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Nonequilibrium scaling explorations on a two-dimensional Z(5)-symmetric model
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We have investigated the dynamic critical behavior of the two-dimensional Z(5)-symmetric spin model by
using short-time Monte Carlo (MC) simulations. We have obtained estimates of some critical points in its rich
phase diagram and included, among the usual critical lines the study of first-order (weak) transition by looking
into the order-disorder phase transition. In addition, we also investigated the soft-disorder phase transition by
considering empiric methods. A study of the behavior of β/νz along the self-dual critical line has been performed
and special attention has been devoted to the critical bifurcation point, or Fateev-Zamolodchikov (FZ) point.
First, by using a refinement method and taking into account simulations out of equilibrium, we were able to
localize parameters of this point. In a second part of our study, we turned our attention to the behavior of the
model at the early stage of its time evolution in order to find the dynamic critical exponent z as well as the static
critical exponents β and ν of the FZ point on square lattices. The values of the static critical exponents and
parameters are in good agreement with the exact results, and the dynamic critical exponent z ≈ 2.28 very close
to the four-state Potts model (z ≈ 2.29).
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I. INTRODUCTION

In statistical mechanics, nontrivial models have been exten-
sively studied after the exact solution of the two-dimensional
Ising model [1]. A lot of authors have devoted an extensive
use of several methods to describe the theory of magnetic
systems by studying generalizations of such models, with more
complex and richer phase diagrams. Among these models, one
that deserves special attention is the Z(N ) model whereas,
differently than the Ising model whose spin variable can
assume only two values, each spin can assume N values and
more than one coupling constant for N > 4. This leads to more
delicate aspects with a phase diagram that is not completely
understood yet, even, for example, for small values of N such
as N = 5.

The two-dimensional Z(N ) model contains several known
systems as particular cases, for instance, the Ising (N = 2)
and XY (N = ∞) models, as well as, the N -state scalar and
vector Potts (clock) models, and the Ashkin-Teller model
(N = 4). For N � 4, the phase diagram possesses a traditional
second-order phase transition, and for N = ∞, it exhibits a
Kosterlitz-Thouless (KT)-type phase transition [2]. But, for
what N value does this last phase transition appear? Several
works report that the KT phase transition appears at N = 5
[3–7]. The Z(5) model exhibits a rich phase diagram with
first-order transitions, including the five-state Potts point [8],
two second-order transitions of the Ising type at Fateev-
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Zamolodchikov (FZ) integrability points [5], and two lines
of infinite-order transitions (dual to each other) of the KT
type [3,4,7,9–11] (see dashed lines in Fig. 1). Several works
assert that the FZ points, henceforth named the “bifurcation
points,” coincide with the points where the KT transitions are
originated [5,6,10,12,13].

So, this interesting model and, especially the bifurcation
points (for N = 5), deserves further explorations and nonequi-
librium analysis can be an interesting alternative to obtain not
only the static critical exponents but also the dynamical ones
which have not yet been obtained in previous contributions.
Moreover, this approach has proved to be efficient in deter-
mining the critical parameters of several models as shown in
recent works (see, for example, Refs. [14–16]).

In this paper, we present results from the study of the critical
properties of the isotropic ferromagnetic two-dimensional spin
model with Z(5) symmetry, hereafter denoted as the Z(5)
model, by using time-dependent MC simulations. As we are
dealing with a symmetric model, the two bifurcation points are
also symmetric and possess the same set of critical exponents.
Hence, we concentrated on only one of them. Our contributions
are divided in four parts as follows.

(1) We estimated the critical parameters x1 and x2 of the
bifurcation point [5] by using a simple refinement method, in
the context of time-dependent MC simulations which searches
the best power-law time decay of magnetization, as proposed
in Ref. [16].

(2) We obtained the dynamic critical exponent z and the
static critical exponents ν and β of the two independent order
parameters of the model for the bifurcation point.
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FIG. 1. (Color online) Phase diagram of the Z5 model according
to Ref. [17]. (Phase I) Disordered phase; (Phase II) ordered phase;
and (Phase III) soft phase. The five-state Potts and FZ points are
specifically indicated on the self-dual line. The diagram is symmetric
with respect to the Potts physical line.

(3) We explored several points on the self-dual line of the
model by estimating the exponents of its two order parameters.
We showed that the exponents are different along this line
but respect a peculiar symmetry. However, for the particular
point corresponding to the five-state Potts model the critical
exponents assume the same value.

(4) We also explored and obtained some estimates of weak
first-order points on the self-dual line and other second-order
points on the soft-disorder transition line using a heuristic
method, developed in this paper, that takes into account the
second moment of the order parameters.

This article is organized as follows. In the next section we
define the model and briefly discuss some peculiarities of its
phase diagram. In Sec. III we present some finite size scaling
relations in nonequilibrium spin systems theory and describe
the power laws which are considered in this work to measure
the required exponents and parameters. We also show how
to simulate such behaviors via time-dependent Monte Carlo
simulations. Our results are divided in two sections: In Sec. IV,
we determined estimates of the phase transition points in the
phase diagram by using a nonequilibrium approach and in Sec.
V we specifically showed some estimates of critical exponents
along the self-dual line with special attention to the FZ point.
Finally, in Sec. VI we summarize and conclude our work.

