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Programa de Pós-Graduação em Matemática
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Resumo

Esta dissertação de mestrado possui dois temas centrais: a simulação de correlações

geradas por medições em estados quânticos emaranhados através de modelos de variáveis

ocultas locais e a revelação de não-localidade escondida. São apresentados e detalhados

o modelo local de Werner e a não-localidade escondida de alguns estados de Werner com

dimensão d ≥ 5, o modelo local de Gisin-Degorre para um estado de Werner de dimensão

d = 2 e o modelo de Hirsch et al. para misturas do singleto com rúıdo, todos estes modelos

para medições projetivas. Finalmente, é introduzido um modelo local para POVMs para

um estado constrúıdo a partir do singleto com rúıdo, que ainda assim viola a desigualdade

CHSH após a aplicação de filtros locais, apresentando então a chamada não-localidade

escondida genúına.



Abstract

This Master’s thesis has two central subjects: the simulation of correlations generated

by local measurements on entangled quantum states by local hidden-variables models and

the revelation of hidden nonlocality. We present and detail the Werner’s local model and

the hidden nonlocality of some Werner states of dimension d ≥ 5, the Gisin-Degorre’s

local model for a Werner state of dimension d = 2 and the local model of Hirsch et al. for

mixtures of the singlet state and noise, all of them for projective measurements. Finally,

we introduce the local model for POVMs of Hirsch et al. for a state constructed upon the

singlet with noise, that still violates the CHSH inequality after local filters are applied,

hence presenting the so-called genuine hidden nonlocality.
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Introduction

A Teoria Quântica é uma teoria intrinsecamente probabiĺıstica, ou seja, ao efetuarmos uma

medição em um sistema quântico, podemos predizer apenas as probabilidades com que

cada posśıvel resultado será obtido, e não o resultado em si. Na situação em que o sistema

quântico é composto por duas partes distintas, podemos efetuar uma medição local em

cada parte, dando origem a uma distribuição de probabilidades conjuntas, referente a

cada um dos resultados obtidos. Em geral, probabilidades conjuntas (oriundas de uma

medição quântica ou não) não são independentes, isto é, não podem ser expressadas como

o produto das probabilidades de cada parte. Entretanto, considerando ainda a existência

de uma informação extra, que chamamos de variáveis ocultas locais, em determinados

casos torna-se posśıvel fatorar localmente tais probabilidades conjuntas. Quando nos

restringimos a correlações geradas por medições sobre estados quânticos, a frase anterior

pode ser reescrita da seguinte forma: alguns estados quânticos admitem um modelo de

variáveis ocultas locais, ou, apenas, um modelo local. Estes são ditos estados locais. A

construção de um modelo local é uma tarefa dura, e mesmo 25 anos após o primeiro deles,

criado por Reinhard Werner [1], o número de estados para os quais foram constrúıdos

modelos locais ainda é pequeno.

A caracteŕıstica comum às correlações que não admitem uma fatoração local nem

mesmo quando consideramos variáveis ocultas locais é chamada de não-localidade. Outra

maneira de caracterizar tal propriedade é através das chamadas desigualdades de Bell [2].

Uma desigualdade de Bell é uma relação que deve ser satisfeita por todas as correlações

locais, em particular, por todas aquelas geradas por medições sobre estados locais. En-

quanto que a ausência de um modelo local para um determinado estado não implica sua

não-localidade, a violação de uma única desigualdade de Bell é suficiente para atestá-la.

Estados quânticos separáveis são naturalmente locais. Talvez tão interessante quanto a

utilização de variáveis ocultas para simular correlações de estados emaranhados seja o fato

de que alguns estados locais violam uma desigualdade de Bell quando consideramos uma

sequência de medições [3]. Ou seja, mesmo após construirmos um modelo local para um

determinado estado, talvez existam medições locais tais que algum dos posśıveis estados

resultantes viola uma desigualdade de Bell. Tais medições intermediárias são chamadas de

filtros, e um estado que permite tal possibilidade é dito possuir não-localidade escondida.
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A ação dos filtros seria então a de revelar a não-localidade do estado.

O principal objetivo deste texto é apresentar alguns exemplos de modelos locais e alguns

casos de não-localidade escondida. Nos Caṕıtulos 1 e 2, são apresentados definições e

resultados básicos dos tópicos que circundam o tema, assim como um breve apanhado geral

de Teoria Quântica. Este serve como ponto de partida para a discussão do experimento

EPR [4], que motivou o surgimento das desigualdades de Bell.

No Caṕıtulo 3, apresentamos a desigualdade CHSH [5], que será a utilizada ao longo do

texto, assim como o Critério de Horodecki, através do qual é posśıvel encontrar a maior

violação da CHSH que um determinado estado atinge [6]. Também definimos formalmente

o papel desempenhado pelas variáveis ocultas locais [7] e a construção de modelos locais.

O Caṕıtulo 4 é voltado ao modelo local para medições projetivas de Werner [1], o

primeiro modelo local surgido, influenciando praticamente todos os outros subsequentes,

sendo um dos artigos mais importantes da área2. Motivamos a consideração dos estados

a serem utilizados para a sua construção e apresentamos as variáveis ocultas e funções de

resposta que serão utilizadas em cada sistema.

No Caṕıtulo 5 apresentamos o trabalho de Sandu Popescu [3], mostrando que alguns

dos estados para os quais constrúımos o modelo local de Werner apresenta não-localidade

escondida: a aplicação de uma escolha simples de filtros locais é capaz de levar a um

estado que viola maximamente a desigualdade CHSH, quando a dimensão local é d ≥ 5.

O Caṕıtulo 6 traz o modelo local de Gisin-Degorre [8, 9], capaz de simular o experi-

mento EPR caso permitirmos comunicação clássica entre as partes. Porém, mesmo sem

comunicação ou outro recurso adicional, veremos que o modelo constrúıdo simula um

estado de Werner de dimensão local d = 2, para medições projetivas.

Por fim, o Caṕıtulo 7 é baseado no trabalho de Flavien Hirsch, Marco Túlio Quintino,

Joseph Bowles e Nicolas Brunner [10]. Começamos mostrando a existência de não-

localidade escondida em um estado de dimensão d = 2 e então apresentamos um exemplo

da chamada não-localidade escondida genúına: é apresentado um estado que possui um

modelo local para POVMs, que não obstante viola a desigualdade CHSH após a aplicação

de filtros locais.

2É nele que aparece pela primeira vez a definição de emaranhamento de estados mistos, por exemplo,
propriedade até então definida apenas para estados puros.
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Chapter 1

Preliminaries

In this chapter we present the standard notation while dealing with Quantum Theory,

introduced by Paul Dirac, and a miscellaneous list of basic results and definitions that

will be used throughout the thesis.

1.1 Dirac’s notation

Dirac’s notation is a mnemonic notation that is very useful in the handling with Quantum

Theory. The elements of a vector space V are denoted by |v〉 and the elements of the dual

V ∗ are denoted by 〈v|. The symbols |·〉 and 〈·| already defines the object; the letters only

serve as labels. Consequently, the canonical inner product of vectors u and v is simply

written as 〈u| |v〉 ≡ 〈u| v〉.
Along the thesis, sometimes we will want to speak in the adjoint operator T † of a

given operator T (the proper definitions will be given in the next section). While in the

traditional notation we write

〈v, Tu〉 = 〈T †v, u〉,

in Dirac’s notation both sides of the above expression are written the same,

〈v| (T |u〉) = (〈v|T ) |u〉 = 〈v|T |u〉 .

This happens because the dual element of T † |v〉 is exactly 〈v|T . Sometimes, to empha-

sizing this step, we will make use of the abuse of notation

〈v|Tu〉 := 〈v|T |u〉 =:
〈
T †v
∣∣u〉.
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1.2 Basic definitions and results

1.2.1 Linear algebra

Definition 1.1. A Hilbert space is a pair (V, 〈·, ·〉), where V is a vector space and 〈·, ·〉 is

an inner product that induces a distance function for which V is complete, that is, every

Cauchy sequence is convergent.

Except if mentioned otherwise, the inner product that we will be considering is

〈|v〉 , |w〉〉 = 〈v| |w〉.

Definition 1.2. Let V,W be vector spaces over the same field. The tensor product of

them, denoted by V ⊗W , is the space generated by vectors of the form |v〉 ⊗ |w〉, where

|v〉 ∈ V and |w〉 ∈ W , which obey to the following relations:

1. (λ |v〉)⊗ |w〉 = |v〉 ⊗ (λ |w〉) = λ(|v〉 ⊗ |w〉);

2. (|v〉+ |v′〉)⊗ |w〉 = |v〉 ⊗ |w〉+ |v′〉 ⊗ |w〉;

3. |v〉 ⊗ (|w〉+ |w′〉) = |v〉 ⊗ |w〉+ |v〉 ⊗ |w′〉;

4. If (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) are Hilbert spaces, then (V ⊗W, 〈·, ·〉) is a Hilbert space,

where

〈(|v〉 ⊗ |w〉), (|v′〉 ⊗ |w′〉)〉V⊗W = 〈v| |v′〉 〈w| |w′〉,

with |v′〉 ∈ V, |w′〉 ∈ W .

Notation 1. We will use the simplified notation |v〉⊗ |w〉 ≡ |v〉 |w〉 ≡ |vw〉 for vectors of

a tensor product of two spaces.

Definition 1.3. Let A ∈ L(H) = {T : H → H; T is linear}, where H is a finite

dimensional Hilbert space, and [A] = (aij) be a matrix representation of A. The trace of

A is the sum of the elements of the main diagonal of [A], that is,

tr(A) =
∑
i

aii.

Proposition 1.2.1. Given a d-dimensional Hilbert space H, let A,B ∈ L(H) and V :

H⊗H → H⊗H be the “flip” linear operator, defined by V (|ab〉) = |ba〉. Then tr(V A⊗
B) = tr(AB).

Proof. Fix an orthonormal base B = {|1〉 , ..., |d〉} for H. Note that we can write the
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matrix representation A = (aij)
d
i,j=1 as

A =
d∑

i,j=1

aij |i〉 〈j|.

Indeed, |i〉 〈j| is the linear operator that vanishes for every vector of B except |j〉, hence all

the entries of its matrix representation are null except for the the one in the j-th column

and i-th line. Similarly for B,

B =
d∑

k,l=1

bkl |k〉 〈l|.

Therefore,

tr(AB) = tr

([
d∑

i,j=1

aij |i〉 〈j|

][
d∑

k,l=1

bkl |k〉 〈l|

])

= tr

(
d∑
i,j,l

aijbjl |i〉 〈l|

)

=
d∑
i,j,l

aijbjl tr (|i〉 〈l|)

=
d∑
i,j

aijbji.

In the same line, the tensor product becomes

A⊗B =
∑
i,j,k,l

aijbkl |ki〉 〈lj|. (1.1)

As for the flip operator, since it can be seen as a permutation over the elements of the

base of H⊗H, we can describe the action of its matrix representation on another matrix

as a simply permutation of the matrix lines. We can express this fact as

V · |ij〉 〈kl| = (V |ij〉) 〈kl| = |ji〉 〈kl| . (1.2)
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Now we are ready to compute tr(V A⊗B). Using Eqs. (1.1) and (1.2), we have

tr(V A⊗B) = tr

(∑
i,j,k,l

aijbklV (|ki〉 〈lj|)

)
=

∑
i,j,k,l

aijbkl tr(|ik〉 〈lj|)

=
∑
i,j

aijbji,

thus equal to tr(AB).

Notation 2. We will denote a n × n diagonal matrix A = (aij) (i.e., a matrix A for

which aij = 0 for all i 6= j) by A = diag(a11, ..., ann).

Proposition 1.2.2. Given a Hilbert space H, an unit vector |ψ〉 ∈ H and a linear operator

A acting on H, we have

tr(A |ψ〉 〈ψ|) = 〈ψ|A |ψ〉 .

Proof. Consider the orthogonal basis {|ei〉} of H, where |e1〉 = |ψ〉, and the matrix rep-

resentation [A] of A in this basis. The first column of [A] is the vector A |ψ〉 = A |e1〉 =∑
i ai |ei〉. Thus

〈ψ|A |ψ〉 = 〈e1|A |e1〉 = 〈e1| (
∑
i

ai |ei〉) = a1 〈e1| |e1〉 = a1.

On the other hand, the matrix representation of the projector |ψ〉 〈ψ| in this basis is

diag(1, 0, ...), so the product A |ψ〉 〈ψ| equals to the matrix which the first column is the

vector A |ψ〉 and the rest of matrix elements equals to zero, resulting that tr(A |ψ〉 〈ψ|) =

a1.

Definition 1.4. An operator T ∈ L(HA ⊗HB) is said to be a product operator if T ∈
L(HA)⊗ L(HB) = {TA ⊗ TB ∈ L(HA ⊗HB);TA ∈ L(HA), TB ∈ L(HB)}.

Proposition 1.2.3. Every non-product operator can be written as a linear combination

of product operators.

Proof. The proposition follows from the fact that if {|ai〉} is a basis for HA and {|bj〉} is a

basis for HB, then {|aibj〉 〈ai′bj′|} = {|ai〉 〈ai′ | ⊗ |bj〉 〈bj′|} is a basis for L(HA ⊗HB).

Since L(H) is also a vector space, the tensor product L(HA)⊗ L(HB) is well defined.

We can define the action of TA ⊗ TB : L(HA ⊗HB)→ L(HA ⊗HB) by

TA ⊗ TB(MA ⊗MB) = (TAMA)⊗ (TBMB)

for product operators and extend to non-product operators by linearity.
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Definition 1.5. Let A ∈ L(H) and [A] the matrix representation of A with respect to the

base B. The adjoint of A is the operator A† ∈ L(H) whose matrix representation with

respect to B is [A] transposed and complex conjugated.

Definition 1.6. Let T ∈ L(H). T is said to be

• Hermitian if T = T †;

• normal if TT † = T †T ;

• positive semi-definite if 〈ψ|T |ψ〉 ≥ 0, ∀ |ψ〉 ∈ H;

• unitary if T † = T−1.

The next two basic results about these classes of operators we will only enounce; one

can find the proofs in [11].

Theorem 1. (i) Any positive semi-definite operator on a vector space is a Hermitian

operator.

(ii) Any Hermitian operator on a vector space is a normal operator.

(iii) Any unitary operator on a vector space is a normal operator.

Theorem 2. [Spectral Decomposition Theorem] An operator on a vector space is normal

if and only if is diagonal with respect to some basis for the space.

Proposition 1.2.4. Let T, P ∈ L(H) such that P = |v〉 〈v| is a projector. Then PT = TP

if and only if |v〉 is an eigenvector of T .

Proof. Suppose that TP = PT . Then

T |v〉 = TP |v〉 = PT |v〉 = λ |v〉 ,

for some λ ∈ C, by definition of P .

Conversely, suppose T |v〉 = λ |v〉 and take |u〉 ∈ H. Consider the base {|vi〉} of H such

that |v〉 = |v1〉. Then |u〉 =
∑

i ai |vi〉, with ai ∈ C, and

TP |u〉 = T (a1 |v〉) = a1T |v〉 = a1λ |v〉 .

On the other hand,

PT |u〉 = P (a1λ |v〉+
∑
i>1

a1T |vi〉) = a1λ |v〉 ,

completing the proof.
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Corollary 1. Let S, T ∈ L(H) such that S is Hermitian and its spectral decomposition

is
∑

i aiPi. If TPi = PiT, ∀i, then T =
∑

i biPi.

1.2.2 Basic Probability Theory

Definition 1.7. Let A,B be random variables. The conditional probability that B = b

given that A = a is defined by

p(B = b|A = a) =
p(A = a,B = b)

p(A = a)
.

When p(A = a) = 0 we make the convention that p(B = b|A = a) = 0.

Definition 1.8. Random variables A,B are said to be independent if p(A = a,B = b) =

p(A = a) p(B = b).

Notation 3. We often denote p(A = a,B = b) by p(a, b), leaving the “A=” and “B=”

implicit.

Theorem 3 (Law of total probability). If A,B are random variables, then

p(b) =
∑
a

p(b|a) p(a),

where the sum is over all values a that A can assume.

