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We present theoretical results for the underscreened Kondo lattice model with localized S=1 spins coupled
to a conduction band through a Kondo coupling, JK, and interacting among them ferromagnetically. We use a
fermionic representation for the spin operators and expand the Hamiltonian in terms of bosonic fields. For large
values of JK, we obtain a ferromagnetically ordered solution and a Kondo regime with a Kondo temperature,
TK, larger than the Curie temperature, TC. This finding suggests a scenario for a coexistence of Kondo effect
and ferromagnetic order. In some uranium compounds, such as UTe or UCu0.9Sb2, this kind of coexistence has
been experimentally observed: they order ferromagnetically with a Curie temperature of order TC�100 K and
exhibit a Kondo behavior for T�TC. The proposed underscreened Kondo lattice model accounts well for the
coexistence between magnetic order and Kondo behavior and yields to a new “ferromagnetic Doniach
diagram.”
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I. INTRODUCTION

The Kondo lattice �KL� model is one of the fundamental
microscopic models for studying the properties of strongly
correlated electron systems, and a large amount of theoretical
work was carried out on this problem in recent years �for a
review, see Ref. 1�. This model is widely used to describe the
physics of intermetallic heavy fermion compounds based ei-
ther on rare earth elements or on actinides.2 In heavy fermion
materials there are two different types of electrons: conduc-
tion electrons from outer atomic orbitals, and strongly corre-
lated electrons from inner f orbitals, the latter ones being
generally localized. The KL model describes the interaction
between these two electronic subsystems in the limit when f
electrons are completely localized and form a lattice of lo-
calized spins.

Historically, KL model has been proposed to account for
properties of cerium compounds, where a competition be-
tween Kondo effect and magnetic order has been experimen-
tally observed. Such competition gives rise to a rich phase
diagram with various quantum phase transitions. KL model
has been proven to be an appropriate tool for describing
these quantum transitions at different values of external pa-
rameters such as band filling, pressure, magnetic field, or
temperature.3,4

In most cerium compounds, Ce ions are in the localized
4f1 configuration corresponding to spin S=1/2. This local-
ized spin couples antiferromagnetically, via an on-site ex-
change interaction, JK, to the conduction electron spin den-
sity. At very low temperatures the localized spin S=1/2 is
completely screened by the conduction electrons, leading to
the formation of coherent Kondo spin-singlet state. Besides,
the local coupling between f spins and conduction electrons
may give rise to a magnetic order through the Ruderman-
Kittel-Kasuya-Yosida �RKKY� interaction. This interaction
is usually added to the KL model as an additional intersite
interaction between f spins.5,6

The competition between the magnetic order and the
Kondo effect was first considered by Doniach.3,7 He pro-
posed a phase diagram with a quantum phase transition be-
tween a magnetically ordered phase and a nonmagnetic
Kondo phase. Doniach phase diagram was later extended3 to
include the short-range magnetic correlations that survive in-
side the Kondo phase.8 From an experimental point of view,
the competition between magnetic order and Kondo effect
has been observed in many cerium and ytterbium com-
pounds, which yields a set of very rich phase diagrams with
various quantum phase transitions under pressure �see, for
example, Ref. 4 and references therein�.

In this paper, we focus on the physical properties of ura-
nium compounds. This is another class of heavy fermion
systems, which show very rich behavior, quite different from
cerium compounds. It is peculiar of uranium compounds that
they exhibit numerous coexistence phenomena, the most
prominent of which is the coexistence of magnetic order with
Kondo effect9–13 or the coexistence of the magnetic order
with superconductivity.14,15 We will be primarily interested
in the coexistence between ferromagnetic order and Kondo
behavior, as, to our knowledge, this effect has been some-
what overlooked from a theoretical point of view.

Let us briefly describe the experimental situation. The first
experimental evidence of the coexistence between Kondo be-
havior and ferromagnetic order in the dense Kondo com-
pound UTe has been obtained long time ago.9 More recently,
this coexistence has been observed in UCu0.9Sb2

11 and
UCo0.5Sb2.12,13 All these systems undergo a ferromagnetic
ordering at the relatively high Curie temperatures of TC
=102 K �UTe�, TC=113 K �UCu0.9Sb2�, and TC=64.5 K
�UCo0.5Sb2�. Above the ordering temperatures, i.e., in the
expected paramagnetic region, these materials exhibit a
Kondo-like logarithmic decrease of the electrical resistivity,
indicating a Kondo behavior. This logarithmic variation ex-
tends down to the ferromagnetic Curie temperature, TC, sug-
gesting that the Kondo behavior survives inside the ferro-
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magnetic phase, implying that the ferromagnetic order and
the Kondo behavior do coexist. This coexistence, together
with the large Curie temperatures, are clearly unusual fea-
tures that cannot be explained by the standard KL model.18

Therefore, as a minimal model to describe the Kondo-
ferromagnetism coexistence, we propose an underscreened
Kondo lattice model which, we argue, is appropriate to de-
scribe the 5f2 configuration of uranium ions.

The underscreened Kondo lattice �UKL� model consists
of a periodic lattice of magnetic atoms with S=1 interacting
with a spin density of conduction electrons via an on-site
antiferromagnetic Kondo coupling. In addition, the localized
spins at neighboring sites interact ferromagnetically with
each other. In this case the Kondo effect does not lead to a
complete screening of the localized spins, and the ferromag-
netic exchange between the �underscreened� spins may in-
deed lead to the formation of ferromagnetic order.