II. THE MODEL AND ITS PHASE DIAGRAM

In this article we have studied the dynamic critical behavior
of the Z(5) model by using short-time Monte Carlo simulations.
The most general Hamiltonian of this model is given by

− βH =
∑
〈i,j〉

k1

[
cos

(
2π

5
(ni − nj )

)
− 1

]

+ k2

[
cos

(
4π

5
(ni − nj )

)
− 1

]
, (1)

where 〈i,j 〉 indicates that the spin variables interact only
with their nearest neighbors, i and j label the sites of a
two-dimensional lattice of size L × L, k1 and k2 are the
two positive coupling constants, and ni = 0,1,2,3,4 label the
degrees of freedom of each site of the lattice.

In Fig. 1 (according to Ref. [17]) we can observe the phase
diagram of this model translated to the suitable variables:

x1 = exp

[√
5(k1 − k2) − 5(k1 + k2)

4

]
,

and

x2 = exp

[√
5(k2 − k1) − 5(k1 + k2)

4

]
.

In the particular case k2 = k1 we recover the scalar five-state
Potts model and for k2 = 0 the clock model. It is interesting
to observe that the five-state Potts point corresponds to the
meeting between the self-dual line defined by x1 + x2 =
(
√

5 − 1)/2 and the Potts physical line x1 = x2, this last one
being a symmetry line of the diagram.

In this work we are more concerned with the bifurcation
point. Actually, as can be seen in Fig. 1 the model has two bi-
furcation points (FZ points) localized on the self-dual line. The
phase transition line between the FZ points (which includes the
Potts point) is of weak first order, and on the right(left) of the
rightmost(leftmost) FZ point there are continuous transition
lines between ordered-soft and disordered-soft phases.

However the two bifurcation points are symmetric to each
other and have the same set of critical exponents. For this
reason, we took into account only one of them. The ratio of
the coupling constants for the bifurcation point is given by
k2/k1 = (

√
5 − 1)/2 ≈ 0.618 034. Moreover, there are four

order parameters but only two of them are independent ones
[18], namely

M1 = 〈
δni ,1 − δni ,2

〉
, (2)

and

M2 = 〈
δni ,1 − δni ,3

〉
, (3)

where δi,j is the Kronecker’s delta.
Since we established the main details of the model in order

to calculate the critical parameters x1 and x2, as well as the
critical exponents z, β, and ν, we present in the next section
the finite size scaling developed to describe nonequilibrium
spin systems, the time-dependent power laws obtained from
this approach, and some details about time-dependent MC
simulations to be applied.

III. NONEQUILIBRIUM DYNAMICS AND
TIME-DEPENDENT MC SIMULATIONS

Until a few years ago, the numerical calculation of critical
exponents was carried out only in equilibrium. Unfortunately,
in this stage, the measurements of such exponents are very
hard due to severe critical slowing down which takes place
in the vicinity of the critical temperature. To circumvent this
difficulty, some algorithms were proposed, for instance, the
cluster algorithm [19,20] that, although it is very efficient in
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the study of static properties, violates the dynamic universality
class of the specific local dynamics, such as Model A.

Another way to avoid problems with the critical slowing
down was proposed by Janssen, Schaub, and Schmittmann
[21] and Huse [22], both in 1989. They discovered when using
renormalization group techniques and numerical calculations,
respectively, that there is universality and scaling behavior
far from equilibrium. Since then, the so-called short-time
regime has become an important method for the study of phase
transitions and critical phenomena.

The dynamic scaling relation obtained by Janssen et al. for
the kth moment of the order parameter, extended to systems
of finite size [23], is written as

〈Mk〉(t,τ,L,m0) = b−kβ/ν〈Mk〉(b−zt,b1/ντ,b−1L,bx0m0)

(4)

where t is the time evolution, b is an arbitrary spatial rescaling
factor, τ = (T − Tc) /Tc is the reduced temperature, and L

is the linear size of the lattice. The exponents β and ν are
the equilibrium critical exponents associated with the order
parameter and the correlation length, and z is the dynamic
exponent characterizing temporal correlations in equilibrium.
Here, the operator 〈. . .〉 denotes averages over different
configurations due to different possible time evolution from
each initial condition of a given initial magnetization m0. For
a large lattice size L and small initial magnetization m0 at the
critical temperature (τ = 0), Eq. (4) is governed by the new
dynamic exponent θ , according to

〈M〉m0 ∼ m0t
θ , (5)

if we choose the scaling factor b = t1/z. This new exponent
characterizes the so-called critical initial slip, the anomalous
behavior of the order parameter when the system is quenched
to the critical temperature Tc.

In addition, a new critical exponent x0, which represents
the anomalous dimension of the initial magnetization m0, is
introduced to describe the dependence of the scaling behavior
on the initial conditions. This exponent is related to θ as
x0 = θz + β/ν. Actually the relaxation of spin systems is
determined by two different behaviors: this initial slip and
a second behavior corresponding to a power-law decay. This
can be derived from Eq. (4). After the scaling b−1L = 1 at the
critical temperature T = Tc, the first (k = 1) moment of the
order parameter is 〈M〉(t,L,m0) = L−β/ν〈M〉(L−zt,Lx0m0).

