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Lüdtke Ferreira, Ana Paula

Object-Oriented Graph Grammars / Ana Paula Lüdtke
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APPENDIX F GRAMÁTICAS DE GRAFOS ORIENTADOS A OBJETO 152
F.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
F.2 Especificações de sistemas orientados a objeto . . . . . . . . . . . 154
F.3 Computações de sistemas orientados a objeto . . . . . . . . . . . 155
F.4 Verificação de sistemas orientados a objeto . . . . . . . . . . . . . 156
F.5 Conclusões . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



LIST OF FIGURES

Figure 2.1: Example of a strict relation . . . . . . . . . . . . . . . . . . . . . 26
Figure 2.2: Example of strict and non strict ordered functions . . . . . . . . . 27
Figure 2.3: Class-model graph for geometric figures . . . . . . . . . . . . . . . 32
Figure 2.4: Class-model graph for geometric shapes . . . . . . . . . . . . . . 37
Figure 2.5: Class-model graph for graphic primitives . . . . . . . . . . . . . . 37
Figure 2.6: Composition of specifications as class-model graph composition . 38
Figure 2.7: Specialization through inheritance as class-model graph composition 39
Figure 2.8: Specialization through inheritance as class-model graph composition 39
Figure 2.9: Aggregation as class-model graph composition . . . . . . . . . . . 41
Figure 2.10: Aggregation as class-model graph composition . . . . . . . . . . . 41

Figure 3.1: Example of a C-typed graph . . . . . . . . . . . . . . . . . . . . . 46
Figure 3.2: C-typed graph morphism . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 3.3: Changing object types during a course of computation . . . . . . 52
Figure 3.4: Inexistence of correct element typing . . . . . . . . . . . . . . . . 55
Figure 3.5: Dynamic binding as message retyping . . . . . . . . . . . . . . . . 56

Figure 4.1: Promela translated program header definition. . . . . . . . . . . . 71
Figure 4.2: Promela translated program processes definitions. . . . . . . . . . 72
Figure 4.3: Promela translated processes rule application definitions. . . . . . 75
Figure 4.4: Promela translated program initialization definitions. . . . . . . . 77
Figure 4.5: Correspondence between grammar and program entities . . . . . 80
Figure 4.6: Object process transition system . . . . . . . . . . . . . . . . . . 82
Figure 4.7: Interleaving of the Promela program execution . . . . . . . . . . . 83
Figure 4.8: Class-model graph for the Dining Philosophers problem. . . . . . 85
Figure 4.9: Fork rules for the Dining Philosophers problem. . . . . . . . . . . 86
Figure 4.10: Philosopher rules for the Dining Philosophers problem. . . . . . . 86
Figure 4.11: Left-HandedPhilosopher rules for the Dining Philosophers problem. 87
Figure 4.12: Right-HandedPhilosopher rules for the Dining Philosophers prob-

lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 4.13: The initial graph for the Dining Philosophers problem. . . . . . . 88
Figure 4.14: Counterexample of the absence of deadlock property . . . . . . . 92



LIST OF DEFINITIONS

Definition 2.1: Strict relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Definition 2.2: Strict ordered set . . . . . . . . . . . . . . . . . . . . . . . . . 26
Definition 2.3: Strict ordered function . . . . . . . . . . . . . . . . . . . . . . 26
Definition 2.4: Class-model graph . . . . . . . . . . . . . . . . . . . . . . . . . 31
Definition 2.5: Class-model graph morphism . . . . . . . . . . . . . . . . . . . 33
Definition 2.6: Binary class-model graph composition . . . . . . . . . . . . . . 36
Definition 2.7: Inheritance as class-model graph composition . . . . . . . . . . 40
Definition 2.8: Aggregation as class-model graph composition . . . . . . . . . 41
Definition 3.1: C-typed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Definition 3.2: C-typed graph morphism . . . . . . . . . . . . . . . . . . . . . 46
Definition 3.3: Attribute and message sets . . . . . . . . . . . . . . . . . . . . 49
Definition 3.4: Object-oriented graph . . . . . . . . . . . . . . . . . . . . . . . 50
Definition 3.5: Category OOGraphP(C) . . . . . . . . . . . . . . . . . . . . . 51
Definition 3.6: Basic object-oriented rule . . . . . . . . . . . . . . . . . . . . . 53
Definition 3.7: Strict object-oriented rule . . . . . . . . . . . . . . . . . . . . . 53
Definition 3.8: Object-oriented rule with object creation . . . . . . . . . . . . 53
Definition 3.9: General object-oriented rule . . . . . . . . . . . . . . . . . . . 54
Definition 3.10: Object-oriented match . . . . . . . . . . . . . . . . . . . . . . 54
Definition 3.11: Object-oriented direct derivation . . . . . . . . . . . . . . . . 54
Definition 3.12: Object-oriented graph grammar . . . . . . . . . . . . . . . . . 59
Definition 3.13: Partition on productions indexed by vertices . . . . . . . . . . 61
Definition 3.14: Partition on productions indexed by messages . . . . . . . . . 61
Definition 3.15: Class set of rules . . . . . . . . . . . . . . . . . . . . . . . . . 62
Definition 3.16: Visible types . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 3.17: Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 3.18: Observable transition relation −→ . . . . . . . . . . . . . . . 64
Definition 3.19: Object-oriented graph grammar transition semantics . . . . . 64
Definition 4.1: Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Definition A.1: Forgetful functors . . . . . . . . . . . . . . . . . . . . . . . . . 128
Definition B.1: Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.2: Binary relation . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.3: Reflexive relation . . . . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.4: Symmetric relation . . . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.5: Antisymmetric relation . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.6: Transitive relation . . . . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.7: Preorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.8: Partial order relation . . . . . . . . . . . . . . . . . . . . . . . 129



Definition B.9: Partially ordered set . . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.10: Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.11: Upper set, lower set . . . . . . . . . . . . . . . . . . . . . . . 129
Definition B.12: Upper bound, lower bound . . . . . . . . . . . . . . . . . . . 130
Definition B.13: Largest element, least element . . . . . . . . . . . . . . . . . 130
Definition B.14: Supremum (lub, join), infimum (glb, meet) . . . . . . . . . . 130
Definition B.15: Monotonic function . . . . . . . . . . . . . . . . . . . . . . . 130
Definition B.16: Partial monotonic function . . . . . . . . . . . . . . . . . . . 130
Definition B.17: Disjoint union . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Definition B.18: Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Definition C.1: Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Definition C.2: Functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Definition C.3: Initial object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Definition C.4: Coproduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Definition C.5: Cocone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Definition C.6: Colimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Definition C.7: Coequalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Definition C.8: Pushout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Definition C.9: Category Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Definition C.10: Coproduct in Set . . . . . . . . . . . . . . . . . . . . . . . . 133
Definition C.11: Generalized coproduct in Set . . . . . . . . . . . . . . . . . . 133
Definition C.12: Coequalizer in Set (MACLANE, 1998) . . . . . . . . . . . . 134
Definition C.13: Category SetP . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Definition C.14: Coproduct in SetP . . . . . . . . . . . . . . . . . . . . . . . 134
Definition C.15: Coequalizer in SetP . . . . . . . . . . . . . . . . . . . . . . . 134
Definition C.16: Pushout in SetP . . . . . . . . . . . . . . . . . . . . . . . . . 134
Definition D.1: Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Definition D.2: Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Definition D.3: Total graph morphism . . . . . . . . . . . . . . . . . . . . . . 135
Definition D.4: Partial graph morphism . . . . . . . . . . . . . . . . . . . . . 135
Definition D.5: Alphabet, string . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Definition D.6: Hypergraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Definition D.7: Total hypergraph morphism . . . . . . . . . . . . . . . . . . . 135
Definition D.8: Partial hypergraph morphism . . . . . . . . . . . . . . . . . . 136
Definition D.9: Labeled hypergraph . . . . . . . . . . . . . . . . . . . . . . . . 136
Definition D.10: Total labeled hypergraph morphism . . . . . . . . . . . . . . 136
Definition D.11: Partial labeled hypergraph morphism . . . . . . . . . . . . . 136
Definition D.12: Typed hypergraph . . . . . . . . . . . . . . . . . . . . . . . . 136
Definition D.13: Typed hypergraph morphism . . . . . . . . . . . . . . . . . . 136
Definition D.14: Category Graph . . . . . . . . . . . . . . . . . . . . . . . . . 136
Definition D.15: Category GraphP . . . . . . . . . . . . . . . . . . . . . . . . 136
Definition D.16: Category HGraph . . . . . . . . . . . . . . . . . . . . . . . 136
Definition D.17: Category HGraphP . . . . . . . . . . . . . . . . . . . . . . 136
Definition D.18: Category LabHGraph . . . . . . . . . . . . . . . . . . . . . 137
Definition D.19: Category LabHGraphP . . . . . . . . . . . . . . . . . . . . 137
Definition D.20: Category HGraphP(T) . . . . . . . . . . . . . . . . . . . . 137



LIST OF THEOREMS

Theorem 2.1: Category SOSet . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Theorem 2.2: Initial object in SOSet . . . . . . . . . . . . . . . . . . . . . . . 28
Theorem 2.3: Coproducts in SOSet . . . . . . . . . . . . . . . . . . . . . . . 28
Theorem 2.4: Special colimits in SOSet . . . . . . . . . . . . . . . . . . . . . 29
Theorem 2.5: Category CGraph . . . . . . . . . . . . . . . . . . . . . . . . . 33
Theorem 2.6: Initial object in CGraph . . . . . . . . . . . . . . . . . . . . . 34
Theorem 2.7: Coproducts in CGraph . . . . . . . . . . . . . . . . . . . . . . 34
Theorem 2.8: Special colimits in CGraph . . . . . . . . . . . . . . . . . . . . 34
Theorem 3.1: Category CGraphP(C) . . . . . . . . . . . . . . . . . . . . . . 49
Theorem 3.2: Derivation is a pushout in OOGraphP(C) . . . . . . . . . . . . 58



NOTATION

f : A → B f is a (partial) function with domain A and codomain B
f : A 7→ B f is a total function
f : A ↪→ B f is an injection

dom(f) domain of function f
cod(f) codomain of function f
im(f) image of function f

f(a) value of function f at the point a ∈ dom(f)
f(A) {f(a) | a ∈ A}
undef undefined value (usually representing f(a) if a /∈ dom(f))

A×B cartesian product of sets A and B
A ]B disjoint union of sets A and B
P(X) powerset of X, i.e., {Y | Y ⊆ X}

〈P,vP 〉 partially ordered set (Definition B.9)
↑p upper set of an element p (Definition B.11)
↓p lower set of an element p (Definition B.11)
tA supremum of A (Definition B.14)
uA infimum of A (Definition B.14)

ub(A) set of upper bounds of A (Definition B.12)
lb(A) set of lower bounds of A (Definition B.12)

lub(A) least element of ub(A) (Definition B.14)
glb(A) greatest element of lb(A) (Definition B.14)

Set Definition C.9
SetP Definition C.13

Graph Definition D.14
GraphP Definition D.15
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LabHGraph Definition D.18

LabHGraphP Definition D.19
HGraphP(T) Definition D.20



ABSTRACT

This thesis presents a graph-based formal framework to model and verify object-
oriented specifications. More specifically, an extension of the algebraic single-
pushout approach to (typed) graph grammars is developed, where the typing mor-
phisms are compatible with the order relations defined over nodes and edges to
represent, respectively, inheritance and overriding of classes and methods. This
work is divided in three main lines: static specifications, dynamic behaviour, and
formal verification of object-oriented systems.

The object-oriented class hierarchy structure is modeled by a graph structure
called class-model graph, whose set of nodes and edges have a restricted partial order
relation over them, to model inheritance and method overriding. The underlying
relations of such sets obey additional restrictions, intended to assure that class-
model graphs provide an adequate and faithful model of how object-oriented classes
are organized and combined.

Object-oriented graph grammars model the dynamics of object-oriented systems.
Object-oriented graphs are hypergraphs typed over a class-model graph, but the typ-
ing morphism is more flexible than the traditional one, in the sense that mapped
hyperedges need to preserve relations between sources and targets. This feature
adequately models inheritance, for any object can make use of inherited attributes
or messages. Morphisms between object-oriented graphs assure that subclass poly-
morphism is a built-in feature of the formalism. Object-oriented rules respect the
principles of encapsulation and information hiding of the object-oriented paradigm.
A direct derivation (or rule application) is shown to be a pushout in the category of
object-oriented graphs and their morphisms. An observational semantics for object-
oriented graph grammars, based on a labeled transition system, is presented. This
semantics is based on a notion of visible entities (objects or messages), which are
the elements we are interested in for verification purposes.

Finally, a formal translation from object-oriented graph grammars specifications
into Promela programs is defined. Objects in the system graph are translated as
Promela processes, and message exchange is implemented with buffered communi-
cation channels. The semantics of grammar rule application is preserved by the
nondeterminism in the choice of which message to consume. Inheritance, poly-
morphism and dynamic binding are implemented in the Promela program, which
originally does not support it. The translation presented assures that both state
and event verification can be performed.

Keywords: Graph grammars, Object orientation, Formal verification.



RESUMO

Gramáticas de Grafos Orientados a Objeto

Esta tese apresenta um modelo conceitual para modelagem e verificação de espe-
cificações de sistemas orientados a objeto. Mais especificiamente, uma extensão da
abordagem algébrica baseada em single-pushouts para gramáticas de grafos tipadas
é desenvolvida, onde os morfismos de tipagem são compat́ıveis com as relações de or-
dem sobre os nodos e (hiper)arcos de um grafo, e que representam, respectivamente,
as relações de herança entre classes e sobrescrita de métodos. O trabalho é dividido
em três linhas principais: especificações de sistemas, comportamento dinâmico de
programas, e verificação formal de sistemas orientados a objeto.

A hierarquia de classes de um sistema orientado a objeto é modelada por um
hipergrafo rotulado chamado grafo de classes, cujos conjuntos de nodos e arcos
possuem uma relação de ordem parcial restrita, com o objetivo de modelar herança e
sobrescrita de métodos. Restrições adicionais garantem que grafos de classes provêm
um modelo fiel e adequado da maneira como as classes de um sistema orientado a
objetos são efetivamente organizadas e combinadas.

Grafos orientados a objeto são hipergrafos tipados sobre um grafo de classes. O
morfismo de tipagem exige que hiperarcos mapeados preservem as relações existen-
tes entre os seus nodos de origem e destino. Esta caracteŕıstica modela a herança de
forma adequada, visto que qualquer objeto pode fazer uso de atributos ou mensagens
herdadas. Morfismos entre grafos orientados a objeto asseguram que o polimorfismo
de subclasses seja uma caracteŕıstica intŕınseca do formalismo aqui apresentado.
Regras orientadas a objeto respeitam os prinćıpios de encapsulamento e oclusão da
informação do paradigma. Uma derivação direta (ou aplicação de regra) é uma soma
amalgamada (pushout) na categoria de grafos orientados a objeto e seus morfismos.
Gramáticas de grafos orientados a objeto modelam o comportamento dinâmico de
sistemas. Uma semântica observacional para gramáticas de grafos orientados a ob-
jeto, baseada em sistemas de transição rotulados, é definida. Tal semântica é baseada
na noção de entidades viśıveis (objetos ou mensagens), e que representam os elemen-
tos importantes no processo de verificação de propriedades do sistema especificado
pela gramática.

Finalmente, uma tradução formal de gramáticas de grafos orientados a objeto
para programas na linguagem Promela é definida. Objetos são traduzidos como pro-
cessos em Promela, e a troca de mensagens entre objetos é implementada com canais
de comunicação. Herança, polimorfismo e ligação dinâmica são implementados no
programa Promela, que originalmente não suporta nenhuma dessas carateŕısticas.
A verificação de propriedades do programa pode ser efetuada tanto sobre estados
como sobre eventos.

Palavras-chave: Gramáticas de grafos, Orientação a objeto, Verificação formal.
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1 INTRODUCTION

1.1 Motivation

Computer programs have become a major part of our lives. We rely on them to
help us execute most of our activities during the day. As examples of applications we
use on a daily basis one can cite cash withdrawal terminals, Internet banking, flight
reservation systems, supermarket cashiers, Internet browsers, electronic mail clients,
text processors, among many others. More sophisticated services are also computer
programmed, such as telecommunication systems, railway and street semaphore
control, airplanes autopilots, and even life support systems provided by intensive
care units in hospitals.

One of the main factors shared by the mentioned applications is that computer
programs are obliged to coordinate a high number of system components that oper-
ate simultaneously. For example, a terminal for travel reservations needs to access
a shared database to verify if a certain seat is available or not; autopilots should
receive information from several parts of the aircraft as well as information concern-
ing weather conditions to guarantee the route to be followed correctly; life support
equipments should monitor constantly the vital signals of a patient to assure that,
in case of any problem, adequate measures are taken on time.

For the clients of such services, it is of fundamental importance that their op-
eration occurs in an absolutely correct form: bank accounts should reflect exactly
what was deposited and withdrawn, planes should keep themselves in the route and
artificial breathers should supply oxygen at the correct rate for the patient. If a
failure during the execution of an electronic game or a text editor does not generate
significant problems, failures in the execution of programs of critical systems can
have very serious or even fatal consequences. However, regardless of those requi-
sites, cases where some hardware or software failure caused significant personal or
financial damage are often reported. A concrete and relatively recent example was
the explosion of the French rocket Ariane 5, in June of 1996, less than forty seconds
after its launch. The investigation on the accident concluded that there was an error
in the program that should calculate the rocket trajectory. The very same error also
occurred in the backup computer, which caused the rocket to be destroyed (HUTH;
RYAN, 2000).

The massive decrease on hardware costs has also contributed to the dissemina-
tion of computers and computational devices within society. The profile of computer
users is becoming more and more diverse. Consequently, different domains of appli-
cation are arising constantly. New software development techniques have emerged
over the last years to deal with current developing demands, but the paradigms
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on which those techniques are based (especially objects, events and concurrency),
although making the development process itself easier, make testing and validation
of such systems more complex (and consequently, more error prone). This scenario
requires specification techniques which can cope with the needs of modern soft-
ware development. Such techniques must assure that the final product is consistent
and complete regarding its specification, be formal, incremental and preferably ex-
ecutable. Also, they must be simple enough to be used by non experts in formal
methods.

One of the biggest challenges in the acceptance of formal methods in industry
lies in the difficulty of integrate formal specification techniques into the software
development process (ARAÚJO JR.; SAWYER, 1998). In spite of the growing evi-
dence that formal methods can offer benefits in terms of quality, strategies to their
use appear to be neglected in most organizations. There are a number of reasons
why formal methods are not used in industry, and the most commonly cited are the
need of a major change on the requisite and resources needed for the process of spec-
ification to take place; the perception that those methods are hard to understand
if you are not already a specialist; and that the appropriate abstractions are some-
times difficult to identify. This is true for some known formal software specification
languages, such as VDM (BJORNES; JONES, 1978), Z (MONIN, 2003), LOTOS, λ-
calculi, OBJ (GOGUEN; MALCOM, 1996), Clear (BURSTALL; GOGUEN, 1981),
etc., which can only be fully understood and used by people with a reasonable math-
ematical knowledge. Ideally, people who develop software systems should have this
background, but one cannot expect that every client is fluent in the language of
mathematics.

Clients — in the sense of people who are the future users of the software sys-
tem being developed — have to participate in the development process, or at least
in the specification process, otherwise there will be no guarantees that the system
requirements will be met. Not surprisingly, most informal and semi-formal methods
for software specifications are based in some kind of diagram. Diagrams are usually
easier to understand than a specification written in some mathematical language.
Flowcharts, dataflow diagrams, entity-relationship diagrams, and the Unifying Mod-
eling Language (UML) are familiar examples of such diagrams. Although visually
simpler, diagrams are generally built from specific syntactic rules. Therefore, dia-
grams constitute a visual language of specification, with a formal syntax. If such
language is also equipped with a formal semantics, we have a visual formal speci-
fication language which can (hopefully) be integrated more easily into the software
development process. Diagrams used in the specification process can usually be
modeled as graphs.

Graphs are mathematical (algebraic) structures which can convey a significant
amount of information in a compact, visual, and understandable way. Notably,
relations of any order can be easily expressed as graphs. The specification of com-
putational systems using graphs offers two advantages which are, as seen before, in
general mutually exclusive: (i) being formal mathematical structures, they have a
well defined semantics and, (ii) having a diagrammatical layout, graph specifications
can be more easily produced and understood by people outside the field of Computer
Science. Therefore, graph-based specification techniques can provide a solid basis
for the integration of formal specification techniques into the software development
process and to strength the use of formal methods in industry (BARESI; PEZZÈ,



15

2000).

The rest of this chapter presents the main subjects which are addressed within
this work, and upon which the theoretical framework for this thesis is founded.
Section 1.2 presents graph transformation systems and graph grammars, which are
an extension of transformation systems and Chomsky grammars applied to graphs.
Section 1.3 describes object-oriented systems, and how they differ from the more
traditional models of computation. Section 1.4 talks about model checking, which is
a fully automatic method for verification of finite-state systems. Finally, Section 1.5
lists the main contributions and outline of this thesis.

1.2 Graph transformation systems

Rule–based systems have proven to be useful for describing computations by local
transformations: arithmetic, syntactic, and deduction rules are familiar examples.
The greatest advantage of rule–based systems lies on the fact that the knowledge
of algorithms that most people have, which comes mainly from the study of mathe-
matics in elementary and high school, is based on rules. We know rules to transform
mathematical expressions into equivalent ones, to calculate the value of an element
belonging to an equation, to extract the square root of a positive number, to find
the minimum of a function, and so on and so forth. Areas like language defini-
tion (HOPCROFT; MOTWANI; ULLMAN, 2001), logic and functional program-
ming (CLARK; TAERNLUND, 1982), (STERLING; SHAPIRO, 1994), (READE,
1995), algebraic specification (BERGSTRA; HEERING; KLINT, 1989), term rewrit-
ing (GADDUCCI, 1996), (KENNAWAY, 1995), theorem proving (FITTING, 1996),
concurrent processes (MILNER, 1989a), and expert systems (NIKOLOPOULOS,
1997), (RUSSELL; NORVING, 1995), (KOSKO, 1992) witness the prominent role
of rules in computer programming.

Rule-based graph transformation is, for those reasons, a quite natural way to
combine graphs, for describing complex structures, with rules, to manipulate those
structures. Graph transformation, also known as graph rewriting, combines the
potentials and advantages of both, graphs and rules, into a single computational
paradigm (EHRIG et al., 1996).

The theory of graph transformation systems studies a variety of formalisms which
expand the theory of formal languages (HOPCROFT, 1969), (HOPCROFT; MOT-
WANI; ULLMAN, 2001), (LEWIS; PAPADIMITRIOU, 1998), (MARTIN, 1996), to
encompass more general structures specified as graphs. All constructions known in
the string transformation approach from the formal language framework also exist
in graph transformation: rules, derivations and generated languages can be defined
for graphs in the very same fashion they are defined for strings. Only naturally,
different types of graph rules give rise to different classes of graph languages, with
different expressiveness and differences in the decidability of the recognition prob-
lem. Similarly to string grammars, graph transformation systems also provide a
model of computation. It has been shown that all enumerable graph sets can be
generated using very restricted graph grammar models (NAGL, 1986). A graph
transformation system allows to describe finitely a collection (finite or infinite) of
graphs, which can be obtained from an initial graph through the repeated applica-
tion of graph productions. The structure of graphs, graph productions, and results
of rule applications determine the model of computation provided.



16

Graph transformation has been studied in a variety of approaches, motivated
by application domains such as pattern recognition, semantics of programming lan-
guages, compiler description, implementation of functional programming languages,
specification of database systems, specification of abstract data types, specification
of distributed systems, and many others. This development is documented mainly in
conference proceedings (CLAUS; EHRIG; ROZENBERG, 1979), (EHRIG; NAGL;
ROZENBERG, 1982), (EHRIG et al., 1986), (EHRIG; KREOWSKI; ROZENBERG,
1990), (SCHNEIDER; EHRIG, 1993), (EHRIG; ENGELS; ROZENBERG, 1994),
(EHRIG et al., 1998), (CORRADINI et al., 2002), (EHRIG et al., 2004), and other
collections of selected papers, as well as in a series of handbooks (EHRIG et al.,
1996), (EHRIG et al., 1997), and (EHRIG et al., 1999).

Graph transformation is generally non-deterministic because of two reasons: (i)
there may be more than one rule which can be applied to a certain graph, and
(ii) applying a graph transformation rule to a graph means to transform it locally
so that there may be various parts in the graph which can be manipulated by rule
applications. To regulate the graph transformation process, for example by choosing
rules according to a priority, or by prescribing a certain sequence of steps, suitable
control conditions can be stated.

A graph grammar is a graph transformation system equipped with an initial
graph (of a suitable kind). The underlying graph data model and the type of trans-
formation rules of a graph grammar form a so-called graph transformation approach
(ANDRIES et al., 1999). In the literature, there exist a variety of graph transforma-
tion approaches like the expression approach (NAGL, 1986), Progress (SCHÜRR,
1990), algebraic ones like the double-pushout approach (EHRIG; PFENDER;
SCHNEIDER, 1973) or the single-pushout approach (LÖWE, 1991), and more re-
stricted approaches like node replacement (ENGELFRIET; ROZENBERG, 1997),
edge replacement (HABEL; KREOWSKI, 1982), hyperedge replacement (HABEL,
1992), probabilistic replacement (MOSBAH, 1996) or mixed approaches such as
(BAUDERON; JACQUET, 2001) and (LORETO; RIBEIRO; TOSCANI, 2002).
For example, in Progress, attributed graphs are transformed, whereas hyperedge re-
placement applies rules whose left-hand side is composed of a single hyperedge with
its corresponding vertices.

The algebraic approach to graph grammars, presented for the first time in
(EHRIG; PFENDER; SCHNEIDER, 1973) makes use of categorical constructs to
define the relevant aspects of the model of computation provided by graph grammars.
That approach is currently known as double-pushout approach, because derivations
are based on two pushout constructions in the category1 of graphs and total graph
morphisms. The single-pushout approach (LÖWE, 1991), on the other hand, has
derivations characterized as a pushout construction in the category of graphs and
partial graph morphisms. It is a proper extension of the double-pushout approach
(EHRIG et al., 1996) capable of dealing with addition and deletion of items in
unknown contexts, which is an important feature for distributed systems.

The algebraic approach to graph grammars have been used to specify various
kinds of software systems, where graphs correspond to the states and graph pro-
ductions to the operations or transformations of such systems (EHRIG; LÖWE,

1Appendix C presents the categorical definitions used along this text. Additional material on
Category Theory can be found in (MACLANE, 1998), (PIERCE, 1991), (BORCEUX, 1994) and
(ASPERTI; LONGO, 1991).
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1993). Concepts of parallel and distributed productions and derivations in the alge-
braic approach are very useful to model concurrent access, aspects of synchroniza-
tion, and distributed systems based on local and global graphs (see, for example,
(EHRIG; ROSEN, 1980), (LÖWE, 1991), (EHRIG; LÖWE, 1993), (KORFF, 1995),
(TAENTZER, 1996a), (HECKEL, 1998), and (MONTANARI; PISTORE; ROSSI,
1999)).

1.3 Object-oriented systems

The principles behind the object-oriented paradigm — data and code encapsu-
lation, information hiding, inheritance and polymorphism — fit very well into the
needs of modular system development, distributed testing, and reuse of software
faced by system designers and engineers, making it perhaps the most popular par-
adigm of system development in use nowadays. The most distinguished features
of object-oriented systems are inheritance and polymorphism, which make them
considerably different from other systems in both their architecture and model of
execution.

Inheritance is a central mechanism in object-oriented programming. It supports
the incremental design of classes (in the class-based approach (COOK, 1990)) or
objects (in the object-based approach (UNGAR et al., 1991)). Inheritance allows
that new classes do not need to be written from scratch, but to be built upon already
existing ones. This process generates a hierarchy of classes, where a heir class is a
refined version of its ancestor or ancestors, depending whether single or multiple
inheritance is used. A heir class also inherits all the features (data and operations)
of its parent class to which it may add new ones or modify the operations already
there. The resulting extensibility of classes support major requirements posed by
stepwise development and reuse of code (BREU, 1991).

Along with the fundamental notion of inheritance, comes the other central fea-
ture of the object-oriented paradigm, which is polymorphism. Polymorphism can be
described as the characteristic of being able to assign a different meaning or usage to
something in different contexts. There are several different kinds of polymorphism
used in the programming language setting, and the one we refer to is the so-called
subclass polymorphism (CARDELLI; WEGNER, 1985): an object can be viewed as
belonging to many different classes that need not to be disjoint. Subclass polymor-
phism specifies that an instance of a subclass can appear wherever an instance of
a superclass is required. Polymorphism, in this context, can be exemplified by the
following situation: if two classes x and y are related by the inheritance hierarchy,
with x being a descendant (subclass) of y, then in any place an object of the class
y is expected, an object of the class x can appear, since an object of the class x is
also an object of the class y.

Subclass polymorphism becomes especially important in object-oriented pro-
grams when dynamic binding is implemented. Dynamic binding is a request-
handling mechanism that selects the method to be called based on the type of
the target object. So, the code executed to perform a given operation is determined
at run time from the message receiver class. This allows the specification of one
request that can result in the invocation of different methods depending on the type
of the target object, which typically can only be determined at run time. Dynamic
binding permits that classes may be created to receive a particular message, without
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changing (or recompiling) the code which sends the message. Most object-oriented
languages support the selection of the appropriate method based on the class of the
actual receiver object (CAMPIONE; WALRATH; HUML, 2000), (STROUSTUP,
2000), (THOMAS; WEEDON, 1997).

There is a plethora of formal and semi-formal methods proposed in the literature
for the specification of object-oriented systems. Object-oriented programs usually
make use of inheritance (which is the most common way of code reuse) and method
redefinition to achieve their goals. Therefore, it should be expected that formalisms
for the specification of object-oriented architectures or programs reflect those con-
cepts, otherwise the use of such formalisms will neglect concepts that have a major
influence in their organization and model of execution.

Object-oriented system modeling and programming approaches should present a
number of desired properties, amongst which we cite the following: (i) the existence
of a formal specification language which can be easily understood by both software
developers and final users; (ii) the possibility of systems static and dynamic aspects
be specified in an integrated way (i.e., by the same formalism); (iii) the existence of
a formal semantical basis, allowing the composition of modular specifications in a
consistent and significant manner; (iv) the possibility of high level specifications be
refined into lower ones, or even into actual programs.

It has been known for a long time that the majority of systems under develop-
ment are not formally specified because most formal specifications are difficult to
understand and produce. Software development companies must provide the market
with innovations and interesting products, in order to survive financially. This rush
naturally demands a high velocity on the development cycle, which is, most of the
time, incompatible with detailed formal descriptions which are not understood by
programmers anyway. So, one of the more demanding challenges is to produce formal
methods which can be understood by all participants on the software development
process. We believe graph grammars can help achieving these goals.

Graph grammars have been used to specify various kinds of software systems,
where graphs correspond to states and graph productions to operations or trans-
formations of such systems (EHRIG; LÖWE, 1993). System specifications through
graphs often rely on labeled graphs or typed graphs to represent different system
entities (ANDRIES et al., 1999), (BLOSTEIN; FAHMY; GRBAVEC, 1995), (COR-
RADINI; MONTANARI; ROSSI, 1996), (DOTTI; RIBEIRO, 2000), (KORFF,
1995), (MONTANARI; PISTORE; ROSSI, 1999), (RIBEIRO, 1996), (TAENTZER,
1996a). However, neither labeling nor typing reflect the inheritance relation among
objects, and polymorphism cannot be applied if it is not made explicit. To do so, a
class, if represented by a node or edge in a graph, should have a multiplicity of la-
bels or types assigned to it, representing all its ancestors, concerning the inheritance
relation on classes. However, this is not compatible with the usual way labeling or
typing are defined (as functions).

A very natural way of modeling object-oriented systems through graphs is by
representing objects (or classes) as nodes and attributes and messages as arrows.
Chapter 2 shows that objects have a natural order relation connecting them, given
by the inheritance hierarchy. Additionally, message redefinition (overriding) relation
also determines an order relation over the methods of any class organization. It will
be shown in Section 2.2 that the reflexive and transitive closure of both inheritance
and overriding relations is a partial order. Furthermore, the way messages are
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allowed to be redefined assures that, if objects are represented as graph nodes and
messages as graph edges, the source and target functions must be order-preserving
(with respect to those relations), i.e., monotone functions.

Characterizing objects, attributes and methods this way creates a situation where
graphs are no longer defined over sets and functions, but over partially ordered sets
and monotone functions. The very abstract way that graphs and graph morphisms
are dealt with within category theory can be maintained by moving from diagrams
in the category SetP of sets and partial functions to another suitable category
of partially ordered sets and partial monotone functions. The algebraic approach
to graph grammars rely on categorical constructs, especially on colimits, to express
most of its results. Having graphs expressed in a category other than SetP is useful,
in the sense that if the constructs used within the theory of graph grammars can be
proven to exist in the new setting, the conclusions drawn from the former could be
automatically transferred to the latter.

1.4 Model checking

Model checking was first introduced in (CLARKE; EMERSON; SISTLA, 1986),
and it is a fully automatic technique to prove that a model of a concurrent program
— specified as a finite transition system containing all possible behaviours of that
program model — possess a property, specified in some temporal logic (EMERSON,
1998), (STIRLING, 1992). Temporal logics differ from the so-called classic logics
(propositional, first-, second- and higher order logics) in the sense that a formula is
not statically true or false within the model it is interpreted upon. Instead, models
for temporal logics contain a number of different states and a formula can be true in
some states and false in others (although, being a logic, given any state, a formula
is either true or false in that state). Hence, the static notion of truth is replaced by
a dynamic one, in which the formulas may change their truth values as the system
evolves from state to state.

It was Amir Pnueli (PNUELI, 1977), in the late seventies, who argued that
temporal logics could be a useful formalism for specifying and verifying correctness
of computer programs. Temporal logics are specially suitable for reactive systems,
i.e., systems that are in general non terminating and continuously interact with an
environment. Reactive systems, therefore, differ from systems which behave as a
function (i.e., compute a result from a specific input), and must terminate for all
possible inputs to be considered correct. Many systems can be modeled as finite
state machines governed by transition relations. We can then express properties
about the state space as formulae in a temporal logic.

Since the beginning of the research in model verification, the theory of automated
verification, and the design and construction of efficient verification algorithms and
tools has evolved dramatically. Seminal steps for model checking techniques that are
today available in tools such as SPIN (HOLZMANN, 1991), (HOLZMANN, 1997)
were the introduction of logic model checking techniques in 1983, independently by
Emerson and Clarke (CLARKE; EMERSON, 1981) and Jean-Pierre Quielle and
Joseph Sifakis (QUIELLE; SIFAKIS, 1981), the development of the automata theo-
retic framework for verification, jointly by Moshe Vardi and Pierre Wolper (VARDI;
WOLPER, 1986), and great improvements in efficient graph-search algorithms and
memory-management techniques by many others.
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The truth value of a formula could in principle be determined by exploring the
reachability graph of the state space. The term model checking means to explore a
finite state space to establish properties of the system. However, the state spaces
arising from practical problems are often huge (typically exponential in the num-
ber of variables), so exhaustively exploring the state space is not generally feasible.
What is done is to use an implicit representation of the state space, where the reach-
ability relation is represented as a collection of boolean formulae. The truth values
of temporal formulae are tested by a series of operations on the boolean formulae as
opposed to an explicit search. This is referred to as symbolic model checking (AN-
DERSON et al., 1996). Symbolic model checking has been implemented by a large
number of tools. The more recent introduction of binary decision diagrams (BDDs)
(HUTH; RYAN, 2000) in hardware model checking, and of aggressive partial-order
reduction techniques in software verification has helped still further to make more
general applicability of automated verification techniques a distinct reality.

A wide range of sophisticated verification tools is now available. Those tools
typically have an input language, and a specification written in that input language
is transformed into a model suitable for verification. There are several variants of
logic model checking tools that are traditionally focused on hardware verification
tasks. These tools are powerful enough to perform full CTL (computational tree
logic) or LTL (linear temporal logic) model checking for very substantial industrial
applications, such as communications protocol design and distributed systems de-
sign. Recently, however, a new focus has been given to model check actual programs
(VISSER et al., 2003).

There are two different approaches to verify formally described systems using
model checking: the first one is to build a model checker to generate models written
in the specification language, and the other one is to make use of existing model
checkers by translating the language used to describe the system to the chosen model
checker input language. Naturally, the translation must be correct, in the sense
that the behaviour (semantics) of the systems must be preserved by the translation
(at least concerning the properties being specified). The development of (correct)
model checkers is a task which requires a large amount of time and effort. Fur-
thermore, good model checkers not only perform model generation and property
verification: techniques such abstraction (SCHMIDT, 2002), program slicing (HAT-
CLIFF; DWYER; ZHENG, 2000), (KRINKE, 2003) and partial order reductions
(ALUR et al., 2001) are necessary to verify systems with an excessive state space
size. Hence, the second approach is usually simpler.

1.5 Thesis contributions and outline

Object-oriented systems play a major role on the way software systems are built
nowadays. Recalling what was said in Section 1.1, there is a large number of for-
mal and semi-formal methods proposed in the literature aiming the specification of
object-oriented systems. Our purpose is neither to present a survey of them nor
to indicate a “better” solution for such problem. It is generally believed that a
method for the specification of software should be chosen based on the problem at
hand, and that any method has almost always advantages and disadvantages when
compared to any other one. Hence, the contribution of this thesis is focused on the
area of graph grammars, and in their use for the specification and verification of
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object-oriented systems. The general goal of this work can be summarized as

To present a graph grammar-based formalism for the
specification of object-oriented systems which provides
adequate support to the verification of properties and
reasoning about models written in that formalism.

This goal has been achieved through (i) the development of an extension of the
single-pushout approach to graph grammars which encompass the idiosyncrasies of
the object-oriented paradigm for system development and programming, and (ii) a
formally defined translation of models written on that formalism to programs written
in Promela (which is the input language for the model checker SPIN), which allows
the verification of (LTL) properties of system states (graphs) and events (application
of graph productions).

The main contributions of this thesis are listed below:

1. the development of an extension of the single-pushout approach to graph gram-
mars to encompass the idiosyncrasies of the object-oriented paradigm for sys-
tem development and programming. This new graph transformation approach,
called “object-oriented graph grammar” presents the following characteristics:

• object-oriented systems static and dynamic aspects can be described in
an integrated way;

• the semantics of computations given by the graph grammar is compatible
with the one of object-oriented systems;

• static specifications of systems can be consistently combined and ex-
tended;

• specifications can be refined into lower level specifications or even into
actual programs;

• the resulting formalism can be easily used/understood by system devel-
opers, programmers and final users.

2. a formally defined translation from object-oriented graph grammars into
Promela source code. The translation aims at providing a means for the ver-
ification of properties of object-oriented systems expressed by object-oriented
graph grammars. The translation and verification procedures account for:

• the semantics of the object-oriented graph grammar is preserved by the
translation, in the sense that no behaviour is introduced or removed con-
cerning the original model;

• the final user do not need to understand the translation itself, the Promela
language, or how the final model is built by the model checker;

• linear temporal logics (LTL) formulae can be expressed in terms of the
elements belonging to the initial graph;

• temporal properties can be stated in terms both of states (graphs) and
events (rule applications) occurring during the computation.
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Given a system specification, we can be interested in two things: the system itself
and its behaviour. The first part of this work provide the means to build (executable)
system specifications; the second one provides the tools for the analysis of systems
built through them.

The rest of this text is structured as follows:

• Chapter 2 relates the most fundamental characteristics of the object-oriented
programming paradigm with partial orders, and introduces the algebraic graph
structure over which the graphs and grammars presented in this thesis will
be typed. Those structures — class-model graphs — model object-oriented
specifications. System composition is defined in terms of special colimits in
the category of class-model graphs and class-model graph morphisms. Object-
oriented features such as class inheritance and aggregation are shown to be
special kinds of system composition within this framework.

• Chapter 3 presents object-oriented graphs and object-oriented graph gram-
mars. Object-oriented graphs are (hyper)graphs typed over class-model
graphs, which preserve the underlying relations on nodes (inheritance) and
edges (overriding). Object-oriented rules are constructed following the prin-
ciples of data encapsulation and information hiding from the object-oriented
paradigm. Object-oriented matches ensure that subclass polymorphism do
exist. It is shown that object-oriented graphs and their morphisms form a
category, and that direct derivations on object-oriented graph grammars are
pushouts in that category. It is also shown that an object-oriented derivation
reflects the semantics of dynamic binding accurately.

• Chapter 4 formally defines a translation between an object-oriented graph
grammars and a Promela (the input language for the model checker SPIN)
program. Objects are translated to asynchronous processes, and method in-
vocation to messages shared between processes. It is also shown how the
semantics of the grammar computations is preserved by the translation. As
a case study, Dijkstra’s Dining Philosophers problem is programmed as an
object-oriented graph grammar, and properties are checked over the trans-
lated Promela program.

• Chapter 5 presents a survey of the related work found in the literature.

• Chapter 6 draws some conclusions about the results achieved by this thesis,
and lists possible developments for the work presented here.

• The main chapters only present the mathematical proofs of the main results
achieved, for the sake of readability. The proofs of lemmas and theorems not
shown in the text can be found in Appendix A. Appendices B, C, and D
present, respectively, the definitions and theorems from order theory, category
theory and graph theory used in this text. Appendix E describes the languages
used in the model checker SPIN: it portrays the formal syntax of Promela
and the syntax and semantics of the temporal language LTL. The complete
translated program source code for the Dining Philosophers problem are also
listed there. Finally, Appendix F presents a summary of the main results
achieved by this thesis (in portuguese).
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2 OBJECT-ORIENTED SPECIFICATIONS

2.1 Introduction

Order relations1 in general and partial order relations in particular arise through-
out the field of Computer Science. As examples one can cite causal dependencies
of process actions in parallel computing, subtyping relations among primitive and
user-built types in programming languages, prefix relations on elements of any kind,
approximations, information orderings, and so on. Other examples can be drawn
from the areas of information theory, abstract interpretation, real arithmetic, se-
mantics, domain theory, among others (DAVEY; PRIESTLEY, 2002).

The same occurs with object-oriented programming. To see the existing rela-
tionship between object orientation and partial order relations, let us examine the
main features of the paradigm:

Inheritance — Inheritance is the construction which permits a class (in the class-
based approach (COOK, 1990)) or an object (in the object-based approach
(UNGAR et al., 1991)) to be specialized from an already existing one. This
newly created object carries (or “inherits”) all data and actions belonging to
its primitive object, in addition to its own data and actions. If this new object
is further extended using inheritance, then all the new information will also be
carried along. The relation “inherits from” induces a hierarchical relationship
among the defined classes of a system, which can be viewed as a set of trees
(single inheritance) or as an acyclic graph (multiple inheritance). The inheri-
tance hierarchy also possesses a transitive nature: if a class c is an extension of
another class c′, which is yet an extension of a third class c′′, it means that c is
also an extension of class c′′. It is also antisymmetric, for it is necessary that
a class have already been defined before it is extended. Although the idea of
a relation “inherits from” is not reflexive per se, it makes sense to allow such
relation to be reflexive, in the sense that inheritance means that a class owns
all attributes and methods their primitives do, and naturally it possess its own
atttributes and methods. So, the (single or multiple) inheritance hierarchy can
be formally characterized as a partial order relation.

Polymorphism — Polymorphism arises when we can assign a different meaning or
usage to something in different contexts. There are several different types of
polymorphism implemented in actual object-oriented programming languages.
Subclass polymorphism (CARDELLI; WEGNER, 1985) is perhaps one of the

1All formal definitions concerning order relations can be found in Appendix B.
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main features of the paradigm, and it is specially relevant within this work.
Subclass polymorphism specifies that an instance of a subclass can appear
wherever an instance of a superclass is required. In order to apply it, however,
the inheritance relationship must be made explicit by any formalism aiming
to model object-oriented systems. One of the most useful ways inheritance
and polymorphism can be used is through method overriding, also known
as method redefinition. Subtyping and subclassing relations were somewhat
mixed together in the past, but now they are seen as having similar (although
not identical) structures (COOK; HILL; CANNING, 1989), (BRUCE; FIECH;
PETERSEN, 1997), (MITCHELL; VISWANATHAN, 1996), (POLL, 1997).
Both relations, however, have a clear partial order structure, although in an
opposite direction: it is easy to see that both subtyping and subclassing are
reflexive, transitive and antisymmetric relations.

