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Critical exponents of the disorder-driven superfluid-insulator transition in one-dimensional
Bose-Einstein condensates
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We investigate the nature of the superfluid-insulator quantum phase transition driven by disorder for
noninteracting ultracold atoms on one-dimensional lattices. We consider two different cases: Anderson-type
disorder, with local energies randomly distributed, and pseudodisorder due to a potential incommensurate
with the lattice, which is usually called the Aubry-André model. A scaling analysis of numerical data for
the superfluid fraction for different lattice sizes allows us to determine quantum critical exponents characterizing
the disorder-driven superfluid-insulator transition. We also briefly discuss the effect of interactions close to the
noninteracting quantum critical point of the Aubry-André model.

DOI: 10.1103/PhysRevA.84.055601 PACS number(s): 67.85.Hj, 64.60.an, 64.70.Tg

Introduction. A superfluid-insulator transition in a disor-
dered noninteracting system of bosons at zero temperature is a
special type of quantum phase transition (QPT) [1]. Instead
of the more conventional competition between different
interactions, it is disorder that causes a drastic change in
the nature of the ground state, thus altering the physical
characteristics of the material. A similar type of transition
from a metal to an insulator, usually called the Anderson
localization transition, was first proposed by Anderson [2]
and has been extensively studied in electronic systems [3]. In
general, the approach focuses on the conductance behavior as
the Fermi level changes in the vicinity of the mobility edge,
which separates localized and extended one-particle states. In
this context, the lower critical dimension has been determined
to be dL = 2, which means that all the states are localized in
one dimension for any finite amount of disorder. Nevertheless,
given that the states in a strictly nondisordered system are
extended, there is a clear change of regime when the disordered
strength is reduced to zero, which can be characterized as a
QPT.

In the past decade, enormous progress in the techniques
for creating ultracold atom systems in laboratory settings
extended the interest in the disorder effects and localization
to bosonic systems (for recent reviews, see [4–7]). For bosons,
the transition is from the insulator (localized) state to the
superfluid one. It was observed both for laser-speckle disorder
[8] and quasiperiodic optical lattices [9] in Bose-Einstein
condensates of 87Rb and 39K atoms, respectively. While
speckle disorder comes close to the Anderson-type random
disorder considered in theoretical approaches, quasiperiodic
lattices present a superposition of the lattice potential with
an incommensurate one and can be viewed as experimental
realizations of pseudodisorder models like the Aubry-André
(AA) model [10]. The latter also shows superfluid and
localized regimes in one dimension, but the transition between
them occurs at a nonzero critical disorder [10,11].

Recently, we have investigated numerically the superfluid-
insulator transition in one-dimensional, noninteracting sys-
tems of bosons with these two types of disorder [12]. Here
we focus on the scaling properties of the superfluid fraction
near the superfluid-insulator transition, obtaining the relevant

critical exponents. For random disorder, even though the
superfluid phase is destroyed for arbitrarily weak disorder,
we show that the transition can still be described as a quantum
critical phenomenon with well-defined critical exponents and
power-law scaling behavior. The same happens for the AA
model, but the universality classes are different.

Our starting point is a well-known scaling relation for the
singular part of the superfluid density ρs close to a quantum
superfluid-insulator phase transition [13],

ρs ∼ |g|ν(d+z−2), (1)

where g measures the distance to the quantum critical point
(QCP), ν is the correlation length exponent (i.e., the correlation
length diverges as ξ ∼ |g|−ν at the QCP), d is the spatial
dimension, and z is the dynamic critical exponent associated
with the QCP. The superfluid density is directly related to
the helicity modulus [14] and can be viewed as a measure
of the system’s response to a phase-twisting field. Thus, it is
natural to interpret the correlation length as a phase-coherence
length. In the insulating phase, it should coincide with the
localization length, which measures the spatial extent of the
wave functions. This holds also for disordered metals [3].

In a finite system, even at criticality, the correlation length
is limited by the system size L, and the finite-size-scaling form
of the superfluid density is

ρs ∼ L−(d+z−2)F (L/ξ ) = L−(d+z−2)F (L|g|ν) . (2)

The corresponding relation for the superfluid fraction (fs =
Ldρs) is

fs ∼ L−(z−2)F (L|g|ν) . (3)

This last equation is suitable to determine the critical exponents
ν and z from a numerical evaluation of fs for various lattice
sizes, as we do in the following.