Definition 1.9. The expectation or expected value of a random variable A that take values

in R is defined by

E(A) =
∑
a

p(a)a

where the sum is over all values a that A can assume.

Proposition 1.2.5. The expectation has the following properties.

(i) E(A) is linear in A.

(ii) If A,B are independent, then E(AB) = E(A)E(B).

We recommend [12] for further definitions and results.
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Chapter 2

Quantum Theory

This chapter has no intention to be a didactic introduction to Quantum Theory and should

not be the first text about the subject to be readed. Its purpose is to present the minimum

of the mathematical framework related to the quantum operations and phenomena that we

are interested in this text, such as measurements and nonlocality. Therefore, no physical

motivation will be exposed and various of basic and important topics will be completely

ignored (such as time evolution of quantum systems, for example). For this reason, the

postulates of Quantum Theory will be exposed as definitions. On the other hand, some

very specific results will have to appear.

We will start directly making use of the density operator formalism. For an introduction

to Quantum Theory and its formalisms we suggest references [13], [14] and [15].

2.1 States

In Quantum Theory, we postulate that a system is associated to a Hilbert space H.1

Considering the set L(H) of linear operators of H, a state is an element of L(H) that

describes completely the system.

Definition 2.1. A state of a system associated to H is an operator ρ ∈ L(H) which is

positive semi-definite with unit trace.

The subset of L(H) formed by states is denoted by D(H), where the “D” comes from

the expression “density operator”, another term for “quantum state” in this formalism.

D(H) is a convex set, that is, every convex combination of density matrices is also a

density matrix. If the state ρ is a one-dimensional projector (that is, if ρ2 = ρ and Im(ρ)

has dimension 1), then ρ = |ψ〉 〈ψ| for some |ψ〉 ∈ H, thus we can identify the density

operator ρ with the vector |ψ〉. The unit trace condition implies that |ψ〉 has euclidean

1Since throughout this text the Hilbert spaces will have finite dimension, we can think that each
system we are going to speak about is associated to Cd, for some dimension d.
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norm equals to 1. Every other kind of density operator is called a mixed state and can be

written as a convex combination of projectors, i.e.,

ρ ∈ D(H) =⇒ ρ =
∑
i

pi |ψi〉 〈ψi|, (2.1)

with unit |ψi〉 ∈ H and pi ≥ 0 satisfying
∑

i pi = 1. Notice that a one-dimensional

projector is a mixed state with only one term on the sum. Therefore, it is called a pure

state. However, the decomposition in (2.1) is not unique. Take for example

Example 1.

ρ =
3

4
|0〉 〈0|+ 1

4
|1〉 〈1| = 1

2
|a〉 〈a|+ 1

2
|b〉 〈b| ,

where |a〉 =
√

3
2
|0〉+ 1

2
|1〉 and |b〉 =

√
3

2
|0〉 − 1

2
|1〉.

In this thesis, we will turn our attention mostly to composite systems; generally, we

will be considering two different systems HA and HB. The right way to describe such

compositions is through the tensor product of Hilbert spaces, which is a Hilbert space

itself.

Definition 2.2. The state space of a composite system is the tensor product of the state

spaces of the component systems.

In the product HA ⊗ HB, the first factor will be said to be Alice’s system and the

second, Bob’s system, following the usual terminology used in the literature.

In a composite system, we can speak about separability.

Definition 2.3. A pure state |ψ〉 ∈ HA ⊗ HB is said to be a product state if there are

|ψA〉 ∈ HA and |ψB〉 ∈ HB such that

|ψ〉 = |ψA〉 ⊗ |ψB〉 . (2.2)

The pure states that are not product are said to be entangled.

The concept of product state is just the restriction of the term product operator to the

set D(H). However, the analogy does not hold for Proposition 1.2.3, since it is false that

every state is a convex combination of product states.

As any definition given by a denial, it is usually hard to decide whether a state is

entangled or not: in principle, one needs to show that equation (2.2) does not hold for

any pair |ψA〉 ⊗ |ψB〉 ∈ HA ⊗HB.

Example 2. Let H = C2 ⊗ C2 and B = {|0〉 , |1〉} be a basis of C2. The state

|ψ〉 =
1√
2

(|00〉+ |01〉)

12



of H is a product state, since

|ψ〉 = |0〉 ⊗ 1√
2

(|0〉+ |1〉).

Example 3. Let H and B be the same as above but take

|Φ+〉 =
1√
2

(|00〉+ |11〉).

If |Φ+〉 were separable, then there would be |a〉 , |b〉 ∈ C2 such that

|Φ+〉 = |a〉 ⊗ |b〉 . (2.3)

Writing these vectors in terms of B, we have

|a〉 = α |0〉+ β |1〉 , |b〉 = γ |0〉+ δ |1〉 ,

for some α, β, γ, δ ∈ C2. Thus

|a〉 ⊗ |b〉 = αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉 .

According to equation (2.3), this implies

αγ = βδ =
1√
2

αδ = βγ = 0,

which is an insoluble system. Therefore, we conclude that |Φ+〉 is entangled. (In fact,

|Φ+〉 is one of the so-called Bell states, which are maximally entangled states of C2⊗C2.)

Generalizing the above concepts, we have the following definition.

Definition 2.4. A state ρ of a composite system HA ⊗HB is said to be separable if

ρ =
∑
i

piρA,i ⊗ ρB,i

for some ρA,i ∈ HA and ρB,i ∈ HB, with
∑

i pi = 1 and pi ≥ 0. A state which is not

separable is said to be entangled.

13



2.2 Measurements

We saw how to represent systems and states. Now we will define how an observer can

interact with the systems, that is, how a measurement takes place.

Definition 2.5. Given a state ρ ∈ H, a measurement on ρ is a set of operators {Mi}
that acts on H and satisfy the completeness relation∑

i

M †
iMi = I.

The index i refers to the outcomes that may occur in the measurement; outcome i occurs

with probability

tr(MiρM
†
i )

and the state of the system after the measurement is

MiρM
†
i

tr(MiρM
†
i )
.

It is easy to see that the completeness relation implies that the probabilities of the

outcomes indeed sum to one.

The outcomes of a measurement can be attached to each measurement operator in an

arbitrary way; in general, they do not have a special meaning. For projective measure-

ments however, we will see that this is usually done in a somewhat natural way.

The fact that we use the trace to calculate the probabilities is known as Born’s rule.

In order to formalize and to strengthen the axiomatic basis of Quantum Theory, Andrew

Gleason showed that every probability measure on the set of closed subspaces of a Hilbert

space with dimension greater than two is given by the trace of its projector times a positive

semi-definite operator with trace one [16]. In some sense, this result legitimate the use of

the Born’s rule.

The next definition can be found in [14].

Definition 2.6. Let V be a vector space and C the set of closed subspaces of V. A

probability measure on C is a measure µ : C → [0, 1] such that µ(V) = 1 and if {Ei} ⊂ C
is a countable collection of mutually orthogonal subspaces that generates E ⊂ C then

µ(E) =
∑
i

µ(Ei)

Theorem 4 (Gleason). Let V be a vector space over C with dimension d > 2 and C the

set of closed subspaces of V. If µ is a probability measure on C, then there is a positive

14



semi-definite operator ρ ∈ L(V) with unit trace such that

µ(E) = tr(Pρ),

for all E ∈ C, where P is the projector onto E.

The proof of Gleason’s theorem can be found in his original work [16] and in a simplified

version in [17]. In [18], the author discusses other theorems that formalize Born’s rule.

We will see later that Gleason’s theorem can give us a hint for the construction of local

models.

2.2.1 Projective measurements

A simple and important kind of measurements occurs when the measurement operators

{Pi} are projectors, i.e., P 2
i = Pi, and satisfies PiPj = δijPi. In this case, the completeness

relation becomes ∑
i

Pi = I

and the probabilities are given by

tr(PiρP
†
i ) = tr(PiρPi) = tr(P 2

i ρ) = tr(Piρ).

If the state is pure, then

tr(Piρ) = tr(Pi |ψ〉 〈ψ|) = 〈ψ|Pi |ψ〉 ,

where the last equality is given by Proposition 1.2.2.

While a general measurement can be associated with a simple partition of the iden-

tity I, in the projective case the association can go further, identifying each projective

measurement {Pi} with the Hermitian operator

M =
∑
i

miPi

(here in its spectral decomposition form), acting on the space state of the system. In this

case, the measurement operators are the projectors onto its eigenvectors and the possible

outcomes are its eigenvalues. Such Hermitian operator M is called an observable. The set

of observables of a system H will be denoted by O(H) ⊂ L(H).
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Example 4. Important examples of observables are the Pauli matrices,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
.

Together with the identity I2×2, the Pauli matrices span the real vector space H2(C) of

the 2× 2 Hermitian matrices.

The measurement of observable σi is referred as “measurement of spin along the i axis”,

for i = x, y, z.

Example 5. More generally, given |v〉 = (vx, vy, vz) a real three-dimensional unit vector,

we can define the observable2

v · σ ≡ vxσx + vyσy + vzσz =

(
vz vx − ivy

vx + ivy −vz

)
,

which has eigenvalues ±1. Hence, a projective measurement related to v · σ has possible

outcomes ±1 and projectors onto the corresponding eigenspaces are given by

P± =
I ± v · σ

2

and thus the corresponding probabilities of the measurement applied to the pure state |ψ〉
are

p(±1) = tr

(
|ψ〉 〈ψ| I ± v · σ

2

)
=

1± 〈ψ| v · σ |ψ〉
2

.

The measurement of this observable is referred to as “measurement of spin along the

|v〉 direction”.

Example 6. Take the pure state

|+〉 =
1√
2

(|0〉+ |1〉)

and let’s measure the observable σz. As said above, its eigenvalues are ±1 associated

to eigenvectors |0〉 , |1〉, with respective projectors (measurement operators) P z
± = (I ±

σz)/2. Hence, the possible resulting states post-measurement are |0〉 and |1〉, occurring

with probability tr(P z
− |+〉 〈+|) = 1/2 = tr(P z

+ |+〉 〈+|).

2We denote |a〉 · |b〉 simply by a · b, in order to do not overload the notation.
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On the other side, |+〉 is itself an eigenvector of the observable σx, together with |−〉 =

(|0〉 − |1〉)/
√

2. Notice that we can also choose the opposite way and write the “z-basis”

{|0〉 , |1〉} in terms of the “x-basis” {|+〉 , |−〉}:

|0〉 =
1√
2

(|+〉+ |−〉), |1〉 =
1√
2

(|+〉 − |−〉).

Therefore, measuring observable σx on any of the states |0〉 , |1〉, the probability to obtain

any of the possible resulting states |−〉 , |+〉 is tr(P x
− |+〉 〈+|) = 1/2 = tr(P x

+ |+〉 〈+|),

where the measurement operators are P x
± = (I ± σx)/2.

We conclude from these observations that measuring observable σz on an eigenvector

of σx leads to a resulting state uniformly distributed on {|0〉 , |1〉}; but measuring σx on

any of those states leads to a resulting state uniformly distributed on {|+〉 , |−〉}. Thus

it is impossible for a particle to have spin determined simultaneously in both directions x

and z. Though it perhaps seems an unimportant conclusion, this fact will play a decisive

role in Section 2.5.

2.2.2 POVMs

Observe that, since the probabilities of a measurement {Mi} are given by tr(MiρM
†
i ) =

tr(ρM †
iMi), we can associate to the measurement the positive operators {Qi}, where

Qi = M †
iMi. Although such operators are not enough to determine the resulting post-

measurement state, many times we are only interested in the probabilities tr(ρQi), and

we can restrain our attentions to the simplified description of the measurement provided

by the {Qi}. These operators are known as the POVM elements associated to the mea-

surement (sometimes called effects), where the acronym holds for positive operator-value

measure.

2.3 The Bloch sphere

The simplest quantum system that we can imagine is the one associated to the Hilbert

space C2, in which the pure states are unit vectors of the form |v〉 = α |0〉+ β |1〉 and are

called qubits. As we imply, the vectors |0〉 , |1〉 form an orthogonal base for C2.

Because |v〉 has norm 1, we must have |α|2 + |β|2 = 1. Writing α = α1 + iα2 and

β = β1 + iβ2, this condition becomes α2
1 + α2

2 + β2
1 + β2

2 = 1, so in principle we see that

the set of qubits is isomorphic to the sphere S3 ⊂ R4.

However, given an observable of L(C2), its eigenvectors are orthogonal, thus they form

a base for C2. The coefficients of a pure state written in such base are related to the

probabilities with which the resulting post-measurement state becomes the corresponding
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eigenvector.

Example 7. If |v〉 = α |0〉 + β |1〉 and we measure σz (whose eigenvectors are |0〉 and

|1〉), then

tr(|0〉 〈0| |v〉 〈v|) = |α|2, tr(|1〉 〈1| |v〉 〈v|) = |β|2,

that is, the resulting state is |0〉 with probability |α|2 and |1〉 with probability |β|2.

Hence, since a state describes the system by giving the probabilities of the possible

outcomes of any measurement, we can identify the pure states |v〉 and eiθ |v〉: the eiθ

factor will not influence in the computation of probabilities |α|2 and |β|2. Another way

to say this is that |v〉 and eiθ |v〉 are physically indistinguishable.

This identification tells us that we have no need of four real coefficients to describe the

set of pure states physically distinct, only three will suffice3. Thus, the set of physically

distinct qubits is isomorphic to S2.

As we saw in Section 2.2.1, to each real three-dimensional unit vector |v〉 can be

associated the observable v · σ. Now we know that each of such vectors can also be

associated uniquely to a pure state. In order to distribute the pure states |v〉 in S2, we

can take each of them to correspond to the direction of the eigenvector associated to +1 in

the measurement of the observable v ·σ. The sphere S2 together with this correspondence

is called the Bloch sphere.

Notice that the pair of vectors that are orthogonal in R3 are collinear in the Bloch

sphere: the states corresponding to vectors |0〉 , |1〉 points to the north and south poles,

and |−〉 , |+〉 are in opposite points of the equator of the Bloch sphere. We can think

that, in the process of allocation of states corresponding to vectors from R3 in the Bloch

sphere, the angles between the vector and the positive y-axis get doubled. This mean

that if we consider a scalar product over the Bloch sphere, it will be given by

|a〉 · |b〉 = cos(2θ),

where θ is the angle between the vectors in S2.

2.4 The partial trace

Definition 2.7. Let HA ⊗HB be a composite Hilbert space. We define the partial trace

(in relation to HB) trB : L(HA)⊗ L(HB)→ L(HA) by

trB(MA ⊗MB) = MA · tr(MB)

3The right way to formalize this claim is by showing that the referred identification determines a
equivalence relation and considering the quotient space generated by it [14].
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Figure 2.1: Suppose the vectors ~a,~b are |0〉 , |1〉 and vectors ~c, ~d are |+〉 , |−〉. In the left side we
have them represented in a section of the sphere S2 and in the right, in a section of the Bloch
sphere.

for product operators and extend to non-product operators by linearity. Analogously, we

define the partial trace in relation to subsystem HA.

Given a state of a composite system HA ⊗HB, we can find the state that describe each

subsystem via partial trace. Such state is called reduced density operator.

Definition 2.8. Let ρ be the state that describes the composite system HA ⊗HB. Then

the reduced density operator

ρA = trB(ρ)

describes subsystem HA.

The description provided by the partial trace referred above is about measurements:

suppose that Alice shares the state ρ with Bob and perform a measurement {Mi}. Then

trB(ρ) = ρA is the only state that satisfies

tr(Ma ⊗ Iρ) = tr(MaρA)

for any a and {Mi}, that is, is the only state that provides the right probability of obtain

outcome a when we consider a measurement only on Alice’s system. In other words,

concerning to local measurements only on Alice’s side, to say that Alice shares state ρ

with Bob is the same as to say that Alice holds the state trB(ρ).
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Example 8. Suppose that Alice and Bob shares the singlet state |Ψ−〉 〈Ψ−|. Then Alice’s

reduced state is

trB(|Ψ−〉 〈Ψ−|) =
1

2
trB(|01〉 〈01|+ |10〉 〈10| − |01〉 〈10| − |10〉 〈01|)

=
1

2
(|0〉 〈0| tr(|1〉 〈1|) + |1〉 〈1| tr(|0〉 〈0|)− |0〉 〈1| tr(|1〉 〈0|)

− |1〉 〈0| tr(|0〉 〈1|))

=
1

2
(|0〉 〈0|+ |1〉 〈1|)

=
I2×2

2
.

