ± 0.002 186.531 1.2 ± 0.2 6 3+10
5408.698 ± 0.002 184.887 1.3 ± 0.2 6 3+3+1
5913.800 ± 0.002 169.096 1.4 ± 0.2 7 1+4+5

Note. a Combination including parent with amplitude modulation.

squared residuals, Resrms, between the predicted and observed
amplitudes. In practice, we run the code 1000 times and select
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Figure 6. Mean noise as a function of frequency for XCOV26. The data set was prewhitened by the 62 largest amplitude frequencies. Our noise is frequency dependent,
but is near 0.2 mma. This is a conservative estimate, as we have probably not prewhitened by all the combination frequencies.
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Figure 7. Prewhitening of the dominant 1633.907 μHz mode in the 2008 FT. We begin with the removal of the largest amplitude resolved peak (top panel), a careful
comparison of the residuals in the next panel with the spectral window (last panel), and the subsequent removal of additional frequencies. The fourth panel shows the
residuals after simultaneously removing 1633.907, 16233.450, and 1624.017 μHz. The 1633.450 μHz component (right arrow in the second panel) is the result of
amplitude changes.

the solutions having Resrms below a limiting value. This process
produces a sample of best-fit solutions whose distribution
provides information on the range of values allowed for these
parameters.

To test that this approach recovers known input, we used the
nonlinear light curve fitting code of Montgomery et al. (2010b)

to generate a synthetic light curve based on EC14012-1446’s
parent frequencies. The nonlinear light curve fitting code is
discussed in more detail in Section 5. For our purposes in this
test, the importance of using synthetic light curves generated by
this code rather than a simple simulation employing multiple
sine functions is that the synthetic light curve will include
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Figure 8. 1775 μHz (563 s) mode in the 2008 FT. This power is unresolved and requires at least four closely space frequencies for prewhitening, with frequency
differences very similar to the inverse of the run length. This is a clear signature of amplitude and/or frequency instability.

Figure 9. Spectrogram of the 1775 μHz region in the 2008 FT. This region of power exhibits remarkable amplitude changes on a timescale of days. The bottom panel
gives the time-dependent window. The spectrogram amplitudes (colors) have been normalized to a value of 1.

(A color version of this figure is available in the online journal.)

combination frequencies produced via nonlinear effects due to
convection (Montgomery et al. 2010b). Our purpose is to recover
the input frequency identifications using these combination
frequencies. We assigned reasonable (l, m) values to the input
frequencies, chose values for θ , the time-averaged convective
response time τ0, and Ao, where Ao describes the response of

the stellar material to the pulsations and includes a bolometric
correction factor (Wu 2001), and added noise. Using the method
outlined in the previous paragraph, we successfully recovered
(l, m) for all large-amplitude input parent frequencies, while
experiencing some disagreement with low-amplitude parents.
This is because low-amplitude modes have even lower amplitude
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Figure 10. Probability distribution (from 0 to 1) of l, m, θ , and Ao for the 1633.907 μHz (612 s) and the 2504.897 μHz (399 s) variations. The solutions are from
individual runs with Resrms < 0.38 mmi. The top panel gives the probability distributions of θ and Ao found for all frequencies, with preferred values of θ ∼ 32◦ and
Ao ∼ 20, respectively. The middle and lower panels give the l and m identification distributions for the 1633.907 μHz (612 s) and 2504.897 μHz (399 s) modes. The
amplitudes of EC14012-1446’s observed combination frequencies argue that 1633.907 μHz is l = 1, m = 0, while 2504.897 μHz is l = 1, m = 1.

combination frequencies, which are difficult to detect and so
are not as numerous. Since our method treats both the high-
amplitude parent modes and the low-amplitude combination
frequencies equally in the fits, this has the effect of de-
emphasizing the importance of low-amplitude combination
frequencies.

Figure 10 shows the resulting probability distribution of
l, m, θ , and Ao values for fits having Resrms < 0.38 mmi,
for EC14012-1446’s 1633.907 μHz (612 s) and 2504.897 μHz
(399 s) variations. For 1633.907 μHz (612 s), the analysis of
combination amplitudes strongly argues that the variations are
best represented as spherical degree l = 1 and azimuthal index
m = 0, with an inclination angle of 30◦ ± 10◦, and a value of
Ao= 20 ± 2. We find nearly identical results for 1887.404 μHz
(529 s) and 1548.146 μHz (646 s). For 2504.897 μHz (399 s),
we find the same distributions for θ and Ao, but in this case
(l, m) = (1, 1) is strongly preferred. As we found previously,
the statistical significance of (l, m) identifications determined
by combination amplitudes is amplitude dependent and we do
not find unambiguous identifications for the lower amplitude
frequencies. The complete list of (l, m) identifications derived
from the combination amplitudes are given in Table 4.

Our analysis of EC14012-1446’s combination amplitudes
indicates that nine of the dominant independent frequencies
are consistent with spherical degree l = 1; in Table 4 we list
the most likely (l, m) identifications for these modes. We would
like to constrain the identifications of the remaining independent
frequencies to improve our chances of success with nonlinear
convective light curve fitting. Using the combination analysis as
a basis, we now turn to asteroseismology to provide constraints
on the identifications of the remaining frequencies.

4.2. Asteroseismology

4.2.1. Period Spacing

As mentioned in the introduction, we look for two clues to
indicate (l, m) identifications of pulsations in white dwarfs. The
first is the expectation that g-mode pulsations of a given l corre-
sponding to successive radial overtones k will be approximately
equally spaced in period, provided k is large enough (Unno et al.
1989). For the simple example of a homogeneous star, we find

Pkl = k ΔΠ [l(l + 1)]−1/2 + C, (1)
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Table 4
Frequency (l, m) Identifications

Frequency Period Combination Asteroseismology Final Nonlinear Fit
(μHz) (s) (l, m) (l, m) (l, m)