We warn that the choice of the model for the electronic
structure of uranium compounds is a question not settled yet.
Magnetism in these compounds undoubtedly comes from 5f
electrons—this has been proven by many experimental ob-
servations, e.g., by form-factor studies in neutron scattering.
At the same time, 5f electron states in uranium compounds
are in a crossover region between localized and itinerant be-
havior, and the degree of localization depends strongly on a
subtle balance between the electronic structure, the effect of
correlations, and crystal field effects. It is often difficult to
decide, on the basis of the experimental data, between a local
Kondo behavior corresponding to a 5fn configuration and a
mixed-valence situation. One example is provided by ura-
nium monochalcogenides: US lies closest to the itinerant
side for the 5f electrons, USe is in the middle, and UTe is the
closest to the localized side.19–21 Recent photoemission ex-
periments on UTe have been interpreted as favoring itinerant
magnetism,22 but the magnetic moments deduced from mag-
netic susceptibility experiments in this compound are close
to the free ion values of uranium, which implies that the 5f
electrons are relatively well localized in UTe.10,19 Moreover,
the dual nature of the 5f electrons, assuming two localized
5f electrons and one delocalized one, has been considered by
Zwicknagl et al.23,24 who have obtained by band calculations
a mass enhancement factor in good agreement with experi-
ment in UPt3 and UPd2Al3 and by Schoenes et al.19,20 who
have carefully analyzed the variation of the localization of
the 5f electrons with concentration and pressure in diluted
US and UTe. The electronic structure of uranium and pluto-
nium monochalcogenides has been also studied by dynami-
cal mean field theory �DMFT� calculations.25 So, the appro-
priate description of the electronic structure for uranium
compounds is a challenging problem and depends strongly
on the considered system. Here we restraint ourselves to the
study of the UKL model applied to uranium compounds such
as UTe, when the uranium ions are relatively well localized
and can be correctly described within a 5f2 configuration, in
which the two 5f electrons are bound into spin S=1.

Besides its applicability to the physics of ferromagnetic
uranium compounds, UKL model is also interesting on its
own. It is one of the theoretical models which can capture
the physics of the lattice of underscreened magnetic mo-
ments in a metal, yet it attracted much less attention than the

underscreened Kondo impurity model, for which there there
exist various theoretical studies,26 and an exact solution has
been obtained by the Bethe ansatz.27,28 There has been only
few studies of the UKL. The UKL model in the form which
we use here was first proposed in Ref. 29. Magnetism and
superconductivity in one dimensional UKL model has been
studied in Ref. 30. The pseudogap formation in the UKL
model has been studied in a large-N limit in Ref. 31.

The crucial step in our analysis of the UKL model lies in
the choice of the fermionic representation of localized spins
S=1. We model them by two degenerate f orbitals with one
f electron each. At each site these two electrons are bound
into S=1 due to the strong on-site Hund’s coupling. Our
fermionic representation projects out singlet states and satis-
fies spin algebra in the triplet Hilbert subspace.32 In other
words, all possible spin transitions that leave the system in
the triplet subspace, �S=1,Sz� are equivalently described in
terms of auxiliary fermionic operators.

We show that the UKL model exhibits two continuous
transitions �more precisely, sharp crossovers�: the first one, at
T=TK, to a nonmagnetic Kondo state with a pseudogap in the
f-electron density of states, and the second one, at T=TC, to
a ferromagnetic state. We find that at strong Kondo coupling
ferromagnetism and Kondo effect do coexist. We evaluate
the Kondo screening, magnetic moments of localized spins,
and conduction electrons for various band fillings in a wide
range of coupling parameters and obtain the phase diagram
with the regions of Kondo-ferromagnetic coexistence, non-
magnetic Kondo behavior, and pure ferromagnetism. This
phase diagram can be considered as a ferromagnetic “Doni-
ach” diagram for the UKL model.

The paper is organized as follows: In Sec. II, we present
the model, introduce the fermionic representation for spin
operators, derive the Green’s functions, and perform a self-
consistent analysis. The results of the calculations at zero and
finite temperatures are discussed in Sec. III. In Sec. III E, we
present the ferromagnetic “Doniach diagram” for our model.
The conclusion contains the discussion of the main results
and the comparison with the experimental data for the ura-
nium compounds.

II. UNDERSCREENED KONDO LATTICE MODEL

A. Fermionic representation of localized spins

We first introduce and discuss in detail the fermionic rep-
resentation for localized spins S=1, made out of two fermi-
ons on degenerate f orbitals. The two fermions couple into
S=1 due to the strong on-site Hund’s interaction. We intro-
duce a fermionic representation in the constrained Hilbert
space which contains only triplet spin states, dropping out all
spin-singlet states.

The projection of the spin-singlet states is justified due to
the correlation nature of f electrons. The strong Hund’s cou-
pling favors the triplet states with energy Et with respect to
the singlet states with energy Es, and to the states with two
electrons on a single orbital, with even higher energy Ed.

Then, considering just states with S=1 the transformation
between different Sz ��1,Sz�� projections is unambiguously
described in terms of fermionic operators as32
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1
2 �f1↑

† f1↑f2↓
† f2↓ + f1↓

† f1↓f2↑
† f2↑ + f1↑

† f1↓f2↓
† f2↑

+ f1↓
† f1↑f2↑

† f2↓�:�1,0� → �1,0� ,

f1↑
† f1↑f2↑

† f2↑:�1,1� → �1,1� ,

f1↓
† f1↓f2↓

† f2↓:�1,− 1� → �1,− 1� ,

1
2 �f1↑

† f1↑f2↓
† f2↑ + f1↓

† f1↑f2↑
† f2↑�:�1,1� → �1,0� ,

1
2 �f1↓

† f1↓f2↓
† f2↑ + f1↓

† f1↑f2↓
† f2↓�:�1,0� → �1,− 1� ,

1
2 �f1↓

† f1↓f2↑
† f2↓ + f1↑

† f1↓f2↓
† f2↓�:�1,− 1� → �1,0� ,

1
2 �f1↑

† f1↑f2↑
† f2↓ + f1↑

† f1↓f2↑
† f2↑�:�1,0� → �1,1� . �1�

where f��
† and f�� are creation and annihilation operators for

f electrons, carrying spin and orbital indices, � and ���
=1,2�, respectively. In terms of spin operators, the transi-
tions represented by Eqs. �1� can be expressed as

1 − Sz
2:�1,0� → �1,0� ,

1
2Sz�Sz − 1�:�1,− 1� → �1,− 1� ,

1
2Sz�Sz + 1�:�1,1� → �1,1� ,

− 1
2SzS

−:�1,0� → �1,− 1� ,

− 1
2S+Sz:�1,− 1� → �1,0� ,

1
2S−Sz:�1,1� → �1,0� ,

1
2SzS

+:�1,0� → �1,1� . �2�

Note that there is no transition �1,1�↔ �1,−1�. The equiva-
lence between fermionic and spin representations should be
interpreted as the equivalence of matrix elements between
corresponding states.