Denoting u = tL−z and w = Lx0m0, one has 〈M〉(u,w) =
L−β/ν〈M〉(L−zt,Lx0m0). The derivative with respect to L is
given by

∂L〈M〉 = (−β/ν)L−β/ν−1〈M〉(u,w)

+L−β/ν[∂u〈M〉∂Lu + ∂w〈M〉∂Lw],

where explicitly we have ∂Lu = −ztL−z−1 and ∂Lw =
x0m0L

x0−1. In the limit L → ∞, which implicates in
∂L〈M〉 → 0, one has x0w∂w〈M〉 − zu∂u〈M〉 − β/ν〈M〉 = 0.
The separability of the variables u and w, i.e., 〈M〉(u,w) =
Mu(u)Mw(w) leads to

x0wM ′
w/Mw = β/ν + zuM ′

u/Mu,

where the prime means the derivative with respect to the
argument. Since the left-hand side of this equation depends

only on w and the right-hand side depends only on u,
both sides must be equal to a constant c. Thus, Mu(u) =
uc/z − β/(νz) and Mw(w) = wc/x0 , resulting in 〈M〉 (u,w) =
m

c/x0
0 Lβ/νt (c−β/ν)/z. Returning to the original variables, one

has 〈M〉(t,L,m0) = m
c/x0
0 t (c−β/ν)/z.

On one hand, by choosing c = x0 at criticality (τ = 0),
one obtains 〈M〉m0 ∼ m0t

θ , where θ = (x0 − β/ν)/z that
corresponds to a regime of small initial magnetization soon
after a finite time scaling b = t1/z in Eq. (4). This leads to
〈M〉 (t,m0) = t−β/(νz)〈M〉(1,tx0/zm0). By calling x = tx0/zm0,
an expansion of the averaged magnetization around x = 0
results in 〈M〉(1,x) = 〈M〉(1,0) + ∂x〈M〉|x=0 x + O(x2). By
construction 〈M〉(1,0) = 0 and, since u = tx0/zm0 
 1, we
can discard quadratic terms resulting in 〈M〉m0 ∼ m0t

θ . This
anomalous behavior of initial magnetization is valid only for
a characteristic time scale tmax ∼ m

−z/x0
0 .

On the other hand, the choice c = 0 corresponds to the
case where the system does not depend on the initial trace and
m0 = 1 leads to simple power law:

〈M〉m0=1 ∼ t−β/(νz) (6)

that similarly corresponds to the decay of magnetization (for
t > tmax) of a system previously evolved from an initial small
magnetization (m0), and that had its magnetization increased
according to Eq. (5) up to a peak.

For m0 = 0, it is not difficult to show that the second
moment of the magnetization is given by

〈M2〉m0=0 ∼ tς , (7)

with ς = (d − 2β/ν)/z, where d is the dimension of the
system. By using short-time MC simulations, where lattices
are suitably prepared with a fixed initial magnetization, many
authors have obtained the dynamic exponent z as well as
the static ones β and ν, for many different models (see, for
example, two good reviews found in Refs. [24,25]).

In order to estimate independently the critical exponents,
we can, first, determine z by using a power law that mixes
initial conditions [26] as follows:

F2(t) = 〈M2〉m0=0

〈M〉2
m0=1

∼ t ξ , (8)

where ξ = d/z. With the estimate of ξ , denoted here by
ξ̂ , we are able to obtain an estimate of z (given by ẑ =
d/̂ξ ) independent of other parameters. In order to obtain
ν, we use an alternative power law. When considering
m0 = 1 in Eq. (4), one can see that there is no depen-
dence on the initial configurations. Therefore, when L → ∞,
one can have 〈M〉(t,τ ) = b−kβ/ν〈M〉(b−zt,b1/ντ ). By scal-
ing b−zt = 1, we have 〈M〉(t,τ ) = t−β/(νz)f (t1/(νz)τ ) where
f (x) = 〈M〉(1,x) and so ∂ ln〈M〉(t,τ )/∂τ = 1

〈M〉
∂
∂τ

〈M〉 =
t1/(νz)f (t1/(νz)τ ). Therefore we have

D(t) = ∂ ln〈M〉
∂τ

∣∣∣∣
τ=0

= f0 · t1/(νz) ∼ tφ, (9)

where f0 = f (0) is a constant and φ = 1/(νz). Since we have
already obtained the exponent z, we are able to obtain ν. With
these two exponents in hand, we can obtain β by estimating
the exponent μ = β/(νz) from Eq. (6).
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In order to simulate numerically the theoretical moments
of the magnetization of the spin systems as functions of time,
we used a local dynamic evolution of the spins which are
updated by the heat-bath algorithm. In our simulations we
used two different initial states: to obtain the power laws given
by Eqs. (6) and (9), we used the initial ordered state, i.e.,
m0 = 1 (σi ≡ 1, i = 1,...,N = Ld ). On the other hand, when
considering Eq. (7) we used an initial state with m0 = 0, i.e.,
the spins of each site were chosen at random on the sites
but keeping the same proportion–Ld/5 spins of each type:
σi = 0,1,2,3,4. Here it is important to mention that m0 = 0
for any order parameter proposed in our analysis [Eqs. (2) and
(3)].

In the context of time-dependent MC simulations, the
magnetization (k = 1) and its higher moments (k > 1) have
statistical estimators for the theoretical moments (4) given by

〈Mk〉(t) = 1

NrunLd

Nrun∑
j=1

⎛⎝ Ld∑
i=1

σi,j (t)

⎞⎠k

,

where σi,j (t) denotes the ith spin variable on the lattice at the
t th MC step of the j th run. Here Nrun denotes the number
of different repetitions (runs) or different time series used to
compute the averages.

IV. RESULTS I: EXPLORING THE PHASE DIAGRAM VIA
NONEQUILIBRIUM MC SIMULATIONS

Our initial plan was to study the phase transition points
of the Z(5) model via time-dependent MC simulations by
estimating the best x2 given as input the parameter x1 according
to the phase diagram (see Fig. 1). We performed this task
for several points in this diagram and the analysis was
carried out by using an approach developed in [16] in the
context of generalized statistics. This tool had also been
applied successfully to study multicritical points, for example,
tricritical points [15,27] and Lifshitz point of the ANNNI
model [14].