935.3799 ± 0.002 1069.085 (1, any) (2, −1)
1021.139 ± 0.002 979.299 (1, any) (2, 2)
1104.252 ± 0.001 905.591 (1, any) (2, 1)
1155.925 ± 0.002 865.108 (1, any) (2, 2)
1241.403 ± 0.002 805.540 (1, any) (2, 2)
1418.369 ± 0.002 705.035 (2, any) (2, 1)
1521.575 ± 0.002 657.214 (1, 1) 1, 1)
1548.146 ± 0.001 645.933 (1, 0) (1, any) (1, 0)
1624.015 ± 0.003 615.758 (1, 1) (1, 1) (1, 1)
1633.907 ± 0.001 612.030 (1, 0) (1, 0/1) (1, 1)
1774.989 ± 0.100 563.384 (1, −1) (1, any) (1, 1)
1860.248 ± 0.400 537.563 (2, any) (2, 0)
1883.555 ± 0.003 530.911 (1, 1) (1, 1)
1887.404 ± 0.001 529.828 (1, 0) (1, 0) (1, 0)
1891.142 ± 0.002 528.781 (1, −1) (1, −1) (1, −1)
2304.745 ± 0.001 433.887 (1, −1) (2, any) (1, 0)
2504.897 ± 0.001 399.218 (1, 1) (1, 1) (1, 0)
2508.060 ± 0.002 398.715 (1/2, 1/0) (1, 0) (1, −1)
2856.155 ± 0.002 350.121 (2, 0/1) (2, any) (2, 0)

where ΔΠ is a uniform period spacing, Pkl is the period for a
given mode (k, l), and C is a constant (Tassoul et al. 1990). The
mean period spacing ΔΠ for a series of modes of a given l and
consecutive k is an important asteroseismic measure of stellar
mass and effective temperature that is mostly independent of
internal composition (Unno et al. 1989).

A white dwarf has a host of available pulsation frequencies.
For reasons that are not understood, in most cases only a subset
are observed at any given time (Córsico et al. 2002). This is true
for EC14012-1446. The 19 independent frequencies detected
during XCOV28 show no obvious evidence of equal period
spacing so we are lacking consecutive radial overtones for
any l value. A good strategy to identify the complete set of
available modes is to combine results from multiple seasons
of observations. Handler et al. (2008) present an analysis
of EC14012-1446 observations spanning 2004–2007, during
which the star exhibited different subsets of excited modes.
Figure 11 shows a schematic representation of excited modes
for the combined observations spanning 2004–2008. Figure 12
focuses on the obvious groupings between 800 and 500 s
(1250 and 2000 μHz). Since we are searching for equal period
spacings, we present these figures using period as the x-axis. The
large groupings at 768 s (1302 μHz), 721 s (1387 μHz), 682 s
(1466 μHz), and 612 s (1633 μHz) have a decreasing observed
width with shorter period. This decrease translates into an equal
width in frequency space of ≈24 μHz.

We calculated a simple average period for each group, which
is given in Table 5. A statistical test for the presence of uniform
period spacing is provided by the Kolmogorov–Smirnov (K-S)
test (Winget et al. 1991). The K-S test calculates the probability
that an input list is randomly distributed. Any statistically
nonrandom period spacing will therefore appear as a minimum
value in the output. In our case, we use the test to determine
the probability that the list of average periods in Table 5 is from
a uniform distribution for a given period spacing ΔΠ (Kawaler
1988). Figure 13 shows the results, finding a period spacing of
≈41 s, consistent with the expectations for l = 1 (Bischoff-Kim
& Metcalfe 2012). We find no significant period spacings at
≈23 s as predicted for l = 2 modes.

Table 5
Table of Average Frequencies (2004–2008)

Period Frequency No. of peaks Radial Overtone
(s) (μHz)

2856.164 350.120 1
2738.076 365.220 1 ko − 6
2505.405 399.137 6 ko − 5
2304.854 433.865 2
1887.505 529.800 10 ko − 2
1860.431 537.510 2
1774.954 563.395 2 ko − 1
1633.597 612.146 16 ko

1548.155 645.930 2 ko + 1
1463.668 683.215 8 ko + 2
1418.353 705.040 1
1384.903 722.072 14 ko + 3
1332.851 750.249 1
1298.863 769.904 6 ko + 4
1219.836 819.782 2 ko + 5
1163.163 859.710 2 ko + 6
1136.538 879.865 4 ko + 7
1104.240 905.600 1
1035.443 965.770 2 ko + 9
964.748 1036.540 3 ko + 11
935.375 1069.090 1
821.254 1217.650 1

Notes. This table gives the simple average frequencies for the groupings in
Figures 11 and 12. The column “No. of peaks” gives the number of frequencies
contained within each group. The radial overtone k is impossible to determine
observationally, so we give values relative to 1633 μHz, defined to have ko. The
relative k values denote a series of nearly consecutive modes of spherical index
l = 1 with a period spacing of ≈41 s.

Using 1633.907 μHz as our reference point, we assigned
relative radial overtone values to the frequencies listed in
Table 5. We plot the expected locations of consecutive radial
overtones for l = 1 in Figures 11 and 12. These points in the
bottom of both figures are given with bars representing the
24 μHz “grouping” width. For periods above 900 s, the grouping
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Figure 11. Schematic representation of EC14012-1446’s independent frequencies for data from 2004 to 2008. The bottom points indicate the expected locations of
consecutive l = 1 modes with a mean period spacing of 41 s. The associated bars illustrate the “grouping width” of ±24 μHz. Frequencies within this range should
belong to the given k multiplet. Note that the x-axis is period, not frequency.

(A color version of this figure is available in the online journal.)

Figure 12. Zoom-in of Figure 11 to periods in the range 800–500 s. The bottom points give the expected locations of consecutive l = 1 modes with a mean period
spacing of 41 s. The period width denoted by the bars represents the 24 μHz “grouping width” of the modes. Frequencies found within this range should belong to the
given k multiplet. Please note that the x-axis is period, not frequency.

(A color version of this figure is available in the online journal.)

widths for consecutive radial overtones overlap, illustrating
the difficulty of assigning relative k values to modes with
periods longer than this value. Nonetheless, we find that most
of EC14012-1446’s pulsation frequencies can be identified as
l = 1.

Unlike our simple example of a homogeneous star, white
dwarfs are compositionally stratified, so the individual period
spacings will not be uniform. We can retrieve detailed infor-
mation about interior structure from the distribution of excited
pulsation frequencies. A long-standing problem with the aster-
oseismology of DA pulsating white dwarfs is the lack of objects
with rich pulsation spectra (Bischoff-Kim & Metcalfe 2012).
In this respect, EC14012-1446 immediately reveals its poten-

tial. Using our calculated average periods from Table 5, we
show how individual period spacings ΔP differ as a function of
period (and relative k value) in Figure 14. We use “forward dif-
ferencing,” where ΔP is defined as ΔP = Pk − Pk+1. The filled
points represent the periods between ≈900 and 500 s that we
are certain are consecutive radial overtones of l = 1. The open
circles represent those periods above ≈900 s with ambiguous
k identifications. The roughly cyclic behavior in Figure 14 is
a sign of mode trapping. Mode trapping occurs in composi-
tionally stratified stars when there is a resonance between a
pulsation frequency and a surface layer. In theoretical models,
a resonance occurs when a radial node coincides with a transi-
tion layer. In a DA white dwarf, transition zones occur at the
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Figure 13. K-S test applied to the average periods in Table 5. A period spacing is defined as significant with a confidence level of (1 − Q) × 100%. The results reveal
an average period spacing of ≈41 s with a confidence level of 99.99%.