Method overriding — The purpose of method overriding is to take advantage of
the polymorphism concept through the mechanism known as dynamic binding
(MITCHELL; APT, 2001), which is an execution time routine to determine
what piece of code should be called when a message is sent to an object. Notice
that a class or an object can only override a method if it exists somewhere along
the chain (respecting the inheritance relation) from itself to the one which has
the method being redefined. Additionally, the signature of both methods must
be exactly the same. One can easily see that method overriding also obeys an
order (transitive) relation, which naturally follows the inheritance relation.

Inheritance, polymorphism, and method overriding, together with data and code
encapsulation and information hiding form the very core of the object orientation
paradigm to software development. As seen in the latter paragraphs, three of them
can be expressed as order relations. It is only natural that specification languages
to model such systems make order relations the formal basis for its syntactic and
semantic definitions, especially considering that order relations are a well studied
domain of mathematics (ABRAMSKY; JUNG, 1994), (STOLTENBERG-HANSEN;
LINDSTRÖM; GRIFFOR, 1994), (FIECH, 1996), (DAVEY; PRIESTLEY, 2002).
Having order — and specially partial order — relations as a semantic foundation
for object-oriented constructs allows the reuse of all knowledge of this mathematical
field, which can aid the development of new theories.

This chapter is structured as follows: Section 2.2 presents strict relations, which
intend to reflect both the hierarchic structure of classes and method overriding as
defined in most object-oriented programming languages. It is also shown that the re-
flexive and transitive closure of such relations is a partial order. Section 2.3 develops
the theory regarding the graphs used to portray object-oriented systems structure
of classes. It is shown that those graphs, called class-model graphs, and their mor-
phisms constitute a category. Finally, Section 2.4 shows how system composition,
inheritance and aggregation of objects can be seen as particular cases of colimits in
that category.

2.2 Strict relations

Different programming languages implement different object hierarchic struc-
tures. Languages which only allow single inheritance, differ in the sense that all
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classes have a common primitive class (such as the class Object, in Java (CAMPI-
ONE; WALRATH; HUML, 2000) and Delphi (LISCHNER, 2000)) or not (such as
Ada95 (BARNES, 1998), or Glass (MUHAMMAD; FERREIRA, 2003)). The same
happens to languages that allow multiple inheritance, with a top element (Eiffel
(MEYER, 1991)) or without it (C++ (STROUSTUP, 2000)).

Sets of trees or acyclic graphs, with or without a top element, can formally
characterize the inheritance relation of classes/objects created in such programming
languages. The definition of a strict relation, given below, formalizes what should
be the fundamental object-oriented hierarchic structure of classes, when only single
inheritance is allowed.

Definition 2.1 (Strict relation) A binary relation R ⊆ A × A is said a strict
relation if and only if it has the following properties:

1. if (a, a′) ∈ R then a 6= a′ (R is irreflexive);

2. if (a, a1), (a1, a2), . . . , (an−1, an), (an, a
′) ∈ R, n > 0, then (a′, a) /∈ R (R is

acyclic);

3. for any a, a′, a′′ ∈ A, if (a, a′), (a, a′′) ∈ R then a′ = a′′ (R is a function);

4. for each a ∈ A, either (a, b) /∈ R for all b ∈ A or there exists n > 0 such that
if (a, a1), (a1, a2), . . . , (an−1, an) ∈ R, then (an, b) /∈ R for all b ∈ A (all chains
in R are finite).

Notice that the requirement concerning the absence of cycles and reflexive pairs
on strict relations is consistent with both the creation of classes and redefinition
of methods (overriding). A class, to be defined as a specialization of one or more
classes, requires that the primitive classes exist prior to its creation. Similarly, a
method can only redefine another method (with the same signature) if it exists in
an already existing primitive class. Hence, neither a class can ever be created nor
a method can be redefined in a circular or reflexive way. The third condition guar-
antees that single inheritance is implemented, i.e., a class is a specialization of at
most another one. Dropping that condition suffices to represent the fundamental
inheritance hierarchy of object-oriented languages which implement multiple inher-
itance. The fourth condition has a theoretical significance, but it is meaningful in
the sense that cannot exist an infinite chain of classes from which one class is de-
rived. Object-oriented specifications are always finite (as all real objects are), but
finiteness of set A is a too strong assumption, and we want to be as less restrictive
as possible. For our purposes, it suffices that there are no infinite chains in R.

The choice of representing only single inheritance in this work has to do with
the fact that most object-oriented programming languages only implement single
inheritance, which usually makes object-oriented specifications follow the same lines.
It should not be hard, however, to extend this framework to multiple inheritance.
The only difference would be that some restrictions could be waved out, making the
proofs and definitions slightly different. Figure 2.1 presents an example of an strict
relation. The names constitute the base set A and the dashed arrows represent the
relation R itself.

If strict relations represent the hierarchic structure of inheritance and method
redefinition relations, it would be of interest to investigate some of its properties,
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Figure 2.1: Example of a strict relation

which will be important in what follows. The first and more important one is given
by Lemma 2.1, stated below.

Lemma 2.1 The reflexive and transitive closure of a strict relation is a partial order
relation.

Proof: On page 125. ut

Strict relations will be used to represent two distinct hierarchic structures: in-
heritance and overriding. Since they represent fundamental characteristics of the
object-oriented paradigm, mappings between them must be compatible with map-
pings of pertinent parts of object-oriented specifications. Those mappings, which
are needed to define a number of things such as extension and composition, are
called strict ordered functions, whose domain and codomain of definition are strict
ordered sets.

Definition 2.2 (Strict ordered set) A strict ordered set Pv is a pair 〈P,v∗P 〉
where P is a set, vP is a strict relation, and v∗P is its reflexive and transitive
closure.

Strict ordered sets are a special case of partially ordered sets, where the under-
lying partial order relation was generated as the reflexive and transitive closure of
a strict relation.

Notation: In what follows, notation from order theory is used: for any partially ordered
set 〈P,vP 〉 (Definition B.9), and all p ∈ P and A ⊆ P , ↑p denotes the upper set of p (De-
finition B.11), ↓p denotes the lower set of p (Definition B.11), tA denotes the supremum
of A (Definition B.14), and uA denotes the infimum of A (Definition B.14). Also, a little
abuse of notation is carried out: a function f : D → I applied to a set S ⊆ D is defined
as f(S) = {f(s) ∈ I | s ∈ S}.

Definition 2.3 (Strict ordered function) Let Pv = 〈P,v∗P 〉 and Qv = 〈Q,v∗Q〉
be two strict ordered sets. A partial monotonic function f : Pv → Qv is a strict
ordered function if and only if for all elements x ∈ dom(f), we have that ↑x ⊆
dom(f) and f(↑x) = ↑f(x) ∩ ↓f(t↑x).

The restrictions imposed to a strict ordered function are related to the mapping
coherence between the strict ordered sets underlying relations. Specifically, if an
element is mapped by a strict ordered function, then all elements from the chain to
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Figure 2.2: Example of strict and non strict ordered functions

which it belongs (respecting the strict relation on its base set) must also be mapped
accordingly. Moreover, they must be an exact match to the image set. It means that
the mapping must be some sort of “glue” of structures, as shown in Example 2.1.

Example 2.1 (Strict ordered function) The idea of a strict ordered function is
to map two strict ordered sets in such a way that the mapping constitute a gluing
of the structures. Since a strict ordered function is partial, if an element is mapped,
all elements which are above it in the domain relation must be mapped in such a
way that no “holes” appear on the mapped domain. Formally, this means that the
function must be surjective regarding the image elements of the function between
the bottom and top elements of the domain chain.

Since strict relations have a functional structure, the upper set of any element is
a chain (Definition B.10), which must be completely mapped onto the image chain
which contains all elements between the image of the bottom and the top elements of
upper set already mentioned. Figure 2.2 shows three examples of functions defined
on the same domain and image, and denoted respectively by the (a), (b) and (c)
letters in the figure. In each set (the one on the left being the domain and the one
on the right the image of the function), the mapping provided by each function is
represented by the colors on the set elements. All white elements do not belong to
the domain of the function, while the ones colored in black or shades of gray are.
Functions (b) and (c) are not strict ordered functions. The function in (b) has an
element on the upper set of the element colored as black on the left not mapped
by the function (the one right above it, colored in white). Function (c) is not a
strict ordered function because one element is missed on the image of the chain
formed between the image of the bottom and the top elements of the black element
previously referred.

The upper set of any element is indeed a (finite) chain, as Lemmas A.1 and
A.2 assure, and therefore has both a least (infimum) — the element itself — and
a greatest (supremum) element — the primitive class from where all its ancestors
derive. This restriction is needed to assure that the strict relation structure is main-
tained when the sets are combined. Before showing how this combination can be
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performed, however, some properties of strict ordered functions will be shown, to-
gether with the proof that strict ordered sets and strict ordered functions constitute
a category.

Property 2.1 Strict ordered functions are closed under composition.

Proof: Let f : P1v → P2v and g : P2v → P3v be two strict ordered functions. Let
x ∈ dom(g◦f). Then x ∈ dom(f) and f(x) ∈ dom(g). Since both f and g are strict ordered
functions, ↑x ⊆ dom(f) and ↑f(x) ⊆ dom(g). According to Lemma A.1, ↑x is chain, and
so there exists a chain of elements x = x1 v1 x2 v1 . . . v1 xn = t↑x all belonging to the
domain of f . The image, under f of such set is given by the chain of elements (since f
is monotonic) f(x) = f(x1) v2 f(x2) v2 . . . v2 f(xn) = f(t↑x). But all those elements
belong to the upper set of that chain bottom element, ↑f(x), which means (since g is a strict
ordered function) that f(↑x) = {f(x) = f(x1), f(x2), . . . , f(xn) = f(t↑x)} ⊆ dom(g).
Hence, g(f(↑x)) is defined, and therefore ↑x ⊆ dom(g ◦ f).

By definition, (g ◦ f)(↑x) = g(f(↑x) = {g(f(a)) | a ∈ ↑x}, which is
the set {g(f(x)) = g(f(x1)), g(f(x2)), . . . , g(f(xn)) = g(f(t↑x))} with g(f(x)) =
g(f(x1)) v3 g(f(x2)) v3 . . . v3 g(f(xn)) = g(f(t↑x)), which is trivially con-
tained in the set ↑g(f(x)). Since g(f(t↑x))v3 t ↑g(f(x)) (the latter exists because of
Lemma A.2), then the image set g(f(↑x)) is also contained in the set ↓(g ◦ f)(t↑x), and
so g(f(↑x)) ⊆ ↑(g ◦ f)(x) ∩ ↓(g ◦ f)(t↑x). But Lemma A.4 guarantees that there are
no elements between g(f(x)) and g(f(t↑x)) which do not belong to g(f(↑x)). Hence,
(g ◦ f)(↑x) = ↑(g ◦ f)(x) ∩ ↓(g ◦ f)(t↑x). ut

Property 2.2 The identity function is a strict ordered function.

Proof: The identity function, for any domain set D is defined as id(x) = x for all x ∈ D.
Since it is a total function (defined for all elements x ∈ D, then trivially ↑x ⊆ dom(f).

For id to be a strict ordered function, then for all x ∈ D we need that id(↑x) =
↑id(x) ∩ ↓id(t↑x). But id(↑x) = {id(a) | a ∈ ↑x} = {a | a ∈ ↑x} = ↑x; ↑id(x) = ↑x; and
↓id(t↑x) = ↓(t↑x). Since ↑x ⊆ ↓(t↑x), then ↑x ∩ ↓(t↑x) = ↑x = id(↑x). ut

Theorem 2.1 (Category SOSet) There is a category SOSet which has strict or-
dered sets as objects and strict ordered functions as arrows.

Proof: Strict ordered functions are closed under composition (Property 2.1), and their
composition is associative, since monotonic partial functions composition is associative,
and strict ordered functions are just a a special case. For any strict ordered set 〈P,v∗P 〉,
let idP : P → P be the trivial identity morphism idP (x) = x for all x ∈ P , which is itself a
strict ordered function by Property 2.2. Then, for all monotonic partial function f : P → Q

we have that (f ◦ idP )(x) = f(idP (x)) = f(x) = y = idQ(y) = idQ(f(x)) = (idQ ◦ f)(x)
if x ∈ dom(f) and (f ◦ idP )(x) = f(idP (x)) = f(x) = undef = idQ(f(x)) = (idQ ◦ f)(x)
otherwise. ut

Two important categorial constructions do exist in SOSet. The following theo-
rems state that the category has an initial objects and arbitrary coproducts.

Theorem 2.2 (Initial object in SOSet) The category SOSet has an initial ob-
ject.

Proof: On page 125. ut
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Theorem 2.3 (Coproducts in SOSet) The category SOSet has all finite and
infinite coproducts.

Proof: On page 126. ut

Unfortunately, the category of strict relations and strict ordered functions is
not cocomplete. Although it has an initial object (Theorem 2.2) and generalized
coproducts (Theorem 2.3), category SOSet does not have all coequalizers. It is
easy to show a counterexample: let Av = 〈A,v∗A〉 and Bv = 〈B,v∗B〉 be two strict
ordered sets, where A = {a}, vA = ∅, B = {x, x′, y, y′} and vB = {(x, x′), (y, y′)};
let f : A → B and g : A → B be two strict ordered functions with f(a) =
x and g(a) = y. A coequalizer of two arrows in categories of sets and (partial)
functions is built as the quotient set by the least equivalence class which contains all
pairs (f(x), g(x)), excluding the elements which are mapped by only one function
(Definition C.15). Therefore, the resulting coequalizer object would contain three
equivalence classes — namely [x′], [y′] and [x] (which equals [y]) — with relation
v = {([x], [x′]), ([x], [y′])}. This is clearly not a strict ordered set, since the order
relation is not functional, and therefore not a strict relation.

System composition can usually be defined categorically in terms of a colimit
construction. Colimits are constructed from coproducts and coequalizers, and if
coequalizers cannot be always built this could present a problem: the definition of
system composition will not be as elegant and general as one should expect. How-
ever, general colimits are indeed a too strong assumption, since there are restrictions
in the way object-oriented systems can be meaningfully combined.

We will show next that a restricted form of diagram in SOSet has always a
colimit. That will suffice for our purposes.

Theorem 2.4 (Special colimits in SOSet) Let D be a diagram in SOSet con-
taining two objects R1v and R2v, and one morphism f : R1v → R2v. Then D has
a colimit, represented by object Cv and morphisms ci : Riv → Cv for i = 1, 2.

Proof: Let R]v = R1v]R2v be the disjoint union of the strict ordered sets R1v and R2v,
where R]v = 〈R1]R2,vR1

]vR2
〉. Let C ⊆ P(R]) be the quotient set of R] by the least

equivalence relation which contains all pairs (x, f(x)) ∈ R]×R], and let c : R] → C be the
projection of R] onto C. For sets Ri, i = 1, 2, let ιi : Ri → R] be the inclusion functions
ιi(x) = x for all x ∈ Ri. Let also vC = {([x], [x′]) ∈ C × C | y ∈ [x], y′ ∈ [x′], yvR]y′}.
Then the tuple 〈Cv = 〈C,vC〉, {ci = c ◦ ιi : Riv → Cv}〉 is a colimit of diagram D in
SOSet.

In order to prove that this is indeed a colimit, we have to prove that (i) Cv is a strict
ordered set, (ii) c : R] → C is a strict ordered function, (iii) c1 = c ◦ ι1 and c1 = c ◦ ι1
are also strict ordered functions, and (iv) for any other strict ordered set Dv and strict
ordered functions d1 : R1v → Dv and d2 : R2v → Dv such that d1 = d2 ◦ f there is a
unique strict ordered function h : Cv → Dv such that d1 = h ◦ c1 and d2 = h ◦ c2.

(i) We will prove that Cv is a strict ordered set by proving that vC is a strict relation.
Since it is (by construction) reflexive and transitive, it remains to show that it is functional
and antisymmetric.

SupposevC is not functional. Then there must exist equivalent classes [x], [x′], [x′′] ∈ C
such that ([x], [x′]) ∈ vC , ([x], [x′′]) ∈ vC , and neither ([x′], [x′′]) ∈ vC nor ([x′′], [x′]) ∈ vC

(so, we are inspecting the generative pairs, excluding the transitive ones). Therefore (and
by construction), it must be the case that there are a, a′, b, b′ ∈ R] such that a, b ∈ [x],
a′ ∈ [x′], b′ ∈ [x′′], and (a, a′), (b, b′) ∈ vR] .
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If (a, a′), (b, b′) ∈ vR] , then a, a′ ∈ Ri and b, b′ ∈ Rj , for some i, j ∈ {1, 2}, because
relation vR] is a disjoint union. Assume, without loss of generality, that (a, a′) ∈ vR1

and
(b, b′) ∈ vR2

(if they are in the same set, their equivalence classes will be all related in the
same chain). If both a and b end up in the same equivalence class, then f(a) = b. But,
if a ∈ dom(f) and a′ ∈ ↑a, then a′ ∈ dom(f). Since f(↑a) = ↑f(a) ∩ ↓f(t↑a), and given
(by Lemma A.3) that we know that ↑f(a) = ↑b is a chain, then either (f(a′), b′) ∈ vR2

or (b′, f(a′)) ∈ vR2
. Therefore either ([x′], [x′′]) ∈ vC or ([x′′], [x′]) ∈ vC , and vC is

functional.
Suppose vC is not antisymmetric. Then there must exist two pairs

([x], [x′]), ([x′], [x]) ∈ vC such that [x] 6= [x′]. Therefore there must be elements
a, a′, b,′ b ∈ vR] such that (a, a′), (b, b′) ∈ vR] , a, b′ ∈ [x] and b, a′ ∈ [x′]. But then
again if a, b′ ∈ [x] then f(a) = b′, and since a strict ordered function is a partial order
function (i.e., it preserves relations), then it is not possible that f(a′) = b. Therefore, vC

is antisymmetric.
vC is reflexive, transitive, functional and antisymmetric, therefore it is a strict ordered

function, and Cv is a strict ordered set.
(ii) Before proving that function c : R]v → vC is a strict ordered function, we will

show that it is a partial order function, which preserves the underlying relation: for all
x /∈ dom(f), the equivalence class of x, denoted by [x] is the singleton {x}. For any other
equivalence class [y] in Cv, ([x], [y]) ∈ vC if and only if (x, y′) ∈ vR] for some y′ ∈ [y];
for all x ∈ dom(f), then x, f(x) ∈ [x], and for all y such that (x, y) ∈ vR] , y, f(y) ∈ [y]
and ([x], [y]) ∈ vC .

c is (by construction) a total function, and therefore ↑x ⊆ dom(c) for all x ∈ R]v.
Now, suppose that c(↑x) 6= ↑c(x) ∩ ↓c(t↑x). Then either ∃y ∈ c(↑x) : y /∈ ↑c(x) ∩ ↓c(t↑x)
or ∃y ∈ ↑c(x) ∩ ↓c(t↑x) : y /∈ c(↑x). If [y] ∈ c(↑x) there must exist an x′ such that
(x, x′) ∈ vR] and c(x′) ∈ [y]. And, if [y] /∈ (↑c(x) ∩ ↓c(t↑x)) then either [y] /∈ ↑c(x) or
[y] /∈ ↓c(t↑x). But [x] is the bottom element of the chain ↑c(x) (Cv is a strict ordered set,
and therefore ↑c(x) is a chain by Lemma A.1). Since (x, x′) ∈ vR] , and because c is a
order preserving function, c(x′) ∈ ↑c(x), and therefore (by construction) [y] ∈ ↑c(x). Now,
the top element of chain ↑x is t↑x. So, since (x, x′) ∈ vR] , by definition (x′,t↑x) ∈ vR] .
Again, because c is order-preserving, (c(x′), c(t↑x)) ∈ vC , and therefore [y] ∈ ↓c(t↑x).

If [y] ∈ (↑c(x) ∩ ↓c(t↑x)) but [y] /∈ c(↑x), it means that there is an equivalence class
[z] in ↑c(x) ∩ ↓c(t↑x) that is not in the image of c for its domain subset ↑c(x). But c is
total and surjective (by construction), therefore there must be an element z ∈ R]v such
that c(z) = [z]. But if [z] ∈ (↑c(x) ∩ ↓c(t↑x)), then (c(x), [z]), ([z], c(t↑x)) ∈ vC . Then,
there must be elements z′, z′′ ∈ R]v, with (z′, z), (z, z′′) ∈ vR] such that c(z′) ∈ [z′],
c(z′′) ∈ [z′′], with [z′] 6= [z] 6= [z′′] such that [z′], [z′′] ∈ (↑c(x) ∩ ↓c(t↑x)). But, if two
elements end up in the same equivalence class, it is because they have been mapped by f .
Therefore, z′, z′′ ∈ dom(f). If [z] /∈ c(↑x), then z /∈ dom(f), which is impossible because
f is a strict ordered function. Hence, c(↑x) = ↑c(x) ∩ ↓c(t↑x) for all x ∈ R]v and c is a
strict ordered function.

(iii) Since c is a strict ordered function, and the inclusion functions are also strict
ordered functions (Lemma 2.2), and because strict ordered functions are close under com-
position (Lemma 2.1), it can be concluded that c1 = c ◦ ι1 and c2 = c ◦ ι2 are both also
strict ordered functions.

(iv) c1 = c2 ◦ f by construction. Let Dv be a strict ordered set. Let d1 : R1v → Dv
and d2 : R2v → Dv be strict ordered functions such that d1 = d2 ◦f . Let h : Cv → Dv be
the function defined as follows: for each x ∈ dom(di), h(ci(x)) = di(x), and h is undefined
for all other equivalence classes in Cv. d1 = h ◦ c1 and d2 = h ◦ c2 by construction of
h. Now, assume that there is another strict ordered function h′ : Cv → Dv such that
d1 = h′ ◦ c1 and d2 = h′ ◦ c2 but h 6= h′. c1 and c2 are jointly surjective and therefore if
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there is an equivalence class [e] ∈ Cv such that h(e) 6= h′(e), d1 = h′ ◦ c1 and d2 = h′ ◦ c2

would not hold. ut

2.3 Class-model graphs

A very natural way of modeling object-oriented systems through graphs is by
representing objects (or classes) as nodes and attributes and messages as arrows.
However, the usual definition of graphs is altered in this work to deal with the object-
oriented aspects of program specification. This modification is meant to reflect more
precisely the underlying structure of the object-oriented paradigm, and so improve
the compactness and understandability of specifications, as explained next.

Object-oriented systems consist of instances of previously defined classes which
have an internal structure defined by attributes and communicate among themselves
solely through message passing. That approach underlies the structure of the graphs
used to model those systems. Each graph node is a class identifier, hyperarcs de-
parting from it correspond to its internal attributes, and hyperarcs targeting at it
consist of the services it provides to the exterior (i.e., its methods). Notice that the
restrictions put to the structure of the hyperarcs assure, as expected, that messages
target and attributes belong to a single object.

The inheritance hierarchy is also portrayed, by imposing a strict relation (Defin-
ition 2.1) among the graph nodes. Hyperarcs also possess an order structure, which
reflects the possibility of a derived object to redefine the methods inherited from its
ancestors. This feature will be used in Section 3.3 to define a formal semantics for
dynamic binding based on graph computations.

Such structure is called a class-model graph and its formal definition is given
below.

Definition 2.4 (Class-model graph) A class-model graph is a tuple 〈Vv, Ev, L,
src, tar, lab〉 where Vv = 〈V,v∗V 〉 is a strict ordered set of vertices, Ev = 〈E,v∗E〉
is a strict ordered set of (hyper)edges, L = {attr, msg} is an unordered set of two
edge labels, src, tar : E → V ∗ are monotonic order-preserving functions, called
respectively source and target functions, lab : E → L is the edge labeling function,
such that the following constraints hold:

Structural constraints: 2

for all e ∈ E, the following holds:

• if lab(e) = attr then src(e) ∈ V and tar(e) ∈ V ∗, and

• if lab(e) = msg then src(e) ∈ V ∗ and tar(e) ∈ V .

Sets {e ∈ E | lab(e) = attr} and {e ∈ E | lab(e) = msg} are denoted by E|attr

and E|msg, respectively.

2In the following, a little abuse of notation is used: for any set S, S∗ denotes its reflexive and
transitive closure with respect to concatenation (i.e., all finite lists formed by elements of S). In
what follows, an element s ∈ S∗ means a finite list with (possibly repeated) elements of S, while
s ∈ S means either an element of S or a list containing a single element of S. This abuse is used in
several texts on formal language theory (such as (LEWIS; PAPADIMITRIOU, 1998), (MARTIN,
1996), and (HOPCROFT; MOTWANI; ULLMAN, 2001)).
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Order relations constraints: for all e ∈ E, the following holds:

1. if (e, e′) ∈ vE then lab(e) = lab(e′) = msg,

2. if (e, e′) ∈ vE then src(e) = src(e′),

3. if (e, e′) ∈ vE then (tar(e), tar(e′)) ∈ v+
V , and

4. if (e′, e) ∈ vE and (e′′, e) ∈ vE , with e′ 6= e′′, then (tar(e′), tar(e′′)) /∈
v∗V and (tar(e′′), tar(e′)) /∈ v∗V .

Class-model graphs are the graph structures used to model object-oriented class
organizations. Each graph node is a class identifier, hyperarcs departing from it
correspond to its internal attributes, and messages addressed to it are the services
it provides to the exterior (i.e., its methods). Notice that the restrictions put to the
structure of the hyperarcs assure, as expected, that messages target and attributes
belong to a single object.

Inheritance and overriding hierarchies are made explicit by imposing that graph
nodes (i.e., the objects) and message edges (i.e., the methods) are strict ordered sets
(Definition 2.2). Notice that only single inheritance is allowed, since vV is required
to be a function. The relation between message arcs, vE, establishes which methods
are overridden within the derived object, by mapping them. The restrictions applied
to vE ensure that methods are redefined consistently, i.e., only message arcs can
be mapped (1), their parameters are the same (2), the method being redefined is
located somewhere (strictly) above in the class-model graph (under v+

V ) (3), and
only the closest message with respect to relations vV and vE can be redefined (4).

The requirement concerning the absence of cycles and reflexive pairs on vV and
vE is consistent, respectively, with the creation of classes and method redefinition
within the object-oriented paradigm. A class is defined as a specialization of at most
one other class (single inheritance), which must exist prior to the creation of the
new class. A method can only redefine another method, which must always exist in
a prior primitive class. Hence, neither a class can ever be created nor a method can
be redefined in a circular or reflexive way.

Example 2.2 (Class-model graph) Figure 2.3 presents a (naive) class-model
graph for geometric shapes and figures. The nodes in the graph denote objects
(shape, round, circle, ellipse, Figure, Drawing, Color and Integer), while object
attributes and messages are represented by hyperarcs. The inheritance relation
(actually, its underlying strict relation) is represented by dotted arrows and the
redefinition function is represented by solid thin ones.

Since class-model graphs are algebraic structures, morphisms between them can
be defined. A class-model graph morphism formalizes the relationship between
elements used by two different applications.

Definition 2.5 (Class-model graph morphism) Given two class-model graphs,
C1 = 〈V1v, E1v, L, src1, tar1, lab1〉 and C2 = 〈V2v, E2v, L, src2, tar2,
lab2〉, with L = {attr, msg}, the tuple of order-preserving monotonic functions
t = 〈tV : V1 → V2, tE : E1 → E2, idL : L → L〉 : C1 → C2 is a class-model graph mor-
phism if and only if tV and tE are strict ordered functions and t is a partial labeled
hypergraph morphism (Definition D.11).
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Figure 2.3: Class-model graph for geometric figures

A class-model graph morphism is a restricted partial labeled hypergraph mor-
phism. The restrictions are related to the mapping coherence regarding the order
relations on nodes and edges. Specifically, if a vertex (or arc) is mapped, then all
elements from the chain to which it belongs regarding to the inheritance (or redefi-
nition) relation in the first graph must also be mapped accordingly. This restriction
is required to assure that single inheritance is maintained when the structures are
combined. Before showing how this combinations can be performed, however, some
properties of class-model graphs morphisms will be shown, together with the proof
that class-model graphs and their morphisms constitute a category.

Lemma 2.2 Class-model graph morphisms are closed under composition.

Proof: Let L = {attr, msg}, f = 〈fV , fE , idL〉 : C1 → C2 and g = 〈gV , gE , idL〉 : C2 → C3

be two class-model graph morphisms. Composition of f and g is done componentwise,
i.e., g ◦ f = 〈gV ◦ fV , gE ◦ fE , idL ◦ idL〉. Since strict ordered functions are closed under
composition (Lemma 2.1), then the morphism component functions gV ◦ fV and gE ◦ fE

are strict ordered functions. Additionally, partial labeled hypergraph morphisms are also
closed under composition, which proves that g ◦ f is a class-model graph morphism. ut

Lemma 2.3 Composition of class-model graphs morphisms is associative.

Proof: Again, composition of class-model graphs morphisms is done componentwise.
Since strict ordered sets and strict ordered functions constitute a category (Theorem 2.1),
composition of strict ordered functions is associative. Category LabHGraphP (Defi-
nition D.19) assures that composition of partial labeled hypergraph morphisms is also
associative. ut

Theorem 2.5 (Category CGraph) There is a category CGraph which has
class-model graphs as objects and class-model graph morphisms as arrows.

Proof: Lemma 2.2 shows that class-model graph morphisms are closed under composition,
whereas Lemma 2.3 proves the associativity property for class-model graph morphisms.
Let C = 〈Vv, Ev, L, src, tar, lab〉 be a class-model graph and L = {attr, msg}. The trivial
morphism idC = 〈idV , idE , idL〉 : C → C is the identity morphism, i.e., idV (v) = v for each
v ∈ V , idV (e) = e for each e ∈ E and idL(l) = l for each l ∈ L. Notice that, besides being a
partial labeled hypergraph morphism, the identity function is also a strict ordered function



34

(Lemma 2.2). Hence, for any class-model graph morphism f = 〈fV , fE , idL〉 : C1 → C2,
with C1 = 〈V1v, E1v, L, src1, tar1, lab1〉 and C2 = 〈V2v, E2v, L, src2, tar2, lab2〉,
f ◦ idC1 = 〈fV ◦ idV1 , fE ◦ idE1 , idL ◦ idL〉 we have that for each v ∈ V1, (fV ◦ idV1)(v) =
fV (idV1(v)) = fV (v) = idV2(fV (v)) = (idV2 ◦fV )(v) holds; for each e ∈ E1, (fE ◦idE1)(e) =
fE(idE1(e)) = fE(e) = idE2(fE(e)) = (idE2 ◦ fE)(e) holds; and idL ◦ idL = idL.

The existence of a identity morphism for each object, the existence of an arrow com-
position operation and the associativity of composition prove that CGraph is a category.

ut

Characterizing objects, attributes and methods this way creates a situation where
graphs are no longer defined over sets and functions, but over strict ordered sets and
strict ordered functions. The very abstract way that graphs and graph morphisms
are dealt with within category theory can be maintained by moving from diagrams
from the category SetP of sets and partial functions, used by the single-pushout
approach to graph transformation, to the category SOSet of strict ordered sets and
strict ordered functions.

The algebraic approach to graph grammars rely on categorical constructs to ex-
press most of its results. Having graphs and graph morphisms expressed in any
category is useful, in the sense that if the needed categorical constructs used within
the theory of graph grammars can be proven to exist in the new setting, the con-
clusions drawn from the former could be automatically transferred to the latter.

Again, although CGraph has a initial object (Theorem 2.6) and arbitrary co-
products (Theorem 2.7), it is not cocomplete, because it does not have coequalizers
for each pair of arrows. However, special colimits can be proven to exist. Those
colimits, similar to the ones shown in Theorem 2.4, are the ones we are interested in
for the purposes of this work, so we conclude this section with the following results:

Theorem 2.6 (Initial object in CGraph) Category CGraph has an initial ob-
ject.

Proof: On page 126. ut

Theorem 2.7 (Coproducts in CGraph) Category CGraph has coproducts.

Proof: On page 127. ut

Theorem 2.8 (Special colimits in CGraph) Let D be a diagram in CGraph
containing the objects class-model graphs C1 = 〈V1v, E1v, L, src1, tar1, lab1〉 and
C2 = 〈V2v, E2v, L, src2, tar2, lab2〉, and morphism t = 〈tV , tE, idL〉 : C1 → C2. Then
D has a colimit, represented by object CC and morphisms ci : Ci → CC for i = 1, 2.

Proof:
Given two class-model graphs C1 = 〈V1v, E1v, L, src1, tar1, lab1〉 and C2 = 〈V2v, E2v,

L, src2, tar2, lab2〉 together with a class-model graph morphism t = 〈tV , tE , idL〉 : C1 → C2,
let 〈VCv, ECv, L, srcC , tarC , labC〉 be the structure generated as follows:

• VC is the colimit object of the colimit 〈〈VC ,vVC
〉, v1 : V1 → VC , v2 : V2 → VC〉

in the category SOSet of the diagram containing objects V1v = 〈V1,vV1
〉, V2v =

〈V2,vV2
〉, and arrow tV : V1v → V2v (according to Theorem 2.4);
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• EC is the colimit object of the colimit 〈〈EC ,vEC
〉, e1 : E1 → EC , e2 : E2 → EC〉

in the category SOSet of the diagram containing objects E1v = 〈E1,vE1
〉, E2v =

〈E2,vE2
〉, and arrow tE : E1v → E2v (according to Theorem 2.4);

• functions srcC , tarC : EC → VC are the ones induced by the construction in such a
way that the diagram (in category SOSet)

L

idL
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lab1oo src1,tar1 //
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{{

V2

v2~~}}
}}

}}
}}

L EC
labCoo srcC ,tarC // VC

commutes (i.e., srcC(e) = v1 . . . vn if and only if srci(e′) = v′1 . . . v′n with ei(e′) = e
and v∗i (v

′
1 . . . v′n) = v1 . . . vn, labC(e) = labi(e′) for some e′ ∈ Ei, v′1 . . . v′n ∈ Vi,

and tarC(e) = v if and only if tari(e′) = v′ with ei(e′) = e and vi(v′) = e for some
e′ ∈ Ei, v′ ∈ Vi, with i ∈ {1, 2}).

The tuple 〈CC , c1 = 〈v1, e1, idL〉 : C1 → CC , c2 = 〈v2, e2, idL〉 : C1 → CC〉, is a colimit of
the diagram containing C1, C2, and t = 〈tV , tE , idL〉 : C1 → C2.

In order to prove that the proposed structure is actually a colimit of the diagram
formed by class-model graphs C1 and C2, along with the class-model graph morphism t,
we must prove 3 (three) things: (i) CC is indeed a class-model graph, (ii) c1 : C1 → CC and
c2 : C1 → CC are class-model graph morphisms, and (iii) for any other class-model graphs
CD and class-model graphs morphisms d1 : C1 → CC and d2 : C1 → CC such that d1 = d2 ◦ t
there is a unique class-model graph morphism h : CC → CD such that d1 = h ◦ c1 and
d2 = h ◦ c2.

(i) We begin noticing that t is a labeled hypergraph morphism (Definition 2.5), and
therefore it preserves edges labels, sources and targets. Therefore the first all structural
constraints and the three first order relation constraints (Definition 2.4) are fulfilled. The
last one is met by noticing that tE is a strict ordered function, which means that all
elements belonging to the domain of tE must have their upper set elements mapped to.
Similarly to the proof of Theorem 2.4, the desired structure is maintained.

(ii) in order to prove that c1 = 〈v1, e1, idL〉 : C1 → CC and c2 = 〈v2, e2, idL〉 : C1 → CC

are class-model graph morphisms, we have to show that they are labeled hypergraph
morphisms, because v1, v2, e1 and e2 are (by construction) strict ordered functions. So,
it remains to prove that c1V ◦ src1 = srcC ◦ c1E and c1V ◦ tar1 = tarC ◦ c1E , which is true
by construction.

(iii) let CD = 〈VDv, EDv, L, srcD, tarD, labD〉 be a class-model graph, d1 : C1 → CD

and d2 : C1 → CD be two class-model graph morphisms such that d1 = d2 ◦ t. Let
h : CC → CD be a class-model graph morphism constructed as follows: for each x ∈
dom(di), let h(ci(x)) = di(x); for all x /∈ dom(di), let h(ci(x)) be undefined. For all
x ∈ Ci, if x ∈ dom(di) then ↑x ⊆ dom(di) (because di is a class-model graph morphism).
So ci(↑x) ⊆ dom(h) (by definition of h). Since both d1 and d2 are class-model graph
morphisms, we have that, for all x ∈ dom(d1), y ∈ dom(d2), d1(↑x) = ↑d1(x) ∩ ↓d1(t↑x)
and d2(↑y) = ↑d2(y)∩↓d2(t↑y). Therefore, for all x ∈ dom(ci) we have that (h ◦ ci)(↑x) =
↑(h ◦ ci)(x)∩↓(h ◦ ci)(t↑x), or that h(ci(↑x)) = ↑h(ci(x))∩↓h(t↑ci(x)). Hence, h is a strict
ordered function. Now, suppose there is another strict ordered function h′ : CC → CD

such that di = h′ ◦ ci but h 6= h′. Then, there must be an element e ∈ CC such that
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h(e) 6= h′(e). But for all x ∈ dom(di), di(x) = h′(ci(x)) = h(ci(x)); and for all x /∈ dom(di),
di(x) = h′(ci(x)) = h(ci(x)) = undef, and therefore h = h′. ut

The existence of certain kinds of colimits is a desirable feature of categories
having objects intended to represent specifications: it means that specifications can
be combined or merged in a meaningful and correct way. Moreover, since colimits
are unique up to isomorphism, the resulting composite specification is always well
defined. In the next section we will explore the use of those colimits in the category
CGraph to formally define system composition and extension.

2.4 System extension

Software systems are generally built from previously constructed subsystems,
which are later combined. The object-oriented paradigm favors that approach: ex-
istent objects can be aggregated or derived to form new ones. Composition is one
of the most fundamental operations over systems, and it must be formalized in such
a way that its result is compatible with the way systems are in fact combined. So,
modularity plays a key role in software development, allowing a complete specifica-
tion to be constructed from different, smaller ones. The need for integration tools
also is a key issue in software development (REPS, 1991), since that task is consid-
erably demanding in terms of effort if it is not automatized. Hence, specification
formalisms should allow composition which can be performed systematically, guar-
anteeing a meaning for the operations in terms of system composition. Composition
of class-model graphs is described next.

Definition 2.6 (Binary class-model graph composition) Let C1 and C2 be
class-model graphs, and t : C1 → C2 be a class-model graph morphism. The compo-
sition of C1 and C2 under f is the colimit object (within category CGraph) of the
diagram containing C1, C2, and f .

The class-model graph morphism f from Definition 2.6 represents the mapping
between elements (objects, attributes, or methods) which are considered to be the
same in two different subsystems. This interpretation makes sense when we think
about the specification of object-oriented systems: it is fairly common, when pro-
gramming a class, to make use of objects defined elsewhere. It is not required to
have knowledge of the complete specification of a class to use it as an attribute or
to call on some of its methods. However, when the object files are linked together,
the whole system must be completely specified. The morphisms used to perform
composition of specifications play the role of identifying which elements are shared
by different subsystems (the mapped elements) and which ones belong to just one of
them (the ones neither in the domain of definition nor in the image of the morphism
used to relate sub-specifications).

Example 2.3 (Class-model graph composition) Consider the class-model
graph presented in Figure 2.3: it shows a set of geometric figures having a
procedure to draw each of them. Figure 2.4 presents a very similar class-model
graph for geometric shapes, being the only difference a parameter Environment for
the drawing messages.
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Figure 2.4: Class-model graph for geometric shapes
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Figure 2.5: Class-model graph for graphic primitives

Drawing is commonly performed by some graphic primitives belonging to some
function library, mainly because graphic functions are hardware dependent. For
that reason, programs making use of graphic primitives usually call them through
imported functions, whose object code are linked together in the final step of the
compilation process. Figure 2.5 shows a class-model graph composed by four objects:
Integer, Color, Window and Graphics. The last one has five attributes ( foreground
and background, of type Color; width and height, of type Integer; and writes, of
type Window) and receives four messages (setForeground and setBackground, which
have both one parameter of type Color; and drawRect and drawEllipse, which have
four Integer parameters each).

This class-model graph can be seen as the definition of a class Graphics, with all
its attributes and method signatures, which can be later combined to other class-
model graphs to form a complete specification description. This merge of class-model
graphs can be achieved by a colimit operation, as described in Definition 2.6. Notice
that it requires a set of class-model graphs and a set of class-model graph morphisms,
to connect elements in different class-model graphs which are meant to be the same
(even if their names are actually different). The colimit object is built by collapsing
the mapped elements, and by leaving all the other elements unaltered.

The morphism mapping the common elements within the class-model graphs
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Figure 2.6: Composition of specifications as class-model graph composition

shown in Figures 2.4 and 2.5, is as follows:

Class-model graph (Figure 2.4) Class-model graph (Figure 2.5)

Environment Graphics
Integer Integer
Color Color

Notice that only nodes are mapped, although arcs could have been mapped too.
Figure 2.6 shows the resulting system. Notice how the internal structure of the class
Window, for instance, is not shown in the picture. This class can be defined in yet
another class-model graph, which can be combined in the same way the class-model
graphs presented in this example.

Composition of class-model graphs can also be used to perform different tasks
other than plain system composition. Namely, specialization through inheritance
and object aggregation, which are the most common way of extending a specification,
can be understood in terms of class-model graphs composition. This is important for
it generates an uniform treatment on the way systems are combined and augmented.
So, all results applied to system composition (as colimits in the category SOSet)
are also applied to object creation using inheritance or aggregation. Example 2.4
shows how specialization through inheritance can be achieved by class-model graphs
composition. Object construction by aggregation can be defined in a similar manner,
as explained in Example 2.5.

Example 2.4 (Specialization through inheritance) The most common way of
code reuse in the object-oriented paradigm is done through inheritance. This oper-
ation can be formalized by class-model graph composition (notice that the creation
of a new object always alters a system specification, so it is coherent to formalize
it by composition). To do so, it is necessary to create the specification of the new
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Figure 2.7: Specialization through inheritance as class-model graph composition
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Figure 2.8: Specialization through inheritance as class-model graph composition

object (all attributes and messages included) and connect it to a chain of nodes as
long as needed. How many are “as needed” will be made clear in what follows.

For instance, suppose we want to specialize an object of type Drawing from
the class-model graph portrayed in Figure 2.3 to add to it a background and a
foreground color. Besides these attributes, it should also redefine the method Draw,
which was initially defined at the level of object Figure. It is necessary to portray
a node to be related to the Figure node at the original class-model graph, in order
to map the message which is being overridden in the morphism. However, the
mapping must be a class-model graph morphism, which means that the mapping
on nodes need to be a strict ordered function. Hence, all nodes between the new
class node and the highest node having a message to be overridden have to be
made explicit. The resulting class-model graph, along with the class-model graph
morphism (represented as dashed double arrows) which relates the corresponding
elements on both class-model graphs is shown in Figure 2.7.

The final composite system is shown in Figure 2.8. Notice how the whole system
structure was maintained, with the exception of the new added class ColoredDrawing
which is derived from the class Drawing, as intended.

The class-model graph built to perform specialization through inheritance must
possess at least one node to which the new element must be connected via the order
relation (i.e., at least one primitive class). This particular node must be connected
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to the primitive object on the other class-model graph. The number of such objects
on the constructed hierarchy depends on the methods the derived object is intended
to redefine. There must be as many objects on the node chain as there are elements
between the primitive object and the one to which the method to be redefined
belongs.

The process described in Example 2.4 can be formally stated as follows.

Definition 2.7 (Inheritance as class-model graph composition) Let C =
〈Vv, Ev, L, src, tar, lab〉 be a class-model graph, p ∈ V the object one wants
to derive and M = {m1, . . . , mn}, n > 0, a collection of messages to be redefined by
the newly created class. Let u = t{tar(m) | m ∈ M} if M 6= ∅ and u = p otherwise.
Now let U be a strict ordered set isomorphic to ↑p ∩ ↓u (with isomorphism ιU).