Since at criticality it is expected that the order parameter
obeys the power-law behavior of Eq. (6), we fixed the value of
x1 and changed the value of x2 according to a resolution 
x2.
Then, we calculated the known coefficient of determination
[28] that, for our case, is given by

r =
∑NMC

t=1 (ln〈M〉 − a − b ln t)2∑NMC
t=1 (ln 〈M〉 − ln〈M〉(t))2

, (10)

with ln〈M〉 = (1/NMC)
∑NMC

t=1 ln〈M〉(t), for each value
x2 = x

(min)
2 + i
x2, with i = 1,...,n, where n = �(x(max)

2 −

x
(min)
2 )/
x2
, and the critical value corresponds to x

(opt)
2 =

arg max
x2∈[x(min)

2 ,x
(max)
2 ]{r}. The coefficient r has a very simple

explanation: It measures the ratio: (expected variation)/(total
variation). The bigger the r , the better the linear fit in log scale,
and therefore, the better the power law which corresponds to
the critical parameter except for an error O(
x2).

As we are dealing with a rich phase diagram, a careful
analysis of the order of the phase transition is necessary,
mainly when taking into account first-order “critical” points.
As pointed out earlier, the phase diagram of the Z(5) model
possesses two second-order phase transition points which
coincide with the FZ integrability points, as well as two lines
of infinite-order transition (dual to each other) also known as
self-dual lines. The phase transitions of the points on these lines
which extend from the five-state Potts point to the FZ points are
expected to be of first order. Although a power-law behavior of
the order parameter at strong first-order points is not expected,
it is possible to obtain this behavior for weak first-order ones,
whereas for k > kc a disorder metastable state vanishes at
a certain k∗ and, for k < kc, there is an ordered metastable
state which disappears at k∗∗. Both parameter values look
like critical points if the system remains in the disordered or
ordered metastable states, and so in both points a power-law
behavior must be observed as studied by Schulke and Zheng
[29] through the analysis of the weakness of the first-order
phase transition in the q-state Potts model. In that case a good
estimate for kc would be (k∗ + k∗∗)/2. For the five-state Potts
model, for example, the difference between the pseudocritical
points k∗ or k∗∗ and kc is in the fourth decimal digit. Moreover,
the difference between power laws obtained from the pseudo-
critical points and kc is observed for t ∼ 1000 MC steps.

Since the self-dual line of the Z(5) model is analytically

described by x2 = (
√

5−1)
2 − x1 and the points extending from

x1 = (
√

5 − 1)/4 ≈ 0.309 01... to (but not including) the FZ
point (which corresponds to x1 ≈ 0.347 383 4...) are points of
weak first-order transition, we determined the corresponding
x2 via the method previously described. In this case, by looking
into the difference between x2 (exact) and x2(simulation), it
was possible to have a measure of weakness of the considered
points.

In Table I, column 3, we show our results for x2 (xopt
2 )

for five points along the self-dual line whose transitions
are expected to be of first order, as well as for the FZ
point (sixth line). In order to obtain these results, we used
resolution of 
x2 = 0.002 and applied a simple algorithm
that makes a process of refinement of the parameter in order
to localize the best x2 along the simulations. These values
must be compared to the exact predictions of the self-dual

TABLE I. Analysis of the weak first-order transitions until the critical point FZ.

x1 x2(exact) x
opt
2 (simulation) r

(
x

opt
2 − 
x2

)
r
(
x

opt
2

)
r
(
x

opt
2 + 
x2

) (
x

opt
2

)(2)

Potts 5 0.309 01... 0.308(2) 0.994 251 0.999 605 0.999 557 0.3094(1)
0.31 0.308 03... 0.308(2) 0.997 386 0.999 514 0.998 977 0.3083(1)
0.32 0.298 03... 0.298(2) 0.997 535 0.999 696 0.997 920 0.2979(1)
0.33 0.288 03... 0.288(2) 0.998 707 0.999 715 0.998 626 0.2873(1)
0.34 0.278 03... 0.278(2) 0.998 385 0.999 572 0.998 690 0.2781(1)
FZ 0.270 65... 0.270(2) 0.999 401 0.999 701 0.999 168 0.2702(1)
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(a) (b)

(d)(c)

FIG. 2. (Color online) (a) Refinement process for the input x1 = 0.42. A clear point where r is maximum is found. (b) and (c) Respectively,
the refinement for x1 = 0.44 and x1 = 0.46. In these cases there is no notorious optimization point since x1 = 0.44 is the last point where we
expect to find an order-disorder transition. (d) The refinement process for the FZ point and for the three additional points: five-state Potts point,
x1 = 0.4, and x1 = 0.5.

line (column 2). It is important to notice that columns 4, 5,
and 6 represent, respectively, the values of r obtained for
the fits with respective values of x2: x

opt
2 − 
x2, x

opt
2 , and

x
opt
2 + 
x2. For instance, we observe that, for the Potts point

r(xopt
2 − 
x2) = 0.994 251, r(xopt

2 ) =0.999 605, and r(xopt
2 +


x2) = 0.999 557. From that, we applied a second refinement
for the interval [xopt

2 − 
x2, x
opt
2 + 
x2] by using 
x2 = 10−4

and we found 0.3094(1) (column 7). When compared to the
exact value 0.309 01... we observed an error only in the fourth
decimal place which is reasonable according to lattice used in
our MC simulations for this optimization, L = 160.