Figure 14. ΔP vs. P for EC14012-1446, using the average periods from Table 5. We use forward differencing (ΔP = Pk − Pk+1), where the radial overtone k increases
to the left. The solid points represent those frequencies with l = 1 identifications. The open points represent those where our identification is uncertain.

boundary of the hydrogen and helium layers, the helium layer
and the carbon/oxygen core, and at points in a possibly chem-
ically stratified core (Montgomery 2005b). The trapping cycle
(the number of frequencies from minimum to minimum) is most
sensitive to the location of the trapping layer, e.g., the base of
the surface hydrogen layer. In addition, the trapping amplitude
(the depth of the minima) is sensitive to the density gradient
in the composition transition zone. In general, a larger gradi-
ent produces a larger trapping amplitude. Work is underway to
determine EC14012-1446’s detailed mass and internal structure
(Bischoff-Kim & Metcalfe 2012).

4.2.2. Multiplet Structure

A second clue to constrain (l, m) identifications of pulsations
in white dwarfs is the presence of rotationally split multiplets.
The multiplet components have the same (k, l) and are further

described by the azimuthal index m, which takes integer values
between −l and l. To first order, the frequency difference
relative to the m = 0 component of the multiplet is given by
δνklm = −m Ω (1 − Ckl), where Ω is the rotation period and
Ckl is a coefficient that depends on the pulsation eigenfunctions
evaluated in the nonrotating case. In the high-k asymptotic limit
for g-modes, Ckl ∼ 1/�(� + 1), although models predict it to
vary by ≈10% over the range of observed periods in EC14012.
We adopt the convention that a positive value of m represents
a prograde mode; retrograde modes are denoted by negative m
values (Winget et al. 1994). An additional important diagnostic
is given by the ratio of splittings for l = 1 and l = 2, where we
expect δν�=1/δν�=2 � 0.6 for g-modes (Winget et al. 1991).

For EC14012-1446 during XCOV26, we find one triplet
(1887 μHz) and two doublets (1633 and 2504 μHz) among our
list of 19 frequencies (Table 2). We begin by assuming that the
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1887 μHz triplet is a rotationally split multiplet. Our combina-
tion analysis argues that the central component (1887.404 μHz,
529.828 s) is (1, 0) and the 1891.142 μHz (528.781 s) compo-
nent is (1,−1). The 1883.555 μHz (530.911 s) component is
low amplitude and is not identified as a parent of any detected
combination frequencies. We cannot constrain its (l, m) iden-
tification via that method. Given (l, m) identifications for the
first two modes, the 1883.555 μHz component should be (1, 1).
The average multiplet splitting of 3.8 μHz implies a rotation
period as sampled by these modes of 1.53 ± 0.01 days. This is
a perfectly reasonable result, as spectroscopic studies of white
dwarfs reveal upper limits of v sin i = 10 km s−2, consis-
tent with rotation periods of order days or longer (Berger et al.
2005).

In the limit of uniform slow rotation, we expect additional
l = 1 multiplets to exhibit similar splittings and l = 2 modes
to have splittings near 6.3 μHz (Winget et al. 1991). Recalling
that every m component is not necessarily excited, we turn to
the doublet at 1633 μHz (612 s). Period spacing argues that this
doublet is l = 1, and our combination analysis indicates that
the 1633.907 μHz (612.03 s) mode is (1, 0). The 1624.015 μHz
(615.758 s) component is not found as a parent of any de-
tected combination frequencies. If 1633.907 μHz is indeed the
central component of an l = 1 triplet, then 1624.015 μHz is
m = 1 and we do not detect the m = −1 component. How-
ever, the splitting of 9.89 μHz differs significantly from the
expected value of ≈3.8 μHz found for the 1887 μHz triplet. A
second possibility is that the combination analysis is incorrect
and we are missing the multiplet’s central component. In this
case, the 1633.907 μHz mode is (1, −1) and the 1624.015 μHz
is (1, 1), resulting in an average splitting of 4.95 μHz (9.89/2).
Moving to the 2504 μHz (399 s) doublet, period spacing again
argues that this multiplet is l = 1. Our combination analysis in-
dicates that the 2504.987 μHz (399.204 s) component is (1, 1).
Again, the 2508.060 μHz (398.715 s) component is not identi-
fied as a parent of any detected combination frequency. The fre-
quency splitting between the two components is 3.16 μHz and
by comparison with the splitting of the 1887 μHz triplet, we can
argue that these modes have consecutive m values, identifying
the 2508.060 μHz component as (1, 0).

Multiplet splittings may also be used to eliminate the pos-
sibility that EC14012-1446’s frequencies represent a mixture
of l = 1 and l = 2 modes. Assuming the 1887 μHz triplet
is l = 1, we do not find evidence for l = 2 splittings of
δνl=2 = (3.8/0.6) = 6.3μHz as predicted in the limit of slow,
uniform rotation. Although both the period spacing and the com-
bination analysis argue against it, to play devil’s advocate we
consider the possibility that the 1887 μHz triplet is actually an
l = 2 quintuplet, since all m components are not necessarily ex-
cited to observable levels. In this case, then the expected l = 1
multiplet splitting is δνl=1 = 3.8 × 0.6 = 2.3 μHz. We find no
examples of multiplet splittings near this value. Finally, we must
consider that δν3.16/δν4.95 = 0.64. Based on multiplet structure
alone, we could argue that the 1633.907 μHz frequency is l = 2,
and 2504.897 μHz is l = 1, but this is not supported by either
the period spacings or the combination analysis and leaves no
clear explanation for the 1887 μHz triplet.