B. Model

Our model Hamiltonian is the following:

H = �
k�

��k − ��ck�
† ck� + �

i��

E0ni�
f� + JK�

i

Si�i +
1

2
JH�

ij

SiS j .

�3�

The first term represents the conduction band with dispersion
energy �k. We assume that the band has a width 2D and the
density of states for conduction electrons is 1 /2D in the in-
terval �−D ,D� and zero otherwise. The operators ck�

† �ck��
correspond to delocalized Bloch states with spin �, while �
is the bare electron chemical potential. The second term de-
scribes the energy of localized levels and E0 can be consid-
ered as a fictitious chemical potential, i.e., a Lagrange mul-
tiplier for auxiliary f fermions. The actual value of E0 is

fixed by a local constraint nf =�i��ni�
f� =2 for the number of f

electrons per site. The third term is the antiferromagnetic
on-site Kondo coupling, with JK�0, between localized f
spins, Si=1, and conduction electrons �i=1/2 spins. The
spin operators �i can be written in terms of the fermionic
operators in a standard way: �i

+=ci↑
+ ci↓, �i

−=ci↓
+ ci↑, �i

z

= 1
2 �ni↑

c −ni↓
c �. The last term in Eq. �3� is a ferromagnetic in-

tersite interaction, JH�0, between localized f magnetic
moments.34

Using the fermionic representation for both f and conduc-
tion electron spin, we can rewrite the Hamiltonian �3� in
terms of f and c electronic operators. As the expression of
the Hamiltonian in terms of fermionic operators is rather
lengthy, we show here in detail just the most relevant term,
the transverse part of the Kondo coupling 1

2JK��i
+Si

−+�i
−Si

+�,
which reads, when expressed in the fermionic representation,

1
2JK��i

+Si
− + �i

−Si
+� = 1

2JK�ci↑
+ ci↓�f i1↑

+ f i1↑f i2↓
+ f i2↑ + f i1↓

+ f i1↑f i2↑
+ f i2↑

+ f i1↓
+ f i1↓f i2↓

+ f i2↑ + f i1↓
+ f i1↑f i2↓

+ f i2↓�

+ ci↓
+ ci↑�f i1↓

+ f i1↓f i2↑
+ f i2↓ + f i1↑

+ f i1↓f i2↓
+ f i2↓

+ f i1↑
+ f i1↑f i2↑

+ f i2↓ + f i1↑
+ f i1↓f i2↑

+ f i2↑�� . �4�

Now we define the relevant bosonic fields to describe the

Kondo effect: we introduce the operator 	̂i�=��	̂i�
�

=��ci�
+ f i�

� which couples electrons and auxiliary fermions at
the same site. Using this definition, we rewrite Eq. �4� as

1
2JK��i

+Si
− + �i

−Si
+� = 1

2JK�− 	i↑
2 	i↓

*2n1 − 	i↑
1 	i↓

*1n2 − 	i↓
2 	i↑

*2n1

− 	i↓
1 	i↑

*1n2� = − 1
2JK�

��

	i�
� 	i�̄

*�n�̄. �5�

Moreover, in order to describe the magnetic properties of
the system, we introduce the operators of magnetization for
both f and c subsystems: Mi=Si

z= 1
2 �ni↑

f −ni↓
f � and mi=�i

z

= 1
2 �ni↑

c −ni↓
c �, respectively.

We restrict our consideration to self-consistent analysis
�equivalent to slave boson mean-field description�, and
evaluate all physical quantities in terms of these bosonic
fields. We then introduce four real order parameters 	�

= 		̂i��, M = 	Mi�, and m= 	mi�, where 	¯� denotes the ther-
mal average. The nonzero values of 	M� and 	m� describe the
magnetic phase with nonzero total magnetization, while a
nonzero 	� describes the Kondo effect and the formation of
the heavy fermion state. The limits of this approach are dis-
cussed at the end of this subsection.

Within this mean field �MF� approximation, and using the
fact that the total number of f electrons in each sublevel is
n�=1, the Hamiltonian �3� is expressed in terms of the four
order parameters 		��, 	M�, and 	m� as

H = �
k�


k�ck�
+ ck� + �

i��

E0�ni�� − 1
2JK�

i��

�		�̄�	i�
� + H.c.�

+ 2JKN�
�

		�̄�		�� − JKN	m�	M� − 1
2JHNz	M�2, �6�

where


k� = 
k + ��, E0� = E0 + ��,

UNDERSCREENED KONDO LATTICE MODEL APPLIED TO… PHYSICAL REVIEW B 76, 125101 �2007�

125101-3



�� = JK�	M�, � = ± 1/2,

�� = JK�	m� − 1
2JK		��		�̄� + JHz�	M� , �7�

z being the number of nearest neighbors. In the presence of
nonzero magnetization the bands for up and down spins in
both f and c subsystems are shifted from each other: param-
eters �� and �� define the energy shift for itinerant bands
and localized f levels, respectively. The shifts for f and c
bands are in opposite directions because of the antiferromag-
netic Kondo coupling between them.

For each direction of spin, the diagonalization of the
Hamiltonian �6� yields one nonhybridized f state with energy
E0� and two hybridized bands with the quasiparticle energy
dispersion given by

E±
��k� =

1

2
�E0� + 
k� ± 
�E0� − 
k��2 + 8��̄

2� , �8�

where ��̄=− 1
2JK		�̄�. The 
 refers to the upper and lower

hybridized bands. The hybridization gap in the energy spec-
trum ��=2
2��̄=
2JK	�̄ is spin dependent and is only
present as long as 	� is nonzero. The schematic plot of the
band structure is presented in Fig. 1.

The energy spectra E±
��k� depend on a set of external

parameters such as the Kondo coupling, JK, and the ex-
change interaction, JH, the conduction-band filling, nc, the
temperature T, and a set of internal parameters, � and E0,
which should be calculated self-consistently.

The present approach is equivalent to other MF theories
developed for the S=1/2 KL model, such as saddle-point
approximation in the path-integral calculation, performed by
Coleman and Andrei,35 or large-N, slave boson saddle-point
approximation by Burdin et al.35 All these approximate
methods require some caution. Particularly, MF approxima-
tion neglects magnetic fluctuations, and the system may pos-
sess spurious charge fluctuations such that the exact con-
straint f↑

†f↑+ f↓
†f↓=2 is actually satisfied only on average.