2.5 EPR

In objection to the view where measurements in quantum systems do not properly reveal

some already existing information, but rather just lead the system to probabilistically

assume one of the possible resulting states, Albert Einstein, together with Nathan Rosen

and Boris Podolsky proposed a thought experiment [4]. Their idea was to show, using

entangled states, that the description of reality provided by Quantum Theory was not

complete. Here, we are going to use the simplified formulation given by David Bohm [19].

The first step is to understand what the authors propose as description of reality.

Definition 2.9. An element of reality is a physical property that can be determined pre-

cisely (i.e., with probability equal to unity) without disturbing the system. A theory is

complete if contains a counterpart for every element of reality.

EPR consider a bipartite system where the parts, Alice and Bob, share the singlet state

|Ψ−〉 =
1√
2

(|01〉 − |10〉).

The singlet state has the property4 that, given any direction |v〉, it can be written as

|Ψ−〉 =
1√
2

(|v+v−〉 − |v−v+〉),

where |v+〉 , |v−〉 are eigenstates of the observable v · σ, related to eigenvalues ±1. This

means that the outcomes of any measurement of v · σ in both parts will be perfectly

anti-correlated: if Alice obtains +1, then Bob obtains -1, and vice-versa.

Now imagine that Alice and Bob are far away from each other, Alice measures σz

and obtains outcome +1. So, if Bob also measures σz in his particle, we know that the

4This property is derived from the fact that the singlet has total spin equal to zero, which roughly
means that each part must have its spin pointing to exactly opposite directions [19].
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resulting outcome will be -1. Alice’s measurement cannot instantaneously disturb Bob’s

system because of the distance separating them, but still we can predict with probability

1 the value of σz. Thus, according to Definition 2.9, σz is an element of reality of Bob’s

system.

We can imagine that, instead of σz, Alice measures σx and using the same argument

conclude that σx is an element of reality of Bob’s system as well. (Does not really matter if

Alice indeed measured σz or σx or did not do any measurement at all: the important fact

is that it would be possible to predict the property ‘spin along the z-axis’ or ‘spin along

the x-axis’ of Bob’s particle.) Therefore, there exist elements of reality corresponding

to those properties simultaneously. A complete theory should, therefore, simultaneously

assign values for such properties.

However, we saw in Example 6 that Quantum Theory forbids both observables to be

determined at the same time5.The conclusion of EPR was that Quantum Theory is not

complete. Despite being a good approximation of experimental data, they believed that

should exist another theory, satisfying their completeness criterium without paradoxes.

It is important to emphasize that we have taken two major assumptions to insure this

conclusion: the realism (the intrinsic existence of values for elements of reality, inde-

pendent of measurements) and the locality (distant measurements cannot influence each

other instantaneously). Hence, the EPR argument proves that if Quantum Theory were

a locally realistic theory, then would not be a complete one.

In the next chapter, we will see that Quantum Theory is not locally realistic (or, as we

will simply say from now on, local).

5This rest upon the fact that σz and σx do not commute. Any other pair of non-commuting observables
would do the job, as we will consider in Chapter 6.
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Chapter 3

Nonlocality

Nearly thirty years after Ref. [4] was published, John Bell made a proposal that allows one

to experimentally test whether Quantum Theory is locally realistic or not [2]. The main

tool used for performing such test was a linear inequality for the joint probabilities (or

equivalently, the joint expectations) of both parts, the first of a class of inequalities now

known as Bell inequalities. To obey the Bell inequalities is a condition that a local-realist

theory should satisfy. As we will see, Quantum Theory is able to violate such inequalities,

consequently annulling the incompleteness’ conclusion of EPR.

Though Bell have developed the first Bell inequality in 1964, the most popular one is

the CHSH inequality, dating from 1969.

3.1 The CHSH inequality

The CHSH inequality [5], named after its authors, Clauser, Horne, Shimony and Holt, is

the only one that we will have to keep in mind for the discussions proposed in this thesis.

Suppose that we have two parts, Alice and Bob, and a referee, a third part which is not

related to any system, but is able to prepare two particles and distribute them to Alice

and Bob, repeating the procedure an unlimited number of times. Once each part has its

particle, it must choose among two possible measurements, say MQ or MR for Alice and

MS or MT for Bob. They do not know in advance which measurement they will perform;

by receiving the particle, each of the two decides it randomly. Also, each measurement

Mi has outcome i, for i = Q,R, S, T , that takes values on {1,−1}.
Making the assumption of realism, we will consider that Q (and similarly for R, S, T ) is

an objective property of Alice’s particle, being merely revealed by the measurement MQ.

The course of action is arranged in such a way that Alice and Bob do their measurements

at the precise same time. Thus, assuming locality, Alice’s measurement cannot disturb

the result of Bob’s measurement, and vice-versa.

22



We will now consider the quantity

QS +RS +RT −QT.

Since the above expression can be rewritten as

Q(S − T ) +R(S + T )

and S, T ∈ {1,−1}, we must have Q(S−T ) = 0 or R(S+T ) = 0. In either case, we have

QS +RS +RT −QT ∈ {+2,−2}.

Now, if p(q, r, s, t) is the probability that right before the measurements are performed

the system is in a state that Q = q, R = r, S = s and T = t, then the expectation becomes

E(QS +RS +RT −QT ) =
∑

q,r,s,t∈{+1,−1}

p(q, r, s, t)(qs+ rs+ rt− qt)

≤ 2
∑

q,r,s,t∈{+1,−1}

p(q, r, s, t)

= 2.

On the other hand, expectation is linear,

E(QS +RS +RT −QT ) = E(QS) + E(RS) + E(RT )− E(QT ).

Combining the previous equations, we obtain the CHSH inequality [5]

E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2. (3.1)

With this inequality in hands, Alice and Bob are able to compare whether or not the

expected values predicted by their theory obeys the inequality. Depending on the result of

the comparison (more specifically, if the inequality is violated), they conclude that their

theory is nonlocal. They can also proceed to perform a series of measurements in the

above conditions on a shared state. The outcomes obtained by each part can then be put

together, and the integrated data can be used to approximate each of the expected values

in question. If they get an inequality violation, they will be experimentally confirming the

nonlocality of Nature itself. If they check that the data obtained match their predictions,

they will be showing that Nature agrees with their nonlocal theory.

We now proceed to prove that Quantum Theory is not local.
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Example 9. Suppose that Alice and Bob share the singlet state

|Ψ−〉 =
|01〉 − |10〉√

2
.

Consider now the observables

MQ = σz, MR = σx

for Alice and

MS =
−σz − σx√

2
, MT =

σz − σx√
2

for Bob.

The observables MQ,MS have eigenvalues +1,−1, with respective eigenvectors |0〉 , |1〉
for MQ and |0〉 + (−1 −

√
2) |1〉 , |0〉 + (−1 +

√
2) |1〉 for MS. Their projectors onto the

eigenspaces are

PQ
+ = |0〉 〈0|

PQ
− = |1〉 〈1|

P S
+ =

|0〉 〈0|+ (3 + 2
√

2) |1〉 〈1|+ (−1−
√

2)[|0〉 〈1|+ |1〉 〈0|] |1〉 〈1|
4 + 2

√
2

P S
− =

|0〉 〈0|+ (3− 2
√

2) |1〉 〈1|+ (−1 +
√

2)[|0〉 〈1|+ |1〉 〈0|] |1〉 〈1|
4− 2

√
2

.

Hence, Quantum Theory predicts that

E(QS) = p(qs = 1)− p(qs = −1)

= [p(q = 1, s = 1) + p(q = −1, s = −1)]− [p(q = +1, s = −1)

+ p(q = −1, s = +1)]

= [tr(PQ
+ ⊗ P S

+ |Ψ−〉 〈Ψ−|) + tr(PQ
− ⊗ P S

− |Ψ−〉 〈Ψ−|)]

−[tr(PQ
+ ⊗ P S

− |Ψ−〉 〈Ψ−|) + tr(PQ
− ⊗ P S

+ |Ψ−〉 〈Ψ−|)]

=

[
3 + 2

√
2

4(2 +
√

2)
+

1

4(2−
√

2)

]
−

[
3− 2

√
2

4(2−
√

2)
+

1

4(2 +
√

2)

]
=

1√
2
.

Similarly, we may find that

E(RS) = E(RT ) =
1√
2
, E(QT ) = − 1√

2
.

Thus,

E(QS) + E(RS) + E(RT )− E(QT ) = 2
√

2 > 2.
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Since the CHSH inequality is violated, we conclude that Quantum Theory is nonlocal.

3.2 The Horodecki Criterion

Notice that the CHSH inequality (and similarly, all other Bell inequalities) can be seen as

a superoperator, whose entries are a quantum state and four observables. In order to test

a violation, even after fixing a state, we may achieve different values for the expectation

by varying the set of observables.

In Example 9, we saw that, for the singlet state, there exist observablesMQ,MR,MS,MT

for which the CHSH is violated. This, however, is not the case for all quantum states. In

1995, Ryszard Horodecki, Pawel Horodecki and Michal Horodecki presented a necessary

and sufficient condition for an arbitrary quantum state of C2 ⊗ C2 to violate the CHSH

inequality and made explicit the greatest value achieved by that state [6].

Associated to the CHSH inequality, there is the observable

BCHSH(x, x′, y, y′) = x · σ ⊗ (y + y′) · σ + x′ · σ ⊗ (y − y′) · σ,

called the CHSH Bell operator, where |x〉 , |x′〉 , |y〉 , |y′〉 are unit vectors in R3. The in-

equality in question thus becomes

Eρ(BCHSH) ≤ 2,

where the subscript emphasize the referred state. Our objective is to check if ρ violates

it, hence we want to maximize the expectation over all Bell operators and show that such

quantity is achieved by some Bell operator Bmax:

sup
BCHSH

Eρ(BCHSH) = Eρ(Bmax).

The Horodecki start by showing that for all ρ ∈ D(C2⊗C2), there are vectors |r〉 , |s〉 ∈
R3 such that

ρ =
1

4

(
I ⊗ I + (r · σ)⊗ I + I ⊗ (s · σ) +

3∑
m,n=1

tnmσn ⊗ σm

)
,

where σx = σ1, σy = σ2 and σz = σ3 are the Pauli matrices and tnm = tr(ρσn ⊗ σm).

Consider the 3 × 3 matrix Tρ composed by the coefficients tmn. A simple calculation

gives us

Eρ(BCHSH) = 〈x|Tρ(|y〉+ |y〉′) + 〈x′|Tρ(|y〉 − |y′〉).

By noticing that the vectors |y〉 + |y′〉 , |y〉 − |y′〉 are orthogonal and satisfy || |y〉 +
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|y′〉 ||2 + || |y〉 − |y′〉 ||2 = 4, where || · || is the Euclidian norm, we can introduce the pair

of unit and mutually orthogonal vectors |z〉 , |z′〉 such that

|y〉+ |y′〉 = 2 cos θ |z〉 , |y〉 − |y′〉 = 2 sin θ |z′〉 ,

for some θ ∈ [0, π]. Then we have

sup
BCHSH

Eρ(BCHSH) = sup
θ,|x〉,|x′〉,|z〉,|z′〉

2 [〈x|Tρ |z〉 cos θ + 〈x′|Tρ |z′〉 sin θ] (3.2)

= sup
θ,|z〉,|z′〉

2 [||Tρ |z〉 || cos θ + ||Tρ |z′〉 || sin θ] (3.3)

= sup
|z〉,|z′〉

2
√
||Tρ |z〉 ||2 + ||Tρ |z′〉 ||2 (3.4)

Now, consider the positive matrix Uρ = T †ρTρ and denote its two greatest eigenvalues

by u, ũ. Using Lagrange multipliers, it is possible to show that

sup
{|j〉,|k〉}

(||Tρ |j〉 ||2 + ||Tρ |k〉 ||2) = u+ ũ =: M(ρ),

where the supreme is taken over all orthonormal subsets {|j〉 , |k〉} ⊂ R3. Eq. (3.2) shows

us that

sup
BCHSH

Eρ(BCHSH) = 2
√
M(ρ).

Conversely, one can take in turn |zmax〉 , |z′max〉 as the Uρ eigenvectors maximalizing

M(ρ); |xmax〉 , |x′max〉 as unit vectors in the directions Tρ |zmax〉 , Tρ |z′max〉; and θmax defined

by ||Tρ |zmax〉 || sin θmax = ||Tρ |z′max〉 || cos θmax. Using these parameters to construct the

observable Bmax, we have

2
√
M(ρ) = Eρ(Bmax) = sup

BCHSH
Eρ(BCHSH).

The above reasoning outlines the proof of the following result.

Theorem 5. There is a CHSH Bell operator Bmax such that

Eρ(Bmax) = sup
BCHSH

Eρ(BCHSH) = 2
√
M(ρ).

The straightforward corollary yielded is the announced Horodecki Criterion.

Corollary 2 (Horodecki Criterion). A state ρ ∈ D(C2⊗C2) violates the CHSH inequality

if and only if M(ρ) > 1.
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3.3 Local hidden variables

The EPR argument can be generalized to a “Bell scenario”, by considering an arbitrary

number of systems, possible measurements and possible outcomes. What is central in such

kind of experiment is that - let’s suppose the number of systems is two - Alice and Bob

both receive from a referee a shared state and give rise to joint probabilities p(ab|x, y),

where a(b) is a possible outcome for x(y), one of the possible measurements available to

be performed by Alice (Bob). As we saw, in general we have

p(a, b|x, y) 6= p(a|x) p(b|y),

that is, the outcomes on both sides are not always independent from each other. The

existence of such correlations does not necessarily imply a direct influence of one system

on the other, though. It can be the case that it is only being revealed a dependence

relation between the two systems established in the past, when they may have interacted

[7].

If that is the case, there is a set of past factors, described by some variables λ, which

influences the outcomes, explaining completely the dependence between them. This means

that we must be able to write

p(a, b|x, y, λ) = p(a|x, λ) p(b|y, λ), (3.5)

standing for the fact that the only needed information to determine the probability of

outcome a occurring is the local measurement x in question and the past variables λ; the

distant measurement performed by Bob has nothing to do with it.

Since we are not claiming to have any knowledge over λ besides its existence, in principle

it may involve physical quantities that are not completely controllable. Thus, λ will

not necessarily be constant for each run of the experiment, even if the referee is careful

enough to use the exact same process to prepare the states. Thus, we must consider also

a probability distribution π(λ) over Λ, the set where these variables inhabit, that rules

the different values of λ for different experiments.

Eq. (3.5) together with this considerations lead to

p(a, b|x, y) =

∫
Λ

π(λ) p(a|x, λ) p(b|y, λ). (3.6)

Another observation that should be made is that the distribution π(λ) is supposed to

be independent of the chosen measurements, i.e., for any choice of x, y, the λ variables

are distributed in the same way. In other words, π(λ) must a priori take in consideration

all possible measurements on the system.
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By using Eq. (3.6), it is possible to rewrite the same expectations of Example 9 in

terms of λ, and then derive the CHSH inequality (3.1), as is done in [7]. That is, the

assumption of this past variables λ can play the part of the local realism assumption,

formulated by EPR. Based on that, we can take Eq. (3.6) as the condition for locality.

The variables λ are called local hidden variables : ‘local’ because their knowledge enable

us to make a local factorization of the joint probabilities, ‘hidden’ because they are apart

from the state1.

3.4 Local models

Strictly speaking, locality is a feature of families of probabilities distributions {p(a, b|x, y) ∈
R|a ∈ A, b ∈ B, x ∈ X, y ∈ Y }, where A,B are the sets of possible outcomes and X, Y

the sets of possible measurements of each part. So, when we say that Quantum Theory

is nonlocal, what we really mean is that there exists at least one bipartite state and one

pair of measurements that provide a set of correlations which cannot be written in the

factorized manner of Eq. (3.6), even when local hidden variables are taken in account.