Clearly, the multiplets found in EC14012-1446’s XCOV26
data set are not well explained based on the simple model of
rotational splitting. Multiplet structure should be determined by
the star’s rotation rate and structure. We expect this to remain
unchanged over time. The classical example is PG1159-035,
which exhibits triplets and quintuplets corresponding to l = 1

and l = 2 (Winget et al. 1991). However, complex multiplets
are not unusual for white dwarf pulsators. In some instances,
the assumption of rigid rotation is clearly violated (Córsico
et al. 2011). In cooler pulsators with moderate amplitudes and
well-developed convection zones, observed multiplet structure
can exhibit complicated behavior. For example, Provencal et al.
(2009) show changes in the DBV GD358’s multiplet structure
that cannot be explained with simple rotational splitting. For
this same star, Winget et al. (1994) show a dependence of
multiplet splittings that is not explained by expected variations
of Ckl. Processes that may play a role in multiplet structure
of cooler pulsators include changing weak magnetic fields
similar to the solar cycle, oblique pulsation, and differential
rotation. Our XCOV26 data on EC14012-1446 provide us with
a single snapshot of this star’s multiplet structure. We need more
observations to understand their behavior.

We turn again to the combined observations from 2004 to
2008. The four large groupings at 768 s (1302 μHz), 721 s
(1387 μHz), 682 s (1466 μHz), and 612 s (1633 μHz) in
Figure 12 all show indications of multiplet structure within
their groups. We extracted an average multiplet for each of
the four large groupings in Figure 12 by calculating a simple
average frequency value for the m = 1, m = 0, and m = +1
components. The results are presented in Figure 15. In each
case, the prograde (m = +1) mode splitting is larger than the
m = −1 mode, and both the splittings and the asymmetries
increase with increasing radial node k.

The qualitative behavior of the low-k and high-k modes can
be explained in terms of a very general model. g-modes are
standing waves of buoyancy in a spherical cavity and can be
thought of as superpositions of traveling waves bouncing back
and forth between an inner and outer turning point. In general,
low-k (shorter period) modes have deeper outer turning points
while high-k (longer period) modes have turning points closer
to the stellar surface, meaning that these modes sample the
outer regions of the star more than do low-k modes. Figure 15
shows that the unknown process affecting EC14012-1446’s
multiplet structure acts more dramatically on the high-k modes,
arguing that the structural perturbation must be in the outer
layers. A surface magnetic field and/or the convection zone
are obvious candidates. In addition, we should consider both
radial and latitudinal differential rotation. Work is underway to
improve our understanding of multiplet structure in pulsating
white dwarfs (J. Dalessio 2012, private communication).

Asteroseismology of EC14012-1446’s distribution of excited
frequencies shows that the observed pulsations are dominated
by a series of l = 1 modes. If l = 2 modes are present, the
modes are low amplitude and will not greatly affect the nonlinear
light curve fitting process. For the 1887, 1663, and 2504 μHz
multiplets, we are able to constrain the m identifications as
well. The combination of these results with the combination
amplitude analysis (Table 4) gives us a strong foundation on
which to proceed to nonlinear light curve fitting.

5. NONLINEAR ANALYSIS

Montgomery (2005a) and Montgomery et al. (2010b) give
a detailed description of fitting observed non-sinusoidal light
curves of white dwarfs to extract the time-averaged thermal
response timescale of the convection zone. To summarize, the
aspect of the convection zone sampled by the pulsations is
the thermal response timescale, τc, which is directly related
to the convection zone’s mass and depth, and therefore its
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Figure 15. Average multiplet structure associated with the large groupings at 770 s (1302 μHz), 722 s (1387 μHz), 612 s (1633 μHz), and 399 s (1887 μHz). The
m = +1 (prograde) splitting is always larger than the m = −1 splitting, and the asymmetry increases with increasing k.

(A color version of this figure is available in the online journal.)

heat capacity. A DAV such as EC14012-1446 will experience
local temperature excursions of ±250 K. In response, the local
mass and depth of the convection zone will vary throughout a
pulsation cycle.

MLT predicts that τc should scale as

τc ≈ τ0(Teff/Teff,0)−N, (2)

where Teff is the instantaneous effective temperature, Teff,0 is the
equilibrium Teff , τ0 is the time-averaged convective timescale,
and N describes the sensitivity of τc to changes in Teff . For
DAs, MLT predicts N ≈ 90 (Montgomery 2005a; Wu 2001;
Brickhill 1992). The convection zone’s mass, depth, and heat
capacity are therefore extraordinarily temperature sensitive, and
can vary by a factor of ≈10 throughout a pulsation cycle. This
modulation of depth and heat capacity is the source of the
large nonlinearities in white dwarf light curves. We focus on
these observed nonlinearities to determine the time-averaged
convective timescale τ0, the temperature sensitivity parameter
N, and the inclination of the pulsation axis to the line of sight θ .

Our analysis follows the approach of Montgomery et al.
(2010b). EC14012-1446 is a multiperiodic pulsator, and because
of nonlinear effects, a pulse shape obtained by folding its light
curve at a period of interest is not equivalent to a pulse shape
obtained in the absence of additional frequencies (Montgomery
2007). Therefore, we use the accurate frequencies and (l, m)
identifications obtained for the 2008 WET campaign to calculate
point by point nonlinear light curve fits to light curves obtained
during XCOV26. High signal-to-noise light curves (S/N ≈
1000) are vital, since we are interested in the nonlinear portion
of the data, which is smaller than the linear component. We
chose the SOAR 4 m light curves and the two longest runs
from the McDonald 2.1 m (selected runs are marked with
“*” in Table 1). These six runs span 3 days, a timebase long
enough to constrain the phases of the closely spaced frequencies,
yet short enough to avoid possible implications of amplitude
modulation found in our frequency analysis (see Section 3.1).

The dominant frequencies can be considered to be stable over
a 3 day timescale. Using model atmosphere tables provided
by D. Koester, we calculate the conversion from bolometric
to the observed bandpass as described in Montgomery et al.
(2010b), assuming the following parameters for this star: Teff,0 =
11768 ± 23 K and log g = 8.08 ± 0.008 in cgs units (Koester
et al. 2009).

We began the fitting process by including the frequencies
in Table 4 with firm (l, m) identifications. We then included
the additional frequencies with strong (l, m) constraints. It is
prudent to point out that this fitting process is nonlinear. Adding
additional frequencies based on criteria such as amplitude is not
necessarily the best procedure. We experimented extensively by
computing numerous fits encompassing a wide range of (l, m)
identifications for the lower amplitude frequencies. The values
of τ0 for all fits range from 99 to 230 s, indicating that τ0 is not
strongly dependent on these identifications.