Let CO = 〈VOv, EOv, L, srcO, tarO, labO〉 be a class-model graph with the fol-
lowing characteristics:

• VO = U ∪ {o} ∪ Ao ∪ Am ∪ Ar, where o is called the object-vertex, Ao =
{ta1, . . . , t

a
k} its set of attributes types, Am is the set of the new messages

parameter’s types, Ar is the set of the to be redefined messages parameter’s
types which is isomorphic (with isomorphism ιV ) to the set {src(m) | m ∈ M};
v∗V = v∗U ∪ {(o, u) | u ∈ U};

• EO = MN ∪ M ′ ∪ MR ∪ Ka, where M ′ is a set isomorphic to M (with
isomorphism ι′E), MR is also isomorphic to M (with isomorphism ιE) and
contains the messages that will be redefined within the new object, MN is a
set of hyperarcs representing the methods belonging to the new object o, and
Ka = {1a, 2a, . . . , ka} contains the new object attribute arcs; labO(xa) = attr,
srcO(xa) = o and tarO(xa) = tax ∈ Ao for all xa ∈ Ka; labO(x) = msg,
srcO(x) ⊆ A∗

m and tarO(x) = o for all x ∈ MN ; labO(x) = msg, srcO(x) ⊆ A∗
r

and tarO(x) = o for all x ∈ MR, with (ιV ◦ srcO)(x) = (src ◦ iE)(x);
vE = {(m,m′) | m ∈ MR ∧m′ ∈ M ′ ∧ ιE(m) = ι′E(m′)}, relating the messages
which redefine and which are redefined within the new object;

Now, let t be a class-model graph morphism defined as follows:

• dom(tV ) = V \ {o}, where o is the object-vertex of O; tV (u) = ιU(u), for all
u ∈ U , tV (a) = ιV (a), for all a ∈ Ar, and for all vertices v ∈ (Ao∪Am), tV (v)
is the mapping which connects the vertex v to its actual type in the existing
class-model graph C;

• dom(tE) = M ′ which coincides with ι′E, i.e., tE(m) = ι′E(m) for all m ∈ M ′.

The object of the colimit given by the diagram containing objects C and CO,
and morphism t = 〈tV , tE, idL〉 as described above, correspond to the object-oriented
system specification defined by C augmented with one object o which was formed by
the derivation (via inheritance) of the existing object p in the class-model graph C.

Example 2.5 (Aggregation) Aggregation is the operation used to combine two
or more existent objects to construct a new one, allowing the new object to use all
their constituents functionalities in a transparent way. Given a class-model graph
which contains the objects we want to aggregate, it is easy to augment it using the
composition operation, in such a way that the resulting class-model graph contains
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Figure 2.9: Aggregation as class-model graph composition

the new object. Notice that, if we want to aggregate classes belonging to more than
one class-model graph, it is enough to combine them first, using empty morphisms
between them, and then apply the aggregation procedure to the resulting class-model
graph. Class-model graph composition was defined as a binary colimit, which is an
associative (up to isomorphism) operation. Additionally, a colimit of two class-
model graphs under an empty morphism is equivalent (up to isomorphism) to a
coproduct operation.

For example, suppose we want an object called StretchDrawing, which embraces
the functionality of the object ColoredDrawing (specialized from Drawing in the
Example 2.4), plus two attributes of type Integer, called width and height. The
class-model graph that should be constructed to aggregate existing objects belong-
ing to another class-model graph has as constituents a node together with its own
attributes and messages, and which is additionally connected to as many nodes as
the classes one wants to aggregate. The morphisms should then identify the latter
ones with the actual classes to be aggregated. Figure 2.9 presents this new class-
model graph, together with the morphism represented by dashed lines with double
hollow triangles at their ends.

Figure 2.10 portrays the resulting class-model graph (generated as the colimit of
the diagram presented in Figure 2.9), which contains the new node with the required
attributes.

Definition 2.8 (Aggregation as class-model graph composition) Let C =
〈Vv, Ev, L, src, tar, lab〉 be an arbitrary class-model graph and CO = 〈VOv, EOv,
L, srcO, tarO, labO〉 be a class-model graph where

• VO = {o}∪Ao∪Am where o is the new object to be created, Ao = {ta1, . . . , t
a
n}

its set of attributes types, Am = {tm1, . . . , t
m

l} is the set of message parame-
ter’s types; vVO

= ∅;
• EO = Na ∪ Mo, where Na = {1a, 2a, . . . , na} and Mo = {m1, . . . , mk} is

a set of k hyperarcs representing the methods belonging to the new object o;
labO(xa) = attr, srcO(xa) = o and tarO(xa) = tax ∈ Ao for all xa ∈ Na;
labO(x) = msg, srcO(x) ⊆ A∗

m and tarO(x) = o for all x ∈ Mo; vEO
= ∅.

Let t : CO → C be the following class-model graph morphism: dom(tV ) = VO \ {o},
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Figure 2.10: Aggregation as class-model graph composition

and for all x ∈ (Ao ∪ Am), tV (x) = v for some v ∈ V which reflects the actual type
of the attribute x into C; tE = ∅.

The object of the colimit given by the diagram containing objects C and CO, and
morphism t as described above, correspond to the object-oriented system specification
defined by C augmented with one object o which was formed by aggregation of existing
objects in C.

2.5 Summary

This chapter begins by relating the most fundamental characteristics of the
object-oriented programming paradigm with partial orders. Namely, inheritance,
polymorphism and method overriding are shown to have a nature which resembles
the structure of partial orders.

Strict relations are defined as the base “skeleton” relation which models the
hierarchy of inheritance and method overriding for an object-oriented specification.
It is shown that the reflexive and transitive closure of such relation is a partial order
(i.e., a reflexive, transitive, and antisymmetric relation). Next, strict ordered sets
and strict ordered functions are defined, and it is shown that they form a category.

The most important structure of this chapter is the class-model graph, which is a
labeled hypergraph with a restricted edge structure, whose sets of nodes and hyper-
edges are strict ordered sets. The underlying relations of such sets obey additional
restrictions, intended to assure that class-model graphs provide an adequate and
faithful model of how object-oriented classes are actually organized. A class-model
graph reflects the structure of classes (nodes), with their attributes and methods
(hyperedges) in any object-oriented system.

Class-model graphs are algebraic structures, and so they can be related by the
notion of morphism. A morphism between two class-model graphs is a labeled hy-
pergraph morphism whose node and hyperedge mappings preserve their underlying
strict relation, in such a way that, when combined, the two structures are “glued”
together to form a new one having the desired structure.

A class-model graph morphism identifies elements from two distinct class-model
graphs which are meant to be the same. Having established that information, one
can compose two class-model graphs (i.e., object-oriented class specifications) by
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creating a third one, where the mapped elements are identified as being a single
one. Composition of systems is then formally defined as the colimit object of the
diagram formed by the systems being composed (with a suitable morphism connect-
ing them). It assures that composition of systems is unique (up to isomorphism)
and well defined.

Finally, it is shown that system extension through inheritance — achieved when
a class is created by deriving some other already existing class, and aggregation —
which occurs when a new class is composed as a collection of other classes, are both
special cases of class-model graph composition. It means that the existing ways of
augmenting an object-oriented system can be all formalized by the same categorical
construction.
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3 OBJECT-ORIENTED COMPUTATIONS

3.1 Introduction

Rule–based systems have proven to be useful for describing computations by
local transformations: arithmetic, syntactic, and deduction rules are familiar exam-
ples. Language definition, semantics of programming languages, logic and functional
programming, algebraic specification, term rewriting, theorem proving, expert sys-
tems, concurrent and mobile processes, are some examples of areas which witness the
prominent role of rules in computer programming. Rule-based graph transforma-
tion also constitutes a quite natural way to combine graphs, for describing complex
structures, with rules, to manipulate them. Graph transformation, also known as
graph rewriting, combines the potentials and advantages of both, graphs and rules,
into a single computational paradigm.

The theory of graph transformation systems, as previously mentioned in Chap-
ter 1, studies a variety of formalisms which expand the theory of formal languages
(HOPCROFT, 1969), (HOPCROFT; MOTWANI; ULLMAN, 2001), (LEWIS; PA-
PADIMITRIOU, 1998), (MARTIN, 1996), to encompass more general structures
specified as graphs. All constructions known from the string transformation ap-
proach in the formal language framework also exist in graph transformations sys-
tems: rules, derivations and generated languages can be defined for graphs in the
very same manner they are defined for strings. Only naturally, different types of
graph rules give rise to different classes of graph languages, with different expres-
siveness and differences in the decidability of the associated problems. It has been
shown that all enumerable graph sets can be generated using very restricted graph
transformation rules (NAGL, 1986). Similarly to string grammars, graph grammars
(graph transformation systems equipped with an initial graph) also provide a model
of computation. The structure of graphs, graph productions and results of rule
applications determine the model of computation provided.

A graph transformation system allows to describe finitely a collection (finite or
infinite) of graphs, which can be obtained from an initial graph through the repeated
application of graph productions.

This chapter is structured as follows: Section 3.2 presents C-typed graphs and C-
typed graph morphisms, which are respectively hypergraphs typed over class-model
graphs, introduced in Section 2.3, and morphisms between those structures. Object-
oriented graphs, which intend to represent object-oriented systems, are special cases
of C-typed graphs, and are defined at the end of this section. Section 3.2 also con-
tains the proof that there are categories CGraphP(C) and OOGraphP(C), having
respectively, C-typed graphs as objects and C-typed graph morphisms as arrows,
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and object-oriented graphs as objects and C-typed graph morphisms as arrows. The
existence of such categories is essential to make the theory developed in this work ad-
here to the algebraic single-pushout approach theory of graph grammars. Section 3.3
defines object-oriented rules, matches and direct derivations. Object-oriented rules
are constraint in order to implement the concepts of data and code encapsulation,
information hiding, as well as to restrict their grammars computations to reflect the
behaviour of object-oriented programs. The most important result of this chapter is
provided within this section, which is the proof that an object-oriented direct deriva-
tion is a pushout in the category OOGraphP(C). This result makes applicable a
number of results from the traditional single-pushout approach, such as sequential
and parallel independence of derivations (EHRIG; ROSEN, 1980), (EHRIG; LÖWE,
1993), abstract and concrete derivations (CORRADINI et al., 1993), and a number
of different approaches to graph grammar semantics (CORRADINI et al., 1994),
(RIBEIRO, 1996), (HECKEL et al., 2001). This section ends with some properties
regarding different types of object-oriented rules, and with the formal definition of
an object-oriented graph grammar. Section 3.4 presents some definitions concerning
object behaviour, and an observation semantics for object-oriented graph grammars
is defined. Section 3.5 presents some final remarks.

3.2 Object-oriented graphs

Chapter 2 presented class-model graphs, which can adequately model object-
oriented class signatures. The focus of this chapter lies on object-oriented systems,
or programs, i.e., a collection of instances from the classes previously defined —
called objects — which can interact with each other through message passing (the
object-oriented jargon for method invocation or procedure call).

Classes are represented as nodes in a class-model graph, and their methods
and attributes are represented as hyperedges. A collection of objects, with their
attributes and addressed messages can be characterized as a graph typed over a
class-model graph. Typed graphs ((CORRADINI; MONTANARI; ROSSI, 1996),
and Definition D.12) present a powerful formalism to describe system specifications.
However, typed graph morphisms are not suitable for the specification of object-
oriented systems, since features such as inheritance and polymorphism cannot be
dealt by them appropriately (FERREIRA; RIBEIRO, 2003). The typing we propose
here can be considered more “flexible”, in the sense that the typing morphism must
preserve the hyperarcs sources and targets in a less restricted way. The definition of
a C-typed graph below shows how this flexibility is achieved and how it is related to
object-oriented systems. Method implementation will be described in Section 3.3,
where object-oriented rules are defined.

Notation: For any partially ordered set 〈P,vP 〉, an induced partially ordered set
〈P ∗,vP ∗〉 can be constructed, such that for any two strings u = u1 . . . un, v = v1 . . . vn ∈
P ∗, we have that u vP ∗ v if and only if |u| = |v| and ui vP vi, i = 1, . . . , |u|. If Pv and
Qv are partially ordered sets, any monotonic function f : P → Q can be extended to
a monotonic function f∗ : P ∗ → Q∗, with f∗(p1 . . . pn) = f(p1)f(p2) . . . f(pn) = q1 . . . qn

where p1 . . . pn ∈ P ∗ and q1 . . . qn ∈ Q∗.

Definition 3.1 (C-typed graph) A C-typed graph GC is a tuple 〈G, t, C〉, where
C = 〈VCv, ECv, L, srcC , tarC , labC〉 is a class-model graph, G = 〈VG, EG, srcG, tarG〉



46

Integer
ColorEgg [ellipse]

is [consists]

shade [color]

coord [pos]

F [Figure]

Figure 3.1: Example of a C-typed graph

is a hypergraph, and t is a pair of total functions 〈tV : VG → VC , tE : EG → EC〉 such
that (t∗V ◦ srcG)vV ∗C (srcC ◦ tE), and (t∗V ◦ tarG)vV ∗C (tarC ◦ tE).

C-typed graphs reflect the inheritance of attributes and methods from the object-
oriented paradigm. Notice that they are ordinary hypergraphs typed over a class-
model graph. However, the typing morphism is more flexible than the traditional one
(CORRADINI; MONTANARI; ROSSI, 1996), (RIBEIRO, 1996): a C-typed graph
edge e can be incident to any C-typed graph node v as long as its typing edge tE(e)
(in C) is incident to a node type v′ (also in C), such that tV (v) and v′ are connected
by the underlying order relation (i.e., tV (v)v∗VC v′). This definition reflects the fact
that an object can use any attribute belonging to one of its primitive classes, since
it was inherited when the class was specialized. Example 3.1 illustrates this idea.

Example 3.1 (C-typed graph) Figure 3.1 shows a C-typed graph G =
〈{F, Egg, Integer, Color}, {is, coord, shade}, src, tar〉 over the class-model graph C
portrayed in Figure 2.3. The typing morphism is revealed by the names between
brackets, for the sake of clarity. Notice that an ellipse has no attribute directly
connected to it in the class-model graph C. However, since an ellipse is a specialized
shape, it inherits all its attributes, and so the graph is well typed.

All attributes belonging to the C-typed graph on Figure 3.1 are allowed by Def-
inition 3.1: the referred graph has three edges, namely is (typed as consists), coord
(typed as pos), and shade (typed as color); for coord we have (the same can be
done to the other two):

(t∗V ◦ src)(coord) = ellipse vV ∗C shape = (srcC ◦ tE)(coord)

(t∗V ◦ tar)(coord) = Integer Integer vV ∗C Integer Integer = (tarC ◦ tE)(coord)

Relations between C-typed graphs can be defined as morphisms between such
structures. The basic difference between ordinary typed graph morphisms and C-
typed graph morphism is that sources and targets do not need to be preserved per
se, but only be compatible with the inheritance/overriding relation in the underlying
class-model graph.

Notation: For all diagrams presented in the rest of this text, 7→-arrows denote total
morphisms, ↪→-arrows denote injections, whereas →-arrows denote arbitrary morphisms
(possibly partial). For a partial function f : A → B, dom(f) ⊆ A represents its domain of
definition, f? : dom(f) ↪→ A and f ! : dom(f) 7→ B denote the corresponding domain in-
clusion and domain restriction. Each partial function f can be factorized into components
f? and f !.

Definition 3.2 (C-typed graph morphism) Let GC
1 = 〈G1, t1, C〉 and GC

2 =
〈G2, t2, C〉 be two C-typed graphs typed over the same class-model graph C = 〈Vv,
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Ev, L, src, tar, lab〉. A C-typed graph morphism h : GC
1 → GC

2 between GC
1 and

GC
2 , is a pair of partial functions h = 〈hV : VG1 → VG2 , hE : EG1 → EG2〉 such that

the diagram (in category SetP)

EG1_

srcG1
,tarG1

²²

dom(hE)? _
hE?oo ÂhE ! // EG2_

srcG2
,tarG2

²²
V ∗

G1

h∗V // V ∗
G2

commutes, for all elements v ∈ dom(hV ), (t2V ◦ hV )(v) vVC t1V (v), and for all
elements e ∈ dom(hE), (t2E ◦ hE)(e) vEC t1E(e). If (t2E ◦ hE)(e) = t1E(e) for all
elements e ∈ dom(hE), the morphism is said to be strict.

A graph morphism is a mapping which preserves hyperarcs sources and targets.
A typed graph morphism also preserves (node and edge) types. Ordinary typed
graph morphisms, however, cannot describe correctly morphisms on object-oriented
systems because the existing inheritance relation among objects causes that actions
available for objects of a certain kind are valid to all objects derived from it. So, an
object can be viewed as not being uniquely typed, but having a type set (namely,
the set of all types it is connected via the inheritance relation). Defining a graph
morphism compatible with the underlying order relations assures that polymorphism
can be applied consistently.

The meaning of the connection of two elements x 99K y by the inheritance
relation is the usual: in any place that an object of type1 y is expected, an object of
type x can appear, since an object of type x is also an object of type y. A C-typed
graph morphism reflects this concept, since two nodes can be identified through the
morphism as long as they are connected by the inheritance relation within the class-
model graph. Similarly, two arcs can be identified by a C-typed graph morphism if
their types are related through the overriding relation. Since attribute arcs types
can only be related (under the reflexive closure of that relation) to themselves, two
of them can only be identified if they have the same type in the underlying class-
model graph. A message, however, can be identified with any other message which
redefines it. The reason for that will be clear in Section 3.3.

It should be noticed that the arity of methods is preserved by the morphism,
since two hyperarcs can only be mapped if they have the same number of parameters
with compatible types.

Example 3.2 (C-typed graph morphism) Figure 3.2 shows a possible mor-
phism between the C-typed graphs G1 and G2 (in dashed lines), both typed over
the class-model graph portrayed in Figure 2.3. Notice that the nodes in graphs G1

and G2 have the same names as in the class-model graph, so the typing morphisms
between graphs G1 and G2 and the graph on Figure 2.3 need not to be shown. No-
tice that since a Drawing is a Figure, and a circle is a round shape, the morphism
is allowed.

1The word type is used here in a less strict sense than it is used in programming language
design texts. Although the literature makes a difference on subtyping and inheritance relationships
between objects (COOK; HILL; CANNING, 1989), such distinction will not be made here, since
this work is being developed in an higher level of abstraction. It is hoped that this will not cause
any confusion to the reader.
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Figure 3.2: C-typed graph morphism

The algebraic approach to graph grammars rely on categorical constructs, es-
pecially on colimits, to express most of its results. Having graphs expressed in a
category other than GraphP (graphs as objects, and partial graph morphisms as
arrows, Definition D.15) or GraphP(T) (graphs typed over a type graph T as ob-
jects, and partial typed graph morphisms as arrows, Definition D.20) — frequently
used by the algebraic single-pushout approach (LÖWE, 1991), (EHRIG et al., 1996)
— is useful, in the sense that if the same constructs used by the theory of graph
grammars can be proven to exist in the new setting, the conclusions drawn from
the former could be automatically transferred to the latter. The following results
are needed to prove that C-typed graphs over a fixed class-model graph C and their
morphisms constitute a category.

Lemma 3.1 C-typed graph morphisms are closed under composition.

Proof: Let C = 〈Vv, Ev, L, src, tar, lab〉 be a class-model graph, GC
1 = 〈G1, t1, C〉,

GC
2 = 〈G2, t2, C〉, and GC

3 = 〈G3, t3, C〉 be C-typed graphs, and f = 〈fV , fE〉 : GC
1 → GC

2

and g = 〈gV , gE〉 : GC
2 → GC

3 be two C-typed graph morphisms. The compound morphism
g ◦ f can be constructed componentwise: g ◦ f = 〈gV ◦ fV , gE ◦ fE〉 : GC

1 → GC
3 . It results

in a C-typed graph morphism: for each fE(e) ∈ dom(gE), (g∗V ◦ srcG2)(fE(e)) = (srcG3 ◦
gE)(fE(e)), and since partial function composition is associative, we have that (g∗V ◦(srcG2◦
fE))(e) = (srcG3◦(gE◦fE))(e). But for each e ∈ dom(fE), (f∗V ◦srcG1)(e) = (srcG2◦fE)(e),
and then (g∗V ◦ (f∗V ◦ srcG1))(e) = (srcG3 ◦ (gE ◦ fE))(e), or ((g∗V ◦ f∗V ) ◦ srcG1)(e) =
(srcG3 ◦ (gE ◦ fE))(e), for all e ∈ dom(g ◦ f). Equally, for each fE(e) ∈ dom(gE), (g∗V ◦
tarG2)(fE(e)) = (tarG3 ◦ gE)(fE(e)), and since partial function composition is associative,
we have that (g∗V ◦ (tarG2 ◦ fE))(e) = (tarG3 ◦ (gE ◦ fE))(e). But for each e ∈ dom(fE),
(f∗V ◦ tarG1)(e) = (tarG2 ◦ fE)(e), and then (g∗V ◦ (f∗V ◦ tarG1))(e) = (tarG3 ◦ (gE ◦ fE))(e),
or ((g∗V ◦f∗V )◦tarG1)(e) = (tarG3 ◦(gE ◦fE))(e), for all e ∈ dom(g◦f). Additionally, for all
elements v ∈ dom(fV ), (t2V ◦ fV )(v) vVC t1V (v), and for all elements v ∈ dom(gV ), (t3V ◦
gV )(v) vVC t2V (v) (f and g are both C-typed graph morphisms). Then, for all v ∈ VG1 ,
(t2V ◦ fV )(v) vVC t1V (v), and for all fV (v) ∈ dom(gV ), (t3V ◦ gV )(fV (v)) vVC t2V (fV (v)),
and so (since partial function composition is associative) (t3V ◦gV ◦fV )(v) vVC (t2V ◦fV )(v).
Since vVC is (by definition) a transitive relation, (t3V ◦ gV ◦ fV )(v) vVC t1V (v). Likewise,
for all fE(e) ∈ dom(gE), (t3E ◦ gE ◦ fE)(e) vVC (t2E ◦ fE)(e), (t2E ◦ fE)(e) vEC t1E(e),
and since vEC is transitive, (t3E ◦ gE ◦ fE)(e) vEC t1E(e). Thus, h ◦ f is a C-typed graph
morphism. ut
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Lemma 3.2 Composition of C-typed graph morphisms is associative.

Proof: Let C = 〈Vv, Ev, L, src, tar, lab〉 be a class-model graph, GC
1 = 〈G1, t1, C〉, GC

2 =
〈G2, t2, C〉, GC

3 = 〈G3, t3, C〉, and GC
4 = 〈G4, t4, C〉 be C-typed graphs, and f = 〈fV , fE〉 :

GC
1 → GC

2 , g = 〈gV , gE〉 : GC
2 → GC

3 , and h = 〈hV , hE〉 : GC
3 → GC

4 be C-typed graph
morphisms. C-typed graph morphisms composition is done componentwise, so (h ◦ g) ◦
f = 〈(hV ◦ gV ) ◦ fV , (hE ◦ gE) ◦ fE〉. Then, for each v ∈ VG1 , ((hV ◦ gV ) ◦ fV )(v) =
(hV ◦ gV )(fV (v)) = hV (gV (fV (v))) = hV ◦ ((gV ◦ fV )(v)) = (hV ◦ (gV ◦ fV ))(v), by
associativity of partial function composition. The same reasoning can be applied to each
e ∈ EG1 , ((hE ◦ gE) ◦ fE)(e) = (hE ◦ gE)(fE(e)) = hE(gE(fE(e))) = hE ◦ ((gE ◦ fE)(e)) =
(hE ◦ (gE ◦ fE))(e) proving that composition of C-typed graph morphisms is associative.

ut
Lemma 3.3 The identity morphism is a C-typed graph morphism.

Proof: The identity morphism for a given C-typed graph GC = 〈G, t, C〉 is the trivial
morphism idG = 〈idV , idE〉 : G → G, where for any vertex v ∈ VG, idV (v) = v, and for
any edge e ∈ EG, idE(e) = e. Then, for all e ∈ dom(idE) = EG, (id∗V ◦ srcG)(e) =
id∗V (srcG(e)) = srcG(e) = srcG(idE(e)) = (srcG ◦ idE)(e). Also, for all v ∈ VG, (tV ◦
idV )(v) = tV (idV (v)) = tV (v), and for all e ∈ EG, (tE ◦ idE)(e) = tE(idE(e)) = tE(e).
Since both vVC and vEC are reflexive, (tV ◦ idV )(v) = tV (idV (v)) = tV (v) vVC tV (v) and
(tE ◦ idE)(e) = tE(idE(e)) = tE(e) vEC tE(e). ut
Theorem 3.1 (Category CGraphP(C)) There is a category CGraphP(C)
which has C-typed graphs as objects and C-typed graph morphisms as arrows.

Proof: Lemma 3.1 proves that the composition of two C-typed graph morphisms is a
C-typed graph morphism. Lemma 3.2 states that composition of C-typed graph mor-
phisms is associative. The identity morphism, as described in Lemma 3.3, is a C-typed
graph morphism, and for any given C-typed graph GC = 〈G, t, C〉 is the trivial morphism
idG = 〈idV , idE〉 : G → G, where for any vertex v ∈ VG, idGV (v) = v, and for any edge
e ∈ EG, idGE(e) = e. So, given any C-typed graph morphism h = 〈hV , hE〉 : GC

1 → GC
2 ,

for any vertex v ∈ VG1 , (hV ◦ idG1V )(v) = hV (idG1V (v)) = hV (v) = idG2V (hV (v)) =
(idG2V ◦ hV )(v). Similarly, for any edge e ∈ EG1 , (hE ◦ idG1E)(e) = hE(idG1E(e)) =
hE(e) = idG2E(hE(e)) = (idG2E ◦ hE)(e).

The existence of an identity morphism for each object, binary composition of mor-
phisms, and associativity of composition proves that CGraphP(C) is a category. ut

Since CGraphP(C) is a category, the existence of categorical constructs within
it can be investigated. However, the general definition of C-typed graphs must be
narrowed to correctly represent object-oriented systems. To achieve this goal, some
additional functions and structures will be defined next.

Definition 3.3 (Attribute and message sets) Let 〈G, t, C〉 be a C-typed graph,
with G = 〈VG, EG, srcG, tarG〉 and C = 〈Vv, Ev, L, src, tar, lab〉. Then the
following functions are defined:

• the attribute set function attrG : VG → 2EG return for each vertex v ∈ VG the
set {e ∈ EG | srcG(e) = v ∧ lab(tE(e)) = attr};

• the message set function msgG : VG → 2EG returns for each vertex v ∈ VG the
set {e ∈ EG | tarG(e) = v ∧ lab(tE(e)) = msg};
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• the extended attribute set function, attr∗C : V → 2E, where attr∗C(v) = {e ∈
E | lab(e) = attr ∧ src(e) ∈ ↑v};

• the extended message set function, msg∗C : V → 2E, where msg∗C(v) = {e ∈
E|msg | tar(e) ∈ ↑v ∧ ¬∃e′ ∈ E|msg : tar(e′) ∈ ↑v ∧ e′ vE e}.

The attribute/message set function and the extended attribute/extended message
set function will help define some other functions, relations and structures along
this text. Basically, for any vertex v of a C-typed graph, the attribute set function
returns the set of all attribute arcs having v as their source. Similarly, given a
class-model graph and a vertex v belonging to it, the extended attribute set function
returns the set of all attribute arcs whose source is v or any other vertex to which
v connected via the inheritance relation v∗V .

The message set function returns all messages an object within a C-typed graph
is currently receiving, while the extended message set function returns all messages
an object of a specific type may receive. Notice that message redefinition within
objects, expressed by the overriding relation v∗E on the class-model graph, must
be taken into account, since the redefinition of a class method implies that only the
redefined method can be seen within the scope of a specialized class.

For any C-typed graph 〈G, t, C〉 there is a total function t∗E : 2EG → 2EC , which
can be viewed as the extension of the typing function to edge (or node) sets. The
function t∗E, when applied to a set E ∈ 2EG , returns the set {tE(e) ∈ EC | e ∈ E} ∈
2EC . Notation t∗E|msg and t∗E|attr will be used to denote the application of t∗E to sets
containing exclusively message and attribute (respectively) hyperarcs. Now, given
the functions already defined, we can present a definition of the kind of graph which
represents an object-oriented system.

Definition 3.4 (Object-oriented graph) Let C be a class-model graph. A C-
typed graph 〈G, t, C〉 is an object-oriented graph if and only if all squares in the
diagram (in Set)

2EG
_

t∗E |msg

²²

VG_

tV
²²

ÂmsgGoo Â attrG // 2EG
_

t∗E |attr
²²

2EC VC
Âmsg∗Coo Â attr∗C // 2EC

commute. If, for each v ∈ VG, the function t∗E|attr(attrG(v)) is injective, GC is said
a strict object-oriented graph. If t∗E|attr(attrG(v)) is also surjective, GC is called a
complete object-oriented graph.

It is important to realize what sort of message is allowed to target a vertex in
an object-oriented graph. The left square on the diagram depicted in Definition 3.4
ensures that an object can only have a message edge targeting itself if that message
is typed over one of those edges returned by the extended message set function. It
means that the only messages allowed are the least ones in the redefinition chain to
which the typing message belongs. This is compatible with the notion of dynamic
binding, since the method actually called by any object is determined by the actual
object present at a certain computation state.

Object-oriented graphs can also be strict or complete. Strict object-oriented
graphs require that nodes do not possess two attribute arcs typed as the same
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element in the underlying class-model graph. Injectivity of all t∗E|attr(attrG(v)),
v ∈ VG, express that all attribute arcs are typed differently (i.e., an object has no
exceeding attribute). For an object-oriented graph to be complete, however, it is
also necessary that all attributes defined on all levels along the class-model graph
(via the inheritance relation on nodes) are present. The definition of a complete
object-oriented graph is coherent with the notion of inheritance within the object-
oriented framework, since an object inherits all attributes, and exactly those, from
its primitive classes.

Object-oriented systems are often composed by a large number of objects, which
can receive messages from other objects (including themselves) and react to the
messages received. Object-oriented graphs may also have as many objects as desired,
and even if the number and type of attributes (arcs) in each object (vertex) is limited,
the number of vertices in the graph representing the system is not.

Object-oriented graphs are just a special kind of C-typed graphs. Therefore we
can define a subcategory of CGraphP(C), as follows.

Definition 3.5 (Category OOGraphP(C)) OOGraphP(C) is the full subcate-
gory of CGraphP(C) having object-oriented graphs as objects.

3.3 Object-oriented graph grammars

Complete object-oriented graphs (Definition 3.4) can model all elements belong-
ing to object-oriented systems. However, in order to capture the system evolution
through time, we need a graph grammar formalism to be introduced.

A graph production, or simply a rule, specifies how a system configuration may
be changed. A rule has a left-hand side and a right-hand side, which are both strict
object-oriented graphs, and a C-typed graph morphism to determine what should be
altered. Intuitively, a system configuration change occurs in the following way: all
items belonging to the left-hand side must be present at the current state to allow
the rule to be applied; all items mapped from the left to the right-hand side (via
the graph morphism) will be preserved; all items not mapped by the rule morphism
will be deleted from the current state; and all items existent in the right-hand side
but not in the left-hand side will be added to the current state to obtain the next
one.

Rule restrictions may vary, depending on what is intended for them to rep-
resent/implement. Unrestricted rules give rise to very powerful systems in terms
of representation capabilities, but they also lead to many undecidable problems.
Restrictions are needed not just to make interesting problems decidable (which is
important per se) but also to reflect existing constraints in the actual systems we
are trying to model. All rule restrictions presented in this text are object-oriented
programming principles, as described next.

First of all, no object may have its type altered nor can any two different el-
ements be merged during the evolution of a computation. This is accomplished
by requiring the rule morphism to be injective on nodes and arcs (meaning that
different elements cannot be merged by the rule application), and the mapping on
nodes to be invertible. The mapping on nodes must be invertible to assure that
object types are not modified during a course of computation steps, as explained in
Example 3.3 below.
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Figure 3.3: Changing object types during a course of computation

Example 3.3 (Object type change) This example clarifies the meaning of the
rule restriction concerning the node mapping being invertible. Consider the object-
oriented direct derivation portrayed in Figure 3.3, where elements are named after
their types, which are the ones in the class-model graph of Figure 2.3.

The rule mapping is a perfectly legal C-typed graph morphism, since a Drawing
is a Figure and a circle is a shape. The match morphism is identical on types, and
the result of this direct derivations is given by the object-oriented H and C-typed
graph morphisms r′ and m′.

G is the graph representing the object-oriented system being transformed, and
H is its next step in a computation trace. However, the object typed as Figure in
G is mapped (through the morphism r′) to an object typed as Drawing; likewise,
the object typed as shape is mapped to a circle. The morphism r′ keeps track of
the evolution of any object as time passes. It maps the same object during any
number of computation steps. If the rule morphism is not required to be invertible,
this situation can occur, and an object can have its type altered in execution time.
This is not the case in any object-oriented programming language, for it will be
impossible to determine, in compilation time, if the program is safe or even correct.
So, it is not allowed by the formalism either.

The left-hand side of a rule is required to contain exactly one element of type mes-
sage, and this particular message must be deleted by the rule application, i.e., each
rule represents an object reaction to a message which is consumed in the process.
This demand poses no unreasonable restriction, since systems may have many rules
specifying reactions to the same type of message (non-determinism) and many rules
can be applied in parallel if their triggers are present at an actual state and the
referred rules are not in conflict (EHRIG et al., 1996). Systems concurrent capa-
bilities are so expressed by the grammar rules, which can be applied concurrently
(accordingly to the graph grammar semantics), so one object can treat any number
of messages at the same time.

Additionally, at most one object having attributes will be allowed on the left-
hand side of a rule, along with the requirement that this same object must be the
target of the above cited message. This restriction implements the principle of
information hiding, which states that the internal configuration (implementation)
of an object can only be visible, and therefore accessed, by itself.
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Finally, although message attributes can be deleted (so they can have their value
altered, a corresponding attribute (of the same type) must be present in the rule
right-hand side, in order to prevent an object from gaining or losing attributes along
the computation. Notice that this is a rule restriction, for if a vertex is deleted, its
incident edges will also be deleted. This situation will be explored next, as different
kinds of rules are defined.

Definition 3.6 (Basic object-oriented rule) A basic object-oriented rule r is
a C-typed graph morphism r = 〈rV , rE〉 : LC → RC, where LC = 〈L, tL, C〉 and
RC = 〈R, tR, C〉 are strict object-oriented graphs over a class-model graph C, holding
the following properties:

• rV is injective and invertible, rE is injective,

• {e ∈ EL | labC(tL(e)) = msg} is a singleton, whose unique element is called
left-hand side message, and whose target object is called attribute vertex,

• if {v ∈ VL | e ∈ EL, srcL(e) = v, labC(tL(e)) = attr} 6= ∅, then it is a singleton,
whose unique element is the attribute vertex,

• each rule implements a response to a message call at the level (class) the
message is defined, i.e., if l is the left-hand side message, then (tV ◦ tarL)(l) =
(tarC ◦ tE)(l),

• the left-hand side message does not belong to the domain of r, i.e., if l is the
left-hand side message, then l /∈ dom(r), and

• for all v ∈ VL there is a bijection b : {e ∈ EL | labC(tL(e)) = attr ∧ srcL(e) =
v} ↔ {e ∈ ER | labC(tR(e)) = attr ∧ srcR(e) = rV (v)}, such that tR ◦ b = tL
and tL ◦ b−1 = tR.

Different kinds of rules can be defined based on basic object-oriented rules. We
define three of them: strict object-oriented rules (Definition 3.7) do not allow for
object creation of deletion; object-oriented rules with creation (Definition 3.8) allow
the creation of new objects; and general object-oriented rules (Definition 3.9) permit
both creation and deletion operations.

Definition 3.7 (Strict object-oriented rule) A strict object-oriented rule r is
a basic object-oriented rule r = 〈rV , rE〉 : LC → RC where rV is total and surjective.

A strict object-oriented rule contains the restrictions connected to the object-
oriented programming paradigm, already presented, along with restrictions to assure
that no object is ever created or deleted along the computation. This goal is achieved
by requiring a bijection between the vertex sets from the left and the right-hand side
of a rule.

Definition 3.8 (Object-oriented rule with object creation) An object-
oriented rule with object creation is a basic object-oriented rule r = 〈rV , rE〉 : LC →
RC where rV is total, and for all v ∈ VR, if v /∈ im(rV ) the diagram

2ER
_

t∗E |msg

²²

VR_

tV
²²

ÂmsgRoo Â attrR // 2ER

t∗E |attr
²²

2EC VC
Âmsg∗Coo Â attr∗C // 2EC

OO
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commutes, and t∗E(attrR(v)) is a bijection.

Object-oriented rules with object creation differ from strict object-oriented rules
in two aspects: rV is not necessarily surjective, so new vertices can be added by the
rule, but all created vertices must have exactly the attributes defined along its class-
model graph, to assure that the resulting graph (when the rule is applied) remains
complete.

Definition 3.9 (General object-oriented rule) A general object-oriented rule
is a object-oriented rule with object creation r = 〈rV , rE〉 : LC → RC where
dom(rV ) = VL or dom(rV ) = VL\{attribute vertex}.

General object-oriented rules allow object deletion. Notice, however, that an
object can only delete itself, as required by the principles of good object-oriented
programming.

Having different types of object-oriented rules give rise to different sorts of com-
putations. However, regardless of the sort of rule chosen, the remaining definitions
(namely matches and rule applications) can be stated in an uniform way. Hence-
forth, the term “object-oriented rule” refers to any of the object-oriented rules types
already defined by Definitions 3.7, 3.8, and 3.9.

Definition 3.10 (Object-oriented match) Given a strict object-oriented graph
GC and an object-oriented rule r : LC → RC, an object-oriented match between LC

and GC is a C-typed graph morphism m = 〈mV ,mE〉 : LC → GC such that mV is
total, mE is total and injective, and for any two elements a, b ∈ L, if m(a) = m(b)
then either a, b ∈ dom(r) or a, b /∈ dom(r).

The role of a match is to detect a situation when a rule can be applied. It occurs
whenever a rule left-hand side is present somewhere within the system graph. Notice
that distinct vertices can be identified by the match morphism. This is sensible,
because an object can point to itself through one of its attributes, or pass itself as a
message parameter to another object. However, it would make no sense to identify
different attributes or messages, so the edge component of the match morphism is
required to be injective. The match morphism also requires that elements preserved
by the rule cannot be identified with elements deleted by it. This restrictions is
known in the literature as the identification condition and it is there to prevent
undesirable collateral effects when a rule is applied (namely, that an element meant
to be preserved is actually deleted).

A direct derivation, or derivation step, represents a discrete system change in
time, i.e., a rule application over an actual system specified as a graph.

Definition 3.11 (Object-oriented direct derivation) Let Ut be the forgetful
functor which ignores the typing structure of an object-oriented graph (Defini-
tion A.1). Given a complete object-oriented graph GC = 〈G, tG, C〉, an object-
oriented rule r : LC → RC, and an object-oriented match m : LC → GC, their
object-oriented direct derivation, or rule application, can be computed in two steps:

1. Construct the pushout of Ut(r) : Ut(L
C) → Ut(R

C) and Ut(m) : Ut(L
C) →

Ut(G
C) in HGraphP, 〈H, r′ : G → H,m′ : R → H〉 (EHRIG et al., 1996);
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Figure 3.4: Inexistence of correct element typing

2. equip the result with the following typing structure on nodes and edges, resulting
in the graph HC = 〈H, tH , C〉 where,

• for each v ∈ VH , tH(v) = u (
tG(r′−1(v)) ∪ tR(m′−1(v))

)
,

• for each e ∈ EH |attr, tH(e) = u (
tG(r′−1(e)) ∪ tR(m′−1(e))

)
,

• for each e ∈ EH |msg, tH(e) = e′, where e′ ∈ msg∗C(tH(tarH(e))), and

e′ v∗E u [tG(r′−1(e)) ∪ tR(m′−1(e))].

The tuple 〈HC, r′,m′〉 is then the resulting derivation of rule r at match m. A direct

derivation from graph GC to HC under rule r and match m is denoted by GC r,m⇒ HC.

An object-oriented derivation collapses the elements identified simultaneously by
the rule and by the match, and copies the rest of the context and the added elements,
in the very same manner that single-pushout approach does. Actually, the pushout
object is built exactly as if the underlying category were HGraphP. Element typing
is then needed to transform the resulting graph into an object-oriented graph. The
typing procedure is performed by getting the greatest lower bound (with respect the
partial order relations on nodes and edges) of the elements mapped by morphisms
m′ and r′ to the same element, while the other elements — objects and attributes
— have their types merely copied. The object-oriented rule restriction concerning
object types — which cannot be altered by the rule — assures that the greatest
lower bound of the mapped elements types always exist, as shown in more detail
below. Without this restriction, would be impossible to assure the existence of a
correct typing structures, as shown in Example 3.4.

Example 3.4 (Inexistence of correct typing) Consider the four object-
oriented graphs in Figure 3.4, typed over the class-model graph in Figure 2.3. Each
graph have an equal structure, composed of two nodes and an attribute edge. As
usual, elements are named after their types, to simplify the presentation.

The upper-left graph has a node typed as a Figure, which consists of an element
of type Shape. The element typed as Figure is mapped to elements of type Drawing
by both morphisms to (respectively) the the upper-right and the lower-left object-
oriented graphs. The element of type Shape, however, is mapped to an element
of type circle in the lower-left graph and to an element of type polygon in the
upper-right graph. This is perfectly legal, because both types circle and polygon
are shapes, as indicated by the inheritance relation on nodes. However, there are
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Figure 3.5: Dynamic binding as message retyping

no element which is the greatest lower bound of types circle and polygon in the
class-model graph presented in Figure 2.3. Furthermore, by the very definition of a
strict relation, the intersection of the down sets of distinct elements which are not
related by it is empty.

Messages, however, need some extra care. Since graph LC contains a single
message, which is deleted by the rule application, a message on HC comes either
from GC or from RC. If it comes from GC, which is an object-oriented graph itself, no
retyping is needed. However, if it comes from RC, in order to assure that HC is also
an object-oriented graph, it must be retyped according to the type of the element
it is targeting on the graph HC. Notice that this element can have a different type
from the one in the rule, since the match can be done to any element belonging
to the lower set of the mapped entity. It occurs whenever the object to which the
message on the rule is targeting at has a different type to the one it is mapped to
by the pushout morphism and, additionally, the message (in the right-hand of the
rule) has been redefined on that level.

Figure 3.5 shows a situation where the need for a message retyping is made clear.
The typing morphism is shown between brackets, for the sake of readability. Rule
r portrays a common situation: the action resulting from a method calling is the
calling of another method from one of the attributes belonging to the object. Here,
a Figure is drawn by making its constituent shape to be drawn. However, since the
rule left-hand side is matched to a Drawing which has an ellipse as constituent, and
since the method Draw is redefined within that level, the resulting message cannot
be typed as a shape Draw, but as an ellipse Draw (indicated by the only explicit
arrow from R to H). Notice that m′ is still a C-typed graph morphism (although
it is not strict anymore). Hence, the result of a direct derivation (when message
retyping is performed) is consistent with the occurrence of dynamic binding on the
object-oriented computational process.

It is important to realize that an object-oriented direct derivation is well defined,
as shown by the proposition below.

Proposition 3.1 The structure proposed in Definition 3.11 exists.

Proof: Category HGraphP is cocomplete (LÖWE, 1991), so the pushout structure of
step 1 in Definition 3.11 exists. It remains to prove that all elements of such structure can
be uniquely typed according to the second step of that definition.
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The tuple 〈VH , r′V : VG → VH ,m′
V : VR → VH〉 is the pushout of arrows rV : VL → VR

and mV : VL → VG in SetP, hence r′V is injective (because rV is injective), and r′V and
m′

V are jointly surjective.
For any h ∈ VH , let m′−1

V (h) = {r ∈ VR | m′
V (r) = h} and r′−1

V (h) = {g ∈ VG | r′V (g) =
h}. Now, for any h ∈ VH , r′−1

V (h) is a singleton (because r′V is invertible) with unique
element g, then, by definition, u tG(r′−1

V (h)) = g; for any h ∈ VH such that m′−1
V (h) /∈

im(rV ), m′−1
V (h) is also a singleton, and the same reasoning applies; for any h ∈ VH such

that m′−1
V (h) ⊆ im(rV ), we have that (tR ◦m′−1

V )(h) =V ∗C (tL ◦ r−1
V ◦m′−1

V )(h); but, for the
same element h we have that (tG ◦ r′−1

V )(h)v∗V ∗C (tL ◦m−1
V ◦ r′−1

V )(h). But, as mentioned

before, VH is a pushout, then (r−1
V ◦ m′−1

V )(h) = (m−1
V ◦ r′−1

V )(h) and therefore (tG ◦
r′−1
V )(h)v∗V ∗C (tR ◦m′−1

V )(h). Since u tG(r′−1
V (h)) is defined, u (tG(r′−1

V (h)) ∪ tR(m′−1
V )(h))

always exists.
For all attributes arcs in EL, ER and EG, the morphism can be reduced to an ordi-

nary partial graph morphism (since they are only connected to themselves via the order
relation), and then u (tG(r′−1

E (h))∪ tR(m′−1
E (h))) is always well defined. For message arcs,

however, notice that object-oriented rules require that the only message in EL is deleted
by the rule. It means that messages arcs of EH either come from EG or from ER. A
message e is typed over the least element from the overriding relation with respect to its
actual target vertex’s type. This is assured by the fact that the typing edge must belong
to the set msg∗C(tH(tarH(e))), which, by definition, assures that there is only one edge of
choice (there are no related message arcs in the set msg∗C(v), for any vertex type v. ut

Lemma 3.4 The object HC = 〈H, tH , C〉 built according to Definition 3.11 is a
complete object-oriented graph.