The validity of MF and slave boson approaches for KL
model with localized spin S=1/2 has been extensively dis-
cussed in Refs. 5 and 36. It has been shown that the MF
procedure becomes exact when the original model is ex-
tended to N→� different flavors of localized electrons. Still,
it was found in the same paper that the MF procedure cap-
tures the correct low-temperature physics even for the actual
case of N=2 �S=1/2�. By the same reasons, the MF approxi-
mation should work in our case where N=3 �S=1�.

Below we will study the model �6� by employing equa-
tions of motion for the Green’s function for localized and
itinerant spins. All propagators will be written in the fermi-
onic representation.

C. Green’s functions

We introduce the following notation for the retarded
Green’s functions: F��

� = 		f�� ; f��
† �� and F��

� = 		f�� ; f��
† �� for

localized f electrons, Gcc
� = 		ck� ;ck�

† �� for itinerant c elec-
trons, and Gc�

� = 		c� ; f��
† �� and G�c

� = 		f�� ;c�
†�� for the

“mixed” cf states. As it is easier to solve the self-consistent
system of equations in the momentum space, we evaluated
all Green’s functions in k representation. The equations of
motion for these four Green’s functions are given by

�� − E0��F��
� �k� = 1 + ��̄Gc�

� �k� ,

�� − E0��F��
� �k� = ��̄Gc�

� �k� ,

�� − 
k��Gc�
� �k� = ��̄�F��

� �k� + F��
� �k�� ,

�� − 
k��Gcc
� �k� = 1 + ��̄�G�c

� �k� + G�c
� �k�� . �9�

From equations of motion �Eqs. �9��, by straightforward but
nevertheless tedious algebra �which we report in the Appen-
dix� we obtain the following expressions for the Green’s
functions:

F��
� �k� =

1

2�� − E0��
−

1

2W��k��
k� − E+
��k�

� − E+
��k�

−

k� − E−

��k�
� − E−

��k� � ,

F��
� �k� = −

1

2�� − E0��
−

1

2W��k��
k� − E+
��k�

� − E+
��k�

−

k� − E−

��k�
� − E−

��k� � ,

Gc�
� �k� =

��̄

W��k�� 1

� − E+
��k�

−
1

� − E−
��k�� ,

Gcc
� �k� = −

1

W��k��E0� − E+
��k�

� − E+
��k�

−
E0� − E−

��k�
� − E−

��k� � , �10�

where E±
��k� are given by Eq. �8� and

FIG. 1. Schematic plot of the band structure: for each direction
of spin there are two hybridized E+

� and E−
��k� bands �thick solid

lines� and one nonhybridized f level E0� �dashed line�. The left
panel corresponds to down spins and the right one to up spins. The
thin dotted line corresponds to the Fermi level.
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W��k� 
 E+
��k� − E−

��k� = 
�E0� − 
k��2 + 8��̄
2 . �11�

The Green’s functions given by Eqs. �10� will be evaluated
self-consistently in the next subsection.

D. Self-consistent equations

We next construct a close self-consistent scheme to evalu-
ate the bosonic fields 	↑, 	↓, M, and m together with the
chemical potential � and the Lagrange multiplier E0. This
can be done by imposing �i� constraints on the total number
of f electrons, nf =2, and c electrons, nc, correspondingly, �ii�
the relation between the Fermi surface volume and the num-
ber of particles, �iii� the relation between the total magneti-
zation and the number of electrons, and �iv� self-consistent
equations for 	↑ and 	↓.

The numbers nf and nc are expressed via the integrals of
the imaginary parts of the corresponding Green’s functions
as follows:

nf
� = �

Emin

�

d��
k�

�− 1
� Im F��

� �k�� ,

nc
� = �

Emin

�

d��
k

�− 1
� Im Gcc

� �k�� , �12�

where the summation is over all k points of the Brillouin
zone and the orbital indices �=1,2. As the k dependence in
Eqs. �8� and �12� comes only through the bare conduction-
band energies 
k�, we can substitute the summation in the k
space by the integration over 
�. The integration is over the
interval �−D+�� ,D+��� where the density of states �0

= 1
2D is a constant.
We first consider the case T=0 when the calculations can

be done analytically. Let us first evaluate the number of f
electrons. For each polarization of spin, f electrons can oc-
cupy one localized level E0� and a fraction of the two hy-
bridized bands E±

��k�. The expression for spin-up nf
↑ can be

then written as

nf
↑ = 1 +

1

2D
�

−D+�↑

D+�↑ 
↑ − E−
↑�
↑�

W↑�
↑�
d
↑

−
1

2D
�

−D+�↑

�↑+�↑ 
↑ − E+
↑�
↑�

W↑�
↑�
d
↑ =

7

4
+

�↑
4D

+
1

4D
�

�↑+�↑

D+�↑ 
↑ − E0↑

W↑�
↑�
d
↑. �13�

All parameters in Eq. �13� were defined in Eqs. �7� and �11�.
We have also used the following relations:


↑ − E−
↑�
↑� 
 1

2„
↑ − E0↑ + W↑�
↑�… ,


↑ − E+
↑�
↑� 
 1

2„
↑ − E0↑ − W↑�
↑�… . �14�

Taking into account that �a
b xdx


x2+c
= �
x2+c�a

b, we obtain

nf
↑ = 7

4 +
�↑
4D + 1

4D �
�D + �↑ − E0↑�2 + 8�↓
2

− 
��↑ + �↑ − E0↑�2 + 8�↓
2� . �15�

The quantity �↑, present in Eqs. �13�–�15� as the limit of
integration over �↑, is related to � through the relation
E+

↑��↑�=�.
By the same procedure we obtain the expressions for nf

↓,
nc

↑, and nc
↓ as follows:

nf
↓ = 1

4 +
�↓
4D − 1

4D �
�− D + �↓ − E0↓�2 + 8�↑
2

− 
��↓ + �↓ − E0↓�2 + 8�↑
2� ,

nc
↑ = 3

4 +
�↑
4D − 1

4D �
�D + �↑ − E0↑�2 + 8�↓
2

− 
��↑ + �↑ − E0↑�2 + 8�↓
2� ,

nc
↓ = 1

4 +
�↓
4D − 1

4D �
��↓ + �↓ − E0↓�2 + 8�↑
2

− 
�− D + �↓ − E0↓�2 + 8�↑
2� , �16�

where �↓ is obtained from E−
↓��↓�=�.