Our investigation does reveal that the temperature parameter
N can be highly sensitive to the input m identification for large
amplitude modes. Numerous attempts to fit EC14012-1446’s
light curve while assigning the 1633.907 μHz mode an (l, m)
identification of (1,0) as derived from our combination analysis
(see Section 4.1) yielded τ0 = 171 s, θ = 28◦, and N = 39.
While the values of τ0 and θ are reasonable values based on
MLT, the value of N implies a temperature sensitivity that is far
below the predictions of MLT (Montgomery et al. 2010b); this is
not a physically relevant fit. We also experimented by assigning
a spherical index l = 2 to this mode, resulting in the following
fit parameters: τ0 = 228 s, N = 26, and θ = 15◦. Again, the
value of N obtained remains too low. Ising & Koester (2001)
warn that a perturbation analysis of combination amplitudes
(Wu 2001) may have difficulties for photometric variations of
high amplitude, and this mode has the largest amplitude in
the data set. In addition, the asteroseismology analysis of the
1633 μHz multiplet structure cannot solidly constrain the m
value for this mode (see Section 4.2). Following this reasoning,
we experimented by assigning the 1633.907 μHz mode an (l, m)
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Figure 16. Simultaneous fit of the periods of 19 modes (solid line) to the light curves from mcdo080401, soar080403, and soar080405 (filled circles). Note the change
in the x-axis for each plot.

(A color version of this figure is available in the online journal.)

value of (1, 1). The resulting fit finds N = 85, in much
better agreement with MLT predictions (Wu 2001; Montgomery
2005a).

The final simultaneous nonlinear fit to the six high signal-
to-noise light curves includes the frequencies and (l, m) iden-
tifications given in Table 4. This fit produced the following
parameters: τ0 = 99.4±12 s, N = 85±6, and θ = 32.◦9±3.◦2.
Figure 16 shows the ability to reproduce the essential features
of the light curves.

6. DISCUSSION

Convective energy transport in stellar environments is
typically modeled using MLT. A particular version by Böhm
& Cassinelli (1971), denoted as ML2, includes reduced hori-
zontal energy loss relative to the formulation of Böhm-Vitense
(ML1; 1958), increasing the overall convective efficiency. ML2
has been the standard convection model adopted for stellar
atmosphere fits of white dwarfs for the past 20 years, with
α = 0.6 the preferred value for the mixing length (Bergeron
et al. 1995). Tremblay et al. (2010) recently re-calibrated the
assumed convective efficiency for white dwarf models, using
model spectra incorporating an improved treatment of Stark
broadening (Tremblay & Bergeron 2009). Tremblay et al. (2010)
fit an improved set of Hubble Space Telescope and International
Ultraviolet Explorer ultraviolet (UV) and near UV spectra, vary-
ing α until reaching agreement between the optical and UV
temperatures. They find the best internal consistency between
optical and UV effective temperatures and log g measurements
using ML2 with α = 0.8. This is a much more efficient ver-
sion of MLT than found by Bergeron et al. (1995), but is in
closer agreement with that required by nonadiabatic models to
fit the observed blue edge of the DA instability strip (Fontaine &
Brassard 2008). This convective parameterization is becoming
the standard for DA model atmospheres (Freytag et al. 2012;
Kilic et al. 2012).

Figure 17. Comparison of EC14012-1446’s derived convective parameters
with values expected from ML2 convection. The additional labeled points are
individual objects taken from Montgomery (2005a), Montgomery et al. (2010a),
and Provencal et al. (2011). The curves represent ML2 theoretical calculations
of the thermal response time τ0 for various values of the mixing length α

(log g = 8.0).

(A color version of this figure is available in the online journal.)

One of our goals is to produce an empirical map of the time-
averaged convective timescale τ0 at the base of the convection
zone as a function of Teff and log g for a population spanning
the DAV instability strip (≈11,100–12,200 K) and compare
this with MLT predictions of τ0. As an individual DA white
dwarf cools through the instability strip, the base of its surface
hydrogen convection zone will deepen, increasing its total mass
and the value of τ0. MLT makes specific predictions for the
behavior of τ0 given different choices of input parameters. For
instance, Figure 17 shows that ML2 with α = 1.0 predicts τ0
values ranging from ∼1 s at the blue edge of the instability strip
to ∼6000 s at the red edge.
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Table 6
Stellar Parameters

Star Teff log g Period τ0 Pmax θ N
(K) (s) (s)

G117-B15A 12010 ± 180 8.33 215.2 30 ± 10 188 ± 63 – –
EC14012-1446 11768 ± 23 8.11 612.3 99 ± 12 624 ± 75 33 ± 3 85 ± 6
G29-38 11690 ± 120 8.11 615.2 187 ± 20 1177 ± 126 66 ± 3 95 ± 8
WDJ1524-0030 11660 ± 180 8.06 697.3 163 ± 35 1024 ± 220 58 ± 10 95 ± 15
GD154 11270 ± 170 7.95 1185.9 1169 ± 200 7345 ± 1257 10 ± 10 127 ± 25

Notes. Teff measurements are from Koester et al. (2009), Koester & Holberg (2001), and Koester & Allard (2000). Given pulsation periods are for the
largest amplitude frequency. Entries marked with “–” did not have unique values determined by the fits.

In Figure 17 we also plot current determinations of τ0 versus
Teff for five DAVs, including our solution for EC14012-1446;
the derived stellar parameters are listed in Table 6. To ensure a
uniform treatment of all the stars in our sample, we have used
Teff determinations that do not include the recent updates to
the line profile calculations by Tremblay & Bergeron (2009);
rather, the plotted effective temperatures and horizontal error
bars are based on earlier spectroscopic fits employing ML2
(Koester et al. 2009; Koester & Holberg 2001; Koester &
Allard 2000). Overlaid on this figure are the τ0 predictions
of ML2 convection for various values of the mixing length
parameter α. Our current results do indicate an increase in τ0
(and hence an increase in depth and mass of the convection zone)
with decreasing temperature and are marginally consistent with
α = 1.0. Decreasing the Teff error bars, either through higher
signal-to-noise spectra and/or new model atmosphere fits, will
provide more precise constraints on convection in these stars.

Finally, we point out that convective light curve fitting ex-
tracts the value of τ0 at the base of the convection zone. There
is no reason why the same value of α should describe both the
photosphere and the deeper convective layers, so our results
do not necessarily have to agree with the results of Tremblay
et al. (2010) or Bergeron et al. (1995). For instance, Ludwig
et al. (1994) use sophisticated two-dimensional hydrodynamic
simulations to show that, while MLT is a reasonable approxi-
mation to predict the rough photospheric temperature structure
of DA white dwarfs, the deeper layers have a higher convective
efficiency than predicted by MLT.