Proof: LC , RC are strict object-oriented graphs, and GC is a complete one. If HC is an
object-oriented graph, the following diagram can be constructed:

2EH
_

t∗E |msg

²²

VH_

tV
²²

ÂmsgHoo Â attrH // 2EH
_

t∗E |attr
²²

2EC VCÂmsg∗Coo Â attr∗C // 2EC

Notice that the set of added vertices VR \ rV (VL) can be viewed as a complete object-
oriented graph, for it has all necessary attributes. Now, restricting the reasoning to the
set of mapped vertices and attributes, one has the following: for each v ∈ VL, let bv be the
bijection existing between the attribute edges from AL ⊆ EL|attr and AR ⊆ ER|attr defined
as the last object-oriented rule restriction in Definition 3.6. Match m between the rule’s
left-hand side and graph GC is total on vertices and arcs, and injective on arcs, and by
the characteristics of the pushout construction, function m′

E is also total and injective on
arcs. Notice that all edges from GC are either belonging to the image of mE (the mapped
edges) or not (the context edges). Since the context edges are mapped unchanged to the
graph HC (and so there is a natural bijection between them), it must exist a bijection
B : EG ↔ EH which implies the existence of the trivial bijection 2B : 2EG → 2EH , and
since the sets VG and VH are isomorphic if we disregard the added vertices (note the
existence of an implicit property of an object-oriented rule that prevents it from deleting
vertices, since a deletion of a vertex implies the deletion of an edge, which cannot occur,
otherwise there would be no bijection bv), it can be concluded that the right square on the
diagram can be constructed. The same reasoning applies to the left square of the diagram,
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since the rule application assures that messages are typed right. Hence, one can conclude
that HC is a complete object-oriented graph. ut

Lemma 3.5 The morphisms r′ : GC → HC and m′ : RC → HC, built according to
Definition 3.11 are C-typed graph morphisms.

Proof: The morphisms r′ and m′ preserve the order structure, which is a sufficient condi-
tion to assure that they are actually C-typed graph morphisms. ut

Next, we show that the an object-oriented derivation is a pushout structure in
the category OOGraphP(C).

Theorem 3.2 (Derivation is a pushout in OOGraphP(C)) Given an object-
oriented graph GC, an object-oriented rule r : LC → RC, and an object-oriented
match m : LC → GC, the resulting derivation of rule r at match m, 〈HC, r′, m′〉 is a
pushout of the arrows r and m in the category OOGraphP(C).

Proof: Proposition 3.1 assures that a direct derivation can always be constructed, and
Lemmas 3.4 and 3.5 show that the resulting object and morphisms belong to the category
OOGraphP(C). Then, let 〈HC , r′ : GC → HC ,m′ : RC → HC〉 be the result obtained
by application of rule r under match m. Now, let H ′C be an object-oriented graph and
hR : RC → H ′C , hG : GC → H ′C be two C-typed graph morphisms such that hR◦r = hG◦m.
Then let h : HC → H ′C be the C-typed graph morphism built as follows: for all graph
element (node or edge) e ∈ dom(hR) ∩ dom(m′), h(m′(e)) = hR(e); for all e ∈ dom(hG) ∩
dom(r′), h(r′(e)) = hG(e); it is easy to see that, by construction, hR = h ◦m′ and hG =
h◦ r′. Notice that h is a C-typed graph morphism, since all elements e ∈ H are typed over
the greatest lower bound (respecting the concerning order relation) of the elements mapped
to them. It means that if exists an element e′ ∈ H ′ such that there are elements eg ∈ G
and er ∈ R with hG(eg) = e′ = hR(er), then (hG and hR are C-typed graph morphisms)
tH′(e′)v∗VC tG(eg) and tH′(e′)v∗VC tR(er); since tH(eh) = u (tG(r′−1(eh))∪ tR(m′−1(eh))) if
eh is a vertex or an attribute, and tH(eh) ∈ msg∗C(tH(tarH(eh))) if eh is a message, then
tH′(e′)v∗VC tH(eh) for any e′ = h(eh). Hence, h is a C-typed graph morphism.

Suppose there is another C-typed graph morphism h′ : HC → H ′C such that hR = h′◦m′

and hG = h′ ◦ r′ but h′ 6= h. Then there must be at least one graph element e ∈ H such
that h(e) 6= h′(e). But r′ and m′ are jointly surjective, so all elements of H belong to
the domain of h, so if there is an element e ∈ H such that h(e) 6= h′(e), the equalities
hR = h′ ◦m′ and hG = h′ ◦ r′ would not hold. ut

Given the graph structures presented earlier and the rules to be applied to them,
some interesting properties can be demonstrated. Closure properties are especially
interesting, such as the ones expressed below.

Property 3.1 The class of complete object-oriented graphs is closed under object-
oriented derivations using strict object-oriented rules.

Proof: Let GC be a complete object-oriented graph, 〈LC , r, RC〉 be a strict object-oriented
rule and 〈LC ,m,GC〉 be an object-oriented match, and 〈LC , r′,m′〉 the resulting derivation
of rule r at match m. Being rV is a total bijection, for any v ∈ VL tL(v) = tR(rV (v))
holds. Since m is a C-typed graph morphism, for any vertex v ∈ dom(rV ) ∩ dom(mV ),
(tG ◦mV (v), tR ◦ rV (v))isa∗, and so tH ◦ r′V ◦mV (v) = tH ◦m′

V ◦ rV (v) = tG ◦mV (v). So,
VH is isomorphic to VG.
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Now, let b be the bijection existing between the attribute edges from AL ⊆ EL and
AR ⊆ ER defined as the last basic object-oriented rule restriction in Definition 3.6. Notice
b is defined over all attribute edges of both graphs L and R. The match m between the
rule left-hand side and graph G is total on vertices and arcs, and injective on arcs, and by
the characteristics of the pushout construction, function m′ is also total and injective on
arcs. Notice that all edges from G are either belonging to the image of mE (the mapped
edges) or not (the context edges). Since the context edges are mapped unchanged to the
graph H (and so there is a natural bijection between them), it must exist a bijection
B : EG ↔ EH which implies the existence of the trivial bijection 2B : 2EG → 2EH , and
since the sets VG and VH are equal (up to isomorphism), it can be concluded that HC is
a complete object-oriented graph. ut

Property 3.2 The class of complete object-oriented graphs is closed under object-
oriented derivations using object-oriented rules with object creation.

Proof: (sketch) The same reasoning applied to the proof of Theorem 3.1 can be used to
show that, in this case, VG is isomorphic to a subset of VH . The additional vertices of VH

are those created by the rule application (i.e., those isomorphic to the set {v ∈ VR | v /∈
im(rV )}). But since all v /∈ im(rV ) is required to behave like a complete object-oriented
graph when considered alone, so its inclusion on H will assure, along with Theorem 3.1,
that it is also a complete object-oriented graph. ut

Property 3.3 The class of complete object-oriented graphs is not closed under
object-oriented derivations using general object-oriented rules.

Proof: Assume that the class of complete object-oriented graphs is closed under object-
oriented derivations using general object-oriented rules. Let n be a node of an object-
oriented complete graph such that n has an attribute e with target a. Let r be an object-
oriented rule which deletes an object of the same type as a. The application of rule r

to object a will cause attribute e to become a dangling edge; therefore, it will be deleted
during rule application. Node n will loose attribute e, so the whole derived graph will not
be a complete object-oriented graph anymore. Hence, the class of complete object-oriented
graphs is not closed under object-oriented derivations using general object-oriented rules.

ut

Property 3.3 describes a situation known as deletion in unknown contexts. This
situation is very common in distributed systems, where the deletion of an object
causes a number of dangling pointers to occur in the system as a whole. So, rules
that allow object deletion can be used to detect this kind of undesirable situations
within a specification.

An interesting side effect derived from the use of rules that allow object deletion
is that any dangling pointer would cause an edge cease to exist. In this case, any
rule which takes that particular edge into consideration can no longer be applied
(for no match can be found for that rule). When modeling system execution, this
situation leads to the prevention of an execution runtime error, which would occur
if an attempt to access an object which is no longer there is made.

Definition 3.12 (Object-oriented graph grammar) An object-oriented graph
grammar is a tuple 〈IC, P C, C〉 where IC is a complete object-oriented graph, P C

is a finite set of object-oriented rules, and C is a class-model graph.
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Graph IC portrays the initial system configuration. The object-oriented sys-
tem specified by an object-oriented graph grammar evolves through the repeated
applications of its productions, which are also typed over the class-model graph C.

3.4 Observation semantics

Graph grammars are equipped with an usual (sequential) semantics given as the
set of all possible derivations beginning in the initial graph. Formally, let GG =
〈I, P 〉 be a graph grammar. A derivation of (an algebraic) GG is given by any (finite
or infinite) sequence of direct derivations

L1

m1

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

r1 // R1
m′

1

ÃÃB
BB

BB
BB

B L2

m2

~~}}
}}

}}
}}

r2 // R2
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I
r′1 // G1

r′2 // G2

r′4 // . . .

where I is the initial graph, r1, r2, . . . are all elements of the production set P , and
m1,m2, . . . are matches (as defined in the grammar) (RIBEIRO, 1996), (HABEL,
1992), (CORRADINI et al., 1994).

The usual semantics is very concrete. A single derivation holds information about
all the graphs in it, all rules applied, and all morphisms belonging to each direct
derivation (including the counterparts morphisms r′i and m′

i for rule ri and match
mi). The set of derivations holds information concerning all derivations.

Object-oriented graph grammars intend to model object-oriented systems.
Therefore, the usual semantics would be inadequate in many aspects. The most
notable one concerns information provided by matches. A match is a total mapping
from the rule left-hand side to a graph representing a system state. Information
concerning attributes is stored, while it should be not, because object attributes
are, in principle, invisible. Notice that they are relevant to system computations,
since their value determine (at least most of the times) how an object responds to
a message, and even if a rule can or cannot be applied. However important, they
are not visible as entities, they belong to an object internal state which cannot be
accessed by other system entities.

The semantics of a single object can be defined separately from the others (in
that case, formal definitions of interfaces and context — environment — behaviour
are necessary, since an object does not operate alone), and the behaviour of the
whole environment (system) can be defined as the composition of the semantics of
each part (objects). Using that approach, the use of attributes is necessary, because
most properties of object behaviour would be expected to be expressed in terms of
attribute values.

An object-oriented system semantics can also be defined in terms of the whole
system, and then we can abstract away the elements we are not interested in. We will
use that approach, because we are mainly interested in verifying properties about
object-oriented systems and their behaviours, not about particularities of program
execution or state structure. Additionally, model checkers have their performance
degraded, or even made unfeasible, if we use a large amount of information to
represent program executions or states. The object-oriented paradigm is about
independence of implementation, so how an object is implemented (i.e., what exactly
its attributes are) should not matter. We will present a more abstract semantics
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for object-oriented graph grammars based on observations. This semantics holds
information about events happening in a system (message exchange among objects),
and forgets about system structure. Therefore, although we are not able to express
properties based on object states, we are still allowed to investigate properties of
objects based on how they respond to the rules applied to them.

The verification method we propose in Chapter 4 is based on events. We consider
an event to be a rule application. Events are observable, as well as the elements
(identities of objects) they act upon. Object-oriented rules have a very specific
format: a rule application corresponds exactly to a method call2 in usual object-
oriented programming. Therefore, we will use this fact to relate rule applications
with the objects targeted by the rule match, and we end this section by presenting
an observation semantics for object-oriented grammars. The following definitions
are needed to construct it.

Given any object-oriented graph grammar, it is possible to present a uniquely
defined partition on its set of productions, where each partition set contains the
collection of rules that can be applied to a particular type of object.

Definition 3.13 (Partition on productions indexed by vertices) Let G =
〈IC , P C , C〉 be an object-oriented graph grammar. The partition induced by the classes
of the class-model graph C on the production set P C is defined as:

ΠV
G = {ΠV

v | v ∈ VC}
where a production p ∈ P C is in ΠV

v if and only if the attribute vertex (Definition 3.6)
of p is a node a and t(a) = v.

It is easy to see that ΠV
G is indeed a partition: any production p has exactly one

attribute vertex, which is mapped via the typing morphism to exactly one vertex of
the class-model graph C (single inheritance). So, the intersection of any two sets ΠV

vi

and ΠV
vj

with vi 6= vj is empty. By definition, we have that
⋃

ΠV
v = P C . The last

requirement for ΠV
G to be a partition is that each ΠV

v ∈ ΠV
G , must be nonempty. This

cannot be guaranteed in general, but an empty Πv means that there is an object
of type v which cannot handle any message. Since the only way we can gather
information or alter the state of an object is by sending messages to it, then any
object of type v cannot be accessed by its environment. Furthermore, v would never
send any message, since a message sent is always (according to the rule format)
a response to a received message. Therefore, such a “silent” object would have
no direct influence in the system computations, so it can be dismissed from any
analysis. Notice that even if there is an object possessing an attribute of type v, by
the principle of information hiding it would be invisible to the rest of the system.
Hence, we can safely consider ΠV

G a partition.
The same applies to productions with a particular type of message edges:

Definition 3.14 (Partition on productions indexed by messages) Let G =
〈IC , P C , C〉 be an object-oriented graph grammar. The partition induced by messages
of the class-model graph C on the production set P C is defined as:

2Although methods in object-oriented programming languages which obey a sequential flow of
execution usually have to be translated into a number of grammar rules, we have been using the
terms “method” and “message” as synonyms, because the declarative programming style used in
graph programming makes such distinction blurred.
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ΠE
G = {ΠE

e | e ∈ EC |msg}
where a production p ∈ P C is in ΠE

e if and only if the left-hand side message (Defi-
nition 3.6) of p is an edge a and t(a) = e.

Again, it can be shown that ΠE
G is a partition. Since there is exactly one message

in the left-hand side of any production p ∈ P C , and any message is uniquely typed
over a single element in the class-model graph, we have that ΠE

e ∩ΠE
e′ = ∅ if e 6= e′.

By the same reasoning,
⋃

ΠE
e = P C . However, there might be a message m on the

class-model graph for which there is no production. This means that such method
is not implemented. Again, if this is the case, it will have no impact on the system
behaviour as a whole, because those messages (if they exist in the initial graph
or if they are produced by other rules), will never be consumed. This is a very
unusual situation, which can easily be transformed into an equivalent one, where
those messages, if produced, are consumed without modifying anything else in the
system. This can be achieved through the addition of rules which have only the left-
hand side message and the attribute vertex on their left-hand side, and the attribute
vertex on the right-hand side. This way, the only effect this rule application will
have is the message consumption, without transforming anything else. Therefore,
we can consider ΠE

G a partition.
Notice that partitions ΠV

G and ΠE
G can be defined in terms of each other, since

they are related by their messages and message targets. The point of having both
of them defined is a matter of convenience: sometimes we are interested in all
productions defined at some class level, while in other times we could be interested
in all productions for the same kind of message.

The behaviour of an object depends, however, on the choice of how it makes use
of its inherited elements. Traditionally, we have two different approaches: seman-
tic or syntactic inheritance (MONTEIRO; PORTO, 1991). Semantic inheritance
means that the behaviour of two objects u and v — with uvv — must be computed
separately and then combined, while in syntactic inheritance the syntax of u and v
are first combined, and then the behaviour of u is computed. Syntactic inheritance
assures that the inherited methods from v can be used by u to perform its own
computations; since the object-oriented graph morphisms make it possible (a class
can always use its inherited methods to build its own), we will use this type of inher-
itance when defining an object behaviour, which is usually the kind of inheritance
existing in object-oriented programming languages.

An object is then allowed to make use of its inherited methods to perform its
own computations. Therefore, an object behaviour must be defined in terms of all
the messages it can respond to. However, redefined methods hide their ancestors,
so they must be dismissed from the behaviour definition. A class set of rules, as
defined below, computes all messages that could be applied to an object belonging
to a class. Namely, it selects all inherited messages minus the ones that have been
redefined by some other method also in that set.

Definition 3.15 (Class set of rules) Let G = 〈IC , P C , C〉 be an object-oriented
graph grammar, ΠV

G = {Πv | v ∈ VC} be the partition on the production set P C

induced by vertices (Definition 3.13), and ΠE
G = {Πm | m ∈ EC |msg} be the partition

on the production set P C induced by messages (Definition 3.14).
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The class set of rules, for each v ∈ VC, is defined as

Rv =
⋃

vv∗VC w

ΠV
w \

⋃

mv+
EC m′

vv+
VC tar(m′)

vv∗VC tar(m)

ΠE
m′

In object-oriented programming the principle known as information hiding makes
any object private information unavailable to the whole state of the system it belongs
to. Moreover, the behaviour of an object cannot rely on the internal states of other
objects in the system. For instance, if one wants to analyze how an object of
type queue behaves, it should not matter how the object is implemented, it only
matters how it responds to the messages addressed to it. Therefore, we can hide
the existence of objects belonging to the internal state of another object in order
to abstract away concrete implementations. This can be achieved by restricting the
visibility of elements within a particular system.

Definition 3.16 (Visible types) Let C = 〈Vv, Ev, L, src, tar, lab〉 be a class-
model graph. The visible types of C is any subgraph CO = 〈VOv, EOv, L, srcO, tarO,
labO〉 such that VO ⊆ V , EO ⊆ E|msg, srcO = src|EO

, and tarO = tar|EO
.

The visible types of a system are the ones we are interested in analyzing. Since
attributes are hidden from everything but the object possessing them, they often
do not need to be part of the visible entities of an object-oriented system (although
they could, if necessary) so they are not allowed to be visible.

In concurrent object-oriented programming there is no global state containing
values of global variables to be used by entities to communicate. Communication
is commonly achieved by (synchronous or asynchronous) message passing. The
collection of messages to be executed is, in a sense, a substitute for a global state.
The notion of observation, given below, defines a system observation as part of a
system state.

Definition 3.17 (Observation) Let C be a class-model graph, and CO ↪→ C be a
subgraph of visible types. Let GC = 〈G, tG, C〉 be an object-oriented graph. The
observation of GC with respect to CO is the object-oriented graph OC

G = 〈OG , tOG
, C〉

where

• OC
G is the largest subgraph of GC containing the elements x such that tG(x) ∈

CO;

• tOG
: OC

G → C is the restriction of tG respecting the elements in OC
G.

An observation is defined as the collection of all visible messages, together with
their parameters and targets, belonging to an object-oriented graph. If this graph
is a system state, then an observation consists of all visible messages targeting at
visible objects, and their respective parameters, waiting to be processed within the
object-oriented system.

Message execution for different objects can always be performed concurrently (if
the corresponding matches exist), since there are no possible interference between
them. This non interference is caused by the object-oriented rule structure, which
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prevents a message addressed to an object a to have its implementation making
use of internal elements (attributes) of another object b (unless indirectly, if object
deletion is allowed, because in that case rule application can present the side-effect
of erasing attributes connected to the deleted object). Therefore, all computations
occurring with distinct objects will always be parallel independent (EHRIG et al.,
1996).

In imperative sequential programming, the state of a system is usually defined as
the value of all its constituents (usually variables) at a given moment in time (within
the time boundaries of the computation process). This notion matches the definition
of the state of a program executing in a machine, which corresponds to the contents
of the memory at a given instant (WATT, 1991). Since any information from an
object can only be obtained through its methods, then its behaviour must also be
defined in such terms. Internal changes within an object should not be relevant to
whole system, since they cannot be directly observed or retrieved (because they are
not visible). This notion of “observation” cannot, for that reason, rely on any global
memory structure, as in the imperative programming framework.

How a system state changes when an action is performed can be described as a
pair of states indicating the previous and the following states concerning the action
execution. This pair of states is called a system transition, usually labeled by the
performed action. A system computation can then be defined as any finite or infinite
sequence of states, where each state is obtained from the previous one by some legal
system transition.

Definition 3.18 (Observable transition relation −→) Let G = 〈IC , P C , C〉 be
an object-oriented graph grammar, and CO ↪→ C be its subgraph of visible types. Let
GC and HC be two object-oriented graphs, and OC

G ↪→ GC be the observation of GC

with respect to CO. We say that GC and HC are related under −→, if there is an
object-oriented graph production r : LC → RC ∈ P C (with left-hand side message e

and attribute vertex o), an object-oriented match m : LC → GC such that GC r,m⇒ HC.
In that case, we say that

• (GC, 〈r, o〉, HC) ∈ −→, or GC 〈r,o〉−→ HC, if mE(e) ∈ OC
G and mV (o) ∈ OC

G.

• (GC, τ,HC) ∈ −→, or GC τ−→ HC if either mE(e) /∈ OC
G or mV (o) /∈ OC

G.

Definition 3.18 establishes a relation between object-oriented graphs based on
the existence of a derivation from the first to the second, under the productions of a
given object-oriented graph grammar G. The relation is also labeled by the grammar
production r applied, together with the object o to which the rule was applied to
(i.e., the image of the production attribute vertex under the match morphism), if
both the message m implemented by rule r and the object o are visible entities. If
either of them is not visible, then the relation is labeled with symbol τ (which is
the symbol used to represent “silent” transitions in many process calculi like CCS
(MILNER, 1989a)).

Definition 3.19 (Object-oriented graph grammar transition semantics)
Let G = 〈IC , P C , C〉 be an object-oriented graph grammar, and CO ↪→ C
be its subgraph of visible types. The transition semantics of G is given
by the labeled transition system T G = 〈S, s0, L,→〉, where the set of
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states S = {GC | IC⇒∗GC}, the initial state s0 = IC, the set of labels
L = {τ} ∪ {〈p, o〉 ∈ P C × VG | G ∈ ST ∧ tG(o) ∈ CO ∧ p ∈ ΠE

tG(o)}, and the

transition relation → is the observable transition relation −→ (Definition 3.18).

3.5 Summary

This chapter presented the concepts to establish the model of computation pro-
vided by object-oriented graph grammars. First, C-typed graphs and their mor-
phisms are defined. C-typed graphs are hypergraphs typed over a class-model graph,
but the typing morphism is more flexible than the traditional one, in the sense that
mapped hyperedges need to preserve relations between sources and targets. This
feature adequately models inheritance, for any object can make use of inherited
attributes or messages.

C-typed graphs and their morphisms form a category, called within this text
CGraphP(C). Next, object-oriented graphs are presented. Object-oriented graphs
are restricted C-typed graphs, in the sense that messages addressed to objects must
be correctly typed, i.e., an object only receives inherited messages which are at the
bottom of the redefinition chain it belongs to. This implements the hiding of ele-
ments which had been overridden in some derived class. Category OOGraphP(C)
has object-oriented graphs as objects and C-typed graph morphisms as arrows. Most
results of the single-pushout approach to graph grammars are given in terms of cat-
egorical constructs, hence it is necessary to build suitable categories of (special)
graphs and graph morphisms in order to benefit from the theory already developed.

The model of computation provided by object-oriented programs is Turing com-
plete. Nevertheless, there are some inherent restrictions related to the encapsulation
of data and functions within a single syntactic structure (i.e., a class). Object-
oriented rules respect those restrictions: an object can only access or modify its
own attributes, and each method implementation corresponds to a response to a
received message. Additionally, following the semantics of rule application, for each
attribute deleted another one (of the same type) must be created.

Object-oriented rules can be of four types: basic, strict, with object creation
and general. Basic object-oriented rules implement the constraints related to the
paradigm, and form the basis from each other type of object-oriented rule is built.
Strict object-oriented rules do not allow new objects to be created, while object-
oriented rules with object creation do, making sure that an object is created with
all its attributes (inherited or not). General object-oriented rules, on the other side,
let objects to be deleted, although an object can only delete itself, as required by
object-oriented principles.

Matches are defined as total C-typed graph morphisms, where preserved and
deleted elements cannot be identified by the referred morphism (identification con-
dition). It means that a match does not need to be identical on object types, it is
only required that it preserves the underlying inheritance relation. The consequence
is that every time a rule is defined for an object of type x, it can be applied in any
object of type y, as long as y is a class derived from x. Thus, object-oriented matches
implement the concepts of polymorphism and method inheritance among objects.

Direct derivations (or rule application) are then defined. It is shown that a direct
derivation is a pushout in the category OOGraphP(C). This is the most important
result of this chapter, in the sense that direct derivations in the single-pushout



66

approach are defined as a pushout of two arrows (namely, a rule and a match) in a
suitable category of graphs and graph morphisms. Therefore, all results having to
do with derivations being pushouts can be used within this framework.

Closure properties on derivations are then stated and proven: complete object-
oriented graphs are closed under direct derivations with strict and object creation
rules, but they are not closed under general object-oriented rules. This happens
because a deletion of an object causes that all incident edges to that object are
deleted as well. It can be useful to model deletion in unknown contexts, which is
very common when a link to something becomes useless when the link target is
deleted.

Finally, object-oriented graph grammars are presented. Object-oriented graph
grammars are ordinary graph grammars where the productions are object-oriented
rules, and the initial graph is an object-oriented graph. The semantics of (observ-
able) computations is presented next.

The visible types of a system are defined as any subgraph of the underlying class-
model graph, restricted to nodes and message edges. Therefore, no attribute can
be visible, but entire classes or just some messages can be made invisible. Notice
that this visibility does not have anything to do with computations: the productions
consuming invisible messages can still be applied, even into invisible objects. The
only difference is that they will not belong to the observation of a state, which is
defined as the largest subgraph of the graph state with respect to its visible types.

Using the notion of observation, a (labeled) transition relation on graphs is de-
fined. This transition relation represents the existence of a derivation between two
graphs. It is labeled with a pair of information consisting of the production applied
together with the object the production was applied to (because of their structure,
object-oriented rules model method invocation of objects in a system), provided that
both the object and the message the rule implements are visible entities. If at least
one of them is invisible, the transition is labeled with the symbol τ , to indicate that
this transition label is itself invisible.

The transition system semantics for an object-oriented graph grammar is then
the transition system generated by the transition relation previously described, using
the grammar initial graph as the transition system initial state. Transitions are
labeled by pairs 〈p, o〉, with o being a node in the graph GC which is the source of
the transition, and p is a production belonging to the class set of rules of o, such
that there is an object-oriented match from the left-hand side of p to GC. A class
set of rules has a straightforward meaning, and represent all messages an object
can receive, which are all messages applicable to the class which types the object,
together with all inherited messages from its primitive classes minus the messages
which had been overridden.
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4 OBJECT-ORIENTED VERIFICATION

4.1 Introduction

The primary advantage of having a formally specified system is to reason about
it using available analysis methods. Concurrent systems validation is regarded as a
hard problem, mainly because errors can be caused by the order in which processes
are executed (there is an exponential number of ways in which program executions
may interleave — i.e., it is an NP-complete problem at best, when program size
is used as the measure). Therefore, in order to assure that a system presents only
desirable behaviours (or that it does not present any undesirable ones), formal ver-
ification techniques should be incorporated into the software development process.

Model checking, as explained in Section 1.4, is perhaps the most successful tech-
nique to prove the presence (or absence) of properties in systems whose behaviour
is described as a finite transition system. This success is due to the fact that it is a
fully automatic process which outputs a yes/no response to a query in the form of
a property; moreover, if the property is not true in the system, the model checker
also produces a counterexample, showing a program execution trace which led to
the violation of the specified property. Hence, it can also help in fixing problems in
specifications or in actual programs.

There are two different approaches to model check formally described systems:
the first one is to build a model checker to generate and verify models written in the
specification language, and the other one is to make use of existing model checkers
by translating the language used to describe the system to the chosen model checker
input language. Of course, the second approach is usually simpler. Naturally, the
translation must be correct, in the sense that the behaviour (semantics) of any
system must be preserved by the translation, at least concerning the properties
being checked. The development of (correct) model checkers is a task which requires
a large amount of time and effort, mainly because good model checkers not only
perform model generation and property verification: techniques such as abstraction
(DWYER et al., 2001), (SCHMIDT, 2002) program slicing (HATCLIFF; DWYER;
ZHENG, 2000), (KRINKE, 2003) and partial order reductions (VISSER et al., 2003)
are necessary to verify systems with a large state space.

SPIN (Simple Promela INterpreter) (HOLZMANN, 1997) is the model checking
tool chosen for analyzing the logical consistency of a concurrent object-oriented pro-
gram written as an object-oriented graph grammar. The input language of SPIN
is Promela (PROtocol/PROcess MEta LAnguage) which is a specification language
to model state transition systems. Promela allows for the dynamic creation of
concurrent processes, which can communicate via synchronous (i.e. rendezvous), or
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asynchronous (i.e. buffered) message channels or via global variables. Promela has a
(programming language) C-like syntax (KERNINGHAN; RITCHIE, 1986) and con-
structs for sending/receiving messages are similar to those of CSP (HOARE, 1985).
Non determinism is modeled using conditions and repetition structures clearly in-
spired by Dijkstra’s guarded commands (DIJKSTRA, 1975).

This chapter is structured as follows: the formal translation from an object-
oriented graph grammar specification to a Promela program is given in Section 4.2.
Compatibility between the semantics of an object-oriented graph grammar and its
translated Promela program computations is argued in Section 4.3. Section 4.4
shows an example of this method to verify a program written as an object-oriented
graph grammar. The example is a classic problem in the theory of concurrency,
known as the Dining Philosophers problem. We present an attempt to model it,
which has the possibility of deadlock, and we present how the translation is done,
and how the error is discovered by model checking the resulting program. Final
remarks are presented in Section 4.5.

4.2 The translation algorithm

We will use SPIN (Simple Promela INterpreter) (HOLZMANN, 1997) to analyze
the logical consistency of object-oriented systems specified as object-oriented graph
grammars. Therefore, we must provide a semantically sound translation from object-
oriented graph grammar specifications to Promela programs.

The translation algorithm presented here is both a restriction and an extension
of the one in (DOTTI et al., 2003) for object-based graph grammars. It is a restric-
tion because we do not deal with (algebraic/numerical) values for attributes. It is
an extension, however, since object-oriented features are translated, to assure that
the semantics of execution of the generated Promela code is compatible with the
computations of the source object-oriented graph grammar.

Objects will be modeled as Promela processes. The semantics of Promela compu-
tations follow an interleaving approach, so the object-oriented grammar (sequential)
transition semantics defined in Section 3.4 is adequate to be compared to the trans-
lated one. Message exchange between objects will be modeled through asynchronous
communication channels.

A major contribution of this work is the encoding of inheritance, polymorphism,
and dynamic binding in Promela. Promela originally does not have any object-
oriented features. Our approach is somewhat different from classic object-oriented
programming languages implementations (MACLENNAN, 1999), (WATT, 1990),
(GHEZZI; JAZAYERI, 1998), (PRATT; ZELKOWITZ, 1996), where a virtual table
determines which method should be called in execution time. Our method dispatch
mechanism uses a little computational reflection (SMITH, 1982), in the sense that
each object (process) is aware of its own type, and that information is made available
to other entities when they have access to the object (as an attribute, or as a message
parameter). So an object can decide, in run time, the adequate message to send
based on the actual type of the message receiver.

Dynamic binding implementations require that inheritance and overriding rela-
tions are explicit within the model. Therefore, they must appear in the translation.
Inheritance appears in the form of a global array which can be accessed by any pro-
gram element. Dynamic binding is implemented by the rule application procedure
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within each object process definition. Because both inheritance and overriding re-
lations remain static throughout the computation, even large hierarchies should not
increase the program state space size, making model checking in SPIN1 still feasible.

As most model checkers, SPIN performs model-based verification, which means
that properties can only be defined over states, and not over transitions. We use a
set of global variables to allow verification over events, as well as over states. An
object-oriented system described as a complete object-oriented graph may possess
multiple instances of the elements belonging to the underlying class-model graph.
Frequently, one is interested in knowing if all elements having a particular type
behave properly, or if an interaction between two (or more) elements is adequate.
Generally, asking questions about system elements requires that all elements are
somehow identified. The translated program has one global variable for each class
belonging to the class-model graph over which the grammar is typed, to identify the
last object of that type that had a production applied to it (provided that both the
object type and the message consumed are visible entities). If a message is received
by an object (now belonging to the system graph), and consumed by some rule
application, then the identity of this object is assigned to the respective variable.
Additionally, there is a global variable to identify which rule was applied, and it is
updated every time such action occurs. Notice that rule application is not equivalent
to message consumption. Although each rule application corresponds exactly to a
response to a received message, there can be multiple (different) rules implementing
actions for the same type of message. This variable is necessary if one is interested
in verify (through temporal logics properties) possible orders in which rules can be
applied.

Another issue in the translation is to ensure that the semantics of the generated
Promela code is compatible with the semantics of object-oriented graph grammars.
Buffered channels in Promela, which model the reception of messages in the trans-
lation, have a first come, first served (FIFO) policy. This means that messages
are received in the exact same order they are sent. FIFO semantics for the recep-
tion of messages conflicts with the object-oriented grammar semantics presented in
Section 3.4. The solution to this problem is reused from (DOTTI et al., 2003): mes-
sages, when received, are atomically stored in an array called object process buffer.
Then, the message is taken from this array and stored in a local object array; the
choice made on which local array slot to retrieve a received message is non deter-
ministic. The local array can be seen as a way to shuffle received messages, so they
do not necessarily be processed in the exact order of reception.

Let G = 〈IC , P C , C〉 be an object-oriented graph grammar, where IC = 〈I, tI , C〉 is
the (complete object-oriented) initial graph, P C is the set of (object-oriented strict2)
graph grammar productions (Definition 3.7), C = 〈VCv, ECv, L, srcC , tarC , labC〉 is
the underlying class-model graph, CO ↪→ C be the visible types of C, and Rv is the
class v set of rules (Definition 3.15), for each v ∈ VC . Let us assume that, for any class

1SPIN does not generate all computation paths, only those actually reachable by the program.
2The translation procedure assumes that objects are not being created or deleted along the

computation. It is a restriction of the possible actual object-oriented graph grammar productions,
but the choice of doing the translation for only object-oriented strict rules is twofold: (i) unbounded
creation of objects restricts the type of properties we can verify, since new objects cannot be
properly identified before their creation, and temporal logic properties must be defined in terms of
object identification, and (ii) the creation and deletion of objects are straightforward to translate.
Therefore, this part of the translation is left out for future work.
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v ∈ VC , (arbitrary) total orders exist for the sets generated by the extended attribute
set function and extended message set function (Definition 3.3). These total orders
are needed to make the translation to Promela correct, since the names used in the
grammar should not have impact on the meaning (semantics) of the system being
defined; it is therefore easier to perform the translation over the relative order of all
attributes and messages belonging to a class (being them inherited or not). Notice,
however, that those orders can be any permutation of the set elements, and therefore
they have no special meaning in the scope of the formalism proposed (i.e., there is
no loss of generality in having those total orders defined). Let then, in the following
translation, mv

k ∈ msg∗C(v) denote the k-th message that could be received by object
v ∈ VC , k = 1, . . . , |msg∗C(v)|, and av

k ∈ attr∗C(v) denote the k-th attribute belonging
to object v, with k = 1, . . . , |attr∗C(v)|.

Let ΛOOGG be the class of all object-oriented graph grammars, and ΛPromela be
the collection of all syntactically correct Promela programs (the syntax description
of Promela is given in Section E.1). The translation function F : ΛOOGG × N →
ΛPromela is defined as:

F(G,n) = [header] · [procdefs] · [init] (4.1)

where the transformational grammar rules for the nonterminal symbols [header],
[procdefs], and [init] are defined, respectively, in Figures 4.1, 4.2, and 4.4. Symbols
[header], [procdefs], and [init] generate, respectively, the declaration of types and
auxiliary macros in the Promela program; the definition of (asynchronous) processes
whose behaviour match the behaviour of each object-oriented graph grammar object
(given by the set of rules defined for each of them); and the initialization of variables
and actual processes, representing the grammar initial graph. The positive integer
parameter n determines the translated program buffer sizes. Buffers have two func-
tions on the Promela program: the first one is to store the messages received by the
objects (translated as processes), and the second one is to mimic the semantics of
object-oriented graph grammars rule application, as previously expounded. It is a
parameter of the translation process because adequate buffer sizes depend on the
characteristics of the application at hand. If the buffers are not large enough, they
will be filled up during the verification process, and an error will occur. It is actually
an empirical parameter, and if such error is raised during the verification process
the translation must be rebuilt with a larger value for n. In the following, the trans-
lation will be informally explained, through all nonterminal symbols existent within
the transformational grammar.

The nonterminal symbol [header] generates all constants, types, and global vari-
ables used along the Promela program. The first constant defined is BSIZE, whose
value is the buffer size passed as a translation parameter, which determines the size
of the buffers used to manipulate messages. The constant SIZE INHERITANCE has a
straightforward meaning, as it defines the size of the set containing the transitive
closure of the inheritance relation. All pairs of this relation will be stored in an array
(of type extends, defined later on), to allow polymorphism to be applied along the
computation.

The mtype keyword defines an enumeration of names that can be used along the
program. Multiple mtype declarations have the same effect as a single one, having
as elements the (set) union of all mtype declarations. We use multiple declarations
just to make the translation more readable. mtypes are used to define names of
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[header]��������������������������������������������

#define BSIZE · n·
#define SIZE INHERITANCE · | v+

VC | ·
mtype = { · class · v1 · , · class · v2 · , · . . . · , · class · v|VC | · };· vi ∈ VC
mtype = { · msg · v11 · · e1 · , · msg · v12 · · e2 · , · . . . · ,·
msg · v21 · · e2 · , · msg · v22 · · e2 · , · . . . · ,·
msg · v|EC |msg|1 · · e|EC |msg| · }; · msg · v|EC |msg|2 · · e|EC |msg| · };·

9
=
;

ei ∈ EC |msg,
∀vik ∈ VC : ei ∈ msg∗C (vik)

mtype = { · rule · v11 · · p1 · , · rule · v12 · · p1 · , · . . . · ,·
·rule · v21 · · p2 · , · rule · v22 · · p2 · , · . . . · ,·
rule · v|PC |1 · · p|PC | rule · v|PC |2 · · p|PC | · };·

9
=
;

pi ∈ PC ,
∀vik ∈ VC : pi ∈ Rvik

mtype = { · o1 · , · o2 · , · . . . · , · o|VI | · };· oi ∈ VI

typedef object{chan channel; mtype type; mtype id;};·
typedef extends{mtype primitive; mtype derived;};·
extends inheritance [SIZE INHERITANCE];·
mtype event RuleName;·
mtype event · v · ;· ∀v ∈ VCO

inline match (received, shouldbe, ok, i) {·
i = 0; ok = false;·
if :: (received == shouldbe) -> ok = true;·
:: else -> do :: (i < SIZE INHERITANCE) ->·
if :: (inheritance[i].primitive==shouldbe) && ·
(inheritance[i].derived==received) -> ok = true; break; fi; i++;·
:: else -> break; od; fi; }·

Figure 4.1: Promela translated program header definition.

classes, messages, rules, and objects (classes instances) existing within the program
defined by the object-oriented graph grammar. Class names are utilized to type the
objects in the program, message names to identify messages received, rule names to
identify rule application, and object names to verify properties of specific objects
within the system. typedef is the type constructor in Promela, and through it the
structured type object is defined to encapsulate all information needed to manipu-
late an object: its channel (of type chan), which is the way processes communicate
in Promela; its type (taken from the classes mtype declaration); and its identification
(taken from the objects mtype declaration). Another type is defined in the same
manner: extends define a pair of mtype values, intending to represent pairs belong-
ing to the inheritance relation. An array of those pairs, called inheritance is then
defined, and it will be initialized in the main Promela process using the transitive
closure of the relation on graph nodes.

The verification of properties can be done in two levels: object verification (to
verify object states) and rule verification (to verify when a rule has been applied).
Model checkers such as SPIN generally do not allow for the verification of events.
If we are interested in properties of computations, we must embody events into
program states. This is achieved through global variables event RuleName, and
event v, for all v in the class-model graph set of visible nodes. The first variable
holds the name of the last grammar production applied, while the other variables
hold the identification of the object of type v which was the target of the aforemen-
tioned production. Notice that there is one of such variable for each class definition.

The inline macro match is an auxiliary function to assist in the left-hand side
rule matching procedure. It receives as parameters the type of an actual object,
and the type this same object should have for a match to exist. The procedure
simply checks if both types are related by the (reflexive and transitive closure of
the) inheritance relation. This is done by searching the inheritance array for a
matching pair. If the pair exists (i.e., either the actual and the intended type are
the same or they are related by inheritance), the variable ok (passed as parameter)
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is set to true, otherwise it is set to false.

The nonterminal symbol [procdefs] (Figure 4.2) generates the two declarations
that completely describe an object behaviour in Promela. From each vertex v in the
class-model graph C — which types grammar G — one macro and one process dec-
laration are derived. Macro [procrules](v) (Figure 4.2) defines how rule applications
will be performed in Promela. The translation of graph rules applications establish
the existence of matches before the rule can be applied, and the choice of message
consumption and production application is non deterministic, as required by the
defined grammar semantics. Symbol [procdecl](v) generates the Promela process
declaration for objects of type v.

Processes declarations are written with symbol [procdecl](v) (Figure 4.2), where
the parameter v is a node from the object-oriented graph grammar underlying class-
model graph. The header of [procdecl] for class v consists of a Promela reserved word
proctype, which is the language processes constructor. The name of the process is
the same as the class, and its parameters are (i) the actual object from this class
(which is taken from the grammar initial object-oriented graph), and (ii) the list
of the actual object attributes, following the order established in the beginning of
the translation function. Notice that this procedure follows the way actual object-
oriented programming languages are implemented: a method call for an object o is
an ordinary procedure call with the object o passed as a parameter (SETHI, 1996).
The installation of an actual process of type v can be seen as the creation of a
variable typed as v, and the proctype header can be seen as a implementation of
the object constructor.

Local variables for each process are the following: a mtype variable called
msg Received, to identify which message has been taken out from the buffer; an
empty object called nil object, used as an empty parameter to the messages sent
by a rule application; a sequence of variables called par v mv

k srci
C(m

v
k) i, to hold

the values of (all) possible message parameters. Notice that for each one of the k
messages object v can receive, there is a parameter (whose type is also indicated) for
each one of the i sources the message hyperedge has in the underlying class-model
graph; a boolean variable match p for each of the productions that might be applied
to an object of type v, together with an integer variable to be used as an index in
each type testing during a match; a local buffer to hold messages received through
the object channel; an array of boolean values to indicate whether a buffer positions
is occupied or not; and a local array of boolean variables to indicate if there was an
unsuccessful attempt to apply a rule for the message in the local array slot i. An
unsuccessful attempt of rule application means that there is no match for that rule.
This will remain true until another message is applied, an then those values are set
to false again. Local variables do not increase the state space, so there is no problem
in defining unused local variables (for instance, in a class that does not make use of
nil object, or whose rules do not need to check over attribute types).