Now, since we analyzed the first-order (weak) transition
up to the bifurcation point, we turned our attention to points
after it via time-dependent MC simulations. According to
these phase diagrams (Fig. 1), after the bifurcation point, x1 >

0.347 383 4..., there are two second-order lines separating the
ordered and disordered phases and the soft one.

For example, by applying our refinement process for
x1 = 0.42, the method produces a clear point where r is
maximum x

opt
2 = 0.198(2) [see Fig. 2(a)]. This value is in

complete agreement with the exact value of the self-dual line,

x2 = (
√

5−1)
2 − 0.42 = 0.198 03.... However, it is important to

notice that we did not find the two points which we would
expect by looking into the phase diagram corresponding to the
two critical lines. In order to better exploit such specificities,
we simulated our method for two other inputs: x1 = 0.44 and
x1 = 0.46; the first one corresponds to the end of soft-order

transition and the second one was chosen because there is no
ordered phase at this point [see Figs. 2(b) and 2(c)].

In those cases we can clearly see that there is no unique point
where r assumes a maximum value. Finally in Fig. 2(d) we
show the behavior of this same coefficient for some important
points just for an appropriated comparison: the five-state Potts
model (weak first-order transition point), x1 = 0.4 (crossing
two second-order lines), x1 = 0.5, and especially the FZ point
whose critical exponents are estimated in this paper. Now we
would like to consider alternatives to determine (localize)
points after the bifurcation point that are localized on the
soft-disorder transition line. From now on, we will be much
more empirical in our techniques. As we reported above, our
optimization method captures the points on the self-dual line
but the points corresponding to soft-disorder and soft-order
transitions seem to be neglected by the method and this
deserves a better investigation.

Since we used the power laws for ordered initial spin
systems, this can be the reason whereas such transitions
are not order-disorder-like. In order to localize such points
we prepared a second algorithm similar to the previous
method. However, instead of optimizing Eq. (6), by performing
several time-dependent MC simulations starting from m0 = 1,
we monitored simulations starting from m0 = M1(0) = 0
and, in this case, we expected that the second moment of
the order parameter has the power law given by Eq. (7)
(see [30]). Moreover, we also monitored the value of ς

042101-5



DA SILVA, FERNANDES, AND DRUGOWICH DE FELÍCIO PHYSICAL REVIEW E 90, 042101 (2014)

(a)

(b)

FIG. 3. (Color online) Coefficient of determination for the two
different power-law fits: 〈M〉m0=1 ∼ t−β/νz and

〈
M2

〉
m0=0

∼ t (d−2β/ν)z,
and evaluation of the coefficient ς = (d − 2β/ν)z for the different
values of x2 considering as input: x1 = 0.36 ( a) and x1 = 0.46 (b).

whereas it can be estimated, even without significance, when
the coefficient of determination is not satisfactory.

Figure 3 shows the behavior of the coefficient of determina-
tion when one takes into account the power laws for 〈M〉m0=1

and 〈M2〉m0=0 along with the numerical estimates of ς , for
two input values: x1 = 0.36 (a) and x1 = 0.46 (b). We can
see that determination for 〈M2〉m0=0 for both values decreases
abruptly for a value of x2 followed by a subsequent abrupt
increase. Such behavior was found for several other studied
points ranging from the five-state Potts model to x1 = 0.6. We
also can see that the peak of the curves of the determination
coefficient corresponds to the points where the numerical
estimates of ς change their signal. For instance, for x1 = 0.36,
we found a clear maximum of the determination coefficient for
x2 = 0.258(2) when we considered fits for 〈M〉 [Eq. (6)]. On
the other hand, when one considers fits for 〈M2〉 [Eq. (7)]
the value of x2 at the peak of the determination coefficient
(x2 = 0.278(2)) does not coincide with the previous one.

In order to establish some relationships between the
estimates of the points where there is an abrupt decreasing of
coefficient r for 〈M2〉 and values of the soft-disorder transition,
we decided to digitize the phase diagram of the model (Fig. 1,
Ref. [17]) in order to localize (by using a pointer on the bitmap
figure) and compare some points of the soft-disorder phase
transition to the values obtained in our simulations.

We can observe that after x1 = 0.40 (see Table II) there is
excellent agreement between unofficial estimates (Ref. [17])

TABLE II. Values of x2 for several points (column 1) obtained
through two methods. Column 2 presents the estimates extracted by
the digitalization of Fig. 1 in Ref. [17] and column 3 shows the values
obtained by an alternative empirical method (EM).

x1 x2 (Ref. [17]) x2 (EM)

FZ 0.270 0.288(2)
0.36 0.264 0.278(2)
0.40 0.252 0.250(2)
0.44 0.230 0.232(2)
0.48 0.220 0.220(2)
0.52 0.209 0.208(2)

and our empirical method (EM). It is important to mention that
before x1 = 0.44 our method for optimization of the power law
for 〈M〉m0=1 has already localized very well the considered
points on the self-dual transition line. So from this analysis we
have two important conclusions.

(1) By taking into account points with (
√

5 − 1)/4 < x1 <

0.44, we are able to estimate the best values of x2 which
corresponds to the self-dual line by optimizing Eq. (6).

(2) For x1 � 0.40 we estimated some values of x2 through
Eq. (7) by using an empirical approach and analyzed the soft-
disorder transition, the only transition above the self-dual line,
in this region predicted by the phase diagram (see [17]).