This is guaranteed by a violation of a Bell inequality, like we saw in Example 9.

However, this is not the case for all quantum states. Indeed, for product states the

correlations factorize naturally.

Proposition 3.4.1. Let A,B ∈ L(H). Then tr(A⊗B) = tr(A) tr(B).

Proof. Since2

A⊗B =
∑
i,j,k,l

aijbkl |ki〉 〈lj|,

we have

tr(A⊗B) =
∑
i,j,k,l

aijbkl tr(|ki〉 〈lj|)

=
∑
i,k

aiibkk

=
∑
i

aii
∑
k

bkk

= tr(A) tr(B).

1We are considering the terms locality and local realism to have basically the same meaning. For a
discussion on those terminologies, check [20].

2Check the proof of Proposition 1.2.1.
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With Proposition 3.4.1 in mind, we can easily see that a measurement on a product

state ρA ⊗ ρB can always be locally factorized:

p(a, b|{Mi}, {Nj}) = tr(Maρ
A ⊗Nbρ

B) = tr(Maρ
A) tr(Nbρ

B) = p(a|{Mi}) p(b|{Nj}).

It is as if no local variables were hidden, or if those who were make no difference in the

outcomes: p(a|x, λ) = p(a|x) (and the same for Bob). Thus the locality condition is

trivially achieved: for any measurements x, y we have

p(a, b|x, y) = p(a|x) p(b|y)

=

∫
Λ

π(λ) p(a|x) p(b|y)dλ

=

∫
Λ

π(λ) p(a|x, λ) p(b|y, λ)dλ.

On the other side, there is no reason to exclude the existence of an entangled state for

which the locality condition is satisfied as well. In principle, it may be that the relation

between the systems represented by the entanglement can also be explained by some set

of local hidden variables. This would mean that, setting good choices of objects to play

the part of the hidden variables λ ∈ Λ, a probability distribution π(λ) of these objects

and a manner to compute the probabilities of the outcomes generated by each part, we

would be able to artificially simulate the correlations p(ab|x, y) in a way that Eq. (3.6)

would always be satisfied, no matter which measurements x, y were being considered. In

the case where we manage to perform all these tasks successfully, then we say that we

have created a local hidden variables model for such state.

Definition 3.1. Let M(H) = {{Mi} ⊂ L(H);
∑

iM
†
iMi = I} be the set of generalized

measurements over H, OM ⊂ R the set of possible outcomes for the measurement M =

{Mi} and Λ the set of hidden variables. A function

fM : OM × Λ× {{Mi}} → [0, 1]

(a, λ, {Mi}) 7→ fM(a, λ, {Mi})

is said to be a response function for M if for every fixed λ ∈ Λ we have∑
j∈OM

fM(j, λ, {Mi}) = 1.
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A function f : R×Λ×M(H)→ [0, 1] is said to be a response function if every restriction

f |M : OM × Λ× {{Mi}} → [0, 1]

(a, λ, {Mi}) 7→ f(a, λ, {Mi})

is a response function for M , that is,

f |M = fM , ∀M ∈M(H).

The response functions depend on the outcomes, the hidden variables and the whole

measurement being applied3, since their task is to attribute a probability for each outcome.

Definition 3.2. A state ρ ∈ HA⊗HB admits a local hidden variables model for projective

measurements if there exists a set Λ of hidden variables, a probability distribution π(λ) and

response functions pA, pB such that for any pair of observables P =
∑

i iPi, Q =
∑

j jQj

measured by Alice and Bob, respectively, the equality

tr(ρPa ⊗Qb) =

∫
Λ

π(λ) pA(a, λ, {Pi}) pB(b, λ, {Qj})dλ, (3.7)

is attained.

Notice that left hand side of the above equality stands for p(a, b|Pa, Qb), so we have

there a twin of Eq. (3.6), where pA(a, λ, P ) = p(a|λ, P ) and pB(b, λ,Q) = p(b|λ,Q).

There is no reason for us to restrain the idea of locality to projective measurements.

The definition below is a stronger version of Def. 3.2, since projectors are a particular

case of positive operators.

Definition 3.3. Analogously to Def. 3.2, a state ρ ∈ HA ⊗ HB admits a local hidden

variables model for POVMs if Eq. (3.7) is satisfied for any pair of POVMs {Mi}, {Nj},
that is,

tr(ρMa ⊗Nb) =

∫
Λ

π(λ) pA(a, λ, {Mi}) pB(b, λ, {Nj})dλ.

We will usually use the shortcut expression ‘local model’ to refer to local hidden vari-

ables model. In the same fashion, sometimes we will refer to a state which admits a local

model as simply ‘local’.

The locality of product states discussed above naturally leads to a local model for a

3Indeed, if the response functions depend only on the specific measurement operator regarding the
outcome of interest, Gleason’s theorem would imply that the correlations being reproduced would belong
to a separable state. See Section 4.3 for further details.
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separable (mixed) state. If our state is

ρ =
n∑
i=1

piρ
A
i ⊗ ρBi

then the probabilities we would like to reproduce have the form

tr(Ma ⊗Nbρ) =
n∑
i=1

pi tr(Maρ
A
i ) tr(Nbρ

B
i ).

The comparison of the integral in Eq. (3.7) and the sum in the right side of the above

equation practically solve the problem: we just have to take the hidden variables as

λ ∈ Λ = {1, ..., n} and π(λ) = pλ. The response functions will be same for both parts,

the “quantum” response function given by the trace of the state times the measurement

operator. Hence, the role of the hidden variables here is only to determine which of the

product states present in the mixture we are going to use in the response function.

Since separability implies locality, by contraposition, we conclude

nonlocality ⇒ entanglement.

In [21], Nicolas Gisin showed that for every pure bipartite entangled state, it is possible

to construct observables for which the CHSH inequality is violated. Later, in Ref. [22]

and [24] it has been proved that this extends to every multipartite pure state. In another

words, for pure states we have the equivalence

nonlocality ⇐⇒ entanglement.

The great and perhaps counterintuitive advance acquired by Reinhard Werner was

to show that for mixed states the situation is not the same [1]. That is, it does exist

entangled states which admit local models, and thus violate no Bell inequality! So, in

general, we have

entanglement; nonlocality.

That is the first big result that we are going to present, in the next chapter.

31



Chapter 4

Werner’s local model

This whole chapter is devoted to detail Werner’s paper [1], in which the first local model

appears.

There are two main difficulties in constructing an example of entangled state which

admits a local model for projective measurements. The first is to prove that such state is

indeed entangled, i.e., it can not be written as a convex combination os separable states.

The second is to verify that Eq. (3.7) holds independently of P,Q, which become an

infinite system of equations indexed by the set of projective measurements. We shall cir-

cumvent both difficulties by considering states of very high symmetry, nominated Werner

states.

4.1 Werner states

Definition 4.1. A state W ∈ D(H ⊗ H) is said to be a Werner state if it is U ⊗ U-

invariant, i.e., U ⊗ UWU † ⊗ U † = W, ∀U ∈ L(H) unitary.

The U ⊗ U -invariance can be physically interpreted as the property that allows both

Alice and Bob to apply the same unitary transformation in their part of the system and

still remain with the same global state.

In order to characterize the Werner states, we start asking which operators, not neces-

sarily states, present the U ⊗ U -invariance. It is clear, by the definition of unitary, that

the identity I has this property. For the flip operator V : H⊗H → H⊗H, defined by

V |ij〉 = |ji〉

on the product states and extended by linearity, we have V = V −1 = V †. It follows that

V A⊗BV † = B ⊗ A
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and thus

(U ⊗ U)V (U † ⊗ U †) = V ⇔ (U ⊗ U)V (U † ⊗ U †)V −1 = I

⇔ (U ⊗ U)(V U † ⊗ U †V †) = I ⇔ (U ⊗ U)(U † ⊗ U †) = I,

so V is also U ⊗ U -invariant. By linearity, we have that any linear combination of these

two operators presents this property. The first important result about Werner states is

that those are all the operators that have the U ⊗ U -invariance.

Proposition 4.1.1. An operator A ∈ L(Cd ⊗ Cd) is U ⊗ U-invariant if and only if A is

a linear combination of the identity I and the flip operator V .

Proof. One of the implications was established above. To the other way, consider A

U⊗U -invariant and the orthonormal basis B = {|e1e1〉 , |e1e2〉 , ..., |eded〉} of Cd⊗Cd. The

matrix of A associated to this basis has entries 〈ejek|A |elem〉. Using the invariance of A

under unitaries Ur which take |er〉 to − |er〉 leaving the other elements fixed, we have

〈ejek|A |elem〉 = 〈ejek|U †r ⊗ U †rAUr ⊗ Ur |elem〉 = 〈Ur ⊗ Urejek|AUr ⊗ Ur |elem〉

for r = 1, ..., d. Such matrix elements vanishes unless the indices j, k, l,m are equal by

pairs. Indeed, if we have j /∈ {k, l,m}, then

〈ejek|A |elem〉 = 〈Uj ⊗ Ujejek|AUj ⊗ Uj |elem〉 = −〈ejek|A |elem〉 .

In the same way, making use of the unitaries Ũr that take |er〉 to i |er〉 and leaves the

other elements fixed, we see that the terms of the form 〈ejej|A |elel〉 also vanishes.

We conclude that the only non-zero matrix elements have the form 〈ejej|A |ejej〉,
〈ejek|A |ejek〉 or 〈ejek|A |ekej〉. Since any transposition of two of the basis elements can

be realised unitarily, we can apply unitaries U(i,k) that transpose |ei〉 and |ek〉 and leaves

the rest of elements fixed to see that, for any k ∈ {1, ..., d},

〈eiei|A |eiei〉 =
〈
U(ik) ⊗ U(ik)eiei

∣∣AU(ik) ⊗ U(ik) |eiei〉 = 〈ekek|A |ekek〉 .

Hence,

〈eiei|A |eiei〉 = γ, ∀i,

for some γ ∈ C. The same unitaries together with U(jl), defined similarly, gives us

〈eiej|A |eiej〉 = α, ∀i, j, i 6= j

〈eiej|A |ejei〉 = β, ∀i, j, i 6= j
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with α, β ∈ C. The unitaries of the form U(i,k)(j,l) tell us that

〈eiej|A |ekel〉 = 〈ekel|A |eiej〉 ,

and hence all entries are real, that is, actually we have α, β, γ ∈ R.

At this point, we already know that A is described by

A |eiei〉 = γ |eiei〉 , A |eiej〉 = α |eiej〉+ β |ejei〉 .

Using unitaries1 Hij such that

Hij |i〉 =
|i〉+ |j〉√

2
, Hij |j〉 =

|i〉 − |j〉√
2

and the rest remains fixed, we see that γ = α + β. Indeed, in the particular case where

d = 2, we have

[A] =


γ 0 0 0

0 α β 0

0 β α 0

0 0 0 γ

 , [H ⊗H] =
1√
2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 ,

thus

[H ⊗HAH† ⊗H†] =


γ+α+β

2
0 0 γ−α−β

2

0 γ+α−β
2

γ−α+β
2

0

0 γ−α+β
2

γ+α−β
2

0
γ−α−β

2
0 0 γ+α+β

2

 ,

which equals [A] if and only if γ = α + β.

Now, we only have to notice that the non-zero matrix elements of the identity have

the form |ejek〉 〈ejek|, for j, k = 1, ..., d and the non-zero matrix elements of the flip are

|ejek〉 〈ekej|, with j, k = 1, ..., d. So, when we sum a multiple of the identity and a multiple

of the flip, the only entries that overlap are 〈ejej| |ejej〉.
Since this describes all non-zero matrix elements of A, we conclude that A = αI +

βV .

This result is valid for all operators U ⊗ U -invariants, in particular for Werner states.

So, for each of these states, there are parameters α, β such that

W = αI + βV.

1This is a variation of the Hadamard operator H = H01.
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With the constraint that a state has unitary trace and using tr(I) = d2 and tr(V ) = d

(the flip operator permutes the basis elements, standing fixed only |eiei〉 , i = 1, ..., d), we

are able to bond both parameters together,

1 = tr(W ) = α tr(I) + β tr(V ) = αd2 + βd,

and thus

α =
(1− βd)

d2
. (4.1)

So we need only one parameter to determine a Werner state. In order to study which

Werner states are entangled, we will make use of the parameter φ defined by

φ = tr(WV ) = tr([αI + βV ]V ) = α tr(V ) + β tr(V 2)

= αd+ βd2 =
(1− βd)

d
+ βd2 =

1− βd+ βd3

d
,

where we have used that V 2 = I and Eq. (4.1). This way we obtain

β =
dφ− 1

d3 − d
, α =

d− φ
d3 − d

and therefore

W =
(d− φ)I + (dφ− 1)V

d3 − d
. (4.2)

Thus the task of constructing a local model for Werner states is the task of showing

that the integral in (3.7) is equal to

tr(WPa ⊗Qb) =
(d− φ) tr(Pa) tr(Qb) + (dφ− 1) tr(PaQb)

d3 − d
, (4.3)

where we have used the formulas tr(R ⊗ S) = tr(R) tr(S) and tr(V A ⊗ B) = tr(AB)

(Propositions 1.2.1, 3.4.1).

The next results show how useful this parametrization is to study the entanglement of

a Werner state.

Lemma 1. If ρ ∈ D(H), then tr(V ρ) ∈ [−1, 1], where V is the flip operator.

Proof. By noticing that V † = V , we see that all eigenvalues λ of V are real. Since V 2 = I,

we have

V |v〉 = λ |v〉 =⇒ |v〉 = V 2 |v〉 = λ2 |v〉 =⇒ λ2 = 1,

hence λ ∈ {±1}.
Therefore, the least value achieved by tr(V ρ) is tr(−ρ) = −1, corresponding to the
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situation where ρ = |ψ〉 〈ψ| and |ψ〉 is an eigenvector of V associated with −1. Similarly,

the largest value of tr(V ρ) is 1, obtained when ρ = |ψ〉 〈ψ| and |ψ〉 is an eigenvector

associated with 1.

Theorem 6. The flip operator V is the optimal entanglement witness for Werner states.

That is, if W ∈ D(Cd ⊗ Cd) is a Werner state, then it is separable if and only if φ =

tr(VW ) ≥ 0.

Proof. Note that

tr(V (|ab〉 〈ab|)) = tr((V |ab〉) 〈ab|) = tr(|ba〉 〈ab|) = δab,

i.e., equals 1 if |a〉 = |b〉 and 0 otherwise. Since a separable state is a convex combination

of product states of the |ab〉 〈ab| form, we conclude that

φ = tr(V A) ∈ [0, 1]

whenever A is a separable state. This proves the first part of the theorem.

In order to prove the converse, recall that the Werner states are uniquely determined

by the paramater φ, which lies in [−1, 1] according to Lemma 1. Firstly, we observe that

is enough to show that the Werner states W0,W1, corresponding to φ = 0 and φ = 1, are

separable. Indeed, assuming this, then for every φ ∈ [0, 1] the corresponding Werner state

Wφ is given by

Wφ = (1− φ)W0 + φW1.

This follows from the linearity of the U⊗U conjugation (which implies the U⊗U -invariance

of Wφ), the achievement of the tr(Wφ) = 1 condition and from the calculation

tr(VWφ) = (1− φ) tr(VW0) + φ tr(VW1) = φ.

Thus we conclude that Wφ is separable, since is a convex combination of separable states.

The separability of W0 and W1 will be proved by using the map

P : A 7→
∫

(U ⊗ U)A(U † ⊗ U †)dU,

where dU denotes the Haar measure of the unitary transformations group of Cd. (The

Haar measure is the unique nonzero measure which is invariant under the group opera-

tion.)

P (which is known as twirling) takes arbitrary density matrices A ∈ D(Cd ⊗ Cd) and

returns Werner states. Indeed, due to the invariance of dU and the fact that product of
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unitaries is also unitary, it follows

Ũ ⊗ ŨP(A)Ũ † ⊗ Ũ † =

∫
Ũ ⊗ Ũ(U ⊗ U)A(U † ⊗ U †)Ũ † ⊗ Ũ †dU

=

∫
(ŨU ⊗ ŨU)A(U †Ũ † ⊗ U †Ũ †)dU

=

∫
(U ⊗ U)A(U † ⊗ U †)dU

= P(A),

which also proves that P is a projection (onto the U ⊗ U -invariant operators subspace).