The computation of a process is performed through an infinite loop that con-
tinuously tests (non deterministically) if either a new message has arrived at the
object main channel — in which case the message is retrieved and placed in some
empty slot of the local message buffer — or if there is a message in the local buffer
waiting to be consumed — in the latter case, the message is atomically retrieved
from the buffer and the production it refers to is applied, by calling macro rules v.
In case neither the object channel nor the local message buffer contain any messages



73

[procdefs]����
[procrules](v)·
[procdecl](v)

�
∀v ∈ VC

[procrules](v ∈ VC )���������������������������������

inline rules · v · () {·
if

:: (msg Received == msg · v · ·m · ) ->

[testmatch](v, m, p) p ∈ ΠE
m

if·
:: match · p · ->
[modifystate](o, m′, p)· m′ ∈ pL|msg ∧ o = tarpL (m′)
d step {·
event · x · = opc · v · .id; ∀x vvVC x, if x ∈ VCO

event RuleName = rule · v · · p · ;· if m ∈ ECO

}·
[sendmsgs](m′, p)· m′ ∈ pL|msg

inspected[i] = false; i = 1, . . . , n

9
>>>>>>>>>>=
>>>>>>>>>>;

p ∈ ΠE
m

:: else -> [nomatch]
fi;·

9
>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

∀m ∈ Rv

::else -> [nomatch]·
fi;}

[procdecl](v)���������������������������������������������������������

proctype · v · (object opc · v · [classattrlist](v) · ) {·
mtype msg Received;·
object nil object;·
object match tmp;·
bool match · p · ;· for each p ∈ ΠV

v
int index;·
[classpardecl](v)·
[classtmpattrdecl](v)·
bool busy[BSIZE] = false;·
bool inspected[BSIZE] = false;·

chan opcb · v · [BSIZE] = ·
[1] of {mtype · (,object)i · };·

�
i =

P|msg∗C (v)|
k=1 | srcC (mv

k) |
RCV: opc · v · .channel?msg Received · [classparlist](v) · ;
opc · v · .channel!msg Received · [classparlist](v) · ;
do·
::(len(opc · v · .channel) > 0) -> ·
if·
:: (busy[ · i · ]==false) ->

opc · v · .channel?msg Received · [classparlist](v) · ;
opcb · v · [ · i · ]!msg Received · [classparlist](v) · ;
busy[ · i · ]=true;·
::else ->

9
>>>>>=
>>>>>;

0 6 i < n

assert(false); (fi;)n·
:: busy[ · i · ] == true && inspected[ · i · ] == false -> atomic {
opcb · v · [ · i · ]?msg Received · [classparlist](v);
busy [ · i · ] = false;

rules · v · (); }

9
>>=
>>;

0 6 i < n

::else -> goto RCV

od; }

[nomatch]�����������

if·
:: (busy[ · i · ]==false) ->

opcb · v · [ · i · ]!msg Received · [classparlist](v) · ;
busy[ · i · ]=true;· inspected[ · i · ]=true;·
::else ->·

9
>>>=
>>>;

0 6 i < n

assert(false); (fi;)n

[classpardecl](v)����
�
(object par · v · ·mv

k · · t(srci
C (mv

k)) · · i · ;)|srcC (mv
k)|

i=1 ·
�|msg∗C (v)|

k=1

[classtmpattrdecl](v)����
�
(object tmp attr · v · · tari

C (av
k) · · i · · k · ;)|tarC (av

k)|
i=1 ·

�|attr∗C (v)|

k=1

Figure 4.2: Promela translated program processes definitions.
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to be consumed, the process will jump to the beginning of the main loop, and stay
blocked there until a new message arrives.

The local buffer slot where the received messages are put on, or retrieved from,
is chosen non deterministically, according to the semantics of the (guarded) Promela
commands if and do. Therefore, there is no particular order in which the messages
are consumed, as required by the object-oriented graph grammar semantics. Notice
that, from the time a message is taken out of the local buffer to the time a rule
application is completed — by either applying the rule or by putting the message
back to the local buffer, if no match exist for that rule — no other process can
interleave with that execution, because of the atomic keyword. The atomicity of
the rule application process is necessary, to mimic the way rules are applied in the
graph grammar, where the whole matching and application procedure is performed
in a single step. Furthermore, if interleaving was allowed, errors could appear: if a
process is stopped between finding a match for a production and the application of
that production, meanwhile the state graph could be altered in a way that turns the
rule application impossible; therefore a match/application procedure is considered
a critical region of any object behaviour.

The declaration of [testmatch](v, m, p) (Figure 4.3) has the purpose of testing if
a match for a production p (which consumes message m, which points to an element
of type v) exists in the system graph. This matching procedure tests whether all
attributes have the correct type, and if all attributes target at the right objects
(message parameters, other attributes, or the message target object itself). To per-
form this action, the matching procedure makes use of a boolean variable match p,
defined within all processes that can receive the message consumed by production
p. As parameters, [testmatch] gets the class v which can receive message m which
is, in its turn, the left-hand side message of rule p. The first action is to call macro
match (defined in Figure 4.1), to test if the type of all attributes present in the
left-hand side of p are correct regarding the type they are supposed to have; if they
are the same, or related by inheritance, the boolean variable match p is set to true,
otherwise it is set to false. Next, the values of attributes are tested. The term “val-
ues” here means the elements to which attribute arcs point to, not actual algebraic
values (since we did not define attributes to be elements of some algebraic sort).
An attribute appearing on the left-hand side of a rule can only point to another at-
tribute value, to a message parameter, or to the attribute vertex itself, because those
are the only vertices allowed to appear in the left-hand side of an object-oriented
production (Definition 3.6). Therefore, for each attribute (of order k), if some of
their targets are (respectively) the i-th parameter of the left-hand side message,
another attribute (of order k′) target, or the attribute vertex, the actual values of
each of them are tested against the values they are supposed to have. Notice that if
an attribute targets at an object which is neither a message parameter nor another
attribute target or the main object, only its target type needs to be tested, which
has already been done before. A conjunction of variable match p with each of these
tests leads to its final value: true if and only if a match for production p exists.

The nonterminal symbol [procrules](v) defines, for each class belonging to the
class-model graph, the rule application procedure for objects of this class. For each
possible message received by an object of type v (i.e., for each m ∈ Rv, with Rv

being the class set of rules for class v, built as in Definition 3.15), and for each
production p in the object-oriented grammar set of productions which implements
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[testmatch](v ∈ VC , m ∈ Rv , p ∈ ΠE
m)���������������������������

match · p · = true;·
match (attr · v · · (tari

C ◦ tL)(e) · · i · · k · .type,
class · (tL ◦ tari

L)(e), match tmp, index);·
match · p · = match · p · && match tmp;·

9
=
; ∀e ∈ pL|attr : tL(e) = av

k, i = 1, . . . , |(tarC ◦ tL)(e)|

match · p · = match · p · &&
(attr · v · · (tari

C ◦ tL)(e) · · i · · k · ==
par · v · ·m · · srcj

C (m) · · j);·

9
=
;

∀e ∈ pL|attr, m′ ∈ pL|msg : tL(e) = av
k∧

tL(m′) = m ∧ tari
L(e) = srcj

L(m′)

match · p · = match · p · &&
(attr · v · · (tari

C ◦ tL)(e) · · i · · k · ==
attr · v · · (tarj

C ◦ tL)(e′) · · j · · k′ · );·

9
=
;

∀e, e′ ∈ pL|attr : tL(e) = av
k ∧ tL(e′) = av

k′∧
tari

L(e) = tarj
L(e′)

match · p · = match · p · &&
(attr · v · (tari

C ◦ tL)(e) · · i · · k · ==
opc · v · ;·

9
=
;

∀e ∈ pL|attr, m′ ∈ pL|msg : tL(e) = av
k∧

tL(m′) = m ∧ tari
L(e) = tarL(m′)

[modifystate](o ∈ VL, m ∈ EL, p : L → R)��������������������

tmp attr · tL(o) · · (tari
C ◦ tR)(e) · · i · · k · =·8

>>>>><
>>>>>:

attr · tL(o) · · (tarj
C ◦ tL)(e′) · · j · · k′;· –

"
if tL(e′) = a

tL(o)
k′ ∧

(pV ◦ tarj
L)(e′) = tari

R(e)

par · tL(o) · · tL(m) · · (srcj
C ◦ tL)(m) · · i · ;· –

"
if tL(m) = m

t(o)
k′ ∧

(pV ◦ srcj
L)(m) = tari

R(e)

opc · tL(o) · ;· –
�

if pV (o) = tari
R(e)

9
>>>>>>>>=
>>>>>>>>;

J

attr · tR(o) · · (tari
C ◦ tR)(e) · · i · · k · =·

tmp attr · tR(o) · · (tari
C ◦ tR)(e) · · i · · k · ;·

�
i = 1, . . . , |tarR(e)|

� J

J∀e /∈ im(pE) : tR(e) = a
tR(o)
k , i = 1, . . . , |(tarC ◦ tL)(e)|

[sendmsgs](l ∈ EL|msg, p : L → R), with o = tarL(l)�������������������

8
>>>>><
>>>>>:

assert(nfull(attr · tL(o) ·
·(tarj

C ◦ tL)(e) · · j · · k · .channel));· –

"
if tL(e) = a

tL(o)
k ∧

(pV ◦ tarj
L)(e) = tarR(m)

assert(nfull(par · tL(o) · ·
tL(m) · · (srcj

C ◦ tL)(m) · · i · .channel));· –

"
if tL(l) = m

t(o)
k ∧

(pV ◦ srcj
L)(l) = tarR(m)

assert(nfull(opc · tL(o) · .channel));· –
�

if pV (o) = tarR(m)
if·
:: · tarR(m) · .type == class · c · ->·
tarR(m) · .channel!msg · c · · tR(m) · [msgarglist](l, m, p) · ;

�
∀c ∈ ↓tR(tarR(m))

fi;·

9
>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

∀m ∈ ER|msg

[msgarglist](l ∈ EL|msg, m ∈ ER|msg, p : L → R), with tR(m) = m
(tR◦tarR)(m)
k����������������������

�
(,nil object·)|srcC (tR(m′))|

i=1

�k−1

j=1

m′ = m
(tR◦tarR)(m)
j

0
BBBBB@

8
>>>>><
>>>>>:

, attr · (tL ◦ tarL)(l) · ·
(tarj

C ◦ tL)(e) · · j · · k′· –

"
if ∃e ∈ EL|attr : srci

R(m) = (pV ◦ tarj
L)(e)∧

tL(e) = a
(tL◦tarL)(l)
k′

, par · (tL ◦ tarL)(l) · · tL(m) · ·
(tL ◦ srcj

L)(m) · · j · · k′· –

"
if srci

R(m) = (pV ◦ srcj
L)(l)∧

l = m
(tL◦tarL)(l)
k′

, opc · (tL ◦ tarL)(l)· –
�

if srci
R(m) = pV (o))

1
CCCCCA

|srcR(m)|

i=1�
(,nil object·)|srcC (tR(m′))|

i=1

�|msg∗C (tR(o))|

j=k+1

m′ = m
(tR◦tarR)(m)
j

[classattrlist](v)����
�
(; object attr · v · · tari

C (av
k) · · i · · k)

|tarC (av
k)|

i=1 ·
�|attr∗C (v)|

k=1

[classparlist](v)����
�
(, par · v · ·mv

k · · t(srci(m
v
k)) · · i)|srcC (mv

k)|
i=1 ·

�|msg∗C (v)|

k=1

Figure 4.3: Promela translated processes rule application definitions.
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that particular message (i.e., for each p ∈ ΠE
m), a test to find if a match for that

production exists is carried out (the matching procedure was described in the pre-
vious paragraph). Next, a conditional test for all variables match p (which contain
the information whether a match for production p into object v exists in the system
graph) is performed. Since a conditional test in Promela has a non deterministic
result if more than one conditional is true, the choice of which production to apply
(provided that at least one match does exist) is also non deterministic, as required
by the grammar semantics. All conditionals are guarded by the boolean variable
match p, and each of them leads to the following procedure: (i) the process local
variables are modified according to the rule morphism, as described by the nontermi-
nal symbol [modifystate]; (ii) variable event RuleName is set to rule v p, to register
which production was applied; (iii) variables event x, for all classes to which v is
related by inheritance, are set to opc v id;, the identity of the object that received
the message. Notice that an event over an object of type v is also an event over
an object of type x, where x is any primitive class of v; (iv) finally, all messages
that appear in the right-hand side of p are created. This procedure is described
by symbol [sendmsgs](v, p), and it is particularly relevant, since it is this procedure
which performs dynamic binding. The right message to send is based on the type of
the actual object which is receiving the message. Since the lower set of any node (re-
specting the inheritance hierarchy) is finite and does not chance along the program
execution, a conditional structure takes care of this. If no rule is applied (because
no match is possible for any production implementing the received message), then
the message is put back in the local buffer, and marked as inspected.

The state graph is modified by changing the values of attributes which are
changed by the rule. The attributes that have their values changed are those which
are created by the rule application (i.e., those that do not belong to the image of
the rule morphism). There are only four types of nodes an attribute can point to
in the right-hand side of a rule: (i) a node which was an attribute of the attribute
vertex; (ii) a node which was a parameter of the left-side message; (iii) a node that
was created by the rule application; or (iv) the attribute vertex itself.

Since we are defining a general translation (i.e. it should be applicable to any
object-oriented graph grammar to produce a semantic compatible Promela pro-
gram), some care is needed when changing the values of object attributes. If we just
change the values of attributes in any order, we may get undesirable effects. An
example occurs when the values of two distinct attributes are exchanged by a pro-
duction application. It does not matter in which order we make value attributions,
the result will always be wrong, because an auxiliary variable is needed to perform
the exchange of two values in sequential programming. Although it is possible to
check for all possible dependencies among variable attributions, in order to build a
more efficient program, this is not our purpose here (and optimization can always
be performed over the translated Promela source code). Therefore, to solve these
dependencies problems, we chose an approach that mimic parallel variable value
attribution: each object attribute a has a counterpart local variable called tmp a.
Value attribution is first done to this temporary variables and then transported to
the actual object attributes. This way, all existing dependencies on the order of
attributions are taken care of.

Symbol [modifystate](o, m, p) describes how rule application concerning changes
in attribute values is performed in Promela when a production p implementing a
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Figure 4.4: Promela translated program initialization definitions.

method m is applied to object o. An attribute has its value changed if it is not
preserved by the rule morphism. According to the definition of an object-oriented
rule (Definition 3.6), for any attribute that is not preserved by the morphism, an-
other one (with the same type) must be added to the right-hand side of the rule.
This is required in order to maintain the right number and the right type of object
attributes along computations (i.e., states remain complete object-oriented graphs).
Therefore, for each attribute arc which does not belong to the image of the rule mor-
phism (i.e., was created by rule application), its corresponding parameters on the
Promela program are updated, according to each of the sources of the new attribute
(hyper)edge: if it is a node which was being pointed by an attribute on the rule
left-hand side, a parameter of the left-side message, or the object which received the
message itself (the attribute vertex). Notice that those are the only possible nodes
in the right-hand side of the rule (aside from the nodes that have been created by the
rule application, which we are not considering in this translation). The aforemen-
tioned “parallel attribution” is performed after all temporary variables have been
updated.

Symbol [init] (Figure 4.4) creates a Promela process named init, which is the
process equivalent to the main program in imperative programming languages. The
init program consists of an atomically executed block of commands whose role is
to launch all processes corresponding to the objects belonging to the object-oriented
graph grammar initial graph. First, the inheritance hierarchy is initialized: all pairs
belonging to the transitive closure of the inheritance relation form the inheritance
array (which is itself an array of pairs). Next, a communication channel channel o
with BSIZE slots is created for each initial graph vertex o. The size of each channel
is determined by all parameters of all messages object o can receive. It is impossible
to know, a priori, which message will be received, and since message parameters
are actual local variables of each process, it is not possible first to receive a message
and only then copy the parameter values to their rightful places. Therefore, each
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message receives all possible parameters of all possible messages. When a message
is sent, however, the parameters which do not belong to that particular message are
filled up with an empty object (nil object, the variable defined in the beginning of
each process). The list of message parameters is built with symbol [msgparlist](o,m),
for each message m belonging to the initial graph.

For each object belonging to the initial graph, a variable of type object in
created in the program (those variables, however, are local to the process init). The
structure of each variable has a channel (channel o, previously described, a type
(the mtype class name class tI(o)), and an identification (the object name o itself).
Having all objects created, a process for each one of them is launched, through the
Promela command run. The arguments of run are the process name (which is the
name of the class object o belongs to, i.e., tI(o)), the object identity o, and all its
attributes (given in the previously defined order on attributes). Since I must be
(by definition) a complete object-oriented graph, then all necessary attributes are
present, and the call is hence valid. Following the creation of processes for the initial
graph, the messages addressed initially to the objects are sent. Message dispatching
is performed by writing the message name and parameters into an object channel.
This is performed by the last commands generated by [init]. The symbols for sending
and receiving messages (! and ?, respectively) in Promela are the same as those
traditionally used in process calculi (FOKKINK, 2000) such as CCS (MILNER,
1989a) or the π-calculus (MILNER, 1999).

4.3 Semantic compatibility

In order to prove that the translation presented in Section 4.2 is correct, in the
sense that system behaviour is preserved, it is necessary to show that for every
possible object-oriented graph grammar computation there exists a corresponding
Promela program execution which leads to the same (translated) result, and that
the reverse is also true. To compare object-oriented graph grammars executions
with Promela translated programs, we compare the paths existing in the respective
labeled transition systems.

Definition 4.1 (Path) Given a labeled transition system (LTS) T =
〈ST , sT0 , LT ,→T 〉, a path in T is a sequence of states s1, s2, s3, . . ., where
si ∈ ST , and (si, si+1) ∈→T for all i > 1. The set of all paths in T is denoted by
Path(T ) and it is the set of all paths s1, s2, s3, . . . where s1 = sT0 .

The comparison between an object-oriented graph grammar G and Promela
translated program F(G, n) (according to equation 4.1) computations will be carried
out by the translation of paths belonging to Path(T G) to the corresponding paths
belonging to Path(T F(G,n)), and vice-versa. Therefore, states and transitions in T G

must be translated (respectively) into states and transitions in T F(G,n), and the same
must be done for the states and transitions in T F(G,n), which must be translated into
states and transitions in T G (if we want to show equivalence).

The proofs concerning behaviour preservation must be based on the Promela
language semantics. As an input language for a model checker, one naturally ex-
pects that Promela should be equipped with a standard formal semantics. This is,
however, not the case. Apparently, there are only three references in the literature
where a formal semantics for Promela is provided. The first one (NATARAJAN;
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HOLZMANN, 1996), published by the SPIN developers, defines an operational se-
mantics for a subset of the language, while claiming that the only formal semantics
for the language is the C implementation of SPIN itself. The second (WEISE, 1997)
and third (BEVIER, 1997) ones were presented one year later, in the same SPIN
workshop series. (BEVIER, 1997) defines an ACL2 (KAUFMANN; MANOLIOS;
MOORE, 2000) specification for the semantics of Promela. It is a very interesting
approach, since it is possible to check the semantic definition itself; also, it is possible
to define the predicate that defines a legal Promela state and to show that it is an
invariant of the semantic definition. The ACL2 specification provides a definition
for a subset of Promela, and it is described as a work in progress, but it seems that
it did not have posterior developments. Finally, (BEVIER, 1997) presents an incre-
mental structural operational semantics for Promela, extending the work done in
(NATARAJAN; HOLZMANN, 1996) to encompass most of the language construc-
tions which had not been treated there. This latter semantic definition was used in
(DOTTI et al., 2003) to prove the semantic compatibility of their translation, and
some inconsistencies were found regarding the constructions for atomicity.

The semantics of Promela will not be formally (re)constructed here. The se-
mantic definitions given in (NATARAJAN; HOLZMANN, 1996), encompass some
language constructs not used in the translation, while others are not described, like
structured types, multiple parameterized processes and messages with any (finite)
number of arguments. Therefore, formal semantic-based proofs are left for future
work. However, we will argue that the proposed translation preserves behaviour,
based on a less formal approach.

According to the translation presented in Section 4.2, each initial graph node is
transformed into a process, having as parameters all the targets of its attributes (or-
dered according to the arbitrary total order imposed on the object attributes). Each
initial message is put into the proper object channel, together with its parameters
(the sources of each message arc in the initial graph). Therefore, targets of attribute
edges become processes parameters, and message parameters become processes local
variables. Object behaviour (i.e., the process executable code) is constructed from
the grammar rules, and it can be summarized by the following pseudo-code:

pinit: wait message
while (true) do

choose
. case (there is a message in the primary object channel)

move message to local object channel
. case (there is a message in the local object channel)

apply a rule for the message received
. else

jump to pinit
end choose

end while

The rule application procedure is performed atomically (i.e., it cannot be inter-
leaved with other processes executions). Rule application can be summarized in the
following pseudo-code (the complete Promela code generated for each object rule
application procedure was given in Figure 4.3):

for each message the object can receive do
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Object-oriented graph grammar Promela program

The i-th attribute edge e with source o and
targets a1 . . . an
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C ◦ t)(e) k i,

with k = 1, . . . , n
(process o parameter)
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a1 . . . an

msg t(o) t(m)
(mtype name)

The i-th parameter of message m addressed
to object o

par t(o) t(m) (srci
C ◦ t)(e) i

(process o local variable)

Object o
opc t(o)
(process o parameter)

Object o main channel
opc t(o).channel
(process o parameter)

Object o type
opc t(o).type
(process o parameter)

Object o id
opc t(o).id
(process o parameter)

Rule p, applicable to object o
rule t(o) p
(mtype name)

Figure 4.5: Correspondence between grammar and program entities

for each production implementing the message do
test for a match for the production

if there is a match for some production
modify the object state according to the chosen production
send the messages according to the chosen production
register the event corresponding to rule application
register the events corresponding to object identification
mark all messages in the local buffer as not inspected

else
put the message back into the local object buffer
mark message as inspected

end for

Given the translation defined by function F , it is always possible to transform
a graph belonging to a computation path in an object-oriented graph grammar
into a translated Promela program state. The opposite, however, is not true. The
transition system of a translated program F(G, n) has several states which do not
correspond to any states in the transition system of the original grammar G. This
is due to the fact that a rule application in the grammar occurs atomically, while
in the Promela program the same action requires several steps. Thus, the states
in the transition system T F(G,n) which represent a partial treatment of a message
or the pre-processing of received messages do not correspond to any state in T G .
Besides that, the process of receiving a message from the primary object channel
and moving it to the local message buffer does not have any counterpart on the
grammar transition system.

Notice that even the initial states are not the same. The initial state of the
grammar transition system is the initial graph. The initial state of the Promela
program does not have any active processes corresponding to the objects in the
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initial graph: it has only one active process (the process init), which must run to
its completion for all elements of the initial graph to be created. Since the whole
init code is atomically executed, the moment it executes its last action – and
thus terminates – we have a state in the Promela program corresponding to the
grammar initial graph. The next state in the program that will correspond to a
graph state is the one after the completion of a production application. And, even
if the rule application procedure per se is performed atomically, the actions related
to the motion of messages between the primary and the local object channels do not
have any counterparts in grammar derivations. Actually, all process computations
performing message motion can be regarded as the same graph state, because only
local variables which have nothing to do with the graph state are updated: the state
of a process is altered, but the same messages continue to appear in the process
channels, and object attributes are not modified.

Therefore, there are multiple states in the program transition system which cor-
respond to the same state in the grammar transition system. In order to transform
an object-oriented system graph into a Promela state, we have to make a choice on
which of those multiple states we are going to map. A reasonable choice would be to
put all messages pointing to an object in the system graph into the primary object
channel in the program, and make all objects be at the beginning of the infinite loop
that receives/executes messages. Figure 4.6 gives sketch of all proctype behaviours,
and this would mean that all processes should be at point of execution indicated by
letter A (according to the legend in that figure, point A indicates the beginning of
the aforementioned infinite loop). The reverse, however, is not a total function, be-
cause any state between the points of execution indicated by letters B and D could
not be mapped to any graph state, because they represent part of a rule application.
Any other state, however, do correspond to a system graph: we only have to map the
messages in both local and primary channels as message arcs, respecting the value of
their parameters, and make the corresponding attribute edges by inspecting which
are the values of the object attributes at a given point of a computation. There
is a direct correspondence between graph entities and program variables, which is
summarized in Figure 4.5. Therefore, it is straightforward to transform graphs in
program states and vice-versa.

Notice that messages, when sent to an object, are stored in buffers accessible only
by the recipient object. Once read, their parameters (objects themselves) references
are stored in local variables. Therefore, the whole process of acquiring and reading a
message only affects the object process itself, and not any other system entity. Rule
application, however, can cause an object to modify its own state, which would mean
to modify the system graph structure. If the system state is modified, matches
can cease to exist, so the matching process is performed within (atomically) rule
application procedure. Then the rule application is safe, in the sense that it can
certainly be performed.

As an example, consider a program whose initial graph has only two nodes,
which are transformed in Promela processes P and Q. Figure 4.7 gives the possible
interleaving of processes P and Q executions. Processes names are indexed with the
labels used in Figure 4.6 to denote processes points of execution (0 to the process
initial state, letters A to I for the remaining states). Error states are not shown,
for the sake of clarity. The dashed arrows 99K correspond to transitions which exist
only in the program transition system, while regular arrows → represent transitions
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States Transitions
PI initial state of process P 1 local message buffer initialization
A beginning of infinite do loop 2 local channel is not empty
B beginning of (atomic) rule application procedure 3 primary channel is not empty
C choice on which local slot to store the message 4 rule application transitions
D end of rule application 5 no local slot is empty
E error state 6 empty slot i is chosen
F beginning of the message moving process 7 receiving the message from the primary channel
G message taken out the primary channel 8 sending the message to the local channel
H message put in the local channel 9 setting the local slot i as occupied
I local slot marked as occupied

Figure 4.6: Object process transition system

existing also in the grammar transition system, which correspond to rule applica-
tions. Notice that a single transition in the grammar is translated into a sequence
of transitions in the program. We use a single transition in the figure because what-
ever the number of states there is between the beginning and the end of program
rule application are, the sequence is performed atomically, and no interleaving of
processes execution is allowed in that interval of time.

There is a correspondence between the labels on the grammar transition system
(Definition 3.19) and the global variables event RuleName and event x, with x ∈ VC .
The former contains the identity of the production applied, while the latter contain
the identity of the object targeted by the rule match. Therefore, a transition label
〈p, o〉 belonging to the grammar transition system can be translated into the pair
〈event RuleName, event t(o)〉. If either one of them is not visible, then the former
transition is labeled with symbol τ , meaning that there is no information valid on
any of those variables.

Now, let G = 〈IC , P C , C〉 be an object-oriented graph grammar, CO ↪→ C be its
subgraph of visible types, and T G = 〈S, s0, L,→〉 be its underlying observation
transition semantics. Let f denote the function that transforms a grammar state
in a Promela one. Let IC = s0

p1,o1−→ s1
p2,o2−→ . . .

pn,on−→ sn = GC be a path of T G . We

will argue that there is a path f(IC) = f(s0)
f(p1),f(o1)−→ f(s1)

f(p2),f(o2)−→ . . .
f(pn),f(on)−→

f(sn) = f(GC) in T F(G), which correspond to the translated path of execution.

The initial state of each Promela process o occurs by the end of the init process.
Therefore, if there is a transition s0

p1,o1−→ s1, it means that the left-hand side message
of production p1 was generated by process init (because a message received is
always a result of another message consumption, and it is the first rule applied in
the initial graph). If production p1 could be applied over object o1, it means that
a match existed. Therefore, process o1 can move the left-hand side message m of p
to its local channel (Promela transitions f(s0) = f(s0

A)
τ−→ f(s0

C)
τ−→ f(s0

F )
τ−→

f(s0
G)

τ−→ f(s0
H)

τ−→ f(s0
I)

τ−→ f(s0
A)) and then apply rule p (Promela transitions
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Figure 4.7: Interleaving of the Promela program execution

f(s0
A)

τ−→ f(s0
B)

τ−→ . . .
τ−→ f(s0

D)
f(p1),f(o1)−→ f(s0

A) = f(s1).

This computation is always possible, since only another rule applied to the same
object could make a match nonexistent. As explained before, rule application on
different objects are always sequentially independent, because matches depend solely
on the object attributes, which can only be modified by a rule application in the
same object. Therefore, even if there is another rule waiting to be processed in
the object local buffer, the choice of which message to apply is nondeterministic.
Therefore, any message that could be applied in the grammar can be applied in the
Promela program. The same reasoning can be applied to the remaining messages
waiting to be processed in the system graph.

The reversed process can also be computed. Given any Promela program path
which ends in either points A or D, it is possible to translate it back into a grammar
transition system path. Each time any process reaches a D state, the global variables
which identify the transition label are updated. Therefore, we can take a snapshot
of the Promela program state and translate it back to a graph state. This is possible
because at this point no other process is in the middle of a rule application, because
an atomic block of commands have just been ended.

4.4 The Dining Philosophers problem

The Dining Philosophers problem was first presented by Edsger Dijkstra, in 1965,
to illustrate an undesirable situation which can occur with concurrent programs.

A number n of philosophers are sitting around a circular table and each of them
has a plate of spaghetti in front of him with a fork at either side (i.e. n philosophers,
n plates, and n forks). The life of a philosopher consists of alternating periods of
thinking and eating. When a philosopher decides to stop thinking, he has to acquire
the forks placed at his right side and at his left side, in order to be able to eat the
spaghetti. He cannot start to eat before both forks are grabbed. Since all forks are
shared between two different philosophers, adjacent philosophers cannot eat at the
same time.

The intuitive approach to solve this problem is to have each philosopher first
pick up his left fork, and then his right one. However, this algorithm could lead to a



84

deadlock state, since all four of the necessary and sufficient conditions for deadlock
come into play: blocking shared resources (forks), no pre-emption (one philosopher
cannot ask any of his adjacent colleagues to drop their forks), holding while acquiring
(a philosopher holds his left fork before trying to pick up his right fork) and circular
waiting (each two philosophers share a fork) (TANENBAUM; WOODHULL, 1997).

The problem consists in developing an algorithm to avoid both starvation and
deadlock. Deadlock occurs if each of the n philosophers has one fork and no one can
get a second one. This situation happens, for instance, in the following scenario: all
five philosophers are thinking, and they all decide to eat at the same time. Each
philosopher then tries to pick up the fork located at his left side. They all succeed,
since all forks are on the table. The attempt made by them all to grab the second fork
fails, since all forks are, now, hold by someone. So, the philosopher p1 waits for the
fork grabbed by philosopher p2 who is waiting for the fork of philosopher p3 and so
forth, making a circular chain. If no philosopher gives up eating once he has decided
to do so, no philosopher will ever grab the second fork, and a deadlock situation
is set. Starvation might also happen independently of deadlock if a philosopher is
unable to acquire both forks. If the philosophers decide to give up eating for a while,
to wait the unavailable fork to be released, and they all decide to do that at the same
time, and then later begin the process again, a starvation situation occurs, if they
all wait the same amount of time before restarting the process (i.e., all philosophers
can always perform an action – no deadlock occurs —, but the intended final action
(eating) never takes place).

The lack of available forks is an analogy to the locking of scarce shared resources
in real computer programming. Locking a resource is a common technique to ensure
the resource is accessed by only one program or chunk of code at a time. When the
resource the program is interested in is already locked by another one, the program
waits until it is unlocked. When several resources are involved in locking resources,
deadlock or starvation might happen, depending on the circumstances. For example,
one program needs two files to process. When two such programs lock one file each,
both programs wait for the other one to unlock the other file, which will never
happen.

We illustrate our translation technique using a naive (wrong) solution for the
problem presented. We will use the translated model to show the original one is
indeed wrong, in the sense that it does not prevent a deadlock to occur. The “so-
lution” for the Dining Philosophers problem is modeled by the class-model graph
portrayed in Figure 4.8. The graph nodes, representing the type of objects pre-
sented in the system are six: Philosopher, which is derived into two different types:
Left-HandedPhilosopher and Right-HandedPhilosopher; Fork, which represent the
shared resources the philosophers are competing upon; Table, which intends to model
both the place where the philosophers are sat and from where forks can be picked
up; and ForkHolder, which can be either a Philosopher or a Table.

Left-handed and right-handed philosophers differ from one another in the way
they start the process of eating. Left-handed philosophers always attempt to pick
up their left-side forks first. Only when the left-side fork is acquired they begin the
process of grabbing the right-side fork. Right-handed philosophers operate symmet-
rically. The characteristics of the philosophers sat at the table (i.e., whether they
are left or right-handed) can be used to check the desirable system properties.

The attributes are the information the elements must possess to compute cor-
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Figure 4.8: Class-model graph for the Dining Philosophers problem.

rectly: a Philosopher is at a Table, and has a left and a right Fork to get in order to
eat (notice that a philosopher cannot pick any fork in the table, just the ones closer
to him); a Fork has an owner, which is a ForkHolder (and, by inheritance, a Table
or a Philosopher).

The messages in Figure 4.8 correspond to the actions performed by the actors in
the program. A Fork can be acquired by a Philosopher, and released by a Philoso-
pher to a Table (messages Acquire and Release, respectively). A Philosopher can
be Thinking, Eating, or receive a message Eat, which sends him to the process of
acquiring his forks, and a message Got, to notify that a Fork has been acquired.
Left-handed and right-handed philosophers redefine message Eat, as explained in
what follows.

Notation: Object-oriented rules left- and right-hand sides are actually object-oriented
graphs, i.e., graphs typed over a class-model graph (see Section 3.2). However, in order
to make the presentation clearer, all nodes and edges are named after their types, making
the typing morphism explicit.

Figure 4.9 presents the rules for class Fork. The left-hand side of rule
AcquireFork has, as expected, a single message Acquire addressed to a node of
type Fork, having a Philosopher as a parameter. Notice that the rule can only be
applied if the owner of the Fork is of type Table: in that case, and only in that
case, the owner of the Fork is now the Philosopher, who is notified that he picked
the fork by a message Got (which has the fork grabbed as a parameter). A fork is
released (by a message Release) through the grammar rule ReleaseFork: an object
of type Fork receives a message from its current owner (a Philosopher), indicating
the object of type Table to which the fork will now belong, then the Fork simply
changes the value of its attribute owner from the Philosopher to the Table.

Figure 4.10 presents the rules for class Philosopher. Although a Philosopher can
receive four types of messages, according to the class-model graph for the problem
(Figure 4.8), only two of them are implemented by the grammar. The other two
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Figure 4.9: Fork rules for the Dining Philosophers problem.
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Figure 4.10: Philosopher rules for the Dining Philosophers problem.

can be regarded as abstract methods, which are methods having the only purpose
to be redefined in derived classes, and so assure that dynamic binding is performed
in execution time.

The implemented methods for class Philosopher are Eating and Thinking. They
exist to assure that there could be an undetermined amount of time passed while the
philosopher is actually performing those activities. According to the semantics of
object-oriented graph grammars (as presented in Section 2.4), there is no particular
order or time constraint on rule application. Therefore, a time that a philosopher
spends eating or thinking is determined by the time elapsed since the philosopher
receives a message (Eating or Thinking, respectively) until it is consumed.

The application of the rule StopEating stops the aforementioned activity of a
philosopher: a philosopher which has two forks at a table sends a Release message to
his left and to his right forks, using himself and the table he is sat on as parameters.
The application of rule StopThinking consumes the existing message Thinking, and
stops the thinking activity by sending a message to himself telling it is time to Eat.

A left-handed philosopher is a philosopher who always picks up the left-side
fork first. Correspondingly, a right-handed philosophers always begins to eat by
picking up his right-side fork. Therefore, rules for Left-HandedPhilosopher and
Right-HandedPhilosopher are symmetric in the sense of the order the forks are taken,
and they achieve that by overriding messages Eat and Got from the parent class
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Figure 4.11: Left-HandedPhilosopher rules for the Dining Philosophers problem.

Philosopher.
An object of type Left-HandedPhilosopher responds to a message Eat by trying to

lift its left-side fork. This is modeled by sending a message Acquire to its attribute
typed as leftFork. Once the left-handed philosopher receives a message Got from
the Fork he was trying to pick up, he can start pursuing his other fork, which is
achieved by sending another Acquire message, now to his rightFork attribute. When
a message Got is received from this Fork then the left-handed philosopher sends
himself a message Eating to signal that the period of eating has started. An object
of type Right-HandedPhilosopher performs the exact same actions, only beginning
with its right-side fork. Figures 4.11 and 4.12 present the rules for classes Left-
HandedPhilosopher and Right-HandedPhilosopher, respectively.

Figure 4.13 shows the initial graph scheme for the Dining Philosophers problem.
We have five philosophers (whether they are left or right-handed will be considered
next) — Socrate, Plato, Nietzche, Hegel and Kant — sat at a table, having a fork
between each two of them. Initially, all philosophers are thinking, as indicated by the
messages sent to each one of them. The process of thinking can be stopped at any
time, through rule StopThinking (Figure 4.10), which only requires the existence
of a message Thinking to be applied.

The complete translated Promela program for the Dining Philosophers problem
is listed in Appendix E, Section E.3.

A number of properties are desirable to be present in a program that implements
the Dining Philosophers problem. Particularly for this example, we will check for
the following properties:

1. Deadlock absence — a philosopher can always perform an action.

2. Mutual exclusion — any fork is hold by at most one philosopher at a time.
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Figure 4.12: Right-HandedPhilosopher rules for the Dining Philosophers problem.
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3. Starvation absence — if a philosopher decides to eat, he eventually does so.

4. Cyclic behaviour — periods of thinking and eating succeed each other, in all
computations of the system.

All of those four properties can be stated in propositional linear temporal logic.
It would be interesting to express them graphically, following the formalism used
in specification. This is not done here, as properties must be specified over the
translated terms. We will use only events to model those properties, and so we will
make use of only the global variables which label the transitions in both underlying
transition systems. We believe this is a less obscure way of specifying properties.
State verification would still be possible, however state variable names are more
complicated. This, however, could be circumvent by defining a simple visual graph
language for temporal logic properties (like the one proposed in (KOCH, 1999), for
instance).

Transition systems generated by object-oriented graph grammars executions are
labeled with production names and the identification of the target object for that
production (Definition 3.19). The generated Promela program translates that in-
formation into the global variables event RuleName and event x, for all nodes x
belonging to the class-model graph C which types the translated grammar G. The
first one contains the identity of the production applied (a mtype name rule v p,
with v ∈ VC and p ∈ P C, such that a node typed as v is the attribute vertex of
production p left-hand side), and the other ones hold the identity of the object to
which the mentioned production was applied.

Property verification in SPIN can be done using a multiplicity of methods, among
which there is LTL property verification. As described in Section E.2, LTL is a
propositional linear time temporal logic, and so properties must be described using
only propositions. Since there are only temporal quantifiers, quantification over
values cannot be written, so all possible values must be tested explicitly. The XSpin
tool allows that propositions can be defined in a C-like way, using the preprocessor
macro #define. The properties we want to verify will be presented next, and are all
event based. Meaningful events to verification, in the case of the Dining Philosophers
problem, can be stated, for instance, as “philosopher X starts to eat”, or “fork Y is
grabbed by a philosopher”. Those properties will be defined int terms of the actual
objects belonging to the system initial graph (i.e., objects o ∈ IC). The following
macros aim to identify those elements (which were portrayed in Figure 4.13). Since
we are only interested in the behaviour of the philosophers (Socrate, Plato, Hegel,
Kant, and Nietzche), the following propositions are defined:

#define isPlato (event_Philosopher==Plato)
#define isSocrate (event_Philosopher==Socrate)
#define isHegel (event_Philosopher==Hegel)
#define isKant (event_Philosopher==Kant)
#define isNietzche (event_Philosopher==Nietzche)

Notice that there is no need to define propositions for left-handed or right-handed
philosophers, since if there is an event for an instance of a subclass, the same object
id is set to all superclass variables. Therefore, only the superclass of interest can be
used.
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The next propositions state events of interest occurring within the system.
Namely, they identify when a philosopher wants to eat, begins to eat, and stops
to eat.

#define aPhilWantsToEat (event_RuleName==rule_Philosopher_StopThinking ||
event_RuleName==rule_LeftHandedPhilosopher_StopThinking ||
event_RuleName==rule_RightHandedPhilosopher_StopThinking)

#define aPhilStartsToEat
(event_RuleName==rule_LeftHandedPhilosopher_StartsEating ||
event_RuleName==rule_RightHandedPhilosopher_StartsEating)

#define aPhilStartsToThink (event_RuleName==rule_Philosopher_StopEating ||
event_RuleName==rule_LeftHandedPhilosopher_StopEating ||
event_RuleName==rule_RightHandedPhilosopher_StopEating)

Now, we must define when a known event occurs with a specific object. The
propositions below state that:

#define philPlatoWantsToEat (isPlato && aPhilWantsToEat)
#define philSocrateWantsToEat (isSocrate && aPhilWantsToEat)
#define philHegelWantsToEat (isHegel && aPhilWantsToEat)
#define philKantWantsToEat (isKant && aPhilWantsToEat)
#define philNietzcheWantsToEat (isNietzche && aPhilWantsToEat)

#define philPlatoStartsToEat (isPlato && aPhilStartsToEat)
#define philSocrateStartsToEat (isSocrate && aPhilStartsToEat)
#define philHegelStartsToEat (isHegel && aPhilStartsToEat)
#define philKantStartsToEat (isKant && aPhilStartsToEat)
#define philNietzcheStartsToEat (isNietzche && aPhilStartsToEat)

#define philPlatoStartsToThink (isPlato && aPhilStartsToThink)
#define philSocrateStartsToThink (isSocrate && aPhilStartsToThink)
#define philHegelStartsToThink (isHegel && aPhilStartsToThink)
#define philKantStartsToThink (isKant && aPhilStartsToThink)
#define philNietzcheStartsToThink (isNietzche && aPhilStartsToThink)

Using the propositions defined above, LTL properties about the system behaviour
can be written. We are mainly interested in verifying safety and liveness properties.
Safety properties are the ones to assure that “nothing bad ever happens”, while live-
ness properties state that “something good eventually happens”. Safety properties
regarding the Dining Philosophers problem state that adjacent philosophers never
eat at the same time. Using LTL syntax, the property above can be stated as

[] ((philPlatoStartsToEat ->
(!(philSocrateStartsToEat || philNietzcheStartsToEat) U

philPlatoStartsToThink))
&& (philSocrateStartsToEat ->

(!(philPlatoStartsToEat || philKantStartsToEat) U
philSocrateStartsToThink))

&& (philKantStartsToEat ->
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(!(philSocrateStartsToEat || philHegelStartsToEat) U
philKantStartsToThink))

&& (philHegelStartsToEat ->
(!(philKantStartsToEat || philNietzcheStartsToEat) U

philHegelStartsToThink))
&& (philNietzcheStartsToEat ->

(!(philHegelStartsToEat || philPlatoStartsToEat) U
philNietzcheStartsToThink)))

where the symbols <>, [] and U represent the usual linear temporal logic quantifiers
♦ (eventually), ¤ (always), and U (until) (see Section E.2 for the formal syntax and
semantics of LTL).

Liveness properties usually refer to the lack of deadlock and starvation. For the
philosophers, it mirrors the idea that when a philosopher decides to eat, it eventually
does so. This property is stated below:

[] ((philPlatoWantsToEat -> <> philPlatoStartsToEat) &&
(philSocrateWantsToEat -> <> philSocrateStartsToEat) &&
(philKantWantsToEat -> <> philKantStartsToEat) &&
(philHegelWantsToEat -> <> philHegelStartsToEat) &&
(philNietzcheWantsToEat -> <> philNietzcheStartsToEat))

It should be noticed that we are using two different variables in the Promela
program to identify when a grammar event occurs. The actions of changing variable
values generate (at least) two distinct states in the transition system corresponding
to the program behaviour. Therefore, we can end up with a problem regarding the
consistency of states when compared with the grammar counterpart. This problem
is solved in the translation by enclosing the attributions of object and rule identifica-
tion between a d step block. A d step sequence is executed as if it were one single
indivisible statement. It is comparable to an atomic sequence, but it differs in the
sense that no system states are saved, restored, or checked during the execution of
a d step sequence. Hence, a d step sequence, no matter how long it is, generates a
single transition in the underlying automata, thus guaranteeing the consistency of
verification.

If all philosophers are right-handed (or left-handed, for that matter), then the
liveness property stated before is not true within the model provided. Figure 4.14
shows a graphical counterexample (taken from the model checker output, and gen-
erated by the system developed in (SANTOS, 2004)) for them. The counterexample
shows three philosophers (Nietzche, Hegel, and Kant) and their respective forks.
The processes are indicated by the vertical lines, and the arrows indicate the mes-
sages arriving and departing from each process. Notice that a deadlock situation is
set: each philosopher was able to grab one fork, and send a message to the other
fork to acquire it. However, since each fork now has a philosopher owning it, rule
AcquireFork (Figure 4.9) cannot ever be applied again, and all philosopher will
wait forever. The safety property, however, is true, as should be expected.