Anderson-like disorder. The usual Hamiltonian describing
interacting bosons on a lattice is known as the Bose-Hubbard
Hamiltonian and is given by

H =
∑

i

εini + �
∑

〈ij〉
(a†

i aj + a
†
j ai) + U

2

∑

i

ni(ni − 1) ,

(4)
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where a
†
i and ai are the creation and annihilation operators

of a boson at the lattice site i, ni = a
†
i ai is the corresponding

number operator, each site has a single bound state of energy εi ,
hopping between sites is restricted to nearest neighbors, with
amplitude �, and U is a local repulsive interaction. In the rest
of this paper, energies are measured in units of the tunneling
amplitude �. An Anderson-like disorder [2] is introduced by
choosing random local energies with a uniform distribution in
the range −�/2 � εi � �/2, so that � is a measure of the
disorder strength.

We carried out a thorough numerical analysis of the above
model for the noninteracting case in one spatial dimension.
Details of this numerical study are given in Ref. [12]. We
recall one of the main results reported there, namely that the
superfluid fraction for a lattice of size L obeys the relation
fs = exp(−�/�L)4/3, where �L is a characteristic disorder
strength for suppression of superfluidity, which scales with the
lattice size as �L = C L−3/2. This latter relation is consistent
with the expected value of the critical disorder strength �c = 0
for destroying the superfluid phase in the thermodynamic limit
for a one-dimensional system. Furthermore, defining g ≡ � −
�c = �, this scaling of �L with L is recognized as the finite-
size version of the general relation ξ ∼ |g|−ν , immediately
yielding the correlation-length exponent ν = 2/3.

Equation (3) implies that Lz−2fs is a universal function of
L�ν . The corresponding plot of our data for different lattice
sizes is shown in Fig. 1, where it is clear that all the data
collapse onto a universal curve. The appearance of fs alone as
the scaling quantity in the vertical axis means that the dynamic
critical exponent is z = 2. The scaled variable of the horizontal
axis in the collapsed plot confirms the value ν = 2/3 for the
correlation-length exponent. Actually, for the present problem,
we are able to determine explicitly the scaling function F (x)
in Eq. (3). The above-mentioned expression for fs implies
that F (x) = exp(−x2/C2). Since x = L/ξ = L�ν , the value
z = 2 for the dynamic exponent implies a jump of the
superfluid fraction from 0 to 1 at the transition occurring for

fs

L Δ2/3

L = 50

FIG. 1. (Color online) Finite-size scaling of the superfluid frac-
tion for Anderson-type disorder. According to Eq. (3), the horizontal-
axis variable for collapsed curves is L|g|ν , which gives ν = 2/3,
while the absence of any rescaling of fs implies that z = 2.

� = 0 in the limit L → ∞. This jump is reminiscent of that of
the helicity modulus in the two-dimensional XY model [15].

The value ν = 2/3 obtained here for the correlation-length
exponent has not been determined previously, to the best of
our knowledge. This new exponent for the superfluid-insulator
transition seems to violate the inequality ν � 2/d, which holds
for other disordered systems [13]. However, this inequality
has been proved only for interacting systems and for nonzero
critical values of the parameter driving the transition, which is
not the case here. On the other hand, the dynamic exponent z =
2 implies that the effective dimension of the quantum phase
transition [1] is deff = d + z = 3. For disordered interacting
bosons, the Bose-glass-to-superfluid transition is characterized
by the relation z = d [13]. Therefore, interacting and non-
interacting bosons are in different universality classes with
respect to the localization transition. In the renormalization
group language, interaction is a relevant term close to the
disordered noninteracting fixed point.

Aubry-André model. The Aubry-André model can also be
described by the Hamiltonian (4), with U = 0, except that
the distribution of local energies is not random but periodic
with a period incommensurate with the lattice spacing. These
energies are usually written as

εi = � cos(2πβi), (5)

where β = (1 + √
5)/2 is the golden ratio and i assumes

integer values from 1 to L. This is actually a special case of the
Harper model [16] for electrons in a two-dimensional lattice
in the presence of a perpendicular magnetic field, for which
Eq. (5) holds for any value of β, with different characteristics
of the spectrum for rational or irrational values. Disorder-like
effects here are a consequence of the incommensurability
between the “external potential” and the lattice. Aubry and
André [10] proved that for this model localization occurs only
when the strength of the potential � is larger than the critical
value �c = 2. For finite lattices, it is convenient to replace
β with βn = Fn+1/Fn, the ratio of two consecutive Fibonacci
numbers, whose limit for n → ∞ is the golden ratio. Then,
the lattice size must be chosen as L = Fn in order to allow
for the use of periodic boundary conditions. For this kind of
finite lattices, the critical value �c = 2 remains a rigorous
result [11], since it corresponds to a duality between the