Then P(A) depends only on the parameter tr(V P(A)), and we can utilize the U ⊗ U -

invariance of V to show that

tr(V P(A)) =

∫
tr(V (U ⊗ U)A(U † ⊗ U †))dU =∫

tr((U † ⊗ U †)V (U ⊗ U)A)dU = tr(V A).

Also, if A is separable, so is each (U ⊗ U)A(U † ⊗ U †) and hence P(A) is also separable.

This means that P preserves the separability and the trace of the operator times V .

Now, let ρ = ρ0 ⊗ ρ1, σ = σ0 ⊗ σ1 ∈ D(Cd ⊗Cd) be separable states. Taking ρ0 and ρ1

to be orthogonal (e.g.: ρ0 = |0〉 〈0| , ρ1 = |1〉 〈1|) and making use of Prop. 3.4.1, we have

tr(V P(ρ)) = tr(V ρ) = tr(ρ0ρ1) = 0.

Thus P(ρ) is precisely the Werner state determined by φ = 0, which is W0. Since P
preserves separability, we conclude that W0 is separable.

Similarly, for σ0 = σ1 = |ψ〉 〈ψ| we have

tr(V P(σ)) = tr(V σ) = tr(|ψ〉 〈ψ|) = 1.

Thus P(σ) = W1, whose separability is implied by the separability of σ, completing the

proof.

The first part of the proof establishes that the flip operator is an entanglement witness2

for quantum states, i.e., we can calculate tr(V ρ) for any state ρ and conclude that it is

entangled if the result is negative (although, in general, no conclusion can be taken if the

trace results to be positive). The second part shows that the flip is the optimal witness

for Werner states, since it reveals the entanglement of any of such states.

2It seems fair to say that the concept of entanglement witness only appeared in Ref. [23], dating from
1996 - hence, posterior to Werner’s paper.
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4.2 Bob’s response function and the hidden variables

Now that we have setted the class of states, we focus on the objects that compose the local

model: the hidden variables space, the probability distribution upon it and the response

functions. The consequences of the U⊗U -invariance of Werner states is a key observation

to motivate the choices we are going to make.

Since W is U ⊗ U -invariant, we have that the left-hand side of Eq. (3.7) is

tr(WPa ⊗Qb) = tr(U ⊗ UWU † ⊗ U †Pa ⊗Qb)

= tr(WU † ⊗ U †Pa ⊗QbU ⊗ U) = tr(W (U †PaU)⊗ (U †QbU)).

Since (U †PiU)2 = U †PiU and
∑

i U
†PiU = U †

∑
i PiU = I, we see that {U †PiU} also

defines a projective measurement. Thus the symmetry of the Werner states implies that

the probabilities obtained for any pair of measurements in {({UPiU †}, {UQjU
†}) | U ∈

L(H) unitary} must be the same. Therefore, the local model to be constructed must

satisfy∫
Λ

pA(a, λ, {Pi}) pB(b, λ, {Qj})π(λ)dλ =

∫
Λ

pA(a, λ, {UPiU †}) pB(b, λ, {UQjU
†})π(λ)dλ.

(4.4)

This motivates the setting of the following arrangements, in the construction of the local

model.

The space Λ of hidden variables will be chosen to be the unit sphere {λ ∈ Cd; ||λ|| = 1},
that is, the hidden variables can be seen as pure quantum states of the local systems. We

will also impose a symmetry condition to the response functions pA and pB used by Alice

and Bob. These will be taken to depend on the family {Pi} of orthogonal projections, but

not on the their labeling or their eigenvalues. Moreover, it suffices to consider only the

case where the projectors are one-dimensional, since for projections of higher dimension

the response functions can be chosen as a sum of response functions of one-dimensional

projections. The symmetry condition to be imposed on the response functions is given

by the relation

p(a, λ, {U †PiU}) = p(a, Uλ, {Pi}). (4.5)

With this two requirements, Eq. (4.4) is equivalent to∫
Λ

pA(a, λ, {Pi}) pB(b, λ, {Qj})π(λ)dλ =

∫
Λ

pA(a, Uλ, {Pi}) pB(b, Uλ, {Qj})π(λ)dλ,

which is satisfied if we set the measure π(λ) to be the unique measure invariant under

unitaries on Λ.

Hence, to complete our description of the local model, we still are left to decide the
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response functions pA and pB, respecting Eq. (4.5). The simplest choice for such functions

is the one we will adopt for Bob’s system,

pB(b, λ, {Qj}) = tr(Qb |λ〉 〈λ|) = 〈λ|Qb |λ〉 , (4.6)

for the observable Q =
∑

b βbQb. Notice that, by doing this, we are saying that Bob

does things “in the Quantum fashion”, since his probabilities will be given by treating

the hidden variable as a pure state and using Born’s rule to calculate probabilities. Also,

the function works as we wish in (4.5),3

pB(b, λ, {U †QjU}) = 〈λ|U †QbU |λ〉 = 〈Uλ|Qb |Uλ〉 = pB(b, Uλ, {Qj}).

We now proceed to show that using Eqs. (4.5) e (4.6), we will be able to reduce the

calculation of any of the integrals in the form of Eq. (3.7) to the computation of a single

integral.

For any positive integrable function f : Λ→ R, we can consider the positive operator4

f̃ =

∫
Λ

|λ〉 〈λ| f(λ)π(λ)dλ ∈ L(C). (4.7)

Then, using Bob’s response function with {Qj} and b fixed, we have∫
Λ

pB(b, λ, {Qj})f(λ)π(λ)dλ =

∫
Λ

tr(Qb |λ〉 〈λ|)f(λ)π(λ)dλ = tr(Qbf̃).

In particular, for each fixed {Pi} and a, we can relate to pA the positive operator p̃A

given in Eq. (4.7), such that∫
Λ

pB(b, λ, {Qj}) pA(a, λ, {Pi})π(λ)dλ = tr(p̃A(a, {Pi})Qb). (4.8)

Notice that the left-hand side of the above equation equals the right-hand side of Eq.

3For a comment on the abuse of Dirac’s notation done here, check Section 1.1.
4There is a misprint in the definition of ρ̃ in the original paper: the f(λ) is missing, in the integrand.
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(3.7). Using the U -invariance of π, we find

tr(U p̃A(a, {Pi})U †Qb) = tr(p̃A(a, {Pi})U †QbU)

=

∫
Λ

pA(a, λ, {Pi}) 〈λ|U †QbU |λ〉π(λ)(dλ)

=

∫
Λ

pA(a, Uλ, {Pi}) 〈λ|Qb |λ〉 π(λ)(dλ)

=

∫
Λ

pA(a, λ, {UPiU †}) 〈λ|Qb |λ〉π(λ)(dλ)

= tr(p̃A(a, {UPiU †})Qb).

Since this holds for all one-dimensional projections Qb, we have

U p̃A(a, {Pi})U † = p̃A(a, {UPU †}).

In particular, we see that, if U commutes with every Pi, then U commutes with p̃A:

U p̃A(a, {Pi})U † = p̃A(a, {UPiU †}) = p̃A(a, {PiUU †}) = p̃A(a, {Pi}).

That is to say (check Corollary 1) that p̃A (and the same is true for U) has a representation

p̃A(a, {Pi}) =
∑
i

ω(a, i)Pi.

Since pA is not to depend on the labeling of the projections Pi, we conclude that ω(a, i)

depends only on whether a = i or not. Hence

p̃A(a, {Pi}) = ωPa + ω′
∑
i 6=a

Pi = ω1Pa + ω2I,

for some ω1, ω2 ∈ R, which are independent of Pi, i 6= a. Since

∑
a

p̃A(a, {Pi}) =
∑
a

∫
Λ

pA(a, λ, {Pi}) |λ〉 〈λ| π(λ)dλ

=

∫
Λ

∑
a

(pA(a, λ, {Pi})) |λ〉 〈λ|π(λ)dλ

=

∫
Λ

|λ〉 〈λ|π(λ)dλ

= I

we must have ∑
a

(ω1Pa + ω2I) = ω1I + dω2I = I,
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thus

ω1 + dω2 = 1. (4.9)

Hence for computing p̃A(a, {Pi}) for a given a, it suffices to calculate the value of

the expression tr(Qbp̃A(a, {Pi})) for only one arbitrary choice of Qb. (This is the great

advantage of dealing with p̃A: it is uniform over all Qb.) Choosing Qb = Pa [1], we have

tr(p̃A(a, {Pi})Pa) = tr([ω1Pa + ω2I]Pa) = tr(ω1Pa + ω2Pa) = ω1 + ω2. (4.10)

Assuming in advance that our local model works, i.e., that

tr(WPa ⊗Qb) =

∫
Λ

pA(a, λ, {Pi}) pB(b, λ, {Qj})π(λ)dλ,

and using Eq. (4.8), we have

tr(WPa ⊗Qb) = tr(Qbp̃A(a, {Pi})),

hence tr(Qbp̃A(a, {Pi})) can be easily calculated (once W,Pa and Qb are determined and

well-known) and Eqs. (4.9), (4.10) defines explicitly ω1, ω2 and thus p̃A.

However, it is not really important the values of ω1, ω2. The main point here is that,

for fixed {Pi} and a, solving the problem for Qb = Pa implies solving it for any Qb. In

this situation, the only probability we need to achieve with our local model is

tr(WPa ⊗ Pa) =
(d− φ)(trPa)(trPa) + (dφ− 1) tr(P 2

a )

d3 − d

=
(d− φ) + (dφ− 1)

d3 − d

=
d(1 + φ)− (1 + φ)

d3 − d

=
(d− 1)(1 + φ)

d(d2 − 1)

=
1 + φ

d(d+ 1)
,

that is, it suffices to show that

1 + φ

d(d+ 1)
=

∫
Λ

pA(a, λ, {Pi}) 〈λ|Pa |λ〉 π(λ)dλ.

But this last equality is trivially achieved by setting

φ = −1 + d(d+ 1)

∫
Λ

pA(a, λ, {Pi}) 〈λ|Pa |λ〉 π(λ)dλ. (4.11)
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In other words, we have constructed a local model for the state given by the parameter φ

determined by Eq. (4.11). However, we do not have much information about this state.

Particularly, we are still under the risk of the integral in Eq. (4.11) provides a parameter

φ which determines a separable state, and thus we are only presenting a sophisticated

proof of a well known fact to us: that such separable state is local.

Therefore, it remains to show that the right-hand side of Eq. (4.11) can be negative,

what would gives us a negative φ, corresponding (according with Theorem 6) to an en-

tangled state. In order to do that, the card still left up our sleeve is the setting of Alice’s

response function pA(a, λ, {Pi}). Our task now is to determine pA satisfying the symme-

try (4.5) for which the integral in (4.11) becomes as small as possible (since it is always

nonnegative), under the constraints pA(a, λ, {Pi}) ≥ 0 and
∑

a pA(a, λ, {Pi}) = 1 for all

λ and all {Pi}.
We observe that Eq. (4.11) determines φ (and thus W ) according with the choice

of Alice’s measurement {Pi} and outcome a. So, in principle, it seems that we have

constructed a state that depends on the measurement to be carried out on Alice’s side.

This would be a huge problem, since our goal is, for a given a state, be able to simulate the

correlations provided by any local measurements. We will see, however, that the choice

of Alice’s response function and the measure π(λ) guarantees that the integral in (4.11)

equals the same value for any a, {Pi} under consideration.

4.3 Alice’s response function and a local model for

an entangled state

At this point, we might feel tempted to look for a manner to compute the probabilities

of Alice’s outcomes similar to Bob’s. The response function pB(b, λ, {Qj}) employed by

Bob has the characteristic property of depending only on Qb, once b and λ are fixed. The

remaining measurement operators do not influence pB. This may appear very natural,

since Born’s rule got us used to something like this, in the quantum context. Nevertheless,

it is vital for Werner’s construction that the response function pA does not have this

property.

Indeed, suppose that, by fixing λ, we have pA = pA(Pa) (as it is pB). Then pA is

a non-negative, summing to one and additive map on families of mutually orthogonal

projections, while response function. Associated to pA, there is a probability measure µ

such that, if Pi is the projector onto the subspace Ei ⊂ Cd, then

pA(Pi) = µ(Ei),
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in the sense of Def. 2.6. According to Gleason’s theorem (and assuming d > 2), there is

a density operator ρλ such that

pA(Pa) = tr(Paρλ).

Substituting such pA as well as the previously defined pB in the left hand side of Eq.

(3.7), we have∫
Λ

tr(Paρλ) tr(Qb |λ〉 〈λ|)π(λ)dλ =

∫
Λ

tr(Pa ⊗Qbρλ ⊗ |λ〉 〈λ|)π(λ)dλ.

Hence, those response functions give rise to a local model that simulates the mixed state∫
Λ

ρλ ⊗ |λ〉 〈λ|π(λ)dλ.

However, the above state is clearly separable and, thus, local a priori ! (Remember,

the objective of our quest is an entangled local state.) Therefore, we conclude that the

response function pA should depend on other projectors of {Pi} and not just on Pa.

With this in our minds, there is only one more observation to be made before the

setting of pA. Since for every fixed λ and P the constraints

pA(a, λ, {Pi}) ≥ 0,
∑
a

pA(a, λ, {Pi}) = 1

single out a convex set in Rd, we expect that the smallest values of φ is attained for

response functions taking only the values 0 and 1. This suggests the following choice:

pA(a, λ, {Pi}) =

1, if ∀k 6= a, 〈λ|Pa |λ〉 < 〈λ|Pk |λ〉

0, if ∃k 6= a; 〈λ|Pa |λ〉 > 〈λ|Pk |λ〉 .
(4.12)

Note that we have left pA(a, λ, {Pi}) unspecified at all points where 〈λ|Pa |λ〉 is the

minimum of 〈λ|Pk |λ〉 but not the unique one. However, since this set is of measure zero,

it will not contribute to the integral (4.11) anyway, and we may choose on this subset any

measurable function satisfying the constraint.

We have written Eq. (4.12) in such a form that the property postulated in Eq. (4.5) is

manifest. Moreover, pA is independent of the labeling of the Pa in the sense that it only

depends of the set of numbers 〈λ|Pk |λ〉, but not on their ordering.

Substituting (4.12) in the integrand in (4.11), we have∫
Λ

pA(a, λ, {Pi}) 〈λ|Pa |λ〉π(λ)dλ =

∫
Λa

〈λ|Pa |λ〉 π(λ)dλ, (4.13)
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where Λa = {λ ∈ Λ; ∀k 6= a, 〈λ|Pa |λ〉 < 〈λ|Pk |λ〉}. Setting 〈λ|Pi |λ〉 = ui, through the

relation

|λ〉 7→ (u1, ..., ud)

we can identify the space of pure states of Cd ⊗ Cd with the simplex of d vertices S =

{(u1, ..., ud) ∈ Rd;u1 + ...+ ud = 1}, which is embedded in Rd−1, and Λa with the subset

S ′ ⊂ S delimited by the hyperplanes ua = u1, ..., ua = ud. The simplex is best imagined

to “stand” upon the plane ua = 0, so that the ua represents the “vertical” axis. S ′ thus

is the convex set formed by the face of S resting on the plane ua = 0 and vertex on the

barycenter of S, which is at height ua = 1/d.

To illustrate the above reasoning, let’s calculate explicitly the integral in the case where

d = 3. The simplex turns out to be the restricted plane S = {(x, y, z) ∈ R3;x + y + z =

1, x, y, z ≥ 0} and the planar set S ′ ⊂ S is delimited by the lines x = y, 2z = 1− x and

2z = 1− y.

Figure 4.1: The simplex S ⊂ R3 in light color and the subset S ′ in dark.

The barycenter of S (and apex of S ′) is the point (1/3, 1/3, 1/3). We can parameterize

the plane containing the simplex using

f(r, s) = (r, s, 1− r − s), r, s ∈ R,

for which we have

fr(r, s) = (1, 0,−1), fs(r, s) = (0, 1,−1), ||fr ∧ fs|| =
√

3.