Finally, it is important to mention a technical detail in our
simulations. Here, our initial condition for obtaining m0 = 0
for 〈M2〉 was built only with spins related to the first-order
parameter [Eq. (2)], i.e., ni = 1 or 2. This case does not
correspond to the correct critical values of β and ν, whereas
the correct way to vanish the initial configuration is to put
ni = 0,1,2,3,4 in the proportion of 1/5 for each one, as used
in this paper to compute the critical exponents. However, when
considering the empirical method presented above this initial
condition (ni = 1 or 2) brings a change of signal of ς which
was not observed when considering the initial natural condition
(proportion of 1/5).

V. RESULTS II: ESTIMATING THE CRITICAL
EXPONENTS (STATIC AND DYNAMIC ONES) OF THE

BIFURCATION POINT

Now we explored the critical exponents of the Z(5) model
with special attention to the bifurcation point. Before showing
the estimates for this point, we presented some estimates of
the exponent μi = −β/νz from Eq. (6), with i = 1 or 2,
along the self-dual line by using the two order parameters Mi

[Eqs. (2) and (3)]. Our main idea here is to study the symmetry
between these two order parameters via nonequilibrium MC
simulations and to explore if there is some pair (x1,x2) for
which μ1 = μ2. It is important to mention that μ is a sort of
effective exponent since it was used to analyze first weak and
second-order points.

A. Exploring the self-dual line

We prepared an algorithm that measures μ for each
(x1,x2) pair in the self-dual line, x2 = (

√
5 − 1)/2 − x1, and

performed time-dependent MC simulation to obtain averages
of the order parameter [Eqs. (2) and (3)] and, consequently, the
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FIG. 4. (Color online) Estimates of the exponent μ = −β/νz

(a sort of effective exponent) along the self-dual line. We can
observe that curves assume the same value in x1 = 0.310(5) which
corresponds to the five-state Potts point.

exponents μ1 and μ2 from the power-law decay [Eq. (6)]. For
these simulations, we considered x1 ranging from x

(min)
1 = 0.2

to x
(max)
1 = 0.4, with 
x1 = 5 × 10−3. For each input pair

(x1,x2) we used Nrun = 1200 runs, NMC = 150, and L = 160
(enough after a fast finite size scaling study as shown in the
next subsection).

In Fig. 4 we show the behavior of μ1 and μ2 as a function of
x1. We can observe that the curves meet each other at the point
x1 = 0.310(5) which corresponds to the numerical estimate of
the five-state Potts point as well as to the symmetry found in the
phase diagram presented in Fig. 1. Undoubtedly, this is another
interesting finding obtained when using nonequilibrium MC
simulations. It is important to say that we obtained a goodness
of fit (see, for example, [31]) above 0.99 for all considered
points showing that all estimates were obtained with robust
power-law decays. After these preliminary explorations of
the self-dual line and its symmetry via nonequilibrium MC
simulations we explored the numerical estimates of the critical
exponents at the FZ point.

FIG. 5. (Color online) Time evolution of F2 in a ln-ln plot. The
points correspond to the behavior of order parameter M1 while lines
correspond to the order parameter M2.

TABLE III. Estimates of exponents for different time windows
by using the order parameter M1.

Interval φ = 1/νz z μ = β/νz q1/νz qz qβ/νz

[30,40] 0.666(6) 2.38(3) 0.0641(2) 0.994 0.998 0.989
[40,50] 0.649(5) 2.43(5) 0.0650(4) 0.998 1.000 1.000
[50,60] 0.667(6) 2.34(6) 0.0650(7) 0.999 1.000 1.000
[60,70] 0.659 (6) 2.40(5) 0.065(1) 0.995 1.000 1.000
[70,80] 0.64(1) 2.28(6) 0.066(1) 1.000 1.000 1.000
[80,90] 0.66(2) 2.24(6) 0.066(1) 1.000 1.000 1.000
[90,100] 0.65(2) 2.34(6) 0.067(2) 0.998 1.000 1.000
[100,110] 0.63(2) 2.35(5) 0.065(1) 1.000 0.993 1.000
[110,120] 0.66(1) 2.32(3) 0.067(2) 0.999 0.917 1.000
[120,130] 0.64(2) 2.32(4) 0.066(3) 1.000 0.968 1.000
[130,140] 0.68(2) 2.33(5) 0.066(2) 1.000 0.986 0.999
[140,150] 0.66(1) 2.29(4) 0.067(3) 0.999 0.737 1.000

B. The exponents z, ν, and β of the FZ point

Initially we performed simulations to obtain F2 as a function
of t . In order to verify the finite-size effects, we have used
lattice of linear sizes, L = 10, 20, 40, 80, 160, and 240. In
Fig. 5 we can observe robust power laws for the time evolution
of the ratio F2. As can be seen in the figure, the power-law
behavior of the first-order parameter M1 is shown as points
while the second one, M2, is represented by lines. Then, it
is possible to notice in this figure that both order parameters
share the same exponent z.

In our experiments we used NMC = 150 MC steps and
calculated the exponents for different time windows of size

N = 10 MC steps with respective goodness of fit q. In
Table III (column 3) we show the different values obtained
for z. All intervals presented excellent goodness of fit (column
6), with qz > 0.73.