Now we can construct the system of self-consistent equa-
tions. The first one is the constraint on the total number of f
electrons,

nf = nf
↑ + nf

↓ = 2. �17�

As we already discussed above, we replaced the local con-
straint nfi=2 at each site i by a softer one, for the average nf.

The second self-consistent equation is obtained by setting
the average number of conduction electrons to be equal to
the filling value nc as follows:

nc = nc
↑ + nc

↓. �18�

The third and fourth self-consistent equations are obtained
from the Luttinger theorem, and from the condition that the
total magnetization Mtot is the sum of average magnetization
of f and c electrons. This gives

nf + nc = 3 +
�↑ + �↓

2D
�19�

and

M + m = 1 +
�↑ − �↓

4D
. �20�

We used here M = 1
2 �nf

↑−nf
↓� and m= 1

2 �nc
↑−nc

↓�, respectively.
We remark that the Fermi surface encloses both conduction
electrons and partially localized f levels.

The last two equations are self-consistent relations for the
bosonic fields 	↑, 	↓. These two fields are related to the
imaginary part of the mixed cf Green’s function as follows:

	� = �
Emin

�

d��
k

�− 1
�„Im Gc1

� �k� + Im Gc2
� �k�…� . �21�

Using Eq. �10� we then obtain the following expressions for
	�:
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	↑ = − 2
�↓
2D��−D+�↑

D+�↑ d
↑
W↑�
↑�

− �
−D+�↑

�↑+�↑ d
↑
W↑�
↑�

� =

−
�↓
D
�

�↑+�↑

D+�↑ d
↑
W↑�
↑�

,

	↓ = −
�↓
D
�

−D+�↓

�↓+�↓ d
↓
W↓�
↓�

. �22�

Using � dx

x2+c

=ln�x+
x2+c� we find

	↑ = −
�↓
D

ln
D + �↑ − E0↑ + W↑�D + �↑�

�↑ + �↑ − E0↑ + W↑��↑ + �↑�
,

	↓ = −
�↑
D

ln
�↓ + �↓ − E0↓ + W↓��↓ + �↓�

− D + �↓ − E0↓ + W↓�− D + �↓�
. �23�

Equations �17�–�20� and �23� constitute the full set of
self-consistent equations for six variables: 	↑, 	↓, M, m, �,
and E0. We solved this equations numerically by iteration
and we explicitly verified that the solution minimizes the
total internal energy Etot

Etot =
7

4
E0↑ +

1

4D
��↑E0↑ + ��↓ + D�E0↓ − D2 + 2D��↑ − �↓�

+
�↑

2 + �↓
2

2
+ �↑�↑ + �↓�↓� −

1

8D
��D + �↑ − E0↑�W↑�D

+ �↑� − ��↑ + �↑ − E0↑�W↑��↑ + �↑� + �D + �↑

+ E0↓�W↓�− D + �↓� + ��↓ + �↓ − E0↓�W↓��↓ + �↓��

+ JK	↓	↑ − JKmM −
1

2
JHzM2 − EFnc − 2E0. �24�

At finite temperature, T, the set of self-consistent equa-
tions remains the same; however, we are no longer able to
obtain an analytical expression for the occupation numbers
and bosonic fields. The relations between nf

�, nc
�, 	�, and the

Green’s functions are now

nf
� = �

−�

+�

d�nF����
k

�− 1
� Im„F11

� �k� + F22
� �k�…� ,

nc
� = �

−�

+�

d�nF����
k

�− 1
� Im Gcc

� �k�� ,

	� = �
−�

+�

d�nF����
k

�− 1
� „Im Gc1

� �k� + Im Gc2
� �k�…� ,

�25�

where nF���= 1
e�−�/T+1

is the Fermi distribution function.
Straightforward calculations lead to

nf
� =

1

2D
�

−D+��

D+��

d
��nF�E0�� − nF„E+
��
��…


� − E+
��
��

W��
��

+ nF„E−
��
��…


� − E−
��
��

W��
�� � ,

nc
� =

1

2D
�

−D+��

D+��

d
��− nF„E+
��
��…

E0� − E+
��
��

W��
��

+ nF„E−
��
��…

E0� − E−
��
��

W��
�� � ,

	� =
1

D
�

−D+��

D+��

d
��nF„E+
��
��… − nF„E−

��
��…�
��̄

W��
��
.

�26�

As for T=0, we now evaluate numerically the integrals in
Eqs. �26� and verified that the numerical solution of self-
consistent equations minimizes the free energy of the system
F. The latter can be calculated through the partition function
Z as follows:

Z = �
k�

�e−�„E−
��k�−�… + e−�„E+

��k�−�…� + �
�

e−��E0�−�� �27�

and

F = − T ln Z . �28�

In the following section, we present the detailed discus-
sion of the results obtained with this self-consistent scheme
for the UKL model.

III. RESULTS

A. T=0

We first discuss the properties of the model at T=0. In
order to establish the region of coexistence of Kondo effect
and ferromagnetic ordering �Kondo-ferromagnetism coexist-
ence� in the phase space set by the parameters of the model,
we study the behavior of 	� and the magnetization M and m.
These order parameters are correlated and it is useful to dis-
cuss them together. In Fig. 2 we present the variation of the
Kondo correlation 	↑ as a function of the Kondo coupling,
JK, and the band filling, nc, for a fixed value of JH=−0.01. In
Fig. 3 we present the dependence of the total magnetization
�M +m� on the same parameters. In these and all other fig-
ures all energies and temperatures are measured in units of
the half-bandwidth D. The values of 	↓ and 	↑ are close;
therefore, we present just 	↑ in Fig. 2 in order to keep the
figure transparent.