We want to integrate the function g(r, s) = 1 − r − s over the domain comprehended
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between the points (1, 0, 0), (0, 1, 0) and (0, 1/3, 1/3). Hence, the integral is given by

∫ 1
3

0

∫ −x+1

−2x+1

(1− r − s)
√

3drds+

∫ 1

1
3

∫
−x+1
−x/2+1/2(1− r − s)

√
3drds

=

√
3

2 · 34
+

√
3

34

=

√
3

2

1

33
.

The normalization (indicated by π(λ) in Eq. (4.13)) is done by dividing the resulting

expression by
√

3/2, the area of S, an equilateral triangle of side length
√

2. We obtain

the result 1/33.

In the general case, the integral of ua over S ′ is equal to the height of the barycenter

of S ′ times the volume of S ′. Since the barycenter has height ua = 1/d2 and the volume

of S ′ is 1/d (the simplex is formed by d pieces congruent to S ′ and has volume equal to

1 by definition), we find that the integral results in 1/d3.

Substituting this value in Eq. (4.11), we have

φ = −1 +
1 + d

d2
. (4.14)

Henceforth, we have constructed a local model for projective measurements for an entan-

gled Werner state, since this value of φ is negative for all d ≥ 2. We will denote this state

by Wlocal.

By now, after the considerations over pA and the correspondence with the simplex, it

is clear that the value of φ in Eq. (4.11) is independent of the choice of Pa and the whole

construction results in the state given by 4.14 regardless of our starting point.

4.4 Barrett’s local model

Werner’s paper [1] was a breakthrough in the foundations of Quantum Theory5, since

showed that entanglement and non-locality are distinct features of quantum states. His

model is a proof that some aspects of Quantum Theory can be reproduced using only

classical resources and that nonlocality is one of the distinctly nonclassical features of

Quantum Theory.

However, the reproduction capability presented by Werner’s local model is limited,

since it only works for projective measurements. Indeed, quantum mechanics allows us to

perform a more general kind of measurement, the POVMs. The natural question raised

now is: is there a local model which can reproduce the correlations generated by any

5However, it took a while for being acclaimed as so. It is nice to see the history of citations.
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Figure 4.2: Werner’s local model shows that the set of separable states is strictly contained in
the set of projective-local states: at least Wlocal is projective-local but not separable.

POVM applied to an entangled state?

Jonathan Barrett showed that the answer to this question is affirmative [25]. Choosing

appropriate response functions for Alice and Bob, he was able to create a model that

reproduces the correlations given by any POVM over an slightly modified Werner state

which is entangled. More explicitly, the state simulated by Barrett is

WBarrett = α
2
∑d

i<j;i,j=1 |ij〉 〈ji|
d(d− 1)

+ (1− α)
Id×d
d2

, (4.15)

where

α =
(d− 1)d−1(3d− 1)

(d+ 1)dd

and d is the local dimension. (In Chapter 5 we show that the original Werner state also

has the form in Eq. (4.15), with α = (d−1)/d.) In state WBarrett, the first density matrix

that appears in the superposition is sometimes called the projector onto the antisymmetric

subspace of D(Cd⊗Cd). WBarrett can be shown to be entangled if and only if α > 1/(1+d),

which happens for all d ≥ 2.
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Figure 4.3: Barrett’s local model shows that the set of separable states is strictly contained
in the set of POVM-local states: at least WBarrett is POVM-local but not separable. It is still
an open question if the sets of projective-local and POVM-local states are the same or not; in
other words, it is not known if general measurements indeed offer any advantage to detect the
nonlocality of projective-local states.

One of the key observations that allowed Barrett to construct the model was that we

can restrict our attentions to the case where all the POVM elements are proportional to

one-dimensional projectors, that is, POVMs of the form M = {Mi} where Mi = aiPi,

with 0 ≤ xi ≤ 1 and Pi one-dimensional projector. Though we are not going to detail

Barrett’s local model, this simple result will be further used in Chapter 7, where another

local model for POVM will be detailed, so we prove it now.

Proposition 4.4.1. If a local model simulates the correlations of a POVM of the form

M = {Mi}, where Mi = aiPi, 0 ≤ ai ≤ 1 and Pi is a rank-1 projector, then it simulates

the correlations of any POVM.

Proof. Let N = {Nj} be an arbitrary POVM. According to the Spectral Decomposition

Theorem (Theorem 2), each positive operator Nj can be written as
∑

k cjkPjk, where

0 ≤ cjk ≤ 1 and the Pjk are one-dimensional operators satisfying PjkPjk′ = δkk′Pjk. If

each Nj is written in this form, then we can regard as if a more “detailed” POVM is taking
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place than the one who is actually been performed, with elements {cjkPjk}, and our model

will make the appropriate predictions. If the outcome referent to Pjk is predicted by the

model, then we say that the outcome Nj was actually obtained.

In Barrett’s model, the set of hidden variables is the same as the one used by Werner,

tridimensional unit vectors λ ∈ Cd, considered with uniform distribution. The response

functions defined for the POVMs M = {Mi} = {xiPi} performed by Alice is

pA(i, λ, {Mi}) = 〈λ|Mi |λ〉χ{x∈R;x≥0}(〈λ|Pi |λ〉 − 1/d)

+

(
1−

∑
k

〈λ|Mk |λ〉χ{x∈R;x≥0}(〈λ|Pk |λ〉 − 1/d)

)
xi
d
,

where the characteristic function χS is defined to map s to 1 if s ∈ S and to 0 otherwise.

Bob’s response function for N = {Nj} = {yjQj} is

pB(j, λ, {Nj}) =
1

d− 1
yj(1− 〈λ|Qj |λ〉).

More about this subject will be said in Chapter 7.
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Chapter 5

Hidden nonlocality

Until Sandu Popescu’s work [3], all the treatment of Bell inequalities had a common

aspect: they all consider the case in which the system is subjected to a single local

measurement in each part. Popescu showed that, despite the Werner state referent to the

parameter φ in Eq. (4.14) being local for any single measurement, i.e., do not violate any

Bell inequality, for a sequence of measurements, it does. This property became known as

hidden nonlocality.

The local state provided by Werner is

Wlocal =
d+ 1

d3
Id×d −

1

d2
V. (5.1)

Defining |Sij〉 to be “the singlet state in positions i and j”, that is,

|Sij〉 =
1√
2

(|ij〉 − |ji〉),

we have

−2 |Sij〉 〈Sij| = |ij〉 〈ji|+ |ji〉 〈ij| − |ij〉 〈ij| − |ji〉 〈ji| ,

thus the flip operator V can be written as

V = I − 2
d∑

i<j;i,j=1

|Sij〉 〈Sij|.

Substituting the above relation in Eq. (5.1), we can write the Werner state as

W =
1

d2

(
1

d
I + 2

d∑
i<j;i,j=1

|Sij〉 〈Sij|

)
. (5.2)

We will now show that after Alice and Bob perform each one a large rank projective
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measurement, it is possible that the resulting state violates the CHSH inequality for

specified measurements A,A′, B and B′.

First, each part performs the measurement referent to the projective operator

P = |1〉 〈1|+ |2〉 〈2| ,

that is, the measurement elements involved are {P, I − P}. The resulting state belongs

to the space generated by {|1〉 , |2〉} (in which case we will say the outcome was 1) or to

the space generated by {|3〉 , ..., |d〉} (in which case we will say the outcome was 0).

Because each part is performing this measurement, we have four possible outcomes:

(0, 0), (0, 1), (1, 0) and (1, 1). The resulting (unnormalized) state corresponding to the

outcome {1, 1} is

P ⊗ PWlocalP ⊗ P =
1

d3
P ⊗ PIP ⊗ P +

2

d2

∑
i<j

P ⊗ P |Sij〉 〈Sij|P ⊗ P

=
1

d3
P ⊗ P +

2

d2
|S12〉 〈S12| ,

where we have used the form (5.2). Let’s denote the subspace generated by {|1〉 , |2〉}
by S12. Notice that P ⊗ P := I4×4 is the 4 × 4 identity matrix acting in the S12 ⊗ S12

subspace and zero at the rest. Recalling that |S12〉 = |Ψ−〉, after normalization we obtain

W ′ =
1

tr( 1
d3
I4×4 + 2

d2
|Ψ−〉 〈Ψ−|)

(
1

d3
I4×4 +

2

d2
|Ψ−〉 〈Ψ−|

)
=

1

( 4
d3

+ 2
d2

)d3
I4×4 +

2

( 4
d3

+ 2
d2

)d2
|Ψ−〉 〈Ψ−|

=
d

d+ 2

(
1

2d
I4×4 + |Ψ−〉 〈Ψ−|

)
.

Notice that as d grows, the state approaches the singlet.

For the second measurement, Alice chooses1 randomly between operators A and A′ and

Bob between B and B′. Each of these operators have three different eigenvalues, 1, -1

and 0. The eigenvalues 1 and -1 are non-degenerate and the corresponding eigenvectors

belong to the subspace S12. The eigenvalue 0 is highly degenerate and corresponds to the

rest of the space, the subspace generated by {|3〉 , ..., |d〉}. The nongenerate part of these

operators is chosen such that they yield maximal violation of the CHSH inequality for the

singlet state |Ψ−〉, that is,

〈Ψ−|AB + AB′ + A′B − A′B′ |Ψ−〉 = 2
√

2.

1At this point, perhaps should be made a comment on a delicate topic, “causality”. We won’t.
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In another words, the operators A,A′, B,B′, when restricted to S12 ⊗ S12, are equal to

the operators Q,R, S, T , respectively, defined in Section 3.1.

With these operators and the state W ′, we have

tr(W ′[AB + AB′ + A′B − A′B′])

=
1

2d+ 4
tr(QS +QT +RS −RT ) +

d

d+ 2
〈Ψ−|AB + AB′ + A′B − A′B′ |Ψ−〉 .

It is not hard to see that tr(QS) = tr(RS) = tr(RT ) = tr(QT ) = 0, hence the first term

of the right side of the above equation vanishes and we conclude

tr(W ′[AB + AB′ + A′B − A′B′]) =
2
√

2d

d+ 2
> 2

for d > 5.

We conclude that, although Werner’s model can simulate all the correlations which

arise when only a single measurement is performed on each of the two particles, the model

cannot account for the correlations which arise when two consecutive measurements are

performed in each particle.

Figure 5.1: The successful application of a local filtering (represented by the arrow in red) on
Wlocal results in a state W ′ which violates CHSH, and thus does not belong to the set of local
states.

The main idea here is the introduction of previous local measurements, which are able
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to take the Werner state Wlocal to a CHSH-violating state with non-zero probability. The

nonlocality revelation depends on the success of these measurements. Therefore, they

are known as local filters : they filter the protocol of revealing nonlocality, in the sense

that the process is discarded if they fail, not providing the desired state needed for a Bell

inequality violation. In Chapter 7 we will meet such objects again.
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Chapter 6

Gisin-Degorre’s local model

In 1999, Nicolas Gisin and Bernard Gisin presented a local model for the singlet state

based on the detection loophole, that is, the non-maximal efficiency inherent to detectors,

in experiments [8]. The idea was to introduce a “probability of failure” in the detector of

one system (say Alice’s), generated by the local hidden variables.

Years later, in 2005, Julien Degorre and co-workers studied a way to quantify nonlo-

cality by measuring the amount of additional resources that should be considered besides

the hidden variables in order to simulate the measurements’ correlations, namely classical

communications, post-selection and nonlocal boxes [9]. They considered the Gisin-Gisin

model in [8] and reinterpreted the probability of failure as a probability of rejection by

Alice. Then, with only one bit of communication, they were able to reproduce locally

the statistics of the outcomes obtained in a EPR experiment (see Section 2.5). However,

without any further resources, their resulting protocol happens to simulate the Werner

state of C2 ⊗ C2

W = α |ψ−〉 〈ψ−|+ (1− α)
I4×4

4
,

with parameter α = 1/2.

In order to agree in notation with the original paper [9], from this point on we are going

to use the scalar product symbol for the functional of R3 × R3, which for unit vectors

denotes the co-sine of the angle between them, i.e.,

v · u := cos θvu,

for unit vectors |v〉 , |u〉 ∈ R3.
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6.1 Shared randomness

The context of [9] is Information Theory, and this influences their approach to the local

models problem. The first important observation is that the local hidden variables can

be seen as shared randomness, that is, as random variables provided by some source to

which both Alice and Bob have access. As discussed in Chapter 3, the role of the variables

λ, which are intrinsically random, is to completely explain the correlation between the

outcomes of each part. But we can go further and assume that the whole randomness

of the system is due to such variables, like if the probabilistic nature of the outcomes is

incorporated in the distribution π(λ) [7]. In this sense, once we know the hidden variable

λ, the result of every possible measurement is determined and there is no correlation

between the systems.

In this view, the local model works by taking a λ variable from a random source that

works according to π(λ) and using it to compute the response functions pA, pB. The

integral in Eq. (3.7) means that considering all the λ that provide outcome a for a

measurement {Mi}, we reach p(a|{Mi}). So we can imagine that exists a random source

to which all parts have access providing the variables that Alice and Bob input in their

response functions. As we will see, it is part of the strategy of the Gisin-Degorre model

that Alice sieves such variables before using them, provoking a bias on the initially uniform

distribution of them.

Another remarking difference is that the authors are generally interested in the mean

quantity of information exchanged in a process, so that it is natural to consider the

expected value of an outcome instead of its probability. This means that now we are

going to simulate the expectation E(A), where A is the random outcome of the observable

x · σ, instead of p(a|x) for some fixed a. An immediate consequence is that now our local

model will be label-dependent, unlike Werner’s.

With the deterministic view of the measurements’ results provided by the shared ran-

dom variables, the local model is now defined by response functions of the form A(x, λ)

that take values on {−1, 1}, accordingly to the random variable λ ∈ Λ, which has distri-

bution π(λ). In this way, the joint expectation of measurements x · σ done by Alice and

y · σ done by Bob becomes

E(AB) =

∫
Λ

π(λ)A(x, λ)B(y, λ)dλ.

Now we must also guarantee that the marginals are achieved properly by the response

functions, so we must check that

E(A) =

∫
Λ

A(x, λ)π(λ)dλ
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and

E(B) =

∫
Λ

B(y, λ)π(λ)dλ.

6.2 A local model for the EPR experiment correla-

tions

In Section 2.5, we presented the EPR experiment, which proves that if Quantum Theory

were local, it would be an incomplete theory. There we used the observables σx, σz, but

any other pair of non-commuting observables could replace them. We now present a

version slightly modified of the experiment, where Alice and Bob are allowed to measure

the spin along any direction they choose, based on Bohm’s simplified version.

Definition 6.1. Alice and Bob share a qubit pair in the singlet state |Ψ−〉 = (|01〉 −
|10〉)/

√
2. Each of them then receive the description of a projective measurement they have

to perform in their respective qubit, which can be represented by unit vectors |x〉 and |y〉
in R3. They then obtain measurement outcomes A,B ∈ {1,−1}, where 1 corresponds to a

spin parallel to the measurement’s direction and -1 to spin anti-parallel to this direction.

According to Quantum Theory, the outcome of Alice’s and Bob’s measurements, A

and B, have the following joint probabilities:

p(AB) =
1− ABx · y

4
,

or, equivalently, their joint and marginal expectation values are given by

E(AB) = −x · y,

E(A) = 0,

E(B) = 0.

So, in order to simulate locally the EPR experiment, we must achieve these three

expected values. Because of the Bell inequality violation (Section 3.1), we know that

this cannot be done using only hidden variables, that is, there is no way to define

λ, π(λ), A(x, λ) and B(y, λ) such that

E(AB) =

∫
π(λ)A(x, λ)B(y, λ)dλ,

with π(λ) independent of x and y.

However, Degorre and co-workers showed that if we allow the distribution of the hidden

variables to depend of Alice’s measurement, then statistics can be reproduced locally. In
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order to prove that, we start with two technical lemmas, which will be useful to the next

results as well.

Lemma 2. For any fixed unit vector x ∈ R3 we have∫
S2

(x · λ)dλ = 0.