Similarly, the plots in Figs. 6 and 7 show the time evolution
of D(t) and M(t), for the two different order parameters. Here,
D(t) was numerically estimated according to

D(t) ≈ 1

2δ
ln

[ 〈M〉 (t,Tc + δ)

〈M〉 (t,Tc − δ)

]
,

FIG. 6. (Color online) Time evolution of D(t) in a ln-ln plot for
order parameter M1 . The inset plot represents the same time evolution
for the order parameter M2. Just for L = 10 we can observe a visual
reasonable deviation of the power-law behavior.
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FIG. 7. (Color online) Decay of the magnetization starting from
an ordered initial state. The branches for each order parameter, M1

and M2, are indicated in the plot. The difference between the slopes
indicates the difference between critical exponents β1 and β2.

where 〈M〉 (t,Tc ± δ) means the magnetizations above (below)
critical temperature of a quantity δ, starting from an ordered
initial state. Since our parameters are k1 = J1/kBT and
k2 = J2/kBT a perturbation of δ in T corresponds to k′

1 =
J1/kB(T ± δ) = k1/(1 ± δ′) and k′

2 = k2/(1 ± δ′), where δ′ =
δ/T .

In Table III we also present our results for φ and μ exactly as
previously reported for z. We can observe again good fits in all
time windows. All the analysis and estimates presented above
for M1 were also performed for the second-order parameter
M2. However, for economy they were not reported here
whereas a compilation of our main estimates, including M1

and M2, are presented in Table IV. The results from columns
2–7 are estimated by using the regular method to obtain the
error bars in the context of short-time critical MC simulations,
via error propagation (see first part of the appendix).

In this table, the term “best” means the best value found
which reproduces the most similar conjectured values for the
static exponents ν and β (columns 10 and 11, respectively).
The term “prop” refers to uncertainty which was calculated
by error propagation. The term “aver” means the average of
exponents performed from larger time windows taking the
estimates from [70,80] up to [140,150].

We used an alternative method to obtain better estimates,
considering the bootstrap re-sampling method for the un-
certainty calculation (see second part of the appendix for
a detailed description). The idea is to overcome possible
statistical correlation among the exponents. The results are
presented in columns 8 and 9. Our estimates by using bootstrap
re-sampling (boot in Table IV) corroborate the exact values for
ν and β.

First of all, it is important to mention that we obtained
estimates of exponent z for both order parameters which,
to our knowledge, have never been calculated. We can see
values greater than estimates for the Ising model, for example,
(2.14 � z � 2.16) and the three-state Potts model (z ≈ 2.19)
[26], but similar to results obtained for the four-state Potts
model (z ≈ 2.29) [32]. The exponents z, for both order
parameters, are in complete agreement according to error
bars. By using error propagation, our estimates for β (β(prop))
over any criteria are rigorously according to conjecture value
β = 0.08 for the order parameter M2. On the contrary,
although we have reasonable results for the order parameter
M1, β

(prop)
best = 0.107(4) and β

(prop)
aver = 0.105(3), the error bars

are not enough to cover the conjectured value β = 0.12.
Alternatively, with the procedure described in the second

part of the appendix that combines bootstrap and selection,
we have as best estimate β

(boot)
best = 0.119(3) satisfying the

conjecture.
We finally found ν

(prop)
best = 0.70(2) and 0.70(3) for M1 and

M2, respectively, which corroborates the conjecture ν = 0.7.

VI. DISCUSSION AND CONCLUSIONS

In this paper we studied the phase diagram of the Z(5)
model through the nonequilibrium finite size scaling study in
the context of time-dependent MC simulations. We determined
some critical values and weak first-order transition values
along the self-dual line with special attention to the FZ point
that, to our knowledge, have never been analyzed using this
approach. We also determined some transition points along the
soft-disorder transition line by using a nonconventional way
that looks for an abrupt “depression” on the second moment
of the order parameter as function of time. Moreover, we
calculated the exponent μ = β/νz for several points on the
self-dual line of the model for the two order parameters and
we showed that these exponents are equal for the two order
parameters only for the point correspondent to the five-state
Potts point.
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TABLE IV. Final estimates of critical exponents for both order parameters (OP). Here the “best” denotes the value used to obtain the static
critical exponents more similar to literature. “aver” denotes the value found by performing an average over time windows as shown in Table III
for the order parameter M1.

OP ν
(prop)
best ν

(prop)
aver β

(prop)
best β

(prop)
aver z

(prop)
best z

(prop)
aver ν

(boot)
best β

(boot)
best νexact βexact

M1 0.70(2) 0.66(1) 0.107(4) 0.105(3) 2.28(6) 2.31(1) 0.70(3) 0.119(3) 0.7 0.12
M2 0.70(3) 0.68(1) 0.080(1) 0.081(1) 2.28(8) 2.26(1) 0.70(4) 0.080(2) 0.7 0.08
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APPENDIX

In this section we present our methods to estimate un-
certainties. In this paper we used two approaches: (1) error
propagation, generally used in short-time dynamics literature
and (2) alternative error analysis by using bootstrap estimate.

1. Error propagation

In this paper, we used Nrun = 4 × 105 runs for the com-
putation of averaged time series of the second moment of
the order parameters, Eq. (7), in which are required disordered
initial configurations, and Nrun = 104 runs for experiments that
demand ordered initial configurations, such as those which
take into account the power laws given by Eqs. (6), (8),
and (9).

The error bars were obtained from Nb = 5 different bins.
Our results, presented in the following plots, correspond to
more refined estimates 〈Mk(t)〉 = (1/Nb)

∑Nb

i=1〈Mk(t)〉(i) and
the error bars (standard deviation of average) were estimated as
σ/

√
Nb = ( 1

Nb(Nb−1)

∑Nb

i=1[〈Mk(t)〉(i) − 〈Mk(t)〉]2)1/2, where

〈Mk(t)〉(i) denotes the average of the kth moment of mag-
netization of the ith bin.