A last note on the power of expression of object-oriented graph grammars de-
serves to be raised. At a first glance, it seems that object-oriented graph grammars,
as described in this work are incapable of describing many things due to the lack of
attribute values. It is certainly true that we cannot represent, for instance, strings
or real numbers using that formalism. Enumerations, however, can be represented,
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Figure 4.14: Counterexample of the absence of deadlock property
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through the mechanism of inheritance. As an example, we have used inheritance to
discriminate between a fork being held by a table or by a philosopher. Only in the
event a fork is owned by a table, rule AcquireFork can be applied (Figure 4.9). It
means that enumerations of values can be modeled by subclasses, while the type is
their parent class. Although the expressiveness of object-oriented graph grammars
is not a subject of investigation here, we believe they have the same power of ex-
pression of grammars holding algebraic types with finite sorts. This investigation is
left for future work.

4.5 Summary

This chapter presented a set of definitions to allow that specifications written as
object-oriented graph grammars (described in Chapter 3) can be formally verified
using the model checker SPIN.

A formal translation from object-oriented graph grammar specifications into
Promela programs was presented. Objects in the system graph are modeled as
Promela processes, having as parameters the object attributes; messages are mod-
eled as buffered communication channels. Buffered channels in Promela have a first
come, first served (FIFO) policy. This behaviour is changed to become compatible
with rule application semantics of graph grammars: messages, when received by a
process, are moved and stored in a local array. The choice made on which local array
slot to place the received message is deterministic, in order to shrink the translated
program state size, but the choice of which slot to take the message from to be
consumed is not. Therefore, the local array can be seen as a way to shuffle received
messages, so they do not necessarily be processed in the exact order of reception.

Inheritance is encoded in the translated program as a global array variable visible
to all processes. Inheritance is used to perform matches, by checking if the match im-
age of the attributes targets (on the rule left-hand side) are correctly typed, assuring
that subclass polymorphism is properly applied. Dynamic binding is implemented
as a message dispatch mechanism, which checks the actual type of the message to
be sent recipient. This way, the right type of message to be sent can be determined
in execution time, as required. The novelty of that approach is the implementation
of object-oriented features in Promela, which does not have any of those features
built in.

The translation presented allows for both state and event verification. SPIN only
performs state-based verification, so we use global variables to allow verification
over events to be performed. A global variable for each class belonging to the
grammar underlying class-model graph exist to identify the last (visible) object of
that type that had a (visible) production applied to it. There exists also a global
variable to identify which rule was applied, which is used to verify (through temporal
logics properties) possible orders in which rules can be applied. Attributions of
object and rule identification are enclosed between a d step block, which generates
a single transition in the underlying automata, thus guaranteeing the consistency of
verification.

Rule application is translated in Promela as a procedure which non determin-
istically retrieves a message from the local buffer, and checks which matches exist
for productions implementing that message. A production is chosen to be applied
(also non deterministically) if a match for it exists. Rule application is performed
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atomically, to mimic the way rules are applied in a graph grammar, where the whole
matching and application procedure is performed in a single step.

Semantic compatibility between the behaviour of the original object-oriented
graph grammar and the translated Promela program is discussed. To compare
object-oriented graph grammars computations with Promela translated programs
executions, we compare the paths existing in the respective labeled transition sys-
tems. The comparison is not formally proven because Promela lacks a formal se-
mantics definition.

Finally, the resulting program can be fed into the model checker SPIN, and prop-
erties can be defined over the actual objects of the original grammar or over events
such as rule applications over determined objects. Verification is then performed
automatically by the model checker. As an example of that procedure we show
a translation for the Dining Philosophers problem specified as an object-oriented
graph grammar. Safety and liveness properties are specified and verified and the
results are shown.
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5 RELATED WORK

5.1 Object-oriented models and specification languages

Ever since Simula (NYGAARD; DAHL, 1981) was invented in the 1960’s, object-
oriented programming has been one of the fastest growing paradigms of computer
programming languages. It is true that it took a while (mainly due to hardware con-
straints) for it to become popular, but in the last twenty years, with the development
of commercial programming languages such as C++ (STROUSTUP, 2000), Java
(CAMPIONE; WALRATH; HUML, 2000), and recently C# (MICROSOFT COR-
PORATION, 2005), object-oriented programming has become ubiquitous within the
field of software development.

While object-oriented languages had their use spread throughout the world, un-
derlying theories for explaining their meaning and logics lagged far behind. This
lack of formal foundations did not occur with other programming paradigms: the
semantics of functional programming languages can be understood by looking at
the model of computation on which they were based, the λ-calculus; logic program-
ming relies on first-order logic with unification of terms, which were formally defined
long before the paradigm to appear; imperative programming languages and their
semantics (denotational, axiomatic, and specially operational) have been a matter
of study for a long time.

The result of this is that most object-oriented models of computation are based
on others, previously existing models (as it is in this work) or actual programming
languages. Similarly to the models of computation, most object-oriented formal
specification languages were built over previously existing specification languages
aiming at the modeling of general software systems. Although the formalism pro-
posed in this work is not an object-oriented specification language per se, we believe
it is interesting to compare its evolution with respect to graph grammars to some
object-oriented formal specification languages built on top of pre-existing general
purpose ones. First, we analyze some data-oriented, state-based methods, then we
will do the same for process-based ones.

VDM (Vienna Development Method) (BJORNES; JONES, 1978) was initially a
language description method inspired by denotational semantics. Compared to the
standard VDM-SL language (PLAT; LARSEN, 1992), VDM++ (FITZGERALD
et al., 2005), (CSK CORPORATION, 2005) has been extended with classes. With
the object oriented facilities offered by VDM++ it is possible to define classes and
create objects, define associations and create links between objects, make gener-
alisation and specialisation through inheritance, describe the functional behaviour
of the objects using functions and operations, and describe the dynamic behaviour



96

of the system through threads and synchronization constraints. It is interesting to
note how some of the object-oriented constructs inserted in VDM++ were actually
taken from modern object-oriented programming languages. For instance, access
specifiers are called public, protected, and private, the same names used in C++,
Java, Delphi, and others.

Perhaps the most well-know set theoretic based method for formal system speci-
fication is the Z notation. Z can be roughly described as a syntactic envelope built on
top of usual set-theoretic notations (MONIN, 2003) and first-order predicate logic.
Sets are used in Z as a universal means of expression: the state space of a system is a
set, types are sets, even operations are sets (actually, they are relations, which is just
a special case of set). Symbols for various kinds of relations are provided (functions,
partial functions, injections, etc.) along with a number of set-theoretic operations
allowing for the construction of new relations from previously defined ones. The
space state and the operations of a system are declared by means of schemas. A
schema can contain data, operations and predicates that must hold for the variables
and data it contains. Z provides means for schema composition, which gives rise
to a schema calculus that can be used for consistency and verification purposes.
Object-Z (SMITH, 1992), (SMITH, 1999) is an extension of Z in which the existing
syntax and semantics of Z are retained and new constructs are introduced to facil-
itate specification in an object-oriented style. Extensions in Object-Z include the
class schema which captures the object-oriented notion of a class by encapsulating
a single state schema with all the operation schemas which may affect its variables,
a parallel operator for composing and synchronizing operations. Object-Z supports
both single and multiple inheritance and allows inheritance hierarchies to be used
polymorphically. It effects the merging of the type, constant and schema defini-
tions in each of the inherited classes with those declared explicitly in the inheriting
class. Therefore, it strongly relies on name spaces, which allows also for operation
redefinition.

Algebraic specification (WIRSING, 1998) techniques also have been extend to
accommodate object-oriented features. Actually, algebraic specifications have been
the first ones to serve as a formal foundation for object orientation (BREU, 1991).
OBJ (GOGUEN; MALCOM, 1996) is a family of languages based upon logical sys-
tems, in the sense that their programs are sets of sentences in some logical system,
and their operational semantics is given by deduction in that logical system. OBJ
has three kinds of entitities at its top level: objects, theories, and views. An object
encapsulates executable code, while a theory defines properties that may (or may
not) be satisfied by another object or theory. Both objects and theories are modules.
A view is a binding of the entities declared in some theory to entities in some other
module, and also an assertion that the other module satisfies the properties declared
in the theory. Modules can import other previously defined modules, and therefore
an OBJ program is conceptually a graph of modules. Modules have signatures that
introduce new sorts and new operators among both new and old sorts. Variables
with declared sorts can also be defined. Terms are built up from variables and
operators, respecting their sort declarations. Modules can be parameterized, and
parameterized modules use theories to define both the syntax and the semantics of
their interfaces. Views indicate how to instantiate a parameterized module with an
actual parameter. This kind of module composition is, in practice, more powerful
than the purely functional composition of traditional functional programming, be-
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cause a single module instantiation can compose together many different functions
all at once, in complex ways. The order-sorted specification implemented by OBJ
provides a notion of subsort that implements multiple inheritance and overloading.

Petri nets (REISIG, 1985) are commonly used for the formal specification of
concurrent systems. They possess a graphical representation, and a wide range
of automated and semi-automated analysis techniques. It has been shown that
graph grammars are a proper generalization of Petri nets (GENRICH et al., 1983),
(KORFF; RIBEIRO, 1996), which allow to specify structured states (graphs instead
of place vectors) and context dependent transitions, where part of the precondition
is read but not consumed (CORRADINI et al., 1993). The theory and languages
of Petri nets have also been extended to deal with object-oriented features. Object
Petri nets are presented in (LAKOS, 2001) to support an integration of object-
oriented concepts into Petri nets, including inheritance polymorphism and dynamic
binding. A single unified class hierarchy encompasses both token and subnet types
(a token can thus encapsulate a subnet, to model that object attributes can be
objects themselves), which means that a net can have multiple levels of activity
(corresponding to object executions). Each data element is defined in a Z schema-
like incremental style with fresh elements being added to inherited ones. Overriding
of functions is allowed, and polymorphism is achieved through the abstraction of
places and transitions. Reachability analysis is based on token/place names, thus
only a finite number of them are allowed and so new elements cannot be created.
The same approach of nesting in used in (VALK, 2001), which investigates high-level
modeling capabilities through the study of higher-level net tokens having individual
dynamic behavior — tokens are modeled by Petri nets themselves. Object nets
behave like ordinary tokens, in the sense that they are lying in places and can be
moved around by transitions.

The CO-OPN/2 formalism was first presented in (BIBERSTEIN; BUCHS;
GUELFI, 1997) and further developed in (BIBERSTEIN; BUCHS; GUELFI, 2001).
While the first was aiming at integrating Petri Nets with object-oriented constructs,
using a net-like definition of inheritance, polymorphism and dynamic binding, the
latter uses an algebraic approach. Classes are templates described as algebraic nets
in which places play the role of attributes, and methods are external parameterized
transitions. Interactions between objects consist of synchronization expressions,
which allow the implementation of different interactions policies. (Inclusion) poly-
morphism and inheritance derive from the use of order-sorted algebras for the data
structures used. The model also makes a clear distinction of inheritance and sub-
typing, and its semantics is based on a set of structural operational semantics (SOS)
rules plus a semantic mechanism to deal with identifiers.

Another work on hierarchical object-oriented nets is (HE; DING, 2001), where
object-oriented specifications are built using hierarchical predicate transition nets,
using an algebraic specification for data structures, and where classes are modeled
as nets and objects are copies of classes with an unique identification. Data and
process abstraction give rise, respectively, to the notion of super predicates and super
transitions, which allow the definition of object aggregation and inheritance. Inheri-
tance is implemented through nested supernodes denoting containing and contained
classes. Derived classes use an explicit identification for inherited elements, which
are added to the new subclass, and polymorphism is derived from the underlying
algebraic specification.
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Most of the Petri nets extensions to object-oriented features are based on alge-
braic specification for data and nets for data behaviour. It seems that the hierar-
chical approach, with tokens allowed to be nets themselves is another trendy line of
work, mainly to deal with the known scalability problem of Petri nets. Analysis for
the latter case, however, is a hard problem.

The idea of formalizing objects in a categorical setting can be dated back to
(EHRICH; SERNADAS; SERNADAS, 1987). They propose a cocomplete category
to model objects and their interactions, based on the algebraic data type specifi-
cation theory. Object aggregation, subtyping relations, and general relations such
as “part of” or “aspect-of” are shown to be definable as categorical elements and
constructions. It is interesting how this work points to the coalgebraic (JACOBS;
RUTTEN, 1997) notion of object, defined almost ten years later (JACOBS, 1996).

Coalgebras and object-oriented systems have been related mainly by the work
of Bart Jacobs. In his coalgebraic approach to object-orientation, the operations
(attributes and methods) in a class are understood jointly as a single coalgebra,
acting on some state-space. Objects of this class are elements of this state-space.
A coalgebraic class specification describes a class as some uninterpreted coalgebra
satisfying certain assertions (JACOBS, 1996), given in equational logic. Two objects
are bisimilar if they are observationally indistinguishable, i.e., if their operations are
unable to produce any observational difference between them.

CCSL (ROTHE; JACOBS; TEWS, 2001) is a specification language that com-
bines both algebraic and coalgebraic elements. The CCSL compiler translates CCSL
specifications into higher-order logic either for PVS or for Isabelle/HOL proof as-
sistants. After translation the theorem prover can be used to examine the speci-
fication, build models, or construct refinements. The specification language CCSL
contains single sorted, parametric coalgebraic specifications with the following ele-
ments: coalgebraic signatures correspond to higher-order polynomial functors, that
is, to polynomial functors with arbitrary exponents. The class of models is restricted
with axioms in higher-order logic, and the logic is extended with behavioural equality
and modal operators. Inheritance of specification allows one to (monotonically) ex-
tend specifications. It also contains parametric algebraic abstract data types (as they
are found in PVS and Isabelle) as well as signature extensions with type constructors
and arbitrary (polymorphic) constants. In (JACOBS, 1998), CCSL is used as input
to the LOOP tool (HENSEL et al., 1998), which is a front-end tool for a theorem
prover, to reason about classes. This reasoning process allows for proving proper-
ties about bisimulations and invariants. A number of developments of this work
relates coalgebras with modal logics, in the same sense equational logic is related
to algebraic specification (JACOBS, 2002), (JACOBS, 2000), (CIRSTEA, 2003),
(KURZ, 2001), (PATTINSON, 2001), (RÖSSIGER, 2000). Coalgebraic approaches
have been taken recently also in the area of semantic of concurrent programming
languages, mainly by categorically relating their denotational and operational se-
mantics (RUTTEN; TURI, 1994), (TURI, 1996).

The spreading in the use of object-orientation as the main current programming
paradigm causes two distinct and complementary developments for the area. First,
theoretical foundations for object-oriented programming and computations started
to be pursuit more consistently. Second, traditional formal methods of system speci-
fication began to be extended to accommodate the inherent features of the paradigm.
It will discussed in Section 5.2 specifically the attempts to incorporate those fea-
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tures into the different graph transformation approaches, and how this thesis is a
contribution in that area.

5.2 Graph grammars and object-oriented systems

Graph grammars have been used to model systems and their computations since
they were first introduced (PFALTZ; ROSENFELD, 1969), as a means of solving
picture processing problems.

The algebraic approach to graph grammars, presented for the first time in
(EHRIG; PFENDER; SCHNEIDER, 1973) makes use of categorical constructs to de-
fine the relevant aspects of the model of computation provided by graphs grammars.
That approach is currently known as double-pushout approach, because derivations
are based on two pushout constructions in the category of graphs and total graph
morphisms. The single-pushout approach (LÖWE, 1991), on the other hand, has
derivations characterized as a pushout construction in the category of graphs and
partial graph morphisms. It is a proper extension of the double-pushout approach
(EHRIG et al., 1996) capable of dealing with addition and deletion of items in un-
known contexts, which is an important feature for distributed systems. A main
advantadge regarding the algebraic approach is that, since it relies on categorical
constructs, if those constructs are proven to exist respecting modified objects and
arrows within suitable categories, all results can be directly inherited. The single-
pushout approach is one of such modifications, where objects are the same as the ones
in the double-pushout approach, but arrows are partial graph morphisms, instead of
total ones. The algebraic approach, originally defined in terms of labeled graphs and
labeled graph morphisms, is suitable for modeling systems and their computations.
Concepts of parallel and distributed productions and derivations in the algebraic ap-
proach are very useful to model concurrent access, aspects of synchronization, and
distributed systems based on local and global graphs (see (EHRIG; ROSEN, 1980),
(LÖWE, 1991), (EHRIG; LÖWE, 1993), (KORFF, 1995), (TAENTZER, 1996a),
(HECKEL, 1998), and (MONTANARI; PISTORE; ROSSI, 1999)).

Although the literature is filled with developments in (parallel, concurrent, dis-
tributed, mobile) system specifications using graph grammars, object-oriented spec-
ification is mostly left aside. There are a few papers reporting the use of graph
grammars to model object-oriented systems and programs. Most publications deal
with object-based systems, which differ from object-oriented systems because en-
capsulation and data hiding are taken into consideration, but inheritance and poly-
morphism are not. Object-based graph grammars are used to model mobile systems
and their computations (DOTTI; RIBEIRO, 2000). Those grammars only allow
rules that do not interfere with attributes of different objects, thus implementing
data hiding. However, inheritance is not considered. Distributed state graphs mod-
eling objects in a network are presented in (TAENTZER, 1996b). Again, objects
are entities with an internal state, but inheritance relations are left aside. (PA-
PADOPOULOS, 1996) presents a work where the generalized computational model
of term graph rewriting is used as the basis for expressing concurrent object-oriented
programming. Concurrency is expressed by the very nature of the model it is based
on, and so all levels of interaction among entities can be performed in parallel, and
it is naturally language independent. No reference to polymorphism is done in that
work. (RENSINK, 2004) presents a tool, called GROOVE, to generate the space-
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state of a graph grammar, in the attempt that the resulting transition system can
be model checked. Java programs are translated into graphs and graph productions,
but inheritance and polymorphism are not taken into account.

(WAGNER; GOGOLLA, 1996) gives an interpretation of attributed graphs in
terms of partial algebras. Using total algebras, attributed graphs can be modeled as
a combination of one algebra for the graphical part and another algebra for the data
type component. Hence a transformation step consists of the transformation of the
graphical part, the transformation of the data part, and a relating step where attri-
butions are computed. This approach switches to partial algebras, and attributed
graphs can now be seen as a single partial algebra. Single-pushouts in the category
of partial algebras are defined (as well as necessary conditions for pushout existence).
Partial algebras, seen as an attribute hypergraph, are then used to give a seman-
tics for the behaviour of object programming language TROLL light (CONRAD;
GOGOLLA; HERZIG, 1992) programs. Particularly, valuation and interaction rules
in TROLL light are translated to graph grammar rules. This approach, however,
also focuses on the data and code encapsulation feature of object-oriented programs,
and inheritance and polymorphism do not come into play (although they might have
been, because perhaps this framework could be adequate also to order-sorted alge-
bras).

Graphs labeled with alphabets equipped with preorders (i.e., reflexive and transi-
tive binary relations) appear in (PARISI-PRESICCE; EHRIG; MONTANARI, 1986)
to deal with variables within graph productions. Unification of terms can be achieved
(by the rule morphism) if the terms are related by the order relation, which means
that the ordering is actually a sort of variable typing mechanism. The concluding
remarks of this work present some ideas on using the framework to describe inher-
itance, but this direction seems not having been pursuit. Furthermore, preorders
on node sets appear in the very first reference to the algebraic approach to graph
grammars, but have been dropped in the next publications.

Since so many structures in computer science are usually represented as graphs,
and a number of other structures in the same field are adequately represented by
order relations, the idea of combining the two formalisms seems to be appealing.
However, this combination does not appear often in the literature. In (BRANDEN-
BURG, 1986), for instance, “partially ordered graphs” are defined, which consist
of ordinary labeled graphs together with a tree structure on their nodes. Partially
ordered graph grammars are also defined, which consist of graph productions and
tree productions, which must assure that the rewriting process maintains the tree
structure. They are applied on lowering the complexity of the membership problem
of context sensitive string grammars.

As far as we know, the first work to implement actual object-oriented features
into a graph rewriting model is (FERREIRA; RIBEIRO, 2003), which was the seed
to the work presented within this thesis.

5.3 Object-oriented logics and model checking

In the realm of imperative programming, Floyd and Hoare defined two of the
first logics of programs ((FLOYD, 1967), and (HOARE, 1969), respectively). Since
then, many formalisms, languages and systems were built upon their ideas, and
addressed difficult issues such as data abstraction and concurrency. Although there
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is an extensive formal work on objects, logics for reasoning about object-oriented
systems began to be developed quite recently. As expected, some of them are based
on a Floyd-Hoare style logics (COUSOT, 1998), that concentrate on verifying pre-
and postconditions and/or invariants.

A logic for the specification and verification of object-oriented programs is pre-
sented in (ABADI; LEINO, 1997). It aims the logical reasoning about pre- and
postconditions of programs written in a basic object-oriented language (a variant
of the calculus presented in (ABADI; CARDELLI, 1998)). Like Hoare’s logic, it
deals with partial correctness (correctness without termination). The language, and
corresponding logic, is an object-based one, for it does not allow for the definition
of classes or inheritance. It, however, allows aliasing, object self-reference, and sub-
typing. The logic is proved to be sound, but it is not complete (even for well typed
programs).

(PIERIK; BOER, 2003) presents a Hoare logic for a sequential object-oriented
language that contains all standard object-oriented features, including inheritance,
subtyping and dynamic binding. The logic consists of a weakest precondition cal-
culus for assignment and object creation, as well as Hoare rules for reasoning about
method invocation with dynamic binding. The resulting logic is (relatively) com-
plete in the sense that any valid correctness formula can be derived within the logic.
This approach is a syntactical one, for it is based on an assertion language (cOOre)
of a programming language abstraction level , and because the calculus has only
syntactical substitution operations. Decidability issues concerning that logic are
still open.

A modal logic for describing properties of terms in the object calculus of (ABADI;
CARDELLI, 1998) is presented in (ANDERSEN et al., 1997). The logic is essentially
the modal µ-calculus, whose fragment allows the expression of temporal modalities
from the temporal logics CTL. The modal logic presented is capable of describing
dynamic properties of a calculus term. Although the main focus of this paper is
on the definition of a sound and complete translation from the types to logical
formulae preserving typability and subtype ordering, it is interesting to note how
object-oriented elements such as self-referencing, method activation, and method
overriding can be described in this logic. Model checking is still not discussed here.

(DISTEFANO; KATOEN; RENSINK, 2000) presents a temporal logic, called
BOTL (Object-based Temporal Logic), which is an object-based extension of CTL.
The object part of that logic is inspired by by the Object Constraint Language (OCL)
(WARNER; KLEPPE, 1999), an optional part of the Universal Modeling Language
(UML) standard which allows expressing static properties over a class diagram in a
textual way. The precise relationship between those two logics is defined by means of
a mapping of a large fragment of OCL onto BOTL. BOTL is confined within object-
based systems, i.e., systems in which inheritance is not considered. The combination
of OCL features with temporal features facilitates both the specification of static
properties and dynamic properties of object-based systems. There is no mention,
however, in how model checking can be performed over BOTL models.

In (WEHRHEIM, 2003) is presented a method for computing the preserved prop-
erties of a class from any given subclass. In this work, correctness properties on
classes are formalized in the temporal logic CTL (CLARKE; GRUMBERG; PELED,
1999). The investigation tries to establish which modification on the derived classes
assure that the properties of the super classes are maintained (in general, since a
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derived class can redefine all its predecessors methods, it can destroy all their prop-
erties). The technique used computes, for every modified or new method in a class
C derived from A, the set of variables it influences (directly or indirectly). Atomic
propositions depending on variables within this influence set will thus potentially
hold at different state in C than in A. Therefore formulas over atomic propositions
of the influence set might not be inherited from A to C. All formulas independent of
the influence set are preserved. The approach resembles the ones used for program
slicing (HATCLIFF; DWYER; ZHENG, 2000).

Model checking was first introduced in (CLARKE; EMERSON; SISTLA, 1986),
and it is a fully automatic technique to prove that a model of a concurrent pro-
gram, specified as a finite transition system containing all possible behaviours of
that program model, possess a property, specified in some temporal logic (EMER-
SON, 1998), (STIRLING, 1992). Within the last two decades, model checking has
become one of the leading techniques for proving programs correct. Because of the
exhaustive search performed in a (concurrent) program state-space (or in a faithful
representation of it), model checkers can validate even programs consisting of a large
number of interactive processes, even with very large state-spaces (BURCH et al.,
1992).

The translation from formal specification languages to the languages of model-
checkers has become a common practice: it is often easier to translate a model than
to build a verifier to the chosen specification language.

We have presented, in this section, a number of logics developed to reason about
object-oriented programs, and a number of different approaches to model checking
program specification. It is not a very extensive survey, mainly because object-
oriented logics and model checking techniques are beyond the scope of this work. It
merely serves for illustration purposes on how active the research on object-oriented
formal reasoning is. The next section presents a (more complete) survey on how
logics and graph grammars are being related in research projects.

5.4 Graph grammars and model checking

(QUEMENER; JERON, 1995) describes a model checking algorithm to deter-
mine if a finite labeled transition system generated by a simple (deterministic) graph
grammar is a model for a given CTL formula. They are mainly interested in infinite
graphs composed by a finite number of patterns in a regular way. They express the
gluing of patterns with hyperarcs, which led to an hyperedge replacement approach.

(BURKART; QUEMENER, 1996) propose an algorithm to decide whether a
state of an infinite graph defined by a graph grammar satisfies a given formula of
the alternating-free µ-calculus. A non standard semantics for the µ-calculus, called
assertion-based semantics, is proposed, making it possible to reduce the study of the
whole infinite graph to parts of it by using the correct assertions. It is an extension
of (QUEMENER; JERON, 1995) and (BURKART, 1997) (where is shown that
processes modeled by pushdown automata – so called pushdown processes – have
a decidable verification procedure) to a decidable fragment of the µ-calculus, and
deterministic hyperedge replacement is again used.

Hyperedge replacement generate the so-called context-free graph grammars. The
term is a little misleading, because it does not imply that only context-free languages
(in the Chomsky hierarchy sense) can be generated. Actually, all context-sensitive
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languages can be generated by hyperedge replacement grammars. The name is
given after the similarities of the theoretical results concerning context-free Chom-
sky grammars and context-free graph grammars. Graph reachability, for instance,
is a decidable property of context-free grammars (HABEL, 1992). The similarity
between those theories can be further extended, and graphs can be parsed to see if
they were generated by a given grammar.

(KOCH, 1999) presents an approach to the integration of graph transformation
system and temporal logics, aiming at the specification and analysis of distributed
system. Local aspects of distributed systems are modeled through ordinary single-
pushout typed graph productions, while a synchronization relation is globally defined
to represent which processes actions must be synchronized. The interest of that
approach rely on the definition of graph-interpreted temporal formulas, which uses
graph morphisms called assignments to keep track of what is changing in the system
(and are very similar with most notions of observations found in the literature).
Temporal properties can then be expressed as temporal graphs formulae, and a
finite typical model can be built from possibly infinite models, which assures that a
sound (although not complete) model checking can be performed.

(RENSINK, 2003) describes a work-in-progress and sketches a setup in which
transition systems are generated from graph grammars and subsequently checked
for properties expressed in a temporal logic on graphs. They propose the use of
graph grammars to generate transition systems consisting of graphs as states and
partial graph morphisms as transitions. An extension of the logic in (DISTEFANO;
KATOEN; RENSINK, 2000) is defined, and it includes regular navigation expres-
sions over graphs. The resulting logic is a second-order linear temporal logic, because
it is possible to quantify over sets of states. It is claimed that the resulting logic
can be model checked on finite graph transition systems, and the extension to un-
bounded states (which is the main focus of (DISTEFANO; KATOEN; RENSINK,
2000)) is left for future work.

The notion of observation plays a central role in most theories of concurrency.
Observation can be defined in many different ways. Processes calculi, such as CCS
(MILNER, 1989a) and the π-calculus (MILNER, 1989b) define it in terms of visible
actions which are performed through communication channels. Tile systems (GAD-
DUCCI; MONTANARI, 2000) also carries a notion of interface, which determines
a sort of observational elements. (MONTEIRO, 2000) defines observation in terms
of observation structures and (complete and separated) observation systems, which
turn out to have equivalent categories, showing that every coalgebra gives rise to
an observation system, and using this fact to propose an observation semantics for
coalgebras.

A coalgebraic “loose” semantics is presented in (HECKEL et al., 2001), as a
means to model open systems. Since an open system cannot be properly speci-
fied by a graph transformation system — for the environment can change without
explicit control — the graph transformation rules are equipped with a “loose” se-
mantics, in the sense that unspecified effects, which are interpreted as activities of
the environment are allowed. This is formalized by the notion of double-pullback
transitions, which replace the known double-pushout diagrams by allowing for spon-
taneous (and previously specified) changes in the context of a rule application. The
loose semantics of a graph transformation system is defined as a category of coal-
gebras for a suitable endofunctor (actually, for the endofunctor F (−) =) based on
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the transitions of the system. Each coalgebra of such category represents a transi-
tion system G that takes no input and produces as output a transition of G. The
complete, unrestricted behaviour of G is given by the final coalgebra (i.e., the full
transition system containing all the finite and infinite transition sequences), as it
should be expected.

The usual semantics of graph transformation system is not capable of expressing
behavioural constraints. (HECKEL et al., 1997) aims to integrate graph grammars
with graphical consistency and temporal logic constraints. This integration of graph
grammars and behavioural constrains is done both syntactically and semantically.
On the syntactical level, a notion of behavioural constraint is assumed together with
a satisfaction relation for derivation sequences. On the semantical level, a coalge-
braic semantics of graph grammars provides a model of the restricted behaviour of
systems. The coalgebraic semantics has been described in the previous paragraph
(HECKEL et al., 2001), and it is shown that the semantics can be restricted to a
final coalgebra semantics for systems with behavioural constraints. The constraints
themselves are represented by a graphical propositional temporal logic which allows
to specify, in an axiomatic way, the effect of a production application and the order
in which productions are to be applied.

The ideas of object-oriented verification were mostly taken out of (DOTTI et al.,
2003). There, they use a translation from object-based graph grammars (DOTTI;
RIBEIRO, 2000) to Promela to verify properties of object-based systems. Their
translation is somewhat more complicated than the one we have presented here,
because the object-based grammars are attributed, and a whole number of types
must be taken in consideration (while here we only have to deal with a single type
called “object”). Object-oriented features such as inheritance and polymorphism,
however, are not treated there, and so this work is, in a sense, both a restriction
and an extension of the one presented there.
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6 CONCLUSIONS

6.1 Contributions

This thesis presented a graph-based formal framework to model and verify
object-oriented specifications. More specifically, an extension of the algebraic single-
pushout approach to (typed) graph grammars was developed, where the typing
morphisms are compatible with the order relations defined over nodes and edges
to represent, respectively, inheritance and overriding of classes and methods. This
work is divided in three main lines: static specifications, dynamic behaviour, and
formal verification of object-oriented systems.

The object-oriented class hierarchy is modeled by a graph structure called class-
model graph. The novelty of that approach is the strict relation structure on nodes
and edges to model (respectively) single inheritance and method overriding. The
underlying relations of such sets obey additional restrictions, intended to assure that
class-model graphs provide an adequate and faithful model of how object-oriented
classes are actually organized. Class-model graphs are algebraic structures, and so
can be related through morphisms. Composition of (object-oriented) systems is then
formally defined as the colimit object of the diagram formed by the systems being
composed (with a suitable morphism connecting them). It assures that composition
of systems is unique (up to isomorphism) and well defined. The most common way
of system extension — inheritance of classes and aggregation — are special cases of
class-model graph composition, so an uniform and consistent view of it is given, since
the existing ways of augmenting an object-oriented system can be all formalized by
the same categorical construction.

Object-oriented graph grammars model the dynamics of object-oriented systems.
The starting point are C-typed graphs and their morphisms. C-typed graphs are hy-
pergraphs typed over a class-model graph, but the typing morphism is more flexible
than the traditional one, in the sense that mapped hyperedges need to preserve
relations between sources and targets. This feature adequately models inheritance,
for any object can make use of inherited attributes or messages. Object-oriented
graphs are restricted C-typed graphs, in the sense that messages addressed to objects
must be correctly typed, i.e., an object only receives inherited messages which are at
the bottom of the redefinition chain it belongs to. This implements the hiding of
methods which had been redefined by derived classes. Category OOGraphP(C) has
object-oriented graphs as objects and C-typed graph morphisms as arrows. Map-
pings between object-oriented graphs assure that subclass polymorphism can be
implemented: in any place a superclass object is expected, a subclass object can
appear. It is implemented by the characteristics of the morphism: a node x can be
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mapped to another node y if the type of y is a subclass of the type of x. C-typed
graph morphisms, for that reason, make subclass polymorphism a built-in feature
of object-oriented graph grammars.

Object-oriented rules respect the principles of encapsulation and information
hiding of the object-oriented paradigm. An object which is receiving a message has
access only to its own attributes, although it can send messages to any object it has
knowledge of (i.e., its own attributes or received message parameters). Additionally,
object-oriented rule morphisms must be invertible, which means that an object can-
not have its type changed during a grammar computation. Different rule structures
give rise to different characteristics of computations and system graph structures.
A direct derivation (or rule application) is shown to be a pushout in the category
OOGraphP(C). This is a very significant result because a large body of work from
the algebraic theory of graph grammars are based on derivations being (double- or
single-) pushouts.

Object-oriented graph grammars, as proposed within this work, are the first
development of graph grammars to take all four main features of the object-oriented
paradigm — encapsulation, data hiding, inheritance, and polymorphism — into
their structure.

An observational semantics for object-oriented graph grammars is also developed.
This semantics, based on a labeled transition system, is more abstract than the usual
one, because it only keeps information about which rule was applied and the object
the rule was applied to. This semantics is based on a notion of visible entities
(objects or messages), which are the elements we are interested in for verification
purposes.

Finally, a formal translation from object-oriented graph grammar specifications
into Promela programs was presented. Objects in the system graph are modeled as
Promela processes, having as parameters the object attributes; message exchange
is implemented through buffered communication channels. Semantics of grammar
rule application is preserved by the nondeterministic choice of which message to
consume. Inheritance, polymorphism and dynamic binding are implemented in the
Promela program, which has no support for object-oriented features whatsoever.
The translation presented assures that both state and event verification can be
performed, which is an extension on the way SPIN performs verification.

Semantic compatibility between the behaviour of the original object-oriented
graph grammar and the translated Promela program is discussed. We compare
object-oriented graph grammars computations with Promela translated programs
executions, and argue that for any path existing in one labeled transition systems
there exists a correspondent path in the other. The resulting translated program can
be fed into the model checker SPIN, and properties can be defined over the actual
objects of the original grammar or over events such as rule applications over deter-
mined objects. Verification is then performed automatically by the model checker.

We believe that all the intended goals for this thesis (initially presented in Sec-
tion 1.5) were met.

6.2 Future work

Research projects seldom are completely finished. Usually, there is a number of
different new results that can be further achieved. The more theoretical the research
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is, the more this fact is true. There are two distinct possible developments of this
thesis. The first kind are extensions closely related to the work presented here. The
second kind are more general paths that could be followed by research.

There are a number of issues that have not being developed in this thesis. First,
object creation and deletion cannot be translated, since there are no translation
rules for that. It is a simple extension of the proposed translation, but we believe
that it must be done if the formalism is to be used as a serious form of object-
oriented software modeling and development. When it is done, it will be interesting
to investigate its impact in the verification process. Unbounded creation of objects
make verification a harder issue, since there are a number of things that become
undecidable. Additionally, research on using graphs to model dynamic allocated
data structures can also be carried out.

Another extension is the automatization of the object-oriented graph grammar→
Promela program translating process. There is a current ongoing effort in the graph
transformation community to establish a formalism for exchanging graph formats
(WINTER; KULLBACH; RIEDIGER, 2001). XML-based exchange formats for
graphs and graph transformation systems are currently under development, which
would make easier the task of constructing tools for model building and model
translation. Using a standard XML format for graphs and graph rules would make
the translation process algorithmically feasible and straightforward.

A formal semantic-based proof that the provided translation is correct is also
necessary. First, a definition of the Promela language semantics is required, so it can
be compared against the semantics of object-oriented graph grammars. This would
be also an important contribution to the users of SPIN who would have a formal
(and complete) semantic definition at hand. If the semantics can be implemented
in a theorem prover, the better.

Temporal logics such as CTL or LTL are theoretically elegant, but sometimes
developers and even researchers find it difficult to use them to accurately express a
complex state or event sequencing properties often needed in software verification.
Once written, temporal formulas are frequently hard to reason about, debug, and
modify. Therefore, it would be interesting for the user to express graph properties
themselves in terms of graphs. A friendly interface for the description of graph
properties (including object-oriented properties) and the corresponding translation
to temporal logics formulae would complete this work.

Chapter 2 provides a definition for system composition. A possible development
for this work is to provide a semantics for object-oriented graph grammars compo-
sition, such is done in (RIBEIRO, 1996) for typed graph grammars. In order to
do that, suitable morphisms of object-oriented graph grammars must be defined, in
such manner that derivations of the composed system are meaningful respecting the
composition process. Derivations are essentially the computations of a graph gram-
mar, when regarded as a computational formalism. As pointed out by (CORRADINI
et al., 1993), since the pushout object of two arrows is unique up to isomorphism,
the application of a production to a graph can produce an unbounded number of
different results. This fact is highly counter-intuitive, because in the above situation
one would expect a deterministic result, or, at most, a finite set of possible outcomes.
Indeed, in the algebraic approach to graph grammars, one usually considers a con-
crete graph as a specific representation of a “system state”, and since any kind of
abstract semantics should be representation independent, one handles (more or less
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explicitly) abstract graphs, i.e., isomorphism classes of concrete graphs: with this
choice, a direct derivation becomes clearly deterministic. If the semantics we are
interested in associates with each grammar all its possible derivations, we must rea-
son also in terms of abstract derivations, i.e., equivalence classes of derivations with
respect to a suitable equivalence. However, because of inheritance, polymorphism
and method redefinition, what constitutes an equivalence class of object-oriented
graphs, of an equivalence class of object-oriented systems derivations can differ con-
siderably from other systems. Investigating how those equivalence classes should be
constructed, and how those results can be related to the ones already obtained for
categories of concrete and abstract derivations is another goal of research.

Other interesting aspects of system comparison are simulations and bisimula-
tions (MILNER, 1989b), (RUTTEN, 2000). Different definitions of bisimulations
(such as strong or weak bisimulation) can be given, but generally two systems are
(weak) bisimilar if they present the same visible behaviour. The object-oriented pro-
gramming paradigm is perhaps the one in which this notion has the most meaning:
object-oriented programs implement abstract data types, in which we are interested
in what the system does, and not in how it is implemented. So, we are only interested
in some object behaviour, which can be defined in terms of applicable rules to it.
However, a trace of applicable rules in a system does not provide the behaviour of a
single object, because rules applied to object attributes must be meaningless respect-
ing the behaviour definition. Because we define classes as being visible or invisible,
and since transitions over invisible messages or objects are labeled as “silent” tran-
sitions, we have the right framework to begin investigating bisimulations between
objects/systems. A meaningful notion of object bisimulation, and system bisimu-
lation, can be used to investigate properties of programs and types, as in (FIORE,
1993), (SEWELL, 2002), or (SUMII; PIERCE, 2005).

Expressiveness of object-oriented graph grammars are also worth a deep investi-
gation. Inheritance was used in the Dining Philosophers problem example of Chap-
ter 4 to tell elements of different types apart. This is a sign that inheritance might
extend the power of expression of graph grammars. Attributed grammars (where
nodes or edges can be labeled with elements of some algebra) are more expressive
than standard graph grammars. Object-oriented graph grammars, however, ap-
pear to be as expressive as attributed grammars with finite algebraic sorts. Further
investigation is needed to prove (or disprove) that claim.

Object-oriented graph grammars define a model of computation compatible with
the one provided by object-oriented programs. A new computational model, or a
new feature in a traditional one, usually is reflected in a new family of programming
languages, and new paradigms of software development. The graphs and grammars
presented within this thesis can serve as a syntactical and semantical basis for new
visual object-oriented declarative languages. Domain specific visual languages, and
language generators, also can be developed having object-oriented graph grammars
as basis.
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matique et Systèmes Aléatoires, 1996. (Technical Report, 995).

BURSTALL, R.; GOGUEN, J. An Informal Introduction to Specifications using
Clear. In: BOYER, R.; MOORE, J. (Ed.). The Correctness Problem in Com-
puter Science. [S.l.]: Academic Press, 1981. p.185–213.

CAMPIONE, M.; WALRATH, K.; HUML, A. The Java(TM) Tutorial. 3rd.ed.
Upper Saddle River: Addison-Wesley, 2000. 580p.

CARDELLI, L.; WEGNER, P. On understanding types, data abstraction and poly-
morphism. ACM Computing Surveys, [S.l.], v.17, n.4, p.471–522, 1985.

CIRSTEA, C. On Expressivity and Compositionality in Logics for Coalgebras. Elec-
tronic Notes in Theoretical Computer Science, [S.l.], v.82, n.1, p.1–18, 2003.

CLARK, K. L.; TAERNLUND, S.-A. Logic programming. London: Academic
Press, 1982. 366p.

CLARKE, E. M.; EMERSON, E. A. Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic. In: LOGIC OF PROGRAMS WORKSHOP, 1981,
Yorktown Heights, NY. Proceedings. . . Berlin: Springer-Verlag, 1981. p.244–263.
(Lecture Notes in Computer Science, v.131).

CLARKE, E. M.; EMERSON, E. A.; SISTLA, A. P. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages & Systems, [S.l.], v.8, n.2, p.244–263, April 1986.

CLARKE, E. M.; GRUMBERG, O.; PELED, D. A. Model Checking. Cambridge,
MA: MIT Press, 1999. 387p.

CONRAD, S.; GOGOLLA, M.; HERZIG, R. Troll Light: a core language for
specifying objects. Braunschweig: [s.n.], 1992.

COOK, W. R. Object-oriented programming versus abstract data type. In:
BAKKER, J. W. de; ROEVER, W. P. de; ROZEMBERG, G. (Ed.). Founda-
tions of Object-Oriented Languages. Berlin: Springer, 1990. p.151–178. (Lec-
ture Notes in Computer Science, v.489).

COOK, W. R.; HILL, W. L.; CANNING, P. S. Inheritance is not subtyping. In:
ANNUAL ACM SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LAN-
GUAGES, POPL, 17., 1989. Proceedings. . . New York: ACM Press, 1989. p.125–
135.
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APPENDIX A LEMMAS AND PROOFS

A.1 Lemmas

Lemma A.1 Let R ⊆ A×A be a strict relation, and R∗ its reflexive and transitive
closure. Then the upper set ↑x of any element x ∈ A is a chain.

Proof: Let x be an element of A and ↑x its upper set (Definition B.11) with respect to
R∗. Suppose that ↑x is not a chain (Definition B.10). Then there must exist two distinct
elements a, b ∈ ↑x such that neither (a, b) ∈ R∗ nor (b, a) ∈ R∗. But, since they both
belong to the upper set of x, we have that (x, a) ∈ R∗ and (x, b) ∈ R∗. Then, there must
exist elements x′, a′, b′ ∈ ↑x, with a′ 6= b′, such that (x, x′) ∈ R∗, (x′, a′) ∈ R, (x′, b′) ∈ R,
(a′, a) ∈ R∗ and (b′, b) ∈ R∗. But this is impossible, since R is a function, and so a′

must be equal to b′. Therefore, for any distinct elements a, b ∈ ↑x either (a, b) ∈ R∗ or
(b, a) ∈ R∗ (i.e., ↑x is a chain). ut

Lemma A.2 Let R ⊆ A×A be a strict relation, and R∗ its reflexive and transitive
closure. Then the upper set ↑x of any element x ∈ A always has a greatest element,
denoted by t↑x.

Proof: Lemma A.1 assures that, for any element x ∈ A, the upper set ↑x is a chain.
According to Definition 2.1, for each x ∈ A, all sequences (x, a1), (a1, a2), . . . , (an−1, an) ∈
R, n > 0, are finite, which means that the upper set ↑x is necessarily finite, and a finite
chain has always a greatest element. ut

Lemma A.3 Let Pv = 〈P,v∗P 〉 and Qv = 〈Q,v∗Q〉 be two strict ordered sets, and
let f : Pv → Qv be a strict ordered function. Then, for any x ∈ dom(f), the set
f(↑x) is a chain.