Our treatment of the nonlinearities in white dwarf light curves
is based on the larger picture of how a surface convection zone
leads to driving in these stars. In particular, Brickhill (1991) and
Goldreich & Wu (1999) demonstrate that excitation of g-mode
pulsations should occur when the convective driving exceeds the
radiative damping, and that this condition is given by ωτ0 � 1.
In terms of period, this relation states that g-modes should be
driven when P � Pmax, where Pmax ≡ 2 π τ0 and P is the
period of a given mode. In Figure 18 we compare the dominant
oscillation period in each of the DAVs we have fit with their
theoretical value of Pmax, as calculated from each star’s value of
τ0. The agreement is good for τ0 � 100 s, but the values diverge
for larger values of τ0. Given that τ0 is related to a star’s Teff (see
Figure 17), this says that the agreement is good from the blue
edge to near the middle of the instability strip, but that from this
point to the red edge another effect is operating that prevents
the dominant mode periods from increasing as rapidly as Pmax.

It is natural to assume that the cause of this behavior is
related to whatever unknown phenomenon produces the red
edge of the instability strip. Wu & Goldreich (2001) point out
that a deepening convection zone attenuates the flux variations
entering at its base, so that for deep enough convection zones
the surface amplitudes will be below detection limits. However,

Figure 18. Comparison of the dominant observed pulsation period in a star
(dot-dashed curve, red squares) with the theoretical value of Pmax (dashed line,
blue circles) for each DAV star with a measured value of τ0. Cooler stars are to
the left, hotter stars to the right. While simple theory predicts that these curves
should be very similar, we find a significant departure for cooler stars.

(A color version of this figure is available in the online journal.)

this is an amplitude effect and does not predict that the
dominant periods should be different from Pmax. Brickhill
(1991), Goldreich & Wu (1999), and Wu & Goldreich (2001)
also discuss the importance of turbulent damping in a narrow
shear layer at the base of the convection zone; damping from
this region may be more significant for cooler stars. Another
possibility is that the maximum period for which complete
surface reflection of g-modes can occur is much lower than
expected; typical estimates place this number on the order of
∼5000 s for l = 1 modes and ∼3000 s for l = 2 modes (Hansen
et al. 1985), although it is possible that improved treatment of
the surface layers could alter these estimates. At any rate, this
phenomenon is likely related to the deepening of the convection
zone toward the red edge; we are exploring other phenomena
that could lead to this behavior.

7. CONCLUSIONS

Until the advent of convective light curve fitting, our Sun
was the only star with empirical constraints on its convection
zone depth. Determinations of the time-averaged convective
timescale τ0 and the temperature sensitivity parameter N can
now potentially be obtained for any white dwarf pulsator of
moderate amplitude (Montgomery et al. 2010b); approximately
two-thirds of all white dwarf pulsators show significant non-
linearities in their light curves. Our ultimate goal is to map τ0
as a function of Teff,0 and log g for a population spanning the
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instability strips of both the DAV and DBV white dwarfs. Such a
map will provide important empirical constraints on convection
for white dwarfs and eventually other types of pulsating stars.

We have taken the first steps in this direction with our investi-
gation of EC14012-1446. XCOV26 produced 308.3 hr of data,
and our analysis has identified 19 independent frequencies dis-
tributed in 14 multiplets. Combined with archival observations,
we have identified a series of l = 1 modes with an average period
spacing of 41 s. EC14012-1446 is now one of the few DAVs
with over a dozen identified modes in its pulsation spectrum.
The large number of modes means that asteroseismology can be
used to provide constraints on its interior structure.

Future goals focus on the determination of τ0 and N for
additional white dwarf pulsators. An increased sample size
will improve our empirical map of τ0 as a function of Teff
and also allow us to further explore the observed behavior of
P and Pmax as a function of τ0. Our goals also include the
reduction of errors associated with spectroscopic temperatures.
Convective light curve fitting demands uniform treatment of
convection between the spectroscopic temperatures we choose
and the temperatures we use to calculate the light curve fits.
Since WD1524-0030 was not included in the new temperatures
of Gianninas et al. (2011) that incorporate recent updates
to line profile calculations, we use a consistent set of older
published temperatures for the objects presented in this work.
Incorporating the new temperatures will be a first step toward
reducing the spectroscopic errors. We must recalculate our
existing nonlinear light curve fits using these updated Teff and
log g determinations. On average, the temperatures of Gianninas
et al. (2011) increase over older published values by ≈500 K.
Preliminary work indicates that the empirical value of τ0 will
not change significantly with such an increase. However, the
theoretical MLT predictions for τ0 will change; larger values of
α will be needed to keep τ0 and the convection zone depth the
same for these higher values of Teff .
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Córsico, A. H., Althaus, L. G., Kawaler, S. D., et al. 2011, MNRAS, 418, 2519
Dolez, N., Vauclair, G., Kleinman, S. J., et al. 2006, A&A, 446, 237
Eisenstein, D. J., Liebert, J., Koester, D., et al. 2006, AJ, 132, 676
Fontaine, G., & Brassard, P. 2008, PASP, 120, 1043
Freytag, B., Steffen, M., Ludwig, H.-G., et al. 2012, J. Comput. Phys., 231,

919
Gianninas, A., Bergeron, P., & Ruiz, M. T. 2011, ApJ, 743, 138
Goldreich, P., & Wu, Y. 1999, ApJ, 511, 904
Handler, G., Romero-Colmenero, E., & Montgomery, M. H. 2002, MNRAS,

335, 399
Handler, G., Romero-Colmenero, E., Provencal, J. L., et al. 2008, MNRAS,

388, 1444
Hansen, C. J., Winget, D. E., & Kawaler, S. D. 1985, ApJ, 297, 544
Harris, H. C., Munn, J. A., Kilic, M., et al. 2006, AJ, 131, 571
Ising, J., & Koester, D. 2001, A&A, 374, 116
Kanaan, A., Kepler, S. O., & Winget, D. E. 2002, A&A, 398, 896
Kawaler, S. E. 1988, in IAU Symp. 123, Advances in Helio- and Asteroseis-

mology, ed. J. Christensen-Dalsgaard & S. Frandsen (Dordrecht: Reidel),
329

Kepler, S. O., Nather, R. E., Winget, D. E., et al. 2003, A&A, 401, 639
Kilic, M., Patterson, A. J., Barber, S., Leggett, S. K., & Dufour, P. 2012, MNRAS,

419, L59
Koester, D., & Allard, N. 2000, Balt. Astron., 9, 119
Koester, D., & Holberg, J. 2001, in ASP Conf. Ser. 226, 12th European