Proof. Using spherical coordinates and adopting the reference frame where |x〉 = (1, 0, 0)

and |λ〉 = (1, θ, φ), we have∫
S2

(x · λ)dλ =

∫ π

0

∫ 2π

0

(x · λ) sin θdφdθ.

The scalar product of |x〉 and |λ〉 is the co-sine of the angle between them. With the

reference frame we set, by definition this angle is θ, since we put |a〉 over the z-axis. So

we obtain ∫ π

0

∫ 2π

0

(x · λ) sin θdφdθ = 2π

∫ π

0

cos θ sin θdθ

= 2π

[
1

2
sin2 θ

]π
0

= 0.

Lemma 3. For any fixed unit vector x ∈ R3 we have1

∫
S2
|x · λ|dλ = 2π.

Proof. Under the same assumptions in the proof of Lemma 2, we have∫
S2
|x · λ|dλ =

∫ π

0

∫ 2π

0

| cos θ| sin θdφdθ

= 2π

∫ π

0

| cos θ| sin θdθ

= 2π

(∫ π
2

0

cos θ sin θdθ −
∫ π

π
2

cos θ sin θdθ

)

= 2π

([
1

2
sin2 θ

]π
2

0

−
[

1

2
sin2 θ

]π
π
2

)
= 2π.

1This result can be generalized to
∫
Sn |x · λ|dλ = 2

nSn−1, where Sn−1 denotes the surface area of Sn−1
[26].
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Theorem 7. Let |x〉 and |y〉 be respectively Alice’s and Bob’s inputs. If Alice and Bob

share a random variable |λ〉 ∈ S2 distributed according to a biased distribution with prob-

ability density

π(λs|x) =
|x · λs|

2π
(6.1)

then they are able to simulate the correlations of the EPR experiment without any further

resource.

Proof. First, notice that π is indeed a probability density function, since π(λ) ≥ 0 for all

λ ∈ S2 and Lemma 3 shows that

1

2π

∫
S2
|x · λs|dλs = 1.

If Alice and Bob set their respective response functions as

A(x, λs) = − sign(x · λs), B(y, λs) = sign(y · λs), (6.2)

where the sign function sign(z) is defined as 1 if z ≥ 0 and −1 if z < 0, then the joint

expectation value is given by2

E(AB) =

∫
S2
π(λs|x)A(x, λs)B(y, λs)dλs

=
−1

2π

∫
S2
|x · λs| sign(x · λs) sign(y · λs)dλs

=
−1

2π

∫
S2

(x · λs) sign(y · λs)dλs

To solve this last integral, we choose a reference frame where |y〉 = (0, 0, 1), |x〉 =

2Notice that in this case we can also write the sign function sign(|x〉 · |λs〉) to be 1 if 〈x|λs〉 > 〈x′|λs〉
and -1 otherwise, much similar to Bob’s response function in the Werner model (Chapter 4).
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(sinα, 0, cosα) and |λs〉 = (
√

1− η2 cosφ,
√

1− η2 sinφ, η), which yields

−1

2π

∫
S2

(x · λs) sign(y · λs)dλs =
−1

2π

∫ 1

−1

∫ 2π

0

[sin(α) cos(φ)
√

1− η2 + cos(α)η] sign(η)dφdη

=
−1

2π

∫ 1

−1

[
sinα

√
1− η2 sign(η)

∫ 2π

0

cosφdφ

+

∫ 2π

0

cos(α)η sign(η)dφ

]
dη

=
−1

2π

∫ 1

−1

2π cos(α)η sign(η)dη

= −
[∫ 0

−1

cos(α)ηdη −
∫ −1

0

cos(α)ηdη

]

= − cosα

([
η2

2

]0

−1

−
[
η2

2

]1

0

)
= − cosα

= −x · y.

Since E(A) = 0 is almost exactly the content of Lemma 2, to finish the proof we only

have to establish E(B) = 0. Let’s consider the half-spheres S+,S− with respect to x and

λ− ∈ S−, λ+ ∈ S+. We have

E(B) =

∫
Λ

B(y, λs)π(λs|x)dλs

=
1

2π

∫
Λ

|x · λs| sign(y · λs)dλs

=
1

2π

[∫
S+

(x · λ+) sign(y · λ+)dλ+ −
∫
S−

(x · λ−) sign(y · λ−)dλ−

]
.

Substituting λ− = −λ+, we obtain

E(B) =
1

2π

[∫
S+

(x · λ+) sign(y · λ+)dλ+ −
∫
S+

(x · λ+) sign(y · λ+)dλ+

]
= 0.

The above theorem shows that with a biased distribution of the hidden variables,

Alice and Bob are able to do simulate the correlations of the EPR experiment locally.

Nevertheless, we can consider the situation where we start with a uniform distribution of

the λ, just like in Werner’s model, and then generate the bias by a sampling of the hidden

variables performed by Alice.
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The process to carry on this task can be divided in two steps. First Alice samples from

the uniformly distributed random variables λ the biased variable λs using her knowledge of

a, with the bias given by Eq. (6.1). In other words, Alice tests the hidden variable provided

by the source (initially unbiased) and accepts it or discards it, in such a way to produce the

probability distribution (6.1). The second step is the communication complexity problem

of communicate Bob about which of the hidden variables was accepted. It is to accomplish

this second step that we will need additional resources to those allowed by a local model.

6.3 The sampling

To performing the sampling, Alice uses the “choice method”3, performed in the following

way. Once Alice receives λ0 and λ1 from the random source, she calculates |a · λ0| and

|a · λ1|. The variable which provides the higher value is accepted as λs.

Protocol 1. (Choice method)

1. Alice picks λ0 ∼ Unif(S2)

2. Alice picks λ1 ∼ Unif(S2)

3. If |x · λ0| > |x · λ1|, then she accepts λ0 and sets λs = λ0; otherwise she accepts λ1

and sets λs = λ1.

Theorem 8. If Alice performs the choice method protocol, then λs ∼ |x · λs|/2π and

p(λs = λ1) = p(λs = λ2) = 1/2.

Proof. A uniform distribution of λ in S2 implies a uniform distribution of |x · λ| in the

interval [0, 1], therefore each λi is accepted with probability |x · λi|. Since the probability

density function of the uniform distribution on S2 is 1
2π

, after the protocol we have λs ∼
|x · λs|/2π.

6.4 The communication

Once Alice uses the choice method, Theorem 8 guarantees that the correct probability

distribution (6.1) occurs. In order to apply Theorem 7 to conclude that the EPR exper-

iment correlations are reproduced, all we need now is to make sure that Bob also knows

which is the sampled hidden variable λs, so that he can evaluate the appropriate response

function B(y, λs) = sign(y · λs).
3In [9], they initially present the “rejection method”, where Alice rejects λk if |a · λk| < uk, where

uk ∼ Unif[0, 1]. The big drawback is that Alice could reject an arbitrarily large number of samples
before accepting one, while in the choice method only one round is enough to perform the sampling. The
equivalence of the bias induced by both methods can be seen by noticing that |a · λ| ∼ Unif[0, 1]
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Considering only what a standard local hidden variables model allows - that is, shared

randomness - the Bell inequality violation guarantees that there is no way to tell Bob

about the result of the sampling, since Alice does everything locally. However, in the case

where we allow classical communication between both parts, the problem resumes to be

trivial. Actually, more: the trivial answer is even optimal. Once the sampling is done,

all that Alice has to do is to send one (classical) bit s ∈ {0, 1} to Bob saying whether

λs = λ0 or λs = λ1.

The problem of ally classical communication to shared randomness with the objective of

reproduce quantum correlations has been studied since 1992, when Tim Maudlin showed

that, in average, a finite amount of bits would suffice [27]. In 2003, Ben Toner and

Dave Bacon got the most effective optimization of it, presenting he first local model that,

together with one bit, simulate successfully the correlations of the singlet [28].

6.5 A local model for the Werner state

With this framework in hands, only a simple observation is enough for us to show that

we have a local model (without any further resources) for the C2 ⊗ C2 Werner state

W2×2 = α |Ψ−〉 〈Ψ−|+ (1− α)
I4×4

4
(6.3)

with α = 1/2.

By linearity, we can see that this state generates the joint expectation value E(AB) =

−(x · y)/2.

Giving up the possibility to use classical communication, we come back to the weaker

assumption that Alice and Bob have only shared randomness and, therefore, to the situ-

ation where Bob is not aware of Alice’s sampling, so he cannot distinguish λs from λ0 (or

λ1). The point is that if Bob always evaluate his respective response function assuming

λs = λ0, since p(λs = λ0) = p(λs = λ1) = 1/2 on average, he will be right half of the

time and thus the correlations will match those of the singlet. In the other half, the inde-

pendent response functions will generate the probabilities achieved by maximal random

noise, that is, by the state I4×4/4.

Thus we are proposing to use the following protocol.

Protocol 2. (Local model for the state W2×2)

1. Alice and Bob share a pair of variables λ0, λ1 ∼ Unif(S2).

2. Alice performs the choice method applied to λ0, λ1 and outputs A = − sign(x · λs).

3. Bob outputs B = sign(y · λ0).

We now proceed to show that the local model indeed reproduces the correlations of
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state W2×2.

Lemma 4. Alice’s response function (6.2) can be rewritten as

A(x, λs) = − sign(x · (λ0 + λ1)).

Proof. Notice that the sign function allows us to write

− sign(x · λ) = (−1)χSx (λ),

where χS is the characteristic function of the set S (i.e., χS(s) equals 1 if s ∈ S and 0

otherwise) and Sx denotes the semi-sphere {λ ∈ S2;x · λ ≥ 0}.
From the definition of λs in the choice method protocol, we conclude that

χSx(λ0 + λ1) = χSx(λs),

which means that − sign(x · λs) = − sign(x · (λ0 + λ1)).

Theorem 9. There exists a local model for the Werner state

W2×2 =
1

2
|Ψ−〉 〈Ψ−|+

1

2

I4×4

4
.

Proof. As already stated, the local model consists of Alice performing the choice method

and Bob always assuming that λs = λ0. Using Lemma 4, Lemma 2 and adjusting the

differential, we obtain

E(AB) = − 1

8π2

∫
S2
dλ0

∫
S2
dλ1(x · (λ0 + λ1)) sign(y · λ0)

= − 1

8π2
2π(x · y)

∫
S2
dλ1

= −x · y
2
.

As we also have E(A) = E(B) = 0, the model reproduces the correlations exhibited by

W2×2.
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Chapter 7

Genuine hidden nonlocality

So far, this is the road we have been following: Werner constructed a local model for pro-

jective measurements for the state Wlocal; Barrett constructed a local model for POVMs

for the state Ŵ , similar to Wlocal but not the same; and Popescu showed that states Wlocal

of dimension d ≥ 5 have hidden nonlocality revealed by a proper sequence of measure-

ments. Since it is not known if Wlocal is local for POVMs or not, these facts are not enough

to assure that a sequence of measurements is really necessary to activate its nonlocality.

If we adopt the natural hierarchy where a single POVM has a lower “cost” than a couple

of projective measurements, then is reasonable to say that Popescu’s activation protocol

still left room for optimization. Are two measurements indeed necessary?

On the other hand, it is not known if Barrett’s state Ŵ does not also present hidden

nonlocality; so far no-one was able to find a sequence of measurements to display it, but

this does not mean that it is impossible to exist one. The natural question raised here

is: is there an entangled state, the nonlocality of which can be observed only if sequential

measurements are used?

In the paper “Genuine hidden quantum nonlocality” [10], which is the subject of this

chapter, the term “Genuine” holds in the above sense. Brunner and co-workers presented

a state which counts with a local model for POVMs, which nevertheless can be shown to

violate the CHSH inequality after a sequence of judiciously chosen local measurements

are performed. It was the first and, until present date, the only example of a genuine

necessity of more than one measurement.
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7.1 A local model for dichotomic projective measure-

ments

We start by the construction of a local model for dichotomic projective measurements for

a state of C2 ⊗ C2. More specifically, we consider the class of states

ρG(q) = q |Ψ−〉 〈Ψ−|+ (1− q) |0〉 〈0| ⊗ I2×2

2
(7.1)

= q |Ψ−〉 〈Ψ−|+
1− q

2
(|00〉 〈00|+ |01〉 〈01|),

recalling that |Ψ−〉 = (|01〉 − |10〉)/
√

2 is the singlet state. We will see that state (7.1)

admits a local model mentioned above when q ≤ 1/2. Nevertheless, we can use the flip

operator as witness, as we did with the Werner states in Theorem 6, to prove that the

state is entangled for1 q > 1/3:

tr(V ρG) = q tr(V |Ψ−〉 〈Ψ−|) +
1− q

2
(tr(V |00〉 〈00|) + tr(V |01〉 〈01|))

=
q

2
(tr(V |01〉 〈01|) + tr(V |10〉 〈10|)− tr(V |10〉 〈01|)− tr(V |01〉 〈10|) +

1− q
2

= −q +
1− q

2
,

which is negative if and only if q > 1/3.

As in Chapter 6, the statistics we wish to simulate for ρG are E(A),E(B) and E(AB).

Notice that, by linearity,

EρG(A) = q E|Ψ−〉〈Ψ−|(A) + (1− q)E|0〉〈0|⊗ I
2
(A)

and analogously for E(B) and E(AB), where the indices say which state should be con-

sidered for each expectation. In Chapter 6, we saw that E|Ψ−〉〈Ψ−|(A) = E|Ψ−〉〈Ψ−|(B) = 0,

thus E(A) = (1− q) E|0〉〈0|(A) and E(B) = (1− q) E I
2
(B). Therefore, we have

E(A) = (1− q)
[

1 + 〈0|x · σ |0〉
2

− 1− 〈0|x · σ |0〉
2

]
= (1− q) 〈0|x · σ |0〉

= (1− q)xz
1Actually, the state is entangled for all q > 0, as can be seen using the Peres-Horodecki Criterion [13].
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(where |x〉 = (xx, xy, xz)) and

E(B) = (1− q)
[
tr

(
I

2

I + y · σ
2

)
− tr

(
I

2

I − y · σ
2

)]
=

(1− q)
2

tr(y · σ)

= 0.

For E(AB), since |0〉 〈0| ⊗ I
2

is a product state (thus the outcomes of any local mea-

surements are uncorrelated), we have

E(AB) = q E|Ψ−〉〈Ψ−|(AB) + (1− q) E|0〉〈0|⊗ I
2
(AB)

= q E|Ψ−〉〈Ψ−|(AB) + (1− q) E|0〉〈0|(A) E I
2
(B)

= q E|Ψ−〉〈Ψ−|(AB)

= −q(x · y),

where the last equality was shown in Chapter 6.

The performance of a dichotomic projective measurement is precisely what is done in

the EPR experiment (see Section 2.5), the only difference is the state being shared: now

we are using the modified singlet state ρG(q), instead of the singlet ρG(1) itself . Alice

(and Bob) will receive as input a vector |x〉 (and |y〉), and should simulate the statistics

of measuring the qubit observables x ·σ and y ·σ, with possible outcomes A,B ∈ {−1, 1}.
The following protocol is strongly inspired in Protocol 2.

Protocol 3 (Simulation of ρG(1/2)). 1. Alice and Bob share a tridimensional unit vec-

tor |λ〉, uniformly distributed on the sphere.

2. Upon receiving x, Alice tests λ. With probability |x · λ|, she accepts λ and outputs

A = − sign(x ·λ); otherwise, she outputs A = ±1 with probability (1±〈0|x ·σ |0〉)/2.

3. Bob outputs B = sign(y · λ).

Theorem 10. There exists a local model that simulates the correlations exhibited by state

ρG(q) upon the measurement of a dichotomic projective measurement, for any q ∈ [0, 1/2].

Proof. Let x · σ, y · σ be the observables measured by Alice and Bob, respectively. After

Protocol 3 is performed, as shown in Theorem 8, if Alice accepts λ, which occurs on

average with probability 1/2 (independently of x), λ is distributed according to the density

π(λ) = |x · λ|/2π. In this case, since Bob outputs B = sign(y · λ), Theorem 7 says that
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the correlation between Alice’s and Bob’s outcomes is

E(AB) =
−1

2π

∫
S2
|x · λ| sign(x · λ) sign(y · λ)

= −x · y.