Proof: The upper set of an element x ∈ P is defined as ↑x = {a ∈ P | x vP a}.
Since it is a chain (by Lemma A.1), then ↑x = {x = x1, x2, . . . , xn = t↑x}, with x =
x1 vP x2 vP . . . vP xn = t↑x}. Then, f(↑x) = {f(x) = f(x1), f(x2), . . . , f(xn) =
f(t↑x)}, and since f is monotonic, then f(x) = f(x1) vQ f(x2) vQ . . . vQ f(xn) =
f(t↑x). If f(↑x) is not a chain, then there must be f(xi) and f(xj), for some 1 6 i < j 6 n

such that f(xi) 6= f(xj) and f(xj) vQ f(xi). But this is impossible, since vQ is a partial
order, and therefore is antisymmetric. Hence, f(↑x) is a chain. ut

Lemma A.4 Let Pv = 〈P,v∗P 〉 and Qv = 〈Q,v∗Q〉 be two strict ordered sets, and
let f : Pv → Qv be a strict ordered function. For any x ∈ dom(f), there is no
elements a, b, y ∈ Q such that a vQ y vQ b, with a, b ∈ f(↑x) and y /∈ f(↑x).
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Proof: It has already been established, by Lemma A.3, that the set f(↑x) is a chain (under
vQ). Therefore, if there are elements a, b, y ∈ Q such that a vQ y vQ b, we know that the
following relations must also be true: f(x) vQ a vQ y vQ b vQ t ↑f(x), because (by the
conditions of the theorem) a, b ∈ f(↑x), and ↑f(x) is also a chain with a greatest element
(by Lemmas A.1 and A.2, respectively).

Since f is a strict ordered function, then (by definition) for any x ∈ dom(f), we
have that f(↑x) = ↑f(x) ∩ ↓f(t↑x). Since b ∈ f(↑x), b is also in the set ↓f(t↑x), in
order to belong to the intersection. But then, if y vQ b, y must also belong to ↓f(t↑x).
Additionally, y ∈ ↑f(x), as the condition above explicits. Then, y ∈ ↑f(x) ∩ ↓f(t↑x) and
therefore y ∈ f(↑x). ut

Lemma A.5 Strict ordered sets are closed under finite or infinite disjoint union.

Proof: Let I be a set and X = {〈Xi,vXi
〉 | i ∈ I} a set of strict ordered sets indexed by

I. The disjoint union of the strict ordered sets 〈Xi,vXi
〉 in X is defined as

⊎

I

〈Xi,vXi
〉 = 〈

⊎

I

Xi,
⊎

I

vXi
〉

with

⊎

I

Xi =
⋃

I

{(x, i) | x ∈ Xi}

and

⊎

I

vXi
=

⋃

I

{((x, i), (x′, i)) | (x, x′) ∈ vXi
}

The disjoint union of any set is always a set, so we only have to prove that the disjoint
union of the strict relations

⊎
I vXi

is a strict relation. Suppose, without loss of generality,
that relations vXi

are strict relations, and not their reflexive and transitive closure.
A reflexive pair ((x, i), (x, i)) can only appear in the disjoint union

⊎
I vXi

if there is a pair (x, x) ∈ vXi
for some i ∈ I; but this is not possi-

ble, since all vXi
, i ∈ I are irreflexive. By the same reasoning, a cycle

((a, i), (a1, i)), ((a1, i), (a2, i)), . . . , ((an−1, i), (an, i)), ((an, i), (a′, i)) ∈ ⊎
I vXi

only exists
if a cycle (a, a1), (a1, a2), . . . , (an−1, an), (an, a′) exists in some vXi

, i ∈ I, which cannot
occur because none of such relations has cycles. Again,

⊎
I vXi

will not have a functional
nature if there are pairs ((a, i), (a′, i)), ((a, i), (a′′, i)) ∈ ⊎

I vXi
with (a′, i) = (a′′, i), but

this is not possible, since all relations Xi, i ∈ I are functions. Finally, all sequences
((a1, i), (a2, i)), ((a2, i), (a3, i)), . . . , ((an−1, i), (an, i)) ∈ ⊎

I vXi
must be finite, since there

are no infinte sequences (a1, a2), (a2, a3), . . . , (an−1, an) in any relation vXi
, i ∈ I.

Hence, the (finite or infinite) disjoint union of strict ordered sets is a strict ordered
set. ut

Lemma A.6 Let I be a set and X = {〈Xi,vXi
〉 | i ∈ I} a set of strict ordered sets

indexed by I. The disjoint union of the strict ordered sets 〈Xi,vXi
〉 in X is defined

as

⊎
I

〈Xi,vXi
〉 = 〈

⊎
I

Xi,
⊎
I

vXi
〉

with
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⊎
I

Xi =
⋃
I

{(x, i) | x ∈ Xi}

and

⊎
I

vXi
=

⋃
I

{((x, i), (x′, i)) | (x, x′) ∈ vXi
}

let ιi = 〈ιXi
, ιvXi

〉 : 〈Xi,vXi
〉 → ∐

I 〈Xi,vXi
〉 be a family of injections defined as

follows:

ιXi
(x) = (x, i) x ∈ Xi

ιvXi
((x, x′)) = ((x, i), (x′, i)) (x, x′) ∈ vXi

then all functions ιi are strict ordered functions.

Proof: Each ιXi : 〈Xi,vXi
〉 → ∐

I 〈Xi,vXi
〉 is, by definition, total. So, all x ∈ Xi,

with i ∈ I, belong to the image of ιXi . Additionally, for each ιXi and x ∈ Xi, one has
that ιXi(↑x) = {(a, i) | a ∈ ↑x}, ↑ιXi(x) = ↑(x, i) = {(a, i) | xvXi

a} and ↓ιXi(t↑x) =
↓(t↑x, i) = {(a, i) | avXi

t ↑x}. Since ↑ιXi(x) ⊆ ↓ιXi(t↑x), the the intersection of those
two sets equals ↑ιXi(x), which in its turn equals ιXi(↑x). Therefore, all ιXi , with i ∈ I,
are strict ordered functions. ut

Lemma A.7 Let A be a set, 〈P,vP 〉 be a partially ordered set. Then any total
function f : A → P induces a partial order relation on A.

Proof: Let vf be the induced relation, defined as {(a, a′) | f(a)vP f(a′)}. Since vP is
reflexive, then for any a ∈ A we have that f(a)vP f(a), and so vf is also reflexive; since
vP is transitive, then for any a, a′, a′′ ∈ A we have that if f(a)vP f(a′) and f(a′)vP f(a′′)
then f(a)vP f(a′′), therefore if avfa′ and a′vfa′′ then avfa′′, so vf is also transitive;
finally, since vP is antisymmetric, then if f(a)vP f(a′) and f(a′)vP f(a) then a = a′,
therefore if avfa′ and a′vfa then a = a′, and so vf is also antisymmetric. Those three
properties together prove thatvf is a partial order relation. ut

A.2 Proofs

Proof of Lemma 2.1 (pag. 26):
Let R be a strict relation and R∗ its reflexive and transitive closure. By definition,

R∗ is both reflexive and transitive. Suppose that R∗ is not antisymmetric (there are two
pairs (a, b), (b, a) ∈ R∗ such that a 6= b). Then there must exist a sequence of elements
c1, . . . , cn with n > 1 such that a = c1 = cn and b = cj for some 1 < j < n, such that all
pairs (ci, ci+1) ∈ R, for all i = 1, . . . , n − 1. But, since c1 = cn, then there must exist a
cycle in R, which is not allowed by the definition of a strict relation. Therefore, if R is a
strict relation then R∗ is a partial order relation.

Proof of Theorem 2.2 (pag. 28):
The initial object (Definition C.3) of SOSet is the empty strict ordered set 〈∅, ∅〉.

For any other strict ordered set Pv = 〈P,vP 〉, there is a unique (empty) strict ordered
function ∅ : 〈∅, ∅〉 → Pv. Notice that the empty function is trivially a strict ordered
function.
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Proof of Theorem 2.3 (pag. 28):

Let I be a set and X = {〈Xi,vXi
〉 | i ∈ I} a set of strict ordered sets indexed by

I. The coproduct (Definition C.4) of the objects in X is the I-fold coproduct diagram,
consisting of an object

∐
I 〈Xi,vXi

〉, which is the disjoint union of the strict ordered sets
〈Xi,vXi

〉, defined as

∐

I

〈Xi,vXi
〉 = 〈

⊎

I

Xi,
⊎

I

vXi
〉

with

⊎

I

Xi =
⋃

I

{(x, i) | x ∈ Xi}

and

⊎

I

vXi
=

⋃

I

{((x, i), (x′, i)) | (x, x′) ∈ vXi
}

and arrows (coproduct injections) ιi = 〈ιXi , ιvXi
〉 : 〈Xi,vXi

〉 → ∐
I 〈Xi,vXi

〉 defined as
follows:

ιXi(x) = (x, i) x ∈ Xi

ιvXi
((x, x′)) = ((x, i), (x′, i)) (x, x′) ∈ vXi

the object
∐

I 〈Xi,vXi
〉 is indeed a strict ordered set, since the disjoint union of strict

relations is a strict relation (Lemma A.5), an so are the injection functions strict ordered
functions (Lemma A.6).

Now, for any I-indexed set of arrows fi : 〈Xi,vXi
〉 → 〈C,vC〉 let h :

∐
I 〈Xi,vXi

〉 →
〈C,vC〉 be the strict ordered function defined as

h((x, i)) =
{

fi(x) x ∈ dom(fi)
undef x /∈ dom(fi)

fi = h ◦ ιi by construction: for any x ∈ Xi, we have that (h ◦ ιi)(x) = h(ιi(x)) =
h((x, i)) = fi(x), if x ∈ dom(fi) and (h ◦ ιi)(x) = h(ιi(x)) = h((x, i)) = undef = fi(x)
otherwise. Moreover, for any other strict ordered functions h′ :

∐
I 〈Xi,vXi

〉 → 〈C,vC〉
with fi = h′ ◦ ιi, and for any x ∈ Xi, (h′ ◦ ιi)(x) = h′(ιi(x)) = h′((x, i)) = fi(x), if
x ∈ dom(fi) and (h′ ◦ ιi)(x) = h′(ιi(x)) = h′((x, i)) = undef = fi(x) must be true, and so
h = h′, which is the unique strict ordered function which makes the coproduct diagram to
comute.

Proof of Theorem 2.6 (pag. 34):

The initial object in CGraph is the (empty) class-model graph C∅ = 〈V∅v, E∅v,
L, src∅, tar∅, lab∅〉, where V∅v = 〈V∅,vV∅〉, E∅v = 〈E∅,vE∅〉, where V∅ = E∅ =
vV∅ = vE∅ = ∅, and src∅, tar∅, lab∅ : ∅ → ∅ are empty functions. Given any
class-model graph C = 〈Vv, Ev, L, src, tar, lab〉, there is an unique morphism
!∅ = 〈!∅V : ∅ → ∅, !∅E : ∅ → ∅, idL : L → L〉 : C∅ → C. Notice that !∅ is a class-model graph
morphism, since the empty functions !∅V and !∅E are (trivially) strict ordered functions,



127

and the diagram

L_

idL

²²

E∅
Â src∅,tar∅ //Âlab∅oo V ∗

∅

!∅∗V

²²

dom(!∅E)
?Â

!∅E?

OO

_

!∅E !

²²
L E Â src,tar //Âlaboo V ∗

commutes trivially, since there is no element e ∈ dom(!∅E).

Proof of Theorem 2.7 (pag. 34):
Let I be a set and C = {Ci = 〈Viv, Eiv, L, srci, tari, labi〉 | i ∈ I} a set of class-model

graphs indexed by I. The coproduct of the objects in C in category CGraph is the I-fold
coproduct diagram, consisting of an object

∐
C, and arrows (the coproduct injections)

ιi = 〈ιVi , ιEi , idL〉 : Ci →
∐

C defined as follows:

• V‘C =
⋃

I{〈v, i〉 | v ∈ Vi};
• vV‘C

=
⋃

I{(〈v, i〉, 〈v′, i〉) | (v, v′) ∈ vVi
};

• E‘C =
⋃

I{〈e, i〉 | e ∈ Ei};
• vE‘C

=
⋃

I{(〈e, i〉, 〈e′, i〉) | (e, e′) ∈ vEi
};

• src‘C(〈e, i〉) = 〈v1, i〉〈v2, i〉 . . . 〈vn, i〉, if and only if srci(e) = v1 . . . vn, i ∈ I;

• tar‘C(〈e, i〉) = 〈v1, i〉〈v2, i〉 . . . 〈vk, i〉, if and only if tari(e) = v1 . . . vk, i ∈ I;

• lab‘C(〈e, i〉) = labi(e), i ∈ I;

• ιVi(v) = (v, i) for all v ∈ Vi, i ∈ I;

• ιEi(e) = (e, i) for all e ∈ Ei, i ∈ I.

the object
∐

C is indeed a class-model graph: the disjoint union of strict ordered sets
is a strict ordered set (Lemma A.5), and the injection morphisms are class-model graph
morphisms, since the component vertex and edge functions are strict ordered functions
(Lemma A.6).
Now, let C = 〈Vv, Ev, L, src, tar, lab〉 be a class-model graph, and let fi = 〈fiV , fiE , idL〉 :
Ci → C be a collection of class-model graph morphisms from each class-model graph Ci to
C. Let h = 〈hV , hE , idL〉 :

∐
C → C be the class-model graph morphism defined as

hV (〈v, i〉) =
{

fiV (v) v ∈ dom(fiV )
undef v /∈ dom(fiV )

hE(〈e, i〉) =
{

fiE(e) e ∈ dom(fiE)
undef e /∈ dom(fiE)

it is easy to show that this is a class-model graph morphism, since it simply reflects the
image of the morphisms fi through the injections ιi.

For each element x ∈ Ci (being x a vertex or an edge), fi = h ◦ ιi by construction:
(h ◦ ιi)(x) = h(ιi(x)) = h(〈x, i〉) = fi(x), if x ∈ dom(fi), and (h ◦ ιi)(x) = h(ιi(x)) =
h(〈x, i〉) = undef otherwise. Moreover, for any other class-model graph morphism h′ :∐

C → C with fi = h′ ◦ ιi, and for any x ∈ Ci, (h′ ◦ ιi)(x) = h′(ιi(x)) = h′(〈x, i〉) = fi(x), if
x ∈ dom(fi) and (h′ ◦ ιi)(x) = h′(ιi(x)) = h′(〈x, i〉) = undef must be true, and so h = h′,
which is the unique class-model graph morphism which makes the coproduct diagram to
commute.
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A.3 Definitions

Definition A.1 (Forgetful functors) The forgetful functors Uv, and UG are de-
fined as follows:

• let Uv : CGraph → LabHGraphP be the functor which sends each object
〈Vv, Ev, L, src, tar, lab〉, with Vv = 〈V,vV 〉 and Ev = 〈E,vE〉, in CGraph
to the object 〈V, E, L, src, tar, lab〉 in LabHGraphP, and each class-model
graph morphism f : C1 → C2 to itself;

• let UG : CGraph → SOSet× SOSet be the functor which sends each ob-
ject 〈Vv, Ev, L, src, tar, lab〉, with Vv = 〈V,vV 〉 and Ev = 〈E,vE〉, in
CGraph to the object (Vv, Ev) in SOSet × SOSet, and each class-model
graph morphism f = 〈fV , fE, idL〉 : C1 → C2 to the pair of strict ordered func-
tions (fV , fE);

• let Ut : OOGraphP(C) → HGraphP be the functor which sends each object
〈G, tG, C〉 in OOGraphP(C) to the object G in HGraphP, and each arrow
in OOGraphP(C) to itself.
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APPENDIX B ORDER RELATIONS

B.1 Definitions

Definition B.1 (Relation) Let A1, A2, . . . , An be sets. A n-ary relation R over
sets A1, A2, . . . , An is any subset of the cartesian product A1 × A2 × . . .× An.

Definition B.2 (Binary relation) A binary relation R is a 2-ary relation (Defi-
nition B.1).

Definition B.3 (Reflexive relation) A binary relation R ⊆ A×A is reflexive if
and only if a ∈ A implies (a, a) ∈ R.

Definition B.4 (Symmetric relation) A binary relation R ⊆ A×A is symmet-
ric if and only if (a, b) ∈ R implies (b, a) ∈ R.

Definition B.5 (Antisymmetric relation) A binary relation R ⊆ A× A is an-
tisymmetric if and only if (a, b) ∈ R and (b, a) ∈ R implies a = b.

Definition B.6 (Transitive relation) A binary relation R ⊆ A×A is transitive
if and only if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R.

Definition B.7 (Preorder) A binary relation R ⊆ A × A is a quasi-order or a
preorder if and only if it is reflexive and transitive.

Definition B.8 (Partial order relation) A binary relation R ⊆ A×A is a par-
tial order relation if and only if it is reflexive, antisymmetric and transitive.

Definition B.9 (Partially ordered set) A partially ordered set (or simply
poset) Pv = 〈P,vP 〉 is a set P together with a partial order relation vP on P .

Definition B.10 (Chain) A partially ordered set Pv is a chain if and only if for
all x, y ∈ P either x vP y or y vP x. A chain is also known as a totally ordered
set or linearly ordered set.

Definition B.11 (Upper set, lower set) Let 〈P,vP 〉 be a partially ordered set.
A subset A ⊆ P is an upper set if whenever x ∈ A, y ∈ P and x vP y we have
y ∈ A. The upper set of {x}, with x ∈ P (also called the set of all elements above
x) is denoted by ↑ x.

Dually, a subset A ⊆ P is an lower set if x ∈ A implies y ∈ A for all y v x.
The set of all elements below some element x ∈ A is denoted by ↓ x.
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Definition B.12 (Upper bound, lower bound) Let 〈P,vP 〉 be a partially or-
dered set. An element x ∈ P is called an upper bound for a subset A ⊆ P , written
A v x, if and only if a v x for all a ∈ A. The set of all upper bounds of A is
denoted by ub(A)

Dually, an element x ∈ P is called a lower bound for a subset A ⊆ P , written
x v A, if and only if x v a for all a ∈ A. The set of all lower bounds of A is
denoted by lb(A).

Definition B.13 (Largest element, least element) Let 〈P,vP 〉 be a partially
ordered set. An element x ∈ P is the largest element of P if it is above all the other
elements of P . The largest element of a poset is often called the top element, and
it is denoted by >.

Dually, an element x ∈ P is the least element of P if it is below all the other
elements of P . The least element of a poset is often called the bottom element, and
it is denoted by ⊥.

Definition B.14 (Supremum (lub, join), infimum (glb, meet)) Let 〈P,vP 〉
be a partially ordered set. If for a subset A ⊆ P the set of upper bounds has a
least element x, then x is called the least upper bound, or supremum, or join of A,
written x = lub(A) or x = tA.

Dually, if for a subset A ⊆ P the set of lower bounds has a largest element x, then
x is called the greatest lower bound, or infimum, or meet of A, written x = glb(A)
or x = uA.

Definition B.15 (Monotonic function) Let 〈P,vP 〉 and 〈Q,vQ〉 be two par-
tially ordered sets. A function f : P → Q is called monotonic order-preserving,
or simply monotonic, if and only if for all p, p′ ∈ P , if pvP p′ then f(p)vQf(p′).

Definition B.16 (Partial monotonic function) Let 〈P,vP 〉 and 〈Q,vQ〉 be two
partially ordered sets, and let S ⊆ P be any subset of P . A partial monotonic
function between P and Q is any monotonic function f : S → Q.

B.2 Operations

Definition B.17 (Disjoint union) Let 〈P,vP 〉 and 〈Q,vQ〉 be two partially or-
dered sets. The disjoint union, or sum, of Pv and Qv, denoted by Pv ]Qv, is the
partially ordered set 〈(P ]Q),v(P]Q)〉, where P ] Q is the usual disjoint union of
sets, and vPv]Qv is defined as follows: x vPv]Qv y if and only if x, y ∈ P and
x vP y or x, y ∈ Q and x vQ y.

Definition B.18 (Product) Let P1, P2, . . . , Pn be partially ordered sets. The
cartesian product P1×P2×. . .×Pn can be made into a partially ordered set by impos-
ing the coordinate-wise order defined as follows: (x1, . . . , xn) v(P1×...×Pn) (y1, . . . , yn)
if and only if xi vPi

yi for all i = 1, . . . , n.

B.3 Theorems

Lemma B.1 (From (DAVEY; PRIESTLEY, 2002)) The disjoint union operation
is associative (up to isomorphism).



131

Lemma B.2 (From (DAVEY; PRIESTLEY, 2002)) Any subset of a totally ordered
set (Definition B.10) is a totally ordered set.

Lemma B.3 Monotonic functions are closed under composition.

Proof: Let f : 〈P,vP 〉 → 〈Q,vQ〉 and g : 〈Q,vQ〉 → 〈R,vR〉 be two monotonic functions.
Then, for any x, y ∈ P , if x vP y then (by definition) f(x) vQ f(y), and (also by
definition) g(f(x)) vR g(f(y)). So, for any x, y ∈ P , such that x vP y we have that
(g ◦ f)(x) vR (g ◦ f)(y). ut

Lemma B.4 Partial monotonic functions are closed under composition.

Proof: Let f : 〈P,vP 〉 → 〈Q,vQ〉 and g : 〈Q,vQ〉 → 〈R,vR〉 be two partial monotonic
functions. Let dom(f) ∈ P and dom(g) ∈ Q denote the subsets of P and Q to which,
respectively, f and g are defined. If f(x) ∈ dom(g) for all x ∈ dom(f), then the proof
reduces to the one in Lemma B.3. If not, then the elements which are outside the domain
of g do not play any role in the determination wether the composition g ◦ f is monotonic.

ut

Lemma B.5 Composition of monotonic functions and partial monotonic functions
is associative.

Proof: Direct from the fact that composition of total functions and partial functions is
associative. ut
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APPENDIX C CATEGORY THEORY

C.1 Definitions

Definition C.1 (Category) A category C is a tuple 〈ObjC ,MorC , dom, cod, ◦, id〉
where ObjC is a collection of objects, MorC is a collection of morphisms (or
arrows), dom, cod : MorC → ObjC are two operations, assigning to each ar-
row f two objects, respectively called domain ( source) and codomain ( target)
of f , ◦ : MorC ×MorC → MorC is the morphism composition operation, and
id : ObjC → MorC is an operation which assigns to each object b a morphism idb,
called the identity of b, such that dom(idb) = cod(idb) = b.
Identity and composition must satisfy the following conditions:

• identity law: for any arrows f ,g such that cod(f) = dom(g) = b, idb ◦ f = f
and g ◦ idb = b.

• associativity law: for any arrows f , g, h such that dom(f) = cod(g) and
dom(g) = cod(h), (f ◦ g) ◦ h = f ◦ (g ◦ h).

Elements of ObjC and MorC are called, respectively, C-objects and C-arrows.

Definition C.2 (Functor) Let A and B be two categories. A functor T between
categories A and B (i.e., with domain A and codomain B) is a pair of related
functions 〈TO : ObjA → ObjB, Tf : MorA → MorB〉. The first one assigns for each
object a ∈ ObjA an object TO(a) ∈ ObjB, and the second one assigns for each arrow
f : a → a′ in MorA an arrow Tf (f) : TO(a) → TO(a) in MorB. The assignment is
such that for all objects a ∈ ObjA we have that Tf (ida) = idTO(a) and for all arrows
f, g ∈ MorA with dom(g) = cod(f) we have that Tf (g ◦ f) = Tf (g) ◦ Tf (f).

Definition C.3 (Initial object) Let C be a category and I an object of C. I is
said an initial object in C if and only if for any C-object O there exists an unique
C-morphism from I to O, denoted by !I : I → O.

Definition C.4 (Coproduct) Let C be a category. A coproduct of two C-objects
A and B is an C-object A + B, together with two C-arrows ιA : A → A + B and
ιB : A → A + B, such that for any C-object C and pair of C-arrows f : A → C
and g : B → C there is exactly one C-arrow h : A + B → C making the following
diagram commute:

A
ιA //

f

''PPPPPPPPPPPPPPP A + B

h
²²Â
Â
Â B

ιBoo

g

wwnnnnnnnnnnnnnnn

C
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Definition C.5 (Cocone) Let C be a category and D a diagram in C. A cocone
for D is a C-object X and arrows fi : Di → X (one for each object Di in D), such
that, for each arrow g : Di → Dj in D, fi = fj ◦ g. The cocone of a diagram D is
denoted by {fi : Di → X}.

Definition C.6 (Colimit) A colimit for a diagram D is a cocone {fi : Di → X}
with the property that if {f ′i : Di → X ′} is another cocone for D then there is a
unique arrow k : X ′ → X such that fi = k ◦ k′i.

Definition C.7 (Coequalizer) Given a category C and two arrows a : A → B
and b : A → B of C, a tuple 〈C, c : B → C〉 is called a co-equalizer of 〈a, b〉 if
c ◦ a = c ◦ b and for all objects D and arrows d : B → D, with d ◦ a = d ◦ b, there is
a unique arrow u : C → D such that u ◦ c = d.

Definition C.8 (Pushout) Given two morphisms f : A → B and g : A → C in
some category C, a pushout of f and g in C is an object D with two morphisms
fg : C → D and gf : B → D in C such that (1) fg ◦ g = gf ◦ f , and (2) for each
pair of C-morphisms f ′ : C → E and g′ : B → E with f ′ ◦ g = g′ ◦ f , there is a
unique morphism u : D → E, called the universal morphism of the pushout, such
that u ◦ fg = f ′ and u ◦ gf = g′.

C.2 Theorems

Lemma C.1 Let S be a subcategory of C. Then there exists a faithful functor
I : S → C which sends each object and arrow in S to itself in C.

Proof: See (MACLANE, 1998), page 15. ut

C.3 Constructions

Definition C.9 (Category Set) Set is the category with sets as objects and total
functions as arrows.

Definition C.10 (Coproduct in Set) Let X and Y be sets. The coproduct
〈X ] Y , iX , iY 〉 of X and Y in Set is the disjoint union of them, defined as
X ] Y = (X × {·}) ∪ ({·} × Y ) together with the injections iX : X → X ] Y
and iY : Y → X ] Y where iX(x) = (x, ·) and iY (y) = (·, y) for all x ∈ X and
y ∈ Y .

Definition C.11 (Generalized coproduct in Set) Let I be a set, and X a fam-
ily of sets indexed by I. The coproduct (Definition C.4) of the objects in X is the
I-fold coproduct diagram, consisting of an object

∐
I Xi, which is the disjoint union

of the sets Xi, defined as

∐
I

Xi =
⋃
I

{(x, i) | x ∈ Xi}

and arrows (coproduct injections) ιXi
: Xi →

∐
I Xi defined as ιXi

(x) = (x, i) for all
x ∈ Xi.
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Definition C.12 (Coequalizer in Set (MACLANE, 1998)) Let X and Y be
sets and f, g : X → Y be functions. The coequalizer of arrows f and g in Set is the
pair 〈C, c : Y → C〉 where C is the quotient set of Y by least equivalence relation
contained in Y × Y which contains all pairs (f(x), g(x)) for all x ∈ X, and c is the
projection of Y onto C.

Definition C.13 (Category SetP) SetP is the category with sets as objects and
partial functions as arrows.

Definition C.14 (Coproduct in SetP) Coproducts in SetP are identical to the
ones in Set.

Definition C.15 (Coequalizer in SetP) Let f, g : A → B be two partial func-
tions. Let B′ ⊆ B be the maximal subset of B defined as follows: e ∈ B′ ⇔ (e /∈
(im(f) ∪ im(g))∨ (e = f(x) → (x ∈ dom(g) ∧ g(x) ∈ B′)∧ e = g(x) → (x ∈
dom(f) ∧ f(x) ∈ B′))), and let C ⊆ P(B′) be the quotient set of B′ by the least
equivalence class which contains all pairs (f(x), g(x)) ∈ B′×B′; and let c : B → C〉
be the projection of B′ onto C (c is undefined for all elements in B \B′). Then the
pair 〈C, c〉 is the coequalizer of arrows f and g in SetP.

Definition C.16 (Pushout in SetP) Let f : X → Y and g : X → Y ′ be two
partial functions, and let 〈Y + Y ′, ι, ι′〉 be the coproduct of sets Y and Y ′. Let
〈C, c : Y + Y ′ → C〉 be the coequalizer of arrows ι ◦ f : X → Y + Y ′ and ι′ ◦ g :
X → Y + Y ′. The pushout of arrows f and g in SetP is the tuple 〈C, ιc : Y →
C, ι′c : Y ′ → C〉 such that the diagram

X
f //

g

²²

Y Ä _

ι
²² c◦ι

¹¹

Y ′ Â Ä ι′ //

c◦ι′

,,

Y + Y ′
c

##GGGGGGGGG

C

commutes.



135

APPENDIX D GRAPHS

D.1 Definitions

Definition D.1 (Graph) A graph is a tuple 〈V, E〉 where V is a set of vertices
and E ⊆ V × V is a binary relation over V , called the set of edges.

Definition D.2 (Graph) A graph G is a tuple 〈VG, EG, srcG, tarG〉 where VG is
a set of vertices, EG is a set of edges, and srcG, tarG : EG → VG return for each
edge its, respectively, source and target nodes.

Definition D.3 (Total graph morphism) Let G1 = 〈VG1 , EG1 , srcG1 , tarG1〉
and G2 = 〈VG2 , EG2 , srcG2 , tarG2〉 be two graphs. Let hV : VG1 → VG2 and
hE : EG1 → EG2 be two total functions. The pair h = 〈hV , hE〉 : G1 → G2 is a
total graph morphism between G1 and G2 if and only if hV ◦ srcG1 = srcG2 ◦ hE and
hV ◦ tarG1 = tarG2 ◦ hE. A total graph morphism is said to be injective (surjective,
bijective) if its component functions are injective (surjective, bijective).

Definition D.4 (Partial graph morphism) Let G = 〈VG, EG, srcG, tarG〉 be a
graph. A graph S = 〈VS, ES, srcS, tarS〉 is said to be a subgraph of G, written
S ⊆ G or S ↪→ G, if and only if VS ⊆ VG, ES ⊆ EG, srcS = srcG|ES

, and
srcS = tarG|ES

. A partial graph morphism h between two hypergraphs G1 and G2

is a total hypergraph morphism from some subgraph dom(h) ↪→ G1 to G2. dom(h)
is called the domain of h.

Definition D.5 (Alphabet, string) An alphabet Σ is any finite set of symbols.
A string w over an alphabet Σ is a sequence w1 . . . wn, n > 0, where each wi ∈ Σ,
i = 0, . . . , n. A sequence of zero elements over an alphabet Σ is called the empty
string, and it is denoted by ε. The set of all finite strings over Σ is denoted by Σ∗.

Definition D.6 (Hypergraph) A hypergraph H is a tuple 〈VH , EH , srcH , tarH〉
where VH is a set of vertices, EH is a set of hyperedges, and srcH , tarH : EH → V ∗

H

are, respectively, the hyperarcs source and target functions. The elements of V ∗
H are

strings over VH (Definition D.5).

Definition D.7 (Total hypergraph morphism) Let H1 = 〈VH1 , EH1 , srcH1 ,
tarH1〉 and H2 = 〈VH2 , EH2 , srcH2 , tarH2〉 be two hypergraphs. Let hV : VH1 → VH2

and hE : EH1 → EH2 be two total functions, where h∗V : V ∗
H1

→ V ∗
H2

is the ex-
tension of function hV to strings, such that, for all strings w = w1 . . . wn ∈ V ∗

H1
,

h∗V (w) = hV (w1)hV (w2) . . . hV (wn), n > 0. The pair h = 〈hV , hE〉 : H1 → H2 is a
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total hypergraph morphism between H1 and H2 if and only if h∗V ◦srcH1 = srcH2 ◦hE

and h∗V ◦ tarH1 = tarH2 ◦ hE. A total hypergraph morphism is said to be injective
(surjective, bijective) if its component functions are injective (surjective, bijective).

Definition D.8 (Partial hypergraph morphism) Let H = 〈VH , EH , srcH ,
tarH〉 be a hypergraph. A hypergraph S = 〈VS, ES, srcS, tarS〉 is said to be a
subgraph of H, written S ⊆ H or S ↪→ H, if and only if VS ⊆ VH , ES ⊆ EH ,
srcS = srcH |ES

, and srcS = tarH |ES
. A partial hypergraph morphism h between

two hypergraphs H1 and H2 is a total hypergraph morphism from some subgraph
dom(h) ↪→ H1 to H2. dom(h) is called the domain of h.

Definition D.9 (Labeled hypergraph) A labeled hypergraph H is a tuple 〈VH ,
EH , LH , srcH , tarH , labH〉 where 〈VH , EH , srcH , tarH〉 is a hypergraph, LH is a
finite set of hyperedge labels, and lab : EH → LH is the hyperedges labeling function.

Definition D.10 (Total labeled hypergraph morphism) Let H1 = 〈VH1 , EH1 ,
LH1 , srcH1 , tarH1 , labH1〉 and H2 = 〈VH1 , EH1 , LH1 , srcH1 , tarH1 , labH1〉 be two
labeled hypergraphs. A total labeled hypergraph morphism h : H1 → H2 is a tuple h =
〈hV , hE, hL〉 where 〈hV , hE〉 is a total hypergraph morphism, hL is a total function,
and hL ◦ lab1 = lab2 ◦ hE.

Definition D.11 (Partial labeled hypergraph morphism) Let H = 〈VH , EH ,
LH , srcH , tarH , labH〉 be a labeled hypergraph. A labeled hypergraph S = 〈VS, ES,
LS, srcS, tarS, labS〉 is a subgraph of H, written S ⊆ H or S ↪→ H, if and only
if 〈VS, ES, LS, srcS, tarS, labS〉 ↪→ 〈VH , EH , LH , srcH , tarH , labH〉, LS ⊆ LH ,
and labS = labH |LS

. A partial labeled hypergraph morphism h between two labeled
hypergraphs H1 and H2 is a total labeled hypergraph morphism from some subgraph
dom(h) ↪→ H1 to H2. dom(h) is called the domain of h.

Definition D.12 (Typed hypergraph) A typed hypergraph HT is a tuple
〈H, t, T 〉 where H and T typed (labeled) hypergraphs, and t : H → T is a total
(labeled) hypergraph morphism.

Definition D.13 (Typed hypergraph morphism) Let HT1
1 = 〈H1, t1, T1〉 and

HT2
2 = 〈H2, t2, T2〉 be two typed hypergraphs. A typed hypergraph morphism h :

H1 → H2 is a tuple h = 〈hH , hT 〉, where hH : H1 → H2 and hT : T1 → T2 are
(possibly partial) hypergraph morphisms such that hT ◦ t1 = t2 ◦ hH .

D.2 Categories

Definition D.14 (Category Graph) The category Graph has graphs as objects
and total graph morphisms as arrows.

Definition D.15 (Category GraphP) The category GraphP has graphs as ob-
jects and partial graph morphisms as arrows.

Definition D.16 (Category HGraph) The category HGraph has hypergraphs
as objects and total hypergraph morphisms as arrows.

Definition D.17 (Category HGraphP) The category HGraphP has hyper-
graphs as objects and partial hypergraph morphisms as arrows.
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Definition D.18 (Category LabHGraph) The category LabHGraph has la-
beled hypergraphs as objects and total labeled hypergraph morphisms as arrows.

Definition D.19 (Category LabHGraphP) The category LabHGraphP has
labeled hypergraphs as objects and partial labeled hypergraph morphisms as arrows.

Definition D.20 (Category HGraphP(T)) Given a (labeled) hypergraph T , the
category HGraphP(T) has (labeled) hypergraphs typed over T as objects and typed
hypergraph morphisms as arrows.
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APPENDIX E SPIN

E.1 Promela

The following list defines the grammar of the input language for the SPIN model
checker version 3.0. The notational conventions are as follows:

• Choices are separated by vertical bars: |.
• Optional parts are included in square brackets: [ ... ].

• A Kleene star * (LEWIS; PAPADIMITRIOU, 1998), (HOPCROFT; MOT-
WANI; ULLMAN, 2001) indicates zero or more repetitions of the immediately
preceding fragment.

• Literals are enclosed in single quotes: ’ ... ’.

• Uppercase names refer to tokens (i.e., terminals) representing keywords. In
Promela models, the keywords are spelled like these token names, but in low-
ercase instead of uppercase.

• Lowercase names refer to grammar rules from this list.

The name any_ascii_char refers to any printable ASCII character except the
double quote character: ”. The statement separator used in this list is the semi-colon
’;’. within conditional choices the semi-colon can be replaced with a two-character
arrow symbol: ’->’, without change of meaning.

The complete Promela context-free grammar is given below:

spec : module [ module ] *

module : proctype /* proctype declaration */
| init /* init process */
| never /* never claim */
| trace /* event trace, 3.0 only*/
| utype /* user defined types */
| mtype /* mtype declaration */
| decl_lst /* global vars, chans */

proctype : [ active ] PROCTYPE name ’(’ [ decl_lst ]’)’
[ priority ] [ enabler ] ’{’ sequence ’}’

init : INIT [ priority ] ’{’ sequence ’}’
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never : NEVER ’{’ sequence ’}’

trace : TRACE ’{’ sequence ’}’

utype : TYPEDEF name ’{’ decl_lst ’}’

mtype : MTYPE [ ’=’ ] ’{’ name [ ’,’ name ] * ’}’

decl_lst : one_decl [ ’;’ one_decl ] *

one_decl : [ visible ] typename ivar [’,’ ivar ] *

typename : BIT | BOOL | BYTE | SHORT | INT | MTYPE | CHAN
| uname /* user defined type names (see utype) */

active : ACTIVE [ ’[’ const ’]’ ] /* instantiation */

priority : PRIORITY const /* simulation priority */

enabler : PROVIDED ’(’ expr ’)’ /* execution constraint */

visible : HIDDEN | SHOW

sequence : step [ ’;’ step ] *

step : stmnt [ UNLESS stmnt ]
| decl_lst
| XR varref [’,’ varref ] *
| XS varref [’,’ varref ] *

ivar : name [ ’[’ const ’]’ ] [ ’=’ any_expr | ’=’ ch_init ]

ch_init : ’[’ const ’]’ OF ’{’ typename [ ’,’ typename ] * ’}’

varref : name [ ’[’ any_expr ’]’ ] [ ’.’ varref ]

send : varref ’!’ send_args /* normal fifo send */
| varref ’!’ ’!’ send_args /* sorted send */

receive : varref ’?’ recv_args /* normal receive */
| varref ’?’ ’?’ recv_args /* random receive */
| varref ’?’ ’<’ recv_args ’>’ /* poll with side-effect */
| varref ’?’ ’?’ ’<’ recv_args ’>’ /* ditto */

poll : varref ’?’ ’[’ recv_args ’]’ /* poll without side-effect */
| varref ’?’ ’?’ ’[’ recv_args ’]’ /* ditto */

send_args: arg_lst | any_expr ’(’ arg_lst ’)’

arg_lst : any_expr [ ’,’ any_expr ] *

recv_args: recv_arg [ ’,’ recv_arg ] * | recv_arg ’(’ recv_args
’)’

recv_arg : varref | EVAL ’(’ varref ’)’ | [ ’-’ ] const

assign : varref ’=’ any_expr /* standard assignment */
| varref ’+’ ’+’ /* increment */
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| varref ’-’ ’-’ /* decrement */

stmnt : IF options FI /* selection */
| DO options OD /* iteration */
| ATOMIC ’{’ sequence ’}’ /* atomic sequence */
| D_STEP ’{’ sequence ’}’ /* deterministic atomic */
| ’{’ sequence ’}’ /* normal sequence */
| send
| receive
| assign
| ELSE /* used inside options */
| BREAK /* used inside iterations */
| GOTO name
| name ’:’ stmnt /* labeled statement */
| PRINT ’(’ string [ , arg_lst ] ’)’
| ASSERT expr
| expr /* condition */

options : ’:’ ’:’ sequence [ ’:’ ’:’ sequence ] *

andor : ’&’ ’&’ | ’|’ ’|’

binarop : ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’&’ | ’^’ | ’|’
| ’>’ | ’<’ | ’>’ ’=’ | ’<’ ’=’ | ’=’ ’=’ | ’!’ ’=’
| ’<’ ’<’ | ’>’ ’>’ | andor

unarop : ’~’ | ’-’ | ’!’

any_expr : ’(’ any_expr ’)’
| any_expr binarop any_expr
| unarop any_expr
| ’(’ any_expr ’-’ ’>’ any_expr ’:’ any_expr ’)’
| LEN ’(’ varref ’)’ /* nr of messages in chan */
| poll
| varref
| const
| TIMEOUT
| NP_ /* non-progress system state */
| ENABLED ’(’ any_expr ’)’ /* refers to a pid */
| PC_VAL ’(’ any_expr ’)’ /* refers to a pid */
| name ’[’ any_expr ’]’ ’@’ name /* refers to a pid */
| RUN name ’(’ [ arg_lst ] ’)’ [ priority ]

expr : any_expr
| ’(’ expr ’)’
| expr andor expr
| chanpoll ’(’ varref ’)’ /* may not be negated */

chanpoll : FULL | EMPTY | NFULL | NEMPTY

string : ’"’ [ any_ascii_char ] * ’"’

uname : name

name : alpha [ alpha | number ] *

const : TRUE | FALSE | SKIP | number [ number ] *
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alpha : ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’
| ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’
| ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’
| ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’
| ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’
| ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’
| ’_’

number : ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

E.2 LTL

The syntax of the temporal logics LTL is given by the following context-free
grammar:

φ ::= ⊥
φ ::= >
φ ::= p
φ ::= ¬φ
φ ::= φ ∧ φ
φ ::= φ ∨ φ
φ ::= φ → φ
φ ::= φ ↔ φ
φ ::= (©φ)
φ ::= (♦ φ)
φ ::= (¤ φ)
φ ::= (φ U φ)

A LTL formula φ is evaluated over a path, or over a set of paths. A set of paths
S satisfies φ if and only if all paths π ∈ S satisfy φ. The satisfaction relation |= is
defined inductively on the structure of the formula. For the LTL semantics defined
below, consider a path π = s1 → s2 → s3 → . . . where πi is the suffix of π which
begins at state si (i.e., πi = si → si+1 → si+2 → . . ..

π |= >
π |= p iff p ∈ L(s1).
π |= ¬φ iff π |= φ is false.
π |= φ ∧ ψ iff π |= φ and π |= ψ.
π |= φ ∨ ψ iff π |= φ or π |= ψ.
π |= φ → ψ iff π |= ¬φ or π |= ψ.
π |= φ ↔ ψ iff π |= φ → ψ or π |= ψ → φ.
π |= (© φ) iff π2 |= φ.
π |= (♦ φ) iff πi |= φ for some i > 1.
π |= (¤φ) iff πi |= φ for all i > 1.

π |= (φ U ψ)
iff πi |= ψ for some i > 1, and for all j =
1, . . . , i− 1 we have that πj |= φ.
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E.3 Translated Dining Philosophers problem program

The first step to translated the object-oriented specification given in Figures 4.9,
4.11, 4.10, 4.13, 4.8, 4.12 is to establish a total order into the messages and attributes
of all classes belonging to the program class-model graph. The table below presents
those orders:

Class Message Parameter Attribute
Philosopher (1) Thinking – (1) isAt

(2) Eat – (2) rightFork
(3) Eating – (3) leftFork
(4) Got (1) Fork

LeftHandedPhilosopher (1) Thinking – (1) isAt
(2) Eat – (2) rightFork
(3) Eating – (3) leftFork
(4) Got (1) Fork

RightHandedPhilosopher (1) Thinking – (1) isAt
(2) Eat – (2) rightFork
(3) Eating – (3) leftFork
(4) Got (1) Fork

Fork (1) Release (1) Table (1) owner
(2) Philosopher

(2) Acquire (1) Philosopher
Table – – –
ForkHolder – – –

Next, we present (part of) the translated Promela program, generated from
Section 4.4. We only show the code concerning the objects actually used in the
initial graph, i.e., Fork and RightHandedPhilosopher. The other ones are similar
or do not perform any computations, so we left them out.