Conference on White Dwarfs, ed. J. L. Provencal, H. L. Shipman, J.
MacDonald, & S. Goodchild (San Francisco, CA: ASP), 299

Koester, D., Voss, B., Napiwotzki, R., et al. 2009, A&A, 505, 441
Lenz, P., & Breger, M. 2005, Commun. Asteroseismol., 146, 53
Ludwig, H., Jordan, S., & Steffen, M. 1994, A&A, 284, 105
Metcalfe, T. S., Nather, R. E., & Winget, D. E. 2000, ApJ, 545, 974
Montgomery, M. H. 2005a, ApJ, 633, 1142
Montgomery, M. H. 2005b, in ASP Conf. Ser. 334, 14th European Workshop

on White Dwarfs, ed. D. Koester & S. Moehler (San Francisco, CA: ASP),
553

Montgomery, M. H. 2005c, in ASP Conf. Ser. 334, 14th European Workshop
on White Dwarfs, ed. D. Koester & S. Moehler (San Francisco, CA: ASP),
483

Montgomery, M. H. 2007, in ASP Conf. Ser. 372, 15th European Workshop
on White Dwarfs, ed. R. Napiwotzki & M. R. Burleigh (San Francisco, CA:
ASP), 635

Montgomery, M. H. 2009, in AIP Conf. Proc. 1170, Stellar Pulsation: Challenges
for Theory and Observation, ed. J. A. Guzik & P. A. Bradley (Melville, NY:
AIP), 605

Montgomery, M. H., Hermes, J. J., & Winget, D. E. 2010a, in AIP Conf. Proc.
1273, 17th European White Dwarf Workshop, ed. K. Werner (Melville, NY:
AIP), 512

Montgomery, M. H., Provencal, J. L., Kanaan, A., et al. 2010b, ApJ, 716, 84
Provencal, J. L., Montgomery, M. H., Kanaan, A., et al. 2009, ApJ, 693, 564
Provencal, J. L., Montgomery, M. H., Mullaly, S., Dalessio, J., & Shipman, H.

2011, BAAS, 43, 21734105
Ruiz, M. T., & Bergeron, P. 2001, ApJ, 558, 761
Stobie, R. S., O’Donoghue, D. O., Ashley, R., et al. 1995, MNRAS, 272, L21
Tassoul, M., Fontaine, G., & Winget, D. E. 1990, ApJS, 72, 335
Thompson, S. E., & Mullally, F. 2009, J. Phys.: Conf. Ser., 172, 012081
Tremblay, P. E., & Bergeron, P. 2009, in AIP Conf. Proc. 1171, Recent Directions

in Astrophysical Quantitative Spectroscopy and Radiation Hydrodynamics
(Melville, NY: AIP), 101

Tremblay, P.-E., Bergeron, P., Kalirai, J. S., & Gianninas, A. 2010, ApJ, 712,
1345

Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonradial
Oscillations of Stars (Tokyo: Univ. Tokyo Press)

Winget, D. E., Hansen, C. J., Liebert, J., et al. 1987, ApJ, 315, L77
Winget, D. E., Nather, R. E., Clemens, J. C., et al. 1991, ApJ, 378, 326
Winget, D. E., Nather, R. E., Clemens, J. C., et al. 1994, ApJ, 430, 839
Wu, Y. 2001, MNRAS, 323, 248
Wu, Y., & Goldreich, P. 2001, ApJ, 546, 469
Yeates, C. M., Clemens, J. C., Thompson, S. E., & Mullally, F. 2005, ApJ, 635,