The exponent z was estimated from Eq. (8) as ẑ = 2/̂ξ

(by setting d = 2) and its error σz was obtained through the
equation σz = (2/̂ξ 2)σξ , where σξ is the error obtained from
the power-law fit. With the estimate of z and its respective
uncertainty in hand, we were able to obtain an estimate of ν

(̂ν) through the fitting of Eq. (9), i.e., ν̂ = φ̂−1̂z−1, with its
respective uncertainty:

σν = [
φ̂−2ẑ−4σ 2

z + φ̂−4ẑ−2σ 2
φ̂

]1/2
.

Now, we can estimate β. Whereas we have in hand an
estimate of φ̂, we can estimate β, where by fitting Eq. (6) β̂ =
μ̂/φ̂, with respective uncertainty,

σβ = [
φ̂−2σ 2

μ + φ̂−4μ̂2σ 2
φ

]1/2
.

2. Alternative approach with bootstrap estimates

Now we describe an alternative analysis for estimating
exponents with uncertainties calculated by the bootstrap
method. Let us start by the independent exponent z. So,
instead of determining this exponent by combining five seeds
which corresponds to five different time series, t ×F2(t),
and obtaining the error bars over these five seeds for each
point of averaged time series, we used a different procedure.
Since we have five seeds for 〈M〉m0=1 and five seeds for
〈M2〉m0=0 we can obtain Nbin = 25 different time series
t ×F2(t) by crossing the seeds. So, we obtain N

(boot)
sample different

re-sampled data sets obtained with replacement. For each
data set, each time series [t ×F2(t)]i corresponds to a
specific bin i = 1,...,Nbin, and an exponent zi is calculated.
Then, for every re-sampled data set would be, for example:
sample1 = (z(1)

1 ,z
(1)
2 ,...,z

(1)
25 ), sample2 = (z(2)

1 ,z
(2)
2 ,...,z

(2)
25 ),...,

sampleNsample
= (z

(N (boot)
sample)

1 ,z
(N (boot)

sample)
2 ,...,z

(N (boot)
sample)

25 ). So for every

re-sampled data we calculate 〈z〉(i) = (z(i)
1 + ...z

(i)
25)/Nbin,

and with a sampling distribution of 〈z〉(i) we

calculate 〈z〉 = (1/N
(boot)
sample)

∑N
(boot)
sample

i=1 〈z〉(i). The standard
deviation of the sampling is given by σz =√

(N (boot)
sample − 1)−1

∑N
(boot)
sample

i=1 (〈z〉(i) − 〈z〉)2, which is a standard

error of the mean (this is the more important point).
Since we obtained previously an estimate of z, we

used it as input and we calculated ν(boot) by using time

series t × 1
2δ

ln[
〈M〉m0=1(t,kc+δ)
〈M〉m0=1(t,kc−δ) ]. We also crossed the seeds

to obtain Nbin = 25 bins and for each bin, a linear
fit is performed producing φi =⇒ νi = 1/(φi · z). We re-
peat the re-sampling procedure in order to obtain σν =√

(N (boot)
sample − 1)−1

∑N
(boot)
sample

i=1 (〈ν〉(i) − 〈ν〉)2. Finally, since we

have estimates for z and ν we repeat the procedures to
obtain the error estimate of β: (a) Linear fits produce
μi =⇒ βi = z · ν · μi , i = 1,...,Nbin; (b) re-sampling to ob-
tain the bootstrap estimate of the error estimate, σβ =√

(N (boot)
sample − 1)−1

∑N
(boot)
sample

i=1 (〈β〉(i) − 〈β〉)2. The only difference

here is that Nbin = 5 since there is no crossing of seeds for this
estimate.

So, our method follows the following prescription.
(1) We obtain two estimates of the dynamic exponent z

(minimum and maximum) estimates where the error bars were
obtained with bootstrap re-sampling, under N

(boot)
sample = 104.

(2) From these two estimates (input), we obtain a list of
worst and best estimates of the static exponent ν. From these
estimates we select the nearest and the farthest estimates with
uncertainties calculated by the bootstrap method.

(3) Finally with best and worst values of ν, our re-sampling
bootstrap results in a list of worst and best estimates of β and
its uncertainty.

For example, for the order parameter M1 we have the results
for z according to column 2 in Table V for the different inter-
vals. Taking the two more different estimates (maximum and
minimum) we replicated the bootstrap method in order to ob-
tain candidate estimates for ν and β, which is shown in columns
3–6 in the same table. Here νbest are the values obtained for
z = 2.25 while the values for νworst were obtained by using z =
2.36 as input. The columns βbest and βworst correspond to the
best and worst values by using previous input values. So we
choose ν = 0.70(3) and β = 0.119(3) as the better estimates
among best estimates. Similar analysis was performed for M2

which is shown in columns 8 and 9 in Table IV.

TABLE V. Results for the boostrap by using the order parameter
M1.

Interval z νbest νworst βbest βworst

[70,80] 2.28(5) 0.71(4) 0.66(4) 0.117(3) 0.104(3)
[80,90] 2.25(5) 0.69(1) 0.64(1) 0.117(1) 0.104(1)
[90,100] 2.35(4) 0.70(3) 0.65(2) 0.119(3) 0.106(3)
[100,110] 2.36(7) 0.71(2) 0.66(2) 0.116(3) 0.103(3)
[110,120] 2.32(6) 0.69(2) 0.64(2) 0.117(3) 0.104(3)
[120,130] 2.32(6) 0.71(3) 0.66(3) 0.117(3) 0.104(2)
[130,140] 2.30(3) 0.68(2) 0.63(2) 0.117(1) 0.104(1)
[140,150] 2.27(4) 0.69(2) 0.64(2) 0.118(8) 0.105(3)
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