#define BSIZE 4

#define SIZE_INHERITANCE 6

mtype = {class_ForkHolder, class_Philosopher, class_LeftHandedPhilosopher,

class_RightHandedPhilosopher, class_Table, class_Fork};

mtype = {msg_Fork_Release, msg_Fork_Acquire, msg_Philosopher_Thinking, msg_Philosopher_Eating,

msg_Philosopher_Eat, msg_Philosopher_Got, msg_LeftHandedPhilosopher_Thinking,

msg_LeftHandedPhilosopher_Eating, msg_LeftHandedPhilosopher_Eat, msg_LeftHandedPhilosopher_Got,

msg_RightHandedPhilosopher_Thinking, msg_RightHandedPhilosopher_Eating,

msg_RightHandedPhilosopher_Eat, msg_RightHandedPhilosopher_Got};

mtype = {rule_Fork_AcquireFork, rule_Fork_ReleaseFork, rule_Philosopher_StopEating,

rule_Philosopher_StopThinking, rule_LeftHandedPhilosopher_StopEating,

rule_LeftHandedPhilosopher_StopThinking, rule_LeftHandedPhilosopher_LHP1stFork,

rule_LeftHandedPhilosopher_LHP2ndFork, rule_LeftHandedPhilosopher_LHPStartsEating,

rule_RightHandedPhilosopher_StopEating, rule_RightHandedPhilosopher_StopThinking,

rule_RightHandedPhilosopher_RHP1stFork, rule_RightHandedPhilosopher_RHP2ndFork,

rule_RightHandedPhilosopher_RHPStartsEating};

mtype = {Plato, Socrate, Kant, Hegel, Nietzche, DinnerTable,

Fork1, Fork2, Fork3, Fork4, Fork5};

typedef object { chan channel; mtype type; mtype id; };

typedef extends { mtype primitive; mtype derived; };

extends inheritance [SIZE_INHERITANCE];
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mtype event_RuleName;

mtype event_ForkHolder;

mtype event_Philosopher;

mtype event_LeftHandedPhilosopher;

mtype event_RightHandedPhilosopher;

mtype event_Table;

mtype event_Fork;

inline match (received, shouldbe, ok, i) {

i = 0; ok = false;

if

:: (received == shouldbe) -> ok = true;

::else ->

do

:: (i < SIZE_INHERITANCE) ->

if

:: (inheritance[i].primitive == shouldbe) && (inheritance[i].derived == received) ->

ok = true; break;

fi;

i++;

:: else -> break;

od;

fi;

}

inline rules_RightHandedPhilosopher () {

if

:: (msg_Received == msg_RightHandedPhilosopher_Thinking) ->

match_StopThinking = true;

if

:: match_StopThinking ->

d_step {

event_RightHandedPhilosopher = opc_RightHandedPhilosopher.id;

event_Philosopher = opc_RightHandedPhilosopher.id;

event_ForkHolder = opc_RightHandedPhilosopher.id;

event_RuleName = rule_RightHandedPhilosopher_StopThinking;

}

assert(nfull(opc_RightHandedPhilosopher.channel));

if

:: opc_RightHandedPhilosopher.type == class_RightHandedPhilosopher ->

opc_RightHandedPhilosopher.channel!msg_RightHandedPhilosopher_Eat,

nil_object;

fi;

:: else ->

if

:: busy[0] == false ->

opcb_RightHandedPhilosopher[0]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[0] = true; inspected[0]=true;

:: else ->

if

:: busy[1] == false ->

opcb_RightHandedPhilosopher[1]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[1] = true; inspected[1]=true;

:: else ->

if

:: busy[2] == false ->

opcb_RightHandedPhilosopher[2]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[2] = true; inspected[2]=true;

:: else ->

if

:: busy[3] == false ->

opcb_RightHandedPhilosopher[3]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[3] = true; inspected[3]=true;

:: else -> assert(false);

fi; fi; fi; fi; fi;

:: (msg_Received == msg_RightHandedPhilosopher_Eat) ->

match_RHP1stFork = true;

match (attr_RightHandedPhilosopher_Fork_1_2.type, class_Fork, match_tmp, index);

match_RHP1stFork = match_RHP1stFork && match_tmp;

if



144

:: match_RHP1stFork ->

d_step {

event_RightHandedPhilosopher = opc_RightHandedPhilosopher.id;

event_Philosopher = opc_RightHandedPhilosopher.id;

event_ForkHolder = opc_RightHandedPhilosopher.id;

event_RuleName = rule_RightHandedPhilosopher_RHP1stFork;

}

assert(nfull(attr_RightHandedPhilosopher_Fork_1_2.channel));

if

:: attr_RightHandedPhilosopher_Fork_1_2.type == class_Fork ->

attr_RightHandedPhilosopher_Fork_1_2.channel!msg_Fork_Acquire,

nil_object, nil_object, opc_RightHandedPhilosopher;

fi;

:: else ->

if

:: busy[0] == false ->

opcb_RightHandedPhilosopher[0]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[0] = true; inspected[0]=true;

:: else ->

if

:: busy[1] == false ->

opcb_RightHandedPhilosopher[1]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[1] = true; inspected[1]=true;

:: else ->

if

:: busy[2] == false ->

opcb_RightHandedPhilosopher[2]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[2] = true; inspected[2]=true;

:: else ->

if

:: busy[3] == false ->

opcb_RightHandedPhilosopher[3]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[3] = true; inspected[3]=true;

:: else -> assert(false);

fi; fi; fi; fi; fi;

:: (msg_Received == msg_RightHandedPhilosopher_Eating) ->

match_StopEating = true;

match (attr_RightHandedPhilosopher_Table_1_1.type, class_Table, match_tmp, index);

match_StopEating = match_StopEating && match_tmp;

match (attr_RightHandedPhilosopher_Fork_1_2.type, class_Fork, match_tmp, index);

match_StopEating = match_StopEating && match_tmp;

match (attr_RightHandedPhilosopher_Fork_1_3.type, class_Fork, match_tmp, index);

match_StopEating = match_StopEating && match_tmp;

if

:: match_StopEating ->

d_step {

event_RightHandedPhilosopher = opc_RightHandedPhilosopher.id;

event_Philosopher = opc_RightHandedPhilosopher.id;

event_ForkHolder = opc_RightHandedPhilosopher.id;

event_RuleName = rule_RightHandedPhilosopher_StopEating;

}

assert(nfull(attr_RightHandedPhilosopher_Fork_1_2.channel));

if

:: attr_RightHandedPhilosopher_Fork_1_2.type == class_Fork ->

attr_RightHandedPhilosopher_Fork_1_2.channel!msg_Fork_Release,

attr_RightHandedPhilosopher_Table_1_1, opc_RightHandedPhilosopher, nil_object;

fi;

assert(nfull(attr_RightHandedPhilosopher_Fork_1_3.channel));

if

:: attr_RightHandedPhilosopher_Fork_1_3.type == class_Fork ->

attr_RightHandedPhilosopher_Fork_1_3.channel!msg_Fork_Release,

attr_RightHandedPhilosopher_Table_1_1, opc_RightHandedPhilosopher, nil_object;

fi;

:: else ->

if

:: busy[0] == false ->

opcb_RightHandedPhilosopher[0]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[0] = true; inspected[0]=true;

:: else ->

if

:: busy[1] == false ->

opcb_RightHandedPhilosopher[1]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;
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busy[1] = true; inspected[1]=true;

:: else ->

if

:: busy[2] == false ->

opcb_RightHandedPhilosopher[2]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[2] = true; inspected[2]=true;

:: else ->

if

:: busy[3] == false ->

opcb_RightHandedPhilosopher[3]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[3] = true; inspected[3]=true;

:: else -> assert(false);

fi; fi; fi; fi; fi;

:: (msg_Received == msg_RightHandedPhilosopher_Got) ->

match_RHP2ndFork = true;

match (attr_RightHandedPhilosopher_Fork_1_2.type, class_Fork, match_tmp, index);

match_RHP2ndFork = match_RHP2ndFork && match_tmp;

match (attr_RightHandedPhilosopher_Fork_1_3.type, class_Fork, match_tmp, index);

match_RHP2ndFork = match_RHP2ndFork && match_tmp;

match_RHP2ndFork = match_RHP2ndFork &&

(attr_RightHandedPhilosopher_Fork_1_2.channel == par_RightHandedPhilosopher_Got_Fork_1.channel);

match_RHPStartsEating = true;

match (attr_RightHandedPhilosopher_Fork_1_3.type, class_Fork, match_tmp, index);

match_RHPStartsEating = match_RHPStartsEating && match_tmp;

match_RHPStartsEating = match_RHPStartsEating &&

(attr_RightHandedPhilosopher_Fork_1_3.channel == par_RightHandedPhilosopher_Got_Fork_1.channel);

if

:: match_RHP2ndFork ->

d_step {

event_RightHandedPhilosopher = opc_RightHandedPhilosopher.id;

event_Philosopher = opc_RightHandedPhilosopher.id;

event_ForkHolder = opc_RightHandedPhilosopher.id;

event_RuleName = rule_RightHandedPhilosopher_RHP2ndFork;

}

assert(nfull(attr_RightHandedPhilosopher_Fork_1_3.channel));

if

:: attr_RightHandedPhilosopher_Fork_1_3.type == class_Fork ->

attr_RightHandedPhilosopher_Fork_1_3.channel!msg_Fork_Acquire,

nil_object, nil_object, opc_RightHandedPhilosopher;

fi;

:: match_RHPStartsEating ->

d_step {

event_RightHandedPhilosopher = opc_RightHandedPhilosopher.id;

event_Philosopher = opc_RightHandedPhilosopher.id;

event_ForkHolder = opc_RightHandedPhilosopher.id;

event_RuleName = rule_RightHandedPhilosopher_RHPStartsEating;

}

assert(nfull(opc_RightHandedPhilosopher.channel));

opc_RightHandedPhilosopher.channel!msg_RightHandedPhilosopher_Eating, nil_object;

:: else ->

if

:: busy[0] == false ->

opcb_RightHandedPhilosopher[0]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[0] = true; inspected[0]=true;

:: else ->

if

:: busy[1] == false ->

opcb_RightHandedPhilosopher[1]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[1] = true; inspected[1]=true;

:: else ->

if

:: busy[2] == false ->

opcb_RightHandedPhilosopher[2]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[2] = true; inspected[2]=true;

:: else ->

if

:: busy[3] == false ->

opcb_RightHandedPhilosopher[3]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[3] = true; inspected[3]=true;
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:: else -> assert(false);

fi; fi; fi; fi; fi;

:: else ->

if

:: busy[0] == false ->

opcb_RightHandedPhilosopher[0]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[0] = true; inspected[0]=true;

:: else ->

if

:: busy[1] == false ->

opcb_RightHandedPhilosopher[1]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[1] = true; inspected[1]=true;

:: else ->

if

:: busy[2] == false ->

opcb_RightHandedPhilosopher[2]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[2] = true; inspected[2]=true;

:: else ->

if

:: busy[3] == false ->

opcb_RightHandedPhilosopher[3]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[3] = true; inspected[3]=true;

:: else -> assert(false);

fi; fi; fi; fi; fi;

}

proctype RightHandedPhilosopher (object opc_RightHandedPhilosopher;

object attr_RightHandedPhilosopher_Table_1_1;

object attr_RightHandedPhilosopher_Fork_1_2;

object attr_RightHandedPhilosopher_Fork_1_3) {

mtype msg_Received;

object nil_object;

bool match_tmp;

bool match_StopEating;

bool match_StopThinking;

bool match_RHP1stFork;

bool match_RHP2ndFork;

bool match_RHPStartsEating;

int index;

object par_RightHandedPhilosopher_Got_Fork_1;

object tmp_attr_RighttHandedPhilosopher_ForkHolder_1_1;

object tmp_attr_RightHandedPhilosopher_Fork_1_2;

object tmp_attr_RightHandedPhilosopher_Fork_1_3;

bool busy [BSIZE] = false;

bool inspected[BSIZE] = false;

chan opcb_RightHandedPhilosopher [BSIZE] = [1] of {mtype, object};

RCV: opc_RightHandedPhilosopher.channel?msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

opc_RightHandedPhilosopher.channel!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

do

:: (len(opc_RightHandedPhilosopher.channel) > 0) ->

inspected [0] = false;

inspected [1] = false;

inspected [2] = false;

inspected [3] = false;

if

:: busy[0] == false ->

opc_RightHandedPhilosopher.channel?msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

opcb_RightHandedPhilosopher[0]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[0] = true;

:: else ->

if

:: busy[1] == false ->

opc_RightHandedPhilosopher.channel?msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

opcb_RightHandedPhilosopher[1]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[1] = true;

:: else ->



147

if

:: busy[2] == false ->

opc_RightHandedPhilosopher.channel?msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

opcb_RightHandedPhilosopher[2]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[2] = true;

:: else ->

if

:: busy[3] == false ->

opc_RightHandedPhilosopher.channel?msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

opcb_RightHandedPhilosopher[3]!msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[3] = true;

:: else -> assert(false);

fi; fi; fi; fi;

:: (busy[0] == true && inspected[0]==false) -> atomic {

opcb_RightHandedPhilosopher[0]?msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[0] = false;

rules_RightHandedPhilosopher(); }

:: (busy[1] == true && inspected[1]==false) -> atomic {

opcb_RightHandedPhilosopher[1]?msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[1] = false;

rules_RightHandedPhilosopher(); }

:: (busy[2] == true && inspected[2]==false) -> atomic {

opcb_RightHandedPhilosopher[2]?msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[2] = false;

rules_RightHandedPhilosopher(); }

:: (busy[3] == true && inspected[3]==false) -> atomic {

opcb_RightHandedPhilosopher[3]?msg_Received, par_RightHandedPhilosopher_Got_Fork_1;

busy[3] = false;

rules_RightHandedPhilosopher(); }

:: else -> goto RCV;

od;

}

inline rules_Fork () {

if

:: (msg_Received == msg_Fork_Release) ->

match_ReleaseFork = true;

match (attr_Fork_ForkHolder_1_1.type, class_Philosopher, match_ReleaseFork, index);

match_ReleaseFork = match_ReleaseFork &&

(attr_Fork_ForkHolder_1_1.channel == par_Fork_Release_Philosopher_2.channel);

if

:: match_ReleaseFork ->

d_step {

event_RuleName = rule_Fork_ReleaseFork;

event_Fork = opc_Fork.id;

}

tmp_attr_Fork_ForkHolder_1_1.channel = par_Fork_Release_Table_1.channel;

tmp_attr_Fork_ForkHolder_1_1.type = par_Fork_Release_Table_1.type;

tmp_attr_Fork_ForkHolder_1_1.id = par_Fork_Release_Table_1.id;

attr_Fork_ForkHolder_1_1.channel = tmp_attr_Fork_ForkHolder_1_1.channel;

attr_Fork_ForkHolder_1_1.type = tmp_attr_Fork_ForkHolder_1_1.type;

attr_Fork_ForkHolder_1_1.id = tmp_attr_Fork_ForkHolder_1_1.id;

:: else ->

if

:: busy[0] == false ->

opcb_Fork[0]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[0] = true; inspected[0]=true;

:: else ->

if

:: busy[1] == false ->

opcb_Fork[1]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[1] = true; inspected[1]=true;

:: else ->

if

:: busy[2] == false ->

opcb_Fork[2]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[2] = true; inspected[2]=true;

:: else ->

if

:: busy[3] == false ->
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opcb_Fork[3]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[3] = true; inspected[3]=true;

:: else -> assert(false);

fi; fi; fi; fi; fi;

:: (msg_Received == msg_Fork_Acquire) ->

match_AcquireFork = true;

match (attr_Fork_ForkHolder_1_1.type, class_Table, match_AcquireFork, index);

if

:: match_AcquireFork ->

d_step {

event_RuleName = rule_Fork_AcquireFork;

event_Fork = opc_Fork.id;

}

tmp_attr_Fork_ForkHolder_1_1.channel = par_Fork_Acquire_Philosopher_1.channel;

tmp_attr_Fork_ForkHolder_1_1.type = par_Fork_Acquire_Philosopher_1.type;

tmp_attr_Fork_ForkHolder_1_1.id = par_Fork_Acquire_Philosopher_1.id;

attr_Fork_ForkHolder_1_1.channel = tmp_attr_Fork_ForkHolder_1_1.channel;

attr_Fork_ForkHolder_1_1.type = tmp_attr_Fork_ForkHolder_1_1.type;

attr_Fork_ForkHolder_1_1.id = tmp_attr_Fork_ForkHolder_1_1.id;

assert (nfull(par_Fork_Acquire_Philosopher_1.channel));

if

:: par_Fork_Acquire_Philosopher_1.type == class_Philosopher ->

par_Fork_Acquire_Philosopher_1.channel!msg_Philosopher_Got, opc_Fork;

:: par_Fork_Acquire_Philosopher_1.type == class_LeftHandedPhilosopher ->

par_Fork_Acquire_Philosopher_1.channel!msg_LeftHandedPhilosopher_Got, opc_Fork;

:: par_Fork_Acquire_Philosopher_1.type == class_RightHandedPhilosopher ->

par_Fork_Acquire_Philosopher_1.channel!msg_RightHandedPhilosopher_Got, opc_Fork;

fi;

:: else ->

if

:: busy[0] == false ->

opcb_Fork[0]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[0] = true; inspected[0]=true;

:: else ->

if

:: busy[1] == false ->

opcb_Fork[1]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[1] = true; inspected[1]=true;

:: else ->

if

:: busy[2] == false ->

opcb_Fork[2]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[2] = true; inspected[2]=true;

:: else ->

if

:: busy[3] == false ->

opcb_Fork[3]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[3] = true; inspected[3]=true;

:: else -> assert(false);

fi; fi; fi; fi; fi;

:: else ->

if

:: busy[0] == false ->

opcb_Fork[0]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[0] = true; inspected[0]=true;

:: else ->

if

:: busy[1] == false ->

opcb_Fork[1]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[1] = true; inspected[1]=true;

:: else ->

if

:: busy[2] == false ->

opcb_Fork[2]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;
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busy[2] = true; inspected[2]=true;

:: else ->

if

:: busy[3] == false ->

opcb_Fork[3]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[3] = true; inspected[3]=true;

:: else -> assert(false);

fi; fi; fi; fi; fi;

}

proctype Fork (object opc_Fork; object attr_Fork_ForkHolder_1_1) {

mtype msg_Received;

object nil_object;

bool match_AcquireFork;

bool match_ReleaseFork;

int index;

object par_Fork_Release_Table_1;

object par_Fork_Release_Philosopher_2;

object par_Fork_Acquire_Philosopher_1;

object tmp_attr_Fork_ForkHolder_1_1;

bool busy [BSIZE] = false;

bool inspected [BSIZE] = false;

chan opcb_Fork [BSIZE] = [1] of {mtype, object, object, object};

RCV: opc_Fork.channel?msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

opc_Fork.channel!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

do

:: (len(opc_Fork.channel) > 0) ->

inspected [0] = false;

inspected [1] = false;

inspected [2] = false;

inspected [3] = false;

if

:: busy[0] == false ->

opc_Fork.channel?msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

opcb_Fork[0]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[0] = true;

:: else ->

if

:: busy[1] == false ->

opc_Fork.channel?msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

opcb_Fork[1]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[1] = true;

:: else ->

if

:: busy[2] == false ->

opc_Fork.channel?msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

opcb_Fork[2]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[2] = true;

:: else ->

if

:: busy[3] == false ->

opc_Fork.channel?msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

opcb_Fork[3]!msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[3] = true;

:: else -> assert(false);
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fi; fi; fi; fi;

:: (busy[0] == true && inspected[0]==false) -> atomic {

opcb_Fork[0]?msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[0] = false;

rules_Fork();

}

:: (busy[1] == true && inspected[1]==false) -> atomic {

opcb_Fork[1]?msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[1] = false;

rules_Fork();

}

:: (busy[2] == true && inspected[2]==false) -> atomic {

opcb_Fork[2]?msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[2] = false;

rules_Fork();

}

:: (busy[3] == true && inspected[3]==false) -> atomic {

opcb_Fork[3]?msg_Received, par_Fork_Release_Table_1, par_Fork_Release_Philosopher_2,

par_Fork_Acquire_Philosopher_1;

busy[3] = false;

rules_Fork();

}

:: else -> goto RCV;

od;

}

init {

atomic {

object nil_object;

inheritance[0].primitive = class_ForkHolder;

inheritance[0].derived = class_Table;

inheritance[1].primitive = class_ForkHolder;

inheritance[1].derived = class_Philosopher;

inheritance[2].primitive = class_Philosopher;

inheritance[2].derived = class_LeftHandedPhilosopher;

inheritance[3].primitive = class_Philosopher;

inheritance[3].derived = class_RightHandedPhilosopher;

inheritance[4].primitive = class_ForkHolder;

inheritance[4].derived = class_LeftHandedPhilosopher;

inheritance[5].primitive = class_ForkHolder;

inheritance[5].derived = class_RightHandedPhilosopher;

chan channel_Socrate = [BSIZE] of {mtype, object};

chan channel_Plato = [BSIZE] of {mtype, object};

chan channel_Nietzche = [BSIZE] of {mtype, object};

chan channel_Hegel = [BSIZE] of {mtype, object};

chan channel_Kant = [BSIZE] of {mtype, object};

chan channel_Fork1 = [BSIZE] of {mtype, object, object, object};

chan channel_Fork2 = [BSIZE] of {mtype, object, object, object};

chan channel_Fork3 = [BSIZE] of {mtype, object, object, object};

chan channel_Fork4 = [BSIZE] of {mtype, object, object, object};

chan channel_Fork5 = [BSIZE] of {mtype, object, object, object};

chan channel_DinnerTable = [BSIZE] of {mtype};

object obj_Socrate;

obj_Socrate.channel = channel_Socrate;

obj_Socrate.type = class_RightHandedPhilosopher;

obj_Socrate.id = Socrate;

object obj_Plato;
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obj_Plato.channel = channel_Plato;

obj_Plato.type = class_RightHandedPhilosopher;

obj_Plato.id = Plato;

object obj_Nietzche;

obj_Nietzche.channel = channel_Nietzche;

obj_Nietzche.type = class_RightHandedPhilosopher;

obj_Nietzche.id = Nietzche;

object obj_Hegel;

obj_Hegel.channel = channel_Hegel;

obj_Hegel.type = class_RightHandedPhilosopher;

obj_Hegel.id = Hegel;

object obj_Kant;

obj_Kant.channel = channel_Kant;

obj_Kant.type = class_RightHandedPhilosopher;

obj_Kant.id = Kant;

object obj_Fork1;

obj_Fork1.channel = channel_Fork1; obj_Fork1.type = class_Fork; obj_Fork1.id = Fork1;

object obj_Fork2;

obj_Fork2.channel = channel_Fork2; obj_Fork2.type = class_Fork; obj_Fork2.id = Fork2;

object obj_Fork3;

obj_Fork3.channel = channel_Fork3; obj_Fork3.type = class_Fork; obj_Fork3.id = Fork3;

object obj_Fork4;

obj_Fork4.channel = channel_Fork4; obj_Fork4.type = class_Fork; obj_Fork4.id = Fork4;

object obj_Fork5;

obj_Fork5.channel = channel_Fork5; obj_Fork5.type = class_Fork; obj_Fork5.id = Fork5;

object obj_DinnerTable;

obj_DinnerTable.channel = channel_DinnerTable;

obj_DinnerTable.type = class_Table;

obj_DinnerTable.id = DinnerTable;

run RightHandedPhilosopher (obj_Socrate, obj_DinnerTable, obj_Fork1, obj_Fork2);

run RightHandedPhilosopher (obj_Plato, obj_DinnerTable, obj_Fork2, obj_Fork3);

run RightHandedPhilosopher (obj_Nietzche, obj_DinnerTable, obj_Fork3, obj_Fork4);

run RightHandedPhilosopher (obj_Hegel, obj_DinnerTable, obj_Fork4, obj_Fork5);

run RightHandedPhilosopher (obj_Kant, obj_DinnerTable, obj_Fork5, obj_Fork1);

run Fork (obj_Fork1, obj_DinnerTable);

run Fork (obj_Fork2, obj_DinnerTable);

run Fork (obj_Fork3, obj_DinnerTable);

run Fork (obj_Fork4, obj_DinnerTable);

run Fork (obj_Fork5, obj_DinnerTable);

run Table (obj_DinnerTable);

assert(nfull(obj_Socrate.channel));

obj_Socrate.channel!msg_RightHandedPhilosopher_Thinking, nil_object;

assert(nfull(obj_Plato.channel));

obj_Plato.channel!msg_RightHandedPhilosopher_Thinking, nil_object;

assert(nfull(obj_Nietzche.channel));

obj_Nietzche.channel!msg_RightHandedPhilosopher_Thinking, nil_object;

assert(nfull(obj_Hegel.channel));

obj_Hegel.channel!msg_RightHandedPhilosopher_Thinking, nil_object;

assert(nfull(obj_Kant.channel));

obj_Kant.channel!msg_RightHandedPhilosopher_Thinking, nil_object;

}

}
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APPENDIX F GRAMÁTICAS DE GRAFOS ORIEN-
TADOS A OBJETO

F.1 Introdução

Programas de computador são utilizados em quase todas as atividades da vida
moderna e deles dependemos de maneira muitas vezes crucial. A complexidade dos
sistemas de software atuais fez com que novas técnicas de desenvolvimento emergis-
sem. Contudo, os paradigmas nos quais estas técnicas estão baseadas (em especial
orientação a objeto, eventos e concorrência), apesar de tornarem o processo de mo-
delagem e codificação mais rápido, fazem com que as fases de teste e validação se
tornem ainda mais complexas. O cenário atual, devido às pressões de tempo de
desenvolvimento e qualidade do produto, requer técnicas de desenvolvimento mais
ágeis que garantam que o produto final seja consistente e completo em relação à
sua especificação, que sejam formais, incrementais, executáveis e utilizáveis por não
especialistas em métodos formais.

Visualmente simples, diagramas são geralmente constrúıdos a partir de regras
sintáticas bem definidas. Se essa sintaxe também for equipada com uma semântica
formal, tem-se uma linguagem visual de especificação que pode ser integrada mais
facilmente no processo de desenvolvimento. Diagramas usados em processos de
especificação podem ser modelados por grafos.

Grafos são estruturas algébricas capazes de transmitir uma quantidade signifi-
cativa de informação de uma maneira compacta, visual e clara. A especificação
de sistemas computacionais com grafos oferece duas vantagens que são, em geral,
mutuamente exclusivas: (i) sendo estruturas matemáticas, grafos apresentam uma
semântica bem definida e (ii) contando com uma apresentação diagramática, espe-
cificações baseadas em grafos podem ser mais facilmente entendidas e produzidas
por não especialistas na área de Computação. Assim, técnicas de especificação ba-
seadas em grafos formam uma base sólida para a integração de métodos formais de
especificação e verificação de sistemas no processo de desenvolvimento de software
(BARESI; PEZZÈ, 2000).

Sistemas baseados em regras, por outro lado, são capazes de descrever com-
putações a partir de transformações locais. Transformações de grafos através de
regras é uma maneira de combinar grafos – para descrição de estruturas complexas
– com regras, para manipulação destas estruturas. Sistemas de transformação (ou
reescrita) de grafos combinam as vantagens de grafos e regras num único paradigma
computacional (EHRIG et al., 1996). A abordagem algébrica para gramáticas de
grafos (EHRIG; PFENDER; SCHNEIDER, 1973) faz uso de construções categori-



153

ais para definir os aspectos relevantes das computações de grafos. Esta abordagem
é atualmente conhecida como double-pushout porque as derivações são baseadas em
duas construções do tipo pushout na categoria de grafos e morfismos de grafos. Na
abordagem single-pushout (LÖWE, 1991) uma derivação é caracterizada como uma
construção deste mesmo tipo na categoria de grafos e morfismos parciais de grafos.
Esta abordagem é uma extensão própria da primeira (EHRIG et al., 1996). A es-
colha da abordagem algébrica baseou-se na generalidade fornecida pela Teoria de
Categorias (MACLANE, 1998), onde vários resultados poderiam ser herdados caso
fosse provado que as construções desejadas existiam nas categorias estudadas.

Os prinćıpios por trás do paradigma da orientação a objeto — encapsulamento
de dados e código, oclusão da informação, herança e polimorfismo — servem perfei-
tamente aos propósitos do desenvolvimento modular de sistemas, teste distribúıdo e
reutilização de software, necessários para lidar com o tamanho e a complexidade dos
sistemas atuais. A herança é um mecanismo central na programação orientada a
objeto, suportando o projeto incremental de classes e reúso de especificações já escri-
tas. O polimorfismo pode ser descrito como a associação de diferentes significados ou
usos para algo em contextos diferentes. O polimorfismo de subclasses (CARDELLI;
WEGNER, 1985) assegura que um objeto pode pertencer a diferentes classes, não
necessariamente disjuntas, tornando-se especialmente importante quando a ligação
dinâmica de métodos é implementada, permitindo que a decisão de qual código exe-
cutar quando um método é chamado possa ser adiada para o tempo de execução.
Programas orientados a objeto fazem uso de herança e sobrescrita de métodos para
atingir seus objetivos. Sendo assim, deve-se esperar que os formalismos para a cons-
trução de especificações orientadas a objeto reflitam estes conceitos, caso contrário
aspectos chave do desenvolvimento poderão acabar negligenciados.

Gramáticas de grafos têm sido usadas para especificação de vários tipos de sis-
temas de software (EHRIG et al., 1997), onde grafos são usados para representar
estados e produções de grafos para operações ou transformações destes sistemas
(EHRIG; LÖWE, 1993). Tais especificações freqüentemente utilizam grafos rotu-
lados ou tipados para representar diferentes entidades (ANDRIES et al., 1999),
(BLOSTEIN; FAHMY; GRBAVEC, 1995), (CORRADINI; MONTANARI; ROSSI,
1996), (DOTTI; RIBEIRO, 2000), (KORFF, 1995), (RIBEIRO, 1996), (TAENT-
ZER, 1996a). Contudo, nem rotulação nem morfismos de tipagem são capazes de
traduzir o significado da herança e do polimorfismo em especificações orientadas a
objeto (FERREIRA; RIBEIRO, 2003).

Existe na literatura uma vasta quantidade de métodos formais e semi-formais
para especificação de sistemas orientados a objeto. O propósito deste trabalho não
é indicar uma solução “melhor”, visto que este conceito é relativo e dependente do
problema em mãos. A contribuição desta tese está focada na área de gramática de
grafos, e nos seu uso para especificação e verificação formal de sistemas orientados
a objeto. As contribuições principais desta tese resumem-se como:

• o desenvolvimento de uma extensão para a abordagem single-pushout de
gramáticas de grafos — gramáticas de grafos orientados a objeto ou object-
oriented graph grammars — que abarque as caracteŕısticas principais (herança,
polimorfismo, ligação dinâmica, encapsulamento e oclusão da informação) da
orientação a objeto;

• o desenvolvimento de uma semântica observacional baseada em sistemas de
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transições rotulados pelos eventos (aplicações de regras) sobre elementos (ob-
jetos) do grafo do sistema, no caso de ambos fazerem parte do conjunto de
entidades viśıveis do sistema, fazendo com que computações silenciosas e com-
putações observáveis de uma gramática de grafos orientados a objeto possam
ser descritas;

• uma tradução definida formalmente de modelos expressos neste novo forma-
lismo para programas Promela (a linguagem de entrada do verificador de mo-
delos (CLARKE; GRUMBERG; PELED, 1999) SPIN (HOLZMANN, 1997)),
para permitir a verificação formal de propriedades (escritas em lógica tem-
poral LTL (HUTH; RYAN, 2000)) sobre estados e eventos da especificação
constrúıda.

Dada uma especificação de sistema, pode-se estar interessado em duas coisas: o
sistema em si ou o seu comportamento. A primeira parte deste trabalho garante os
meios para a construção de especificações orientadas a objeto executáveis enquanto
que a segunda provê o ferramental necessário para a análise de propriedades dos
sistemas assim especificados. O restante deste caṕıtulo está organizado da seguinte
forma: a Seção F.2 apresenta os principais resultados relacionados com a modela-
gem estática de sistemas orientados a objeto; a Seção F.3 discute a computação de
sistemas especificados de acordo com o formalismo proposto; a Seção F.4 esboça
como a verificação de propriedades de especificações é realizada. As conclusões são
apresentadas na Seção F.5.

F.2 Especificações de sistemas orientados a objeto

Uma hierarquia de classes de um modelo orientado a objeto é, neste trabalho,
representada por um hipergrafo rotulado denominado grafo de classes (class-model
graph). A novidade desta abordagem consiste na exigência que ambos os conjuntos
de nodos (classes) e arcos (atributos e mensagens) do grafo sejam conjuntos parci-
almente ordenados. Hiperarcos podem ser rotulados como mensagens ou atributos.
Um hiperarco de tipo mensagem tem somente um nodo destino (o objeto ao qual a
mensagem em questão se destina), mas pode ter qualquer número (finito) de nodos
de origem, que correspondem aos parâmetros da mensagem. Um arco de tipo men-
sagem pode ser visto, então, como a especificação da assinatura de um método. Já
um hiperarco de tipo atributo possui somente um nodo de origem (o objeto ao qual
o atributo pertence), e um número qualquer de nodos destino. Um atributo com
mais do que um nodo de destino representa um agrupamento de dados numa única
estrutura sintática.

As relações subjacentes aos já mencionados conjuntos de nodos e arcos de um
grafo de classes são denominadas relações estritas (strict relations). Uma relação
estrita pode ser visualmente modelada por um conjunto de árvores, que representa
as posśıveis hierarquias de classes em programas escritos em linguagens orientadas
a objeto que possuem somente herança simples. Formalmente, uma relação estrita
é irreflexiva, aćıclica, funcional e nenhuma cadeia com respeito à relação é infinita
(embora a relação em si possa ser). Mostra-se que o fecho transitivo e reflexivo de
uma relação estrita é uma relação de ordem parcial, o que é importante para her-
dar toda a teoria já desenvolvida neste domı́nio. Relações estritas possuem várias
propriedades, e mostra-se que elas formam uma categoria, juntamente com seus
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morfismos. Morfismos de relações estritas são tais que “colam” dois conjuntos orde-
nados de maneira que possam ser combinados de forma consistente. Apesar desta
categoria não ser cocompleta, colimites binários podem ser constrúıdos a partir de
duas relações estritas e de um morfismo entre elas.

Grafos de classes são estruturas algébricas e podem, por esta razão, ser rela-
cionados através de morfismos. Um morfismo de grafo de classes é um morfismo
usual de hipergrafos rotulados em que as funções que mapeiam nodos e arcos são
morfismos de relações estritas. Mostra-se neste trabalho que grafos de classes e seus
morfismos formam uma categoria. Esta categoria não é cocompleta uma vez que
coequalizadores de morfismos de seus conjuntos de nodos e arcos não podem ser
arbitrariamente constrúıdos. No entanto, grafos de classes podem ser compostos
dois a dois, usando um morfismo para identificação dos elementos pertinentes. A
composição de sistemas orientados a objeto pode ser formalmente definida como o
colimite do diagrama que contém os sistemas que estão sendo compostos e o mor-
fismo que os conecta. Dois elementos do grafo de classes devem ser relacionados
pelo morfismo se eles representam o mesmo elemento, que é repetido em duas espe-
cificações distintas (seja uma classe inteira ou somente alguns de seus atributos ou
métodos). A construção do colimite une os elementos relacionados de forma e que
eles sejam identificados na especificação composta. Como um colimite em qualquer
categoria é uma estrutura única (a menos de isomorfismo), conclui-se que a com-
posição de sistemas neste contexto é única e bem definida. Mostra-se ainda como
as formas mais usuais de extensão de sistemas orientados a objeto, que são a espe-
cialização por herança e a agregação de objetos, são casos especiais de composição
de grafos de classes. Este resultado permite uma visão consistente e uniforme da
extensão de sistemas orientados a objeto, uma vez que as formas existentes para que
isso seja efetuado podem ser todas formalizadas pela mesma construção categorial.

F.3 Computações de sistemas orientados a objeto

Gramáticas de grafos orientados a objeto devem modelar o comportamento
dinâmico de sistemas orientados a objeto. O ponto de partida para a definição dessas
gramáticas são grafos C-tipados e seus morfismos. Grafos C-tipados são hipergrafos
tipados sobre um grafo de classes, mas o morfismo de tipagem é mais flex́ıvel do que
o tradicional (CORRADINI; MONTANARI; ROSSI, 1996), no sentido que os hipe-
rarcos mapeados precisam preservar as relações existentes entre suas origens e seus
destinos e não suas origens e destinos propriamente ditos. Esta flexibilidade permite
que a herança de elementos seja implementada, uma vez que os objetos podem fazer
uso dos arcos de quaisquer outros objetos dos quais sejam derivados na hierarquia
de herança. Morfismos de grafos C-tipados também diferem dos morfismos de grafos
tipados tradicionais, no sentido de que os tipos não precisam ser preservados, mas
somente a relação entre eles. Essa caracteŕıstica é utilizada para implementação de
polimorfismo de subclasses em computações. Mostra-se que grafos C-tipados e seus
morfismos formam uma categoria cocompleta CGraphP(C).

Grafos orientados a objeto são grafos C-tipados restritos. Esta restrição diz res-
peito ao fato de que todas as mensagens endereçadas a um objeto devem ser tipadas
de acordo com o paradigma: um objeto somente pode receber uma mensagem se ela
for o elemento mı́nimo na cadeia de redefinição à qual a mensagem pertence. Esta
caracteŕıstica reflete a oclusão de métodos que tenham sido redefinidos em classes
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derivadas.

A categoria OOGraphP(C) possui grafos orientados a objeto como objetos e
morfismos entre grafos C-tipados como setas. Os mapeamentos entre grafos orienta-
dos a objeto asseguram que o polimorfismo de subclasses ocorre automaticamente:
sempre que um objeto de uma classe é esperado, um objeto de uma classe dela de-
rivada pode aparecer em seu lugar. O polimorfismo de subclasses é implementado
pelas caracteŕısticas do morfismo: um nodo x pode ser mapeado para outro nodo
y se o tipo de y estiver relacionado com o tipo de x na relação existente entre os
nodos no grafo de classes subjacente.

Regras orientadas a objeto respeitam os prinćıpios de oclusão da informação
existentes no paradigma. Um objeto, para tratar uma mensagem recebida, somente
pode ter conhecimento de seus próprios atributos e dos parâmetros recebidos pela
mensagem, ao passo que somente pode modificar valores de seus próprios atributos.
A manipulação dos objetos conhecidos deve ser realizada através do envio de men-
sagens a eles. Adicionalmente, os morfismos de regras orientadas a objeto devem
ser invert́ıveis, o que significa que um objeto não pode ter seu tipo alterado pelas
derivações da gramática.

Uma derivação direta (ou aplicação de regra) é definida nos mesmos moldes que
derivação em gramáticas de grafos (single-pushout) usuais, com exceção da tipagem
do grafo resultante da derivação, que é realizada levando em conta as relações de
ordem no grafo de classes subjacente. Mostrou-se que uma derivação é o pushout
dos morfismos correspondentes à regra e à ocorrência do lado esquerdo da regra no
grafo do sistema, na categoria OOGraphP(C). Este resultado é significativo, visto
que uma grande parte da teoria algébrica de gramáticas de grafos está suportada
sobre o fato de derivações corresponderem a uma construção categorial do tipo
(single- ou double-) pushout. Desta forma, todos os resultados já atingidos podem
ser imediatamente aproveitados.

Gramáticas de grafos orientados a objeto são o primeiro desenvolvimento conhe-
cido de gramáticas de grafos para especificação de sistemas orientados a objeto que
leva em consideração herança, polimorfismo e ligação dinâmica do paradigma de
orientação a objeto.

F.4 Verificação de sistemas orientados a objeto

Especificações em gramáticas de grafos orientados a objeto podem ser traduzidas
para outras linguagens formais. Neste trabalho é apresentada uma tradução daque-
las especificações para programas na linguagem Promela (PROcess/PROtocol MEta
LAnguage), que é a linguagem de definição de modelos do verificador formal SPIN.

Objetos no grafo inicial da gramática são traduzidos em processos na linguagem
Promela, cujos parâmetros reais são os atributos do objeto (isto é, os elementos que
são os destinos dos arcos de atributos do objeto em questão). Mensagens são mode-
ladas através de elementos colocados em canais de comunicação associados a cada
objeto. A semântica da aplicação de regras é preservada pela escolha não deter-
mińıstica da mensagem a consumir em cada canal. O não determinismo na escolha
das mensagens a consumir, uma vez que os canais de comunicação em Promela pos-
suem uma estratégia FIFO (first in, first out), é implementado com o aux́ılio de um
buffer de mensagens local a cada processo. As mensagens recebidas são retiradas
em ordem do canal de comunicação principal e colocadas num espaço do buffer local
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através de um escolha não determińıstica. A retirada das mensagens do buffer local
também é não determińıstica, o que significa que a ordem de recebimento das men-
sagens não é necessariamente a ordem de seu consumo, como requer o formalismo.

A linguagem Promela, originalmente, não possui nenhum suporte para orientação
a objeto. Herança, polimorfismo e ligação dinâmica são codificados no programa
Promela de diferentes formas. A hierarquia de herança é codificada em um array de
pares, que guardam a informação referente ao fecho transitivo da relação de herança
pertencente à gramática. Esta informação é global, e portanto viśıvel a todos os
objetos. Polimorfismo de subclasses é implementado pela inspeção desta estrutura,
para garantir que regras definidas para tipos primitivos possam ser aplicadas a tipos
derivados. O disparo de mensagens utiliza reflexão computacional, no sentido de que
cada objeto conhece seu próprio tipo (i.e., a classe ao qual pertence), para reproduzir
a ligação dinâmica. Como esta informação é pública, o objeto que envia a mensagem
pode decidir, em tempo de execução, qual é a mensagem mais adequada em função
do tipo do objeto que é o seu destino.

A tradução apresentada neste trabalho garante que a verificação possa ser reali-
zada tanto sobre estados como sobre eventos. Como a maior parte dos verificadores
de modelos, SPIN somente permite que fórmulas sobre os estados do modelo sejam
definidas. Para permitir a verificação sobre eventos, existem variáveis globais que
definem a existência de um evento (aplicação de regra) e a identificação do objeto
que sofreu essa ação. Fórmulas da lógica temporal LTL podem ser especificadas
sobre os objetos originais do grafo inicial, e sobre as regras aplicáveis em cada ob-
jeto. O programa traduzido serve então de fonte para o verificador, que realiza a
verificação da propriedade especificada automaticamente. Caso a propriedade não
seja verdadeira no modelo, um contra-exemplo gráfico é gerado, a partir do traço de
sáıda do verificador.

A compatibilidade semântica entre a gramática original e o programa traduzido
é também discutida. A semântica usada para comparações também foi proposta
neste trabalho, e é baseada em sistemas de transição onde algumas entidades são
observáveis e outras não. Esta noção de observação em gramática de grafos ori-
entados a objeto é compat́ıvel com a execução de programas orientados a objeto,
onde em geral não se tem acesso a todos os elementos do programa. Computações
da gramática podem ser comparadas com traços de execução do programa Promela
traduzido. Argumenta-se que para cada computação da gramática existe um traço
correspondente no programa, e que o contrário também é verdadeiro (obedecidas
algumas restrições de traços de programa).

F.5 Conclusões

Esta tese apresenta um método formal baseado em grafos para a especificação e
verificação de sistemas orientados a objeto. Mais especificamente, uma extensão da
abordagem algébrica single-pushout para gramáticas de grafos tipadas é proposta
para contemplar aspectos concernentes ao paradigma. Os morfismos de tipagem
dos grafos respeitam as relações de ordem que definem as relações de herança entre
classes (nodos) e sobrescrita de métodos (hiperarcos). Os morfismos entre grafos
tipados implementam a noção de polimorfismo de subclasses, e a derivação direta
implementa a ligação dinâmica de métodos. O encapsulamento de dados e funções
em uma mesma entidade é implementado via restrições estruturais nos grafos de
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classe. A oclusão da informação é implementada via restrições na estrutura das
regras.

Uma semântica observacional para gramática de grafos orientados a objeto, ba-
seada em sistemas de transição, é proposta. Esta semântica é mais abstrata que a
usual, é baseada na noção de entidades viśıveis (objetos ou mensagens) e é com-
pat́ıvel com a execução de programas orientados a objeto. A partir desta semântica,
é definida uma tradução de especificações escritas em gramática de grafos orientados
a objeto para programas Promela. A novidade desta abordagem é a tradução de
construções de orientação a objeto para uma linguagem de verificação que não as
implementa. A verificação de propriedades, expressas na lógica temporal LTL pode
ser conduzida automaticamente usando o verificador SPIN.