From the analysis of both figures one can verify that for
values of JK smaller than 0.6, the Kondo correlation 	↑ re-
mains equal to zero �Fig. 2� for all values of nc considered.
The total magnetization M +m is large and equal to its maxi-
mum value �Fig. 3�. This phase is a pure magnetic one with
no Kondo effect. When JK increases, for a fixed value of nc,
there exists a critical value of JK above which both 	↑ and
the total magnetization Mtot change abruptly and 	↑ become
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different from zero. The region of the parameters JK and nc
where 	↑ and the total magnetization Mtot are finite is the
region of coexistence between Kondo effect and ferromag-
netic order. As the magnetization of localized and conduction
electrons, M and m, have opposite signs due to antiferromag-
netic Kondo coupling between them, the maximum value of
the total magnetization is always less than 1. The critical
value of JK decreases with increasing nc, as it is expected
from the “exhaustion principle.”3,35,37

One can see in Fig. 2 that 	↑ decreases smoothly as a
function of nc, while it undergoes a sharp transition as a
function of JK. We calculated the variation of 	 with nc and
obtained an approximate square root behavior 	��nc

−nc,cr�r, with r�1/2, similar to the KL case with spin
1/2.3,35 Indeed, in Fig. 4 we present a plot of 	↑ as a function
of nc for JK=0.9 and JH=−0.01. The solid line in this figure
is the best fit to the numerical results and yields a power law
behavior with an exponent very near 1 /2.

We next study the effect of the exchange interaction be-
tween localized spins, JH, on the region of the Kondo-
ferromagnetism coexistence. In Fig. 5 we present the phase
diagram in the �JK ,JH� plane for a fixed value of nc. The

region of coexistence extends up to JK=1.2 and down to
JK=0.5 while JH can vary between −0.001 and −0.06. The
values of JH in Fig. 5 are rather small; however, we recall
that the real strength of the “local field” applied on an indi-
vidual spin by its neighbors is zJH, where z=6 is the number
of nearest neighbors in a simple cubic lattice.

Summarizing, at T=0 there exists a region of coexistence
between the Kondo effect and the ferromagnetic order in a
wide range of parameters JK, JH, and nc, including the case
of the half-filled conduction band, nc=1. Also, a discontinu-
ous transition to pure ferromagnetic state is found by de-
creasing JK while a continuous change is obtained varying
the band filling, nc.

B. Finite temperatures

We now present the results obtained at finite temperatures.
First we show in Fig. 6 the temperature variation of the
Kondo correlations 	↑ and 	↓, and also the f and c magneti-
zation M and m. The parameters used in the calculation of
Fig. 6 are JK=0.8, JH=−0.01, and nc=0.8. The two magne-

FIG. 2. Plot of the parameter 	↑ as a function of JK and nc for
JH=−0.01. There is a discontinuous transition as a function of JK

and a behavior in nc
1/2 as explained in the text.

FIG. 3. Plot of the total magnetization �M +m� as a function of
JK and nc for JH=−0.01. There is a discontinuous transition as a
function of JK that corresponds to the transition to 	↑=0 in Fig. 2.

FIG. 4. Plot of the parameter 	↑ as a function of nc, for JK

=0.9 and JH=−0.01. The circles correspond to the numerical calcu-
lation and the line to a fit with a square root law. 	↑ goes to zero for
nc�0.42.

FIG. 5. The dark region indicates the values of the parameters
JK and JH where there is coexistence between the magnetic ordered
state and the strongly correlated �Kondo� state. The intensity of the
gray tone is proportional to the value of 	↑.
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tization curves clearly show the existence of a continuous
phase transition at the Curie, TC, from a ferromagnetic to a
paramagnetic state. At low temperatures we observe the co-
existence of a magnetic order and Kondo behavior. The
strength of the Kondo effect is the highest at TC. As a matter
of fact, when the magnetization decreases, 	� grows and
passes through a maximum at the TC; its value at that tem-
perature is about 20% bigger than at T=0. Due to the break-
down of the spin symmetry, 	↓ and 	↑ are slightly different
in the magnetic region but they coincide at TC, when the spin
symmetry is restored. For T�TC the system exhibits only
Kondo behavior �	��0, M =0, and m=0�. Finally, we define
the temperature at which 	� vanishes and f and c electrons
become decoupled, as the Kondo temperature, TK. The fact
that 	 vanishes at a particular temperature, instead of slowly
decaying to zero, is a well-known artifact of the mean-field
approximation. Actually, TK is a crossover temperature, as-
sociated with the onset of local Kondo screening.

C. Density of states

We also analyze the f and c electron densities of states
�DOSs� at various temperatures. The f and c electron DOSs
are calculated numerically from the imaginary part of the f-f
and c-c Green’s functions.

� f��� = �
k�
�−

1

�
Im F��

� � , �29�

�c��� = �
k
�−

1

�
Im Gcc

� � . �30�

Figure 7 shows the f and c DOSs at T=0. The parameters
are the same as in Fig. 6. For these parameters, both the
magnetic order and the Kondo effect are present in the
ground state. We see from the figure that the bands for the
two spin polarizations are shifted, as expected for a magneti-
cally ordered state. The hybridization gap due to Kondo ef-

fect is present for both directions of the spin, but they do not
coincide neither in the borders nor in the width. The nonhy-
bridized f level lies inside this gap. This localized f level is
occupied for spin-up states and it is empty for spin-down
states. We caution that the finite width for the two localized f
levels in the figure is due to the fact that we added a very
small but finite imaginary part to the energies. The inset of
Fig. 7 shows the temperature variations of the hybridization
gaps for two spin directions. The two gaps are nearly equal
because they are proportional to 	�, and the difference be-
tween 	↑ and 	↓ is rather small.

In Fig. 8 we plot the density of states at four different
temperatures: �a� T=0 and �b� a low-temperature phase �T
�TC� both exhibiting coexistence of magnetic order and
Kondo behavior, �c� pure Kondo phase at TC�T�TK, and
�d� uncorrelated high-temperature phase at T�TK. In the co-
existence region at T�TC, the Fermi level remains inside the
hybridization gap for the spin-up band, and inside the con-
duction band, E−

↓�k�, for the spin-down band. That implies a
semimetallic behavior. When T�TC, the up- and down-spin
bands coincide, and the Fermi level lies inside the gap and
coincides with the energy of the f level, E0�. That implies an
insulating behavior. Finally, when T�TK ,	� vanishes and
there is no more coupling between f and c electrons: the
hybridization gap closes and the system becomes metallic.