As the marginal expectations are uniform, i.e., E(A) = E(B) = 0, we recover the singlet

correlations.

If Alice rejects λ, she simulates the statistics of state |0〉, while Bob’s outcome is

uncorrelated and uniformly distributed. Hence the model reproduces exactly the statistics

of state (7.1) for q = 1/2.

For 0 < q < 1/2, it is sufficient to observe that for q = 0 the state is clearly local and

that the set of all local states is convex. But since we haven’t discussed such topics in

this text (we recommend for the interested reader [7], or [29] for a gentler introduction),

we will explicitly show such convexity for this class of states, presenting a simple protocol

of simulation.

Fix p ∈ [0, 1]. The following protocol simulates the state ρ̆(p) = pρG(1/2) + (1 −
p) |0〉 〈0| ⊗ I

2
. (Notice that |0〉 〈0| ⊗ I

2
= ρG(0).)

Protocol 4 (Simulation of ρ̆(p)). 1. Alice and Bob share a real number r uniformly

distributed on the interval [0, 1] and a tridimensional unit vector |λ〉, uniformly

distributed on the sphere.

2. With probability x, Alice accepts r and executes Protocol 3; otherwise she outputs

A = ±1 with probability (1± 〈0|x · σ |0〉)/2.

3. Bob outputs B = sign(y · λ).

Now, one just have to check that

ρ̆(p) = pρG(1/2) + (1− p) |0〉 〈0| I
2

=
p

2
|ψ−〉 〈ψ−|+

(p
2

+ (1− p)
)
|0〉 〈0| I

2

=
p

2
|ψ−〉 〈ψ−|+ (1− p

2
) |0〉 〈0| I

2
= ρG(p/2).

Therefore, choosing the proper p on [0, 1], with Protocol 4 we can simulate ρG(q) for any

q ∈ [0, 1/2].
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7.2 Revealing nonlocality

Similar to what we have done in Chapter 5, we are now going to show that after local

filtering, the state ρG violates the CHSH inequality (see Section 3.1).

More specifically, we are going to apply filters of the form

FA = ε |0〉 〈0|+ |1〉 〈1| , FB = δ |0〉 〈0|+ |1〉 〈1| (7.2)

with δ = ε/
√
q to ρG. In another words, we will perform the measurements {FA, I−FA} in

Alice’s side and {FB, I−FB} in Bob’s, and discard the protocol in case that the outcome

is referent to operator I − FA or I − FB. This means that, after filtering, the resulting

(unnormalized) state is

ρ̃G = FA ⊗ FBρGF †A ⊗ F
†
B

= qFA ⊗ FB |Ψ−〉 〈Ψ−|FA ⊗ FB + (1− q)(FA |0〉 〈0|FA)⊗ (FB
I

2
FB)

=
q

2

[
ε2 |01〉 〈01|+ ε2

q
|10〉 〈10| − ε2

√
q

(|01〉 〈10|+ |10〉 〈01|)
]

+
1− q

2

[
ε4

q
|00〉 〈00|+ ε2 |01〉 〈01|

]
= ε2

[
1

2
|10〉 〈10| −

√
q

2
(|01〉 〈10|+ |10〉 〈01|) +

1

2
|01〉 〈01|

]
+O(ε4)

' 1

2
|10〉 〈10|+ 1

2
|01〉 〈01| −

√
q

2
(|01〉 〈10|+ |10〉 〈01|) +O(ε2)

By adding and subtracting to both sides
√
q(|01〉 〈01|+ |10〉 〈10|)/2, we achieve

ρ̃G '
√
q |Ψ−〉 〈Ψ−|+ (1−√q) |01〉 〈01|+ |10〉 〈10|

2
+O(ε2).

According to the Horodecki criterion (see Section 3.2), we can calculate that ρ̃G violates

CHSH up to 2
√

1 + q (for ε → 0). Thus, state ρG(q) is local for all 0 ≤ q ≤ 1/2 and

exhibits hidden nonlocality for projective measurements for all q > 0. In the unique other

know example of hidden nonlocality (Chapter 5), the local dimension was d ≥ 5, making

this case (with local dimension d = 2) the simplest example of the phenomenon.

7.3 A local model for POVMs

Nevertheless, our main goal was not achieved yet. We cannot guarantee that such nonlo-

cality is genuine, in the sense expressed in the beginning of the chapter: the local model

constructed accounts only for projective measurements. In principle, a Bell violation can
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be obtained using POVMs.

However, we now proceed to present a protocol for the construction of a state which

actually admits a local model for POVMs, based on another one which is local for projec-

tive measurements. To be more precise, once the local model for projective measurements

is done for the initial state, we will show that a repeated usage of it provides the simu-

lation of the POVMs for the second one. In this sense, it represents an optimization of

utilization of the hidden variables and the response functions of the initial model.

Admitting that a given state ρ0 of local dimension d is local for projective dichotomic

measurements, consider the state

ρ′ =
1

d2
[ρ0 + (d− 1)(ρA ⊗ σB + σA ⊗ ρB) + (d− 1)2σA ⊗ σB], (7.3)

where σA, σB are arbitrary d-dimensional states and ρA = trB(ρ0), ρB = trA(ρ0). (ρ′ is

indeed a state since is convex combination of states.)

Suppose that Alice and Bob receives as input the POVMs M = {Ma} and N = {Nb},
respectively. Then the expected value p(ab) which we are interested to reproduce locally

is given by

tr(Ma ⊗Nbρ
′) =

1

d2
[tr(Ma ⊗Nbρ0) + (d− 1) tr(MaρA) tr(NbσB) (7.4)

+(d− 1) tr(MaσA) tr(NbρB) + (d− 1)2 tr(MaσA) tr(MbσB)].(7.5)

Following Proposition 4.4.1, we can assume that the elements of both POVMs are

proportional to one-dimensional projectors, i.e., Ma = αaPa and Nb = βbQb, with αa, βb ≥
0. Note that by normalization of the POVM,

I =
∑
a

Ma =
∑
a

αaPa,

which implies

d = tr(I) =
∑
a

αa tr(Pa) =
∑
a

αa.

Similarly, we find
∑

b βb = d.

We will show that ρ′ is local for POVMs through the following protocol. The protocol

is written for Alice, but Bob follows the same procedure.

Protocol 5. 1. Alice chooses projector Pa with probability αa/d (notice that
∑

a αa/d =

1).

2. She simulates the dichotomic projective measurement {Pa, I − Pa} on state ρ0.

3. If the output of the simulation corresponds to Pa, she outputs a.
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4. Otherwise, she outputs (any) a with probability tr(MaσA).

Theorem 11. If there is a local model for dichotomic measurements over ρ0, then there

is a local model that simulates the correlations exhibited by state ρ′ given in Eq. (7.3)

upon the measurement of local POVMs.

Proof. Suppose Alice and Bob are able to simulate locally the correlations of projective

dichotomic measurements for the state ρ0. Let the Protocol 5 be performed and fix a, b

of the set of possible outcomes. Our goal is to show that p(a, b) = tr(Ma ⊗Nbρ
′), where

the left side probability is calculated according to the protocol.

First, notice that the probability that Alice (and the same holds for Bob) outputs in

step 3 (any outcome) is

∑
a

αa
d

tr(PaρA) =
1

d

∑
a

tr(MaρA) =
1

d
.

Since each part can output in step (3) or in step (4), four possibilities to obtain outputs

a and b arise.

• Both Alice and Bob output in step 3, which occurs with probability

αa
d

βb
d

tr(Pa ⊗Qbρ0) =
1

d2
tr(Ma ⊗Mbρ0);

• Alice outputs in step 3 and Bob in step 4. Since Bob outputs in step 4 with

probability (d− 1)/d, this occurs with probability

αa
d

tr(PaρA)
d− 1

d
tr(NbσB) =

d− 1

d2
tr(MaρA) tr(NbσB);

• Bob outputs in step 3 and Alice in step 4, which occurs with probability

d− 1

d2
tr(NbρB) tr(MaσA);

• Both output in step 4, which occurs with probability

(d− 1)2

d2
tr(MaσA) tr(NbσB).

Altogether, we find that p(a, b) matches accurately Eq. (7.4).
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7.4 Revealing genuine nonlocality

Theorem 11 says that the same local model that reproduces the correlations of dichotomic

projective measurements for ρ0 can reproduce the correlations of a POVM applied to ρ′, if

the right protocol is executed. We are now going to use this result to compile everything

we saw in the last sections and construct a local state for POVM which violates the CHSH

inequality after filtering, proving that a sequence of measurements is indeed necessary in

certain cases.

In Eq. (7.3), if we set the local dimension to be d = 2 and ρ0 = ρG(q) (given in Eq.

(7.1)), which is local for projective measurements for q ≤ 1/2, we will obtain the reduced

states

ρA(q) = q
I2×2

2
+ (1− q) |0〉 〈0| ,

ρB(q) = q
I2×2

2
+ (1− q)I2×2

2
=
I2×2

2
.

Setting also σA = σB = |0〉 〈0|, we define the state

ρ′G(q) =
1

4

[
q |Ψ−〉 〈Ψ−|+ (1− q) |0〉 〈0| ⊗ I2×2

2
+ q

I2×2

2
⊗ |0〉 〈0|+ (1− q) |00〉 〈00|

+ |0〉 〈0| ⊗ I2×2

2
+ |00〉 〈00|

]
=

1

4

[
q |Ψ−〉 〈Ψ−|+ (2− q) |0〉 〈0| ⊗ I2×2

2
+ q

I2×2

2
⊗ |0〉 〈0|+ (2− q) |00〉 〈00|

]
.

We know that, by construction, ρ′G(q) with q ≤ 1/2 is local, concerning to general

measurements. We are now going to show that, despite of that, it violates the CHSH

inequality after filtering, therefore exhibiting genuine hidden nonlocality.

Applying filters of the form (7.2) with δ = ε/
√
q to state ρ′G, we obtain the unnormalized

state

ρ̃′G = FA ⊗ FBρ′GFA ⊗ FB

=
1

4

[
qFA ⊗ FB |Ψ−〉 〈Ψ−|FA ⊗ FB + (2− q)(FA |0〉 〈0|FA)⊗ (FB

I

2
FB)

+q(FA
I

2
FA)⊗ (FB |0〉 〈0|FB) + (2− q)(FA |0〉 〈0|FA)⊗ (FB |0〉 〈0|FB)

]
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=
1

4

[
q

2
[ε2 |01〉 〈01|+ ε2

q
|10〉 〈10| − ε2

√
q

(|01〉 〈10|+ |10〉 〈01|)]

+
2− q

2

(
ε4

q
|00〉 〈00|+ ε2 |01〉 〈01|

)
+
q

2

(
ε4

q
|00〉 〈00|+ ε2

q
|10〉 〈10|+ 2− q

2

ε4

q
|00〉 〈00|

)]
=

ε2

4

[
q

2
|01〉 〈01|+ 1

2
|10〉 〈10| −

√
q

2
(|01〉 〈10|+ |10〉 〈01|) + |01〉 〈01|

−q
2
|01〉 〈01|+ 1

2
|10〉 〈10|

]
+O(ε4)

' 1

2

[
|01〉 〈01|+ |10〉 〈10| −

√
q

2
(|01〉 〈10|+ |10〉 〈01|)

]
+O(ε2)

=
|01〉 〈01|+ |10〉 〈10|

2
−
√
q

2

|01〉 〈10|+ |10〉 〈01|
2

+O(ε2)

=

√
q

2
|Ψ−〉 〈Ψ−|+

(
1−
√
q

2

)
|01〉 〈01|+ |10〉 〈10|

2
+O(ε2).

The resulting state ρ̃′G violates the CHSH inequality up to 2
√

1 + q/4 (for ε → 0)

according to the Horodecki criterion. Hence, sequential measurements are necessary to

reveal the nonlocality of ρ′G, which therefore exhibits genuine hidden nonlocality.

Figure 7.1: The successful application of a local filtering (represented by the arrow in red) on
the POVM-local state ρ′G results in a state ρ̃′G which violates CHSH, and thus does not belong
to the set of local states.
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7.5 Genuine and maximal

Until now, throughout this chapter we have dealt with quantum states of C2 ⊗ C2. We

conclude the chapter by saying that in [10] the authors also present an even more extremal

case of this phenomenon, occurring with a state of C3 ⊗ C2, a qutrit-qubit state. Using

the presented machinery, they showed that a state with genuine hidden nonlocality can

violate maximally the CHSH inequality.

The state

ρE = q |Ψ−〉 〈Ψ−|+ (1− q) |2〉 〈2| ⊗ I2

2

can be shown to be local for dichotomic projective measurements (a protocol similar to

Protocol 3 should be performed). Then, applying Protocol 5 to ρE and taking σA = σB =

|2〉 〈2| we can simulate POVMs on the state

ρ̃E =
1

9

[
q |Ψ−〉 〈Ψ−|+ (3− q) |2〉 〈2| ⊗ I2

2
+ 2q

I2

2
|2〉 〈2|+ (6− 2q) |22〉 〈22|

]
, (7.6)

constructed via Eq. (7.3).

To reveal the nonlocality of the above state, we apply filters of the form FA = FB =

|0〉 〈0| + |1〉 〈1|. After successful filtering, the pure singlet state |Ψ−〉 〈Ψ−| is obtained,

which we know to violate maximally CHSH. Hence, state (7.6) has genuine and maximal

hidden nonlocality.
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Considerações finais

Nesta dissertação, nosso foco foi apresentar alguns exemplos de modelos locais e não-

localidade escondida, explicitando os cálculos por trás deles e enfatizando suas motivações

tanto quanto posśıvel. Em particular, o trabalho mais seminal sobre o assunto, o modelo

local de Werner, foi originalmente apresentado de forma muito intrincada. Talvez um

estudo mais detalhado de tal modelo facilite a introdução de novos pesquisadores ao

assunto; este texto talvez tenha sido um primeiro passo para tal estudo.

Naturalmente, vários trabalhos sobre o tema não aparecem aqui, e outros são ape-

nas brevemente citados. Especificamente no caso de modelos locais, isso é um pouco

incômodo, já que o universo dos modelos locais não é muito grande. O modelo de Barrett

[25], por exemplo, mereceria mais espaço, dada a sua importância. Outro trabalho impor-

tante é Ref. [30], no qual é estudada a robustez da não-localidade ao rúıdo e apresentado

um modelo local similar aos que vimos aqui, inspirando Hirsch et al. [10]. Para o caso

tripartite, Ref. [31] apresenta um modelo local para medições projetivas muito bonito

e interessante. Um review bastante completo e atualizado sobre o tópico de modelos

locais pode ser encontrado na Ref. [33]. Quanto à ativação de não-localidade, entre-

tanto, deixamos um ramo inteiro intocado, onde são consideradas múltiplas cópias de um

mesmo estado local e redes quânticas, por exemplo, para culminar na violação de uma

desigualdade de Bell [7, 29].

O que fica razoavelmente claro é que esta é uma área de pesquisa com muito potencial,

onde exemplos representativos são bem-vindos e, com raras exceções, resultados gerais

ainda são apenas conjecturados. Por exemplo, é posśıvel criar um modelo local com

outros objetos que não vetores unitários desempenhando o papel de variáveis ocultas? É

posśıvel um modelo local para POVMs, no caso multipartite? Existe um estado quântico

emaranhado completamente local, ou seja, que não viola desigualdade de Bell alguma,

nem mesmo nesses cenários mais gerais de sequências de medições e múltiplas cópias?

Ou será que emaranhamento e não-localidade são afinal equivalentes, nesse sentido mais

amplo? Relacionada a essa última questão há a Conjectura de Peres, que afirma que os

estados com emaranhamento preso (bound entanglement) são completamente locais2.

Essa dissertação com certeza não responde a todas as perguntas que propõe ou levanta.

2Recentemente, foi mostrado que a conjectura é falsa [32].
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Pior: talvez, em algum sentido, ela leve o leitor a ficar ainda mais confuso. Mas sejamos

otimistas, e acreditemos que agora estamos confusos num ńıvel mais alto e sobre coisas

mais importantes.3

3Parafraseando um pensamento colocado do lado de fora da sala de estudos de Matemática, em Tromso
University.
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