1239

19

http://dx.doi.org/10.1051/0004-6361:20053340
http://adsabs.harvard.edu/abs/2005A&A...444..565B
http://adsabs.harvard.edu/abs/2005A&A...444..565B
http://dx.doi.org/10.1086/176053
http://adsabs.harvard.edu/abs/1995ApJ...449..258B
http://adsabs.harvard.edu/abs/1995ApJ...449..258B
http://adsabs.harvard.edu/abs/1932ZA......5..117B
http://adsabs.harvard.edu/abs/1932ZA......5..117B
http://adsabs.harvard.edu/abs/1971A&A....12...21B
http://adsabs.harvard.edu/abs/1971A&A....12...21B
http://adsabs.harvard.edu/abs/1958ZA.....46..108B
http://adsabs.harvard.edu/abs/1958ZA.....46..108B
http://dx.doi.org/10.1086/192128
http://adsabs.harvard.edu/abs/1995ApJS...96..545B
http://adsabs.harvard.edu/abs/1995ApJS...96..545B
http://adsabs.harvard.edu/abs/1991MNRAS.251..673B
http://adsabs.harvard.edu/abs/1991MNRAS.251..673B
http://adsabs.harvard.edu/abs/1992MNRAS.259..519B
http://adsabs.harvard.edu/abs/1992MNRAS.259..519B
http://dx.doi.org/10.1086/192242
http://adsabs.harvard.edu/abs/1995ApJS..101..309C
http://adsabs.harvard.edu/abs/1995ApJS..101..309C
http://dx.doi.org/10.1051/0004-6361:20020384
http://adsabs.harvard.edu/abs/2002A&A...387..531C
http://adsabs.harvard.edu/abs/2002A&A...387..531C
http://dx.doi.org/10.1111/j.1365-2966.2011.19642.x
http://adsabs.harvard.edu/abs/2011MNRAS.418.2519C
http://adsabs.harvard.edu/abs/2011MNRAS.418.2519C
http://dx.doi.org/10.1051/0004-6361:20053149
http://adsabs.harvard.edu/abs/2006A&A...446..237D
http://adsabs.harvard.edu/abs/2006A&A...446..237D
http://dx.doi.org/10.1086/504424
http://adsabs.harvard.edu/abs/2006AJ....132..676E
http://adsabs.harvard.edu/abs/2006AJ....132..676E
http://dx.doi.org/10.1086/592788
http://adsabs.harvard.edu/abs/2008PASP..120.1043F
http://adsabs.harvard.edu/abs/2008PASP..120.1043F
http://dx.doi.org/10.1016/j.jcp.2011.09.026
http://adsabs.harvard.edu/abs/2012JCoPh.231..919F
http://adsabs.harvard.edu/abs/2012JCoPh.231..919F
http://dx.doi.org/10.1088/0004-637X/743/2/138
http://adsabs.harvard.edu/abs/2011ApJ...743..138G
http://adsabs.harvard.edu/abs/2011ApJ...743..138G
http://dx.doi.org/10.1086/306705
http://adsabs.harvard.edu/abs/1999ApJ...511..904G
http://adsabs.harvard.edu/abs/1999ApJ...511..904G
http://dx.doi.org/10.1046/j.1365-8711.2002.05625.x
http://adsabs.harvard.edu/abs/2002MNRAS.335..399H
http://adsabs.harvard.edu/abs/2002MNRAS.335..399H
http://dx.doi.org/10.1111/j.1365-2966.2008.13509.x
http://adsabs.harvard.edu/abs/2008MNRAS.388.1444H
http://adsabs.harvard.edu/abs/2008MNRAS.388.1444H
http://dx.doi.org/10.1086/163549
http://adsabs.harvard.edu/abs/1985ApJ...297..544H
http://adsabs.harvard.edu/abs/1985ApJ...297..544H
http://dx.doi.org/10.1086/497966
http://adsabs.harvard.edu/abs/2006AJ....131..571H
http://adsabs.harvard.edu/abs/2006AJ....131..571H
http://dx.doi.org/10.1051/0004-6361:20010529
http://adsabs.harvard.edu/abs/2001A&A...374..116I
http://adsabs.harvard.edu/abs/2001A&A...374..116I
http://dx.doi.org/10.1051/0004-6361:20020485
http://adsabs.harvard.edu/abs/2002A&A...389..896K
http://adsabs.harvard.edu/abs/2002A&A...389..896K
http://dx.doi.org/10.1051/0004-6361:20030105
http://adsabs.harvard.edu/abs/2003A&A...401..639K
http://adsabs.harvard.edu/abs/2003A&A...401..639K
http://dx.doi.org/10.1111/j.1745-3933.2011.01177.x
http://adsabs.harvard.edu/abs/2012MNRAS.419L..59K
http://adsabs.harvard.edu/abs/2012MNRAS.419L..59K
http://adsabs.harvard.edu/abs/2000BaltA...9..119K
http://adsabs.harvard.edu/abs/2000BaltA...9..119K
http://adsabs.harvard.edu/abs/2001ASPC..226..299K
http://dx.doi.org/10.1051/0004-6361/200912531
http://adsabs.harvard.edu/abs/2009A&A...505..441K
http://adsabs.harvard.edu/abs/2009A&A...505..441K
http://dx.doi.org/10.1553/cia146s53
http://adsabs.harvard.edu/abs/2005CoAst.146...53L
http://adsabs.harvard.edu/abs/2005CoAst.146...53L
http://adsabs.harvard.edu/abs/1994A&A...284..105L
http://adsabs.harvard.edu/abs/1994A&A...284..105L
http://dx.doi.org/10.1086/317862
http://adsabs.harvard.edu/abs/2000ApJ...545..974M
http://adsabs.harvard.edu/abs/2000ApJ...545..974M
http://dx.doi.org/10.1086/466511
http://adsabs.harvard.edu/abs/2005ApJ...633.1142M
http://adsabs.harvard.edu/abs/2005ApJ...633.1142M
http://adsabs.harvard.edu/abs/2005ASPC..334..553M
http://adsabs.harvard.edu/abs/2005ASPC..334..483M
http://adsabs.harvard.edu/abs/2007ASPC..372..635M
http://adsabs.harvard.edu/abs/2009AIPC.1170..605M
http://adsabs.harvard.edu/abs/2010AIPC.1273..512M
http://dx.doi.org/10.1088/0004-637X/716/1/84
http://adsabs.harvard.edu/abs/2010ApJ...716...84M
http://adsabs.harvard.edu/abs/2010ApJ...716...84M
http://dx.doi.org/10.1088/0004-637X/693/1/564
http://adsabs.harvard.edu/abs/2009ApJ...693..564P
http://adsabs.harvard.edu/abs/2009ApJ...693..564P
http://adsabs.harvard.edu/abs/2011BAAS...4334105P
http://adsabs.harvard.edu/abs/2011BAAS...4334105P
http://dx.doi.org/10.1086/322297
http://adsabs.harvard.edu/abs/2001ApJ...558..761R
http://adsabs.harvard.edu/abs/2001ApJ...558..761R
http://adsabs.harvard.edu/abs/1995MNRAS.272L..21S
http://adsabs.harvard.edu/abs/1995MNRAS.272L..21S
http://dx.doi.org/10.1086/191420
http://adsabs.harvard.edu/abs/1990ApJS...72..335T
http://adsabs.harvard.edu/abs/1990ApJS...72..335T
http://dx.doi.org/10.1088/1742-6596/172/1/012081
http://adsabs.harvard.edu/abs/2009JPhCS.172a2081T
http://adsabs.harvard.edu/abs/2009JPhCS.172a2081T
http://adsabs.harvard.edu/abs/2009AIPC.1171..101T
http://dx.doi.org/10.1088/0004-637X/712/2/1345
http://adsabs.harvard.edu/abs/2010ApJ...712.1345T
http://adsabs.harvard.edu/abs/2010ApJ...712.1345T
http://dx.doi.org/10.1086/184864
http://adsabs.harvard.edu/abs/1987ApJ...315L..77W
http://adsabs.harvard.edu/abs/1987ApJ...315L..77W
http://dx.doi.org/10.1086/170434
http://adsabs.harvard.edu/abs/1991ApJ...378..326W
http://adsabs.harvard.edu/abs/1991ApJ...378..326W
http://dx.doi.org/10.1086/174455
http://adsabs.harvard.edu/abs/1994ApJ...430..839W
http://adsabs.harvard.edu/abs/1994ApJ...430..839W
http://dx.doi.org/10.1046/j.1365-8711.2001.04224.x
http://adsabs.harvard.edu/abs/2001MNRAS.323..248W
http://adsabs.harvard.edu/abs/2001MNRAS.323..248W
http://dx.doi.org/10.1086/318234
http://adsabs.harvard.edu/abs/2001ApJ...546..469W
http://adsabs.harvard.edu/abs/2001ApJ...546..469W
http://dx.doi.org/10.1086/497616
http://adsabs.harvard.edu/abs/2005ApJ...635.1239Y
http://adsabs.harvard.edu/abs/2005ApJ...635.1239Y

	1. INTRODUCTION
	2. OBSERVATIONS AND REDUCTIONS
	3. FREQUENCY IDENTIFICATION
	3.1. Stability
	3.2. The XCOV26 Fourier Transform

	4. MODE IDENTIFICATION
	4.1. Combination Frequencies
	4.2. Asteroseismology

	5. NONLINEAR ANALYSIS
	6. DISCUSSION
	7. CONCLUSIONS
	REFERENCES