D. Effective mass

From the quasiparticle spectrum �8� one can estimate the
mass enhancement38

FIG. 6. Plot of 	↑, 	↓, M, and m as a function of temperature for
JK=0.8, JH=−0.01, and nc=0.8. At zero and low temperatures we
observe the coexistence of magnetic order and heavy fermion be-
havior; the Kondo effect is maximal when magnetization vanishes. FIG. 7. Schematic plot of the density of states for the magnetic

case at T=0. The parameters are JK=0.8, JH=−0.01, and nc=0.8.
The continuous line corresponds to the f density of states, the
dashed line to the conduction density of states, and the dotted ver-
tical line indicates the position of the Fermi energy. The peak of the
localized f level lies inside the gap and here the up localized f level
is occupied and the down localized f level is empty. The inset
shows the variation of the hybridization gap for the two spin direc-
tions as a function of the temperature.
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m�
*

m
= 1 +

2��̄
2

�E0� − � − ���2 . �31�

We plot the temperature variation of the mass enhancement
in Fig. 9. Two peaks are clearly seen: one corresponds to the
Curie temperature, and the second �at a higher temperature�
to the onset of Kondo effect. In the region of coexistence, the
effective mass increases as a function of temperature track-
ing the position of the Fermi level inside the E−

�̄�k� band. In
the pure Kondo phase at TC�T�TK, the mass enhancement
becomes quite large. Such a large enhancement is the conse-
quence of the fact that the denominator in Eq. �31� goes to
zero in the pure Kondo regime, and the effective mass for-
mally diverges. A finite width of the f level eliminates the
divergence, but still yields a very large mass. Although this
estimate of the mass probably overestimates the strength of
the enhancement, it still provides a qualitatively good expla-
nation of the heavy fermion behavior.

E. Specific heat

The thermodynamic properties of the UKL model can be
easily calculated from the expression for the free energy �Eq.

�28��. Here, we present only results for the specific heat
which could be compared with available experimental data.
We use the usual definition of the entropy of the system

S�T� = −
�F

�T
= −

�

�T
�− T ln Z� �32�

and the specific heat can be calculated as

CV�T� = T
�S

�T
=

1

T2�
k,�
� „E−

��k� − �…2e�„E−
��k�−�…

�1 + e�„E−
��k�−�…�2

+
„E+

��k� − �…2e�„E+
��k�−�…

�1 + e�„E+
��k�−�…�2 �

+
1

T2�
�

�E0� − ��2e��E0�−��

�1 + e��E0�−���2 . �33�

In Fig. 10 we present numerical results for the specific
heat as a function of temperature. As the specific heat is very
sensitive to the choice of the parameters, we plot it for two
different sets: �a� JK=0.8, JH=−0.01, nc=0.8 �circles�, and
�b� for JK=0.7, JH=−0.001, nc=0.8 �triangles�. For the latter
choice of parameters, the specific heat temperature depen-
dence is more pronounced. First, at low temperatures, the
specific heat increases with increasing T, following a power
law with an exponent close to 2. Second, it goes through a
peak, which can be associated with the temperature when
both 	↑ and 	↓ become equal and to the Curie temperature.
At higher temperature, in the nonmagnetic region, the spe-
cific heat is very high because the Fermi level coincides with
the localized f level, as it was discussed for the effective
mass. Those values are so high that they mask a second peak,
expected for the Kondo temperature. Therefore, when the
gap in the density of states closes at the Kondo temperature,
only a change in the slope is observed. In case �a� both peaks
are “rounded up” because of the higher values of the order
parameters compared to case �b�.

F. Ferromagnetic Doniach diagram

We present here the ferromagnetic Doniach diagram for
the UKL model. In Fig. 11, we plot the Curie temperature,
TC, and the Kondo temperature, TK, versus JK for fixed val-

FIG. 8. Plot of the up and down f densities of states for T=0 and
three finite temperatures.

FIG. 9. Plot of the effective mass versus temperature with the
same parameters as in Fig. 6. The triangles correspond to up spin
and the circles to down spin.

FIG. 10. Plot of the electronic specific heat for the parameters
�a� JK=0.8, JH=−0.01, and nc=0.8 �circles� and �b� JK=0.7, JH=
−0.001, and nc=0.8 �triangles�.

UNDERSCREENED KONDO LATTICE MODEL APPLIED TO… PHYSICAL REVIEW B 76, 125101 �2007�

125101-9



ues of JH and nc. It is possible to see that the Kondo tem-
perature TK becomes finite only at the critical value JK

c

�0.65 for JH=−0.01 and nc=0.8, then rapidly increases for
larger values of JK. On the other hand, the Curie temperature,
TC, is finite for all studied values of JK. The two curves
TK�JK� and TC�JK� cross slightly above JK

c and for larger
values of JK the Kondo temperature, TK, is always larger than
TC. Indeed, the ferromagnetic order persists for all values of
the ratio JK /JH, while the Kondo-ferromagnetism coexist-
ence exists only for sufficiently large values of this ratio.

In the purely magnetic region the Curie temperature can
be easily evaluated, and it is equal to TC=

z�JH�
4 . Also, the

Kondo temperature exhibits an almost linear behavior as a
function of JK. This is in contrast with the Kondo impurity
case, where an exponential dependence on JK is observed,39

and also with the S=1/2 KL model where both exponential
and nonexponential behaviors can be obtained.3

It is worth to note that the present results indicate that the
Curie temperature increases as a function of JK, and this is
also in the opposite direction of the standard Doniach’s dia-
gram. This can be understood because in the Doniach’s dia-
gram �localized spins S=1/2�, the reduction of the Néel tem-
perature at large JK is the consequence of the competition
between magnetic order and Kondo effect. The ordering tem-
perature goes to zero at high enough values of JK. Here, there
is no such competition, and the Kondo interaction actually
favors a ferromagnetic ordering through the RKKY interac-
tion �even if the localized magnetic moments are partially
screened by the conduction electrons�. That explains the aug-
mentation of the Curie temperature. Then, if in the standard
KL model the short-range antiferromagnetic correlations be-
tween neighboring f moments reinforce the Kondo effect,5,6

in the UKL model it is the Kondo effect that reinforces the
ferromagnetic interaction.

The diagram presented in Fig. 11 can be called the “fer-
romagnetic Doniach diagram” for the UKL model and it is
qualitatively very different from the well-known Doniach
diagram derived for the Kondo lattice with S=1/2, where the
ordering temperature tends to zero at a finite JK and the mag-
netic order and the Kondo effect compete rather than coexist.

IV. CONCLUSIONS

In conclusion, in this work we introduced and studied the
underscreened Kondo lattice model with localized spins S
=1. In the framework of this model, we analyzed the coex-
istence of ferromagnetism and Kondo behavior. To this end,
we derived and solved a set of self-consistent equations for
the relevant bosonic fields. We obtained a region in the space
of parameters, where the order parameters, 	�, M, and m, are
simultaneously different from zero. This coexistence persists
up to finite temperatures, then the magnetic order disappears
first, at the temperature TC. At this temperature 	� is still
different from zero. In fact, it is at its maximum value, indi-
cating that the Kondo effect is the strongest. This is, in fact,
in agreement with experiments for uranium compounds in
which the Kondo behavior is observed above the Curie tem-
perature. The phase transition at TC is, therefore, a transition
from the ferromagnetic Kondo phase at low T to the non-
magnetic Kondo phase at higher T. Another transition can be
obtained at T=0 by varying the Kondo coupling parameter
JK. This transition is discontinuous and leads to a non-Kondo
magnetically ordered state �see Fig. 2�.

We emphasize that the coexistence of ferromagnetism and
Kondo effect is due to the presence of two f levels: one
nonhybridized and one hybridized levels �see Fig. 7�. The
presence of the nonhybridized f level is at the origin of the
partial screening of the localized spins. Indeed, this is the
key difference between our UKL model and S=1/2 Kondo
lattice model. In the latter, there is only one f level and it is
always hybridized with the conduction band in the Kondo
regime. The result is a competition between magnetism and
Kondo effect which is reflected in Doniach diagram.

Our UKL model can explain the behavior of some ura-
nium compounds such as the previously described UTe,
UCu0.9Sb2, and UCo0.5Sb2 compounds, which order ferro-
magnetically at a large Curie temperature, TC, and present a
Kondo behavior. Such a Kondo-ferromagnetism coexistence
has been recently observed in other uranium compounds. We
would like to mention UNiSi2 with a Curie temperature TC
=95 K,40–42 UCo0.6Ni0.4Si2 with TC=62 K,42,43 and
URu2−xRexSi2 compounds where TC increases rapidly with
concentration x.44–46 In these compounds TC increases rap-
idly with x and there are clear evidences of the coexistence
between the ferromagnetic order and a non-Fermi-liquid
behavior.45 A more extended analysis of the UKL model can,
possibly, describe also this phenomenum. Our UKL model
can finally be applied to the case of the recently observed
neptunium compound NpNiSi2, which becomes ferromag-
netic at TC=51.5 K and presents Kondo behavior.47 In the
neptunium based compounds, 5f electrons are relatively well
localized and the magnetic moment of Np can be described
by a localized spin larger than S=1/2, again corresponding
to underscreened case.

In conclusion, the UKL is a very good tool to describe
some ferromagnetic-Kondo compounds and can be con-
sidered as an improvement with respect to the regular
Kondo lattice model to account for some actinide 5f com-
pounds.

FIG. 11. The ferromagnetic Doniach diagram: Plot of the Curie
temperature TC �the triangles are analytical values, and the circles
numerical ones� and the Kondo temperature TK �squares� versus JK

with JH=−0.01 and nc=0.8.
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APPENDIX

In this appendix we present the derivation of the Green’s
functions �Eqs. �10�� using the equations of motion �Eqs.
�9��.

We first derive the Green’s functions for the f electrons as
follows:

�� − E0��F��
� �k� = 1 + ��̄

��̄„F��
� �k� + F��

� �k�…

� − 
k�

,

�� − E0��F��
� �k� = ��̄

��̄„F��
� �k� + F��

� �k�…

� − 
k�

, �A1�

where we call A�̄=
��̄

2

�−
k�
. Then, Eq. �A1� becomes

�� − E0� − A�̄�F��
� �k� = 1 + A�̄F��

� �k� ,

�� − E0��F��
� �k� = A�̄„F��

� �k� + F��
� �k�… . �A2�

Solving this set of equations, we obtain

F��
� �k� =

� − E0� − A�̄

�� − E0���� − E0� − 2A�̄�
,

F��
� �k� = F��

� �k� −
1

� − E0�

. �A3�

The poles of F��
� �k� determine the spectrum E±

��k�, given by
Eqs. �8� in the main text. In terms of E±

��k�, the Green’s
functions of f electrons are

F��
� �k� =

� − E0� − A�̄

�� − E0���� − E0� − 2A�̄�
=

1

2�� − E0��

−
1

2W��k��
k� − E+
��k�

� − E+
��k�

−

k� − E−

��k�
� − E−

��k� � .

�A4�

and

F��
� �k� = F��

� �k� −
1

� − E0�

= −
1

2�� − E0��

−
1

2W��k��
k� − E+
��k�

� − E+
��k�

−

k� − E−

��k�
� − E−

��k� � ,

�A5�

where W��k�
E+
��k�−E−

��k�.
We next calculate Gc�

� �k�. Using the corresponding equa-
tion of motion

�� − 
k��Gc�
� �k� = ��̄„F��

� �k� + F��
� �k�… , �A6�

we obtain

Gc�
� �k� =

��̄

�� − 
k���� − E0� − 2A�̄�
=

��̄

W��k�� 1

� − E+
��k�

−
1

� − E−
��k�� . �A7�

Finally, the Green’s functions for itinerant electrons
Gcc

� �k� are calculated in the same way, starting with

�� − 
k��Gcc
� �k� = ��̄„G�c

� �k� + G�c
� �k�… + 1,

�� − E0��G�c
� �k� = ��̄Gcc

� �k� , �A8�

and solving Eqs. �A8�, we obtain

Gcc
� �k� = −

1

W��k��E0� − E+
��k�

� − E+
��k�

−
E0� − E−

��k�
� − E−

��k� � .

�A9�

*Passed away on November 15, 2006 during the final stages of this
work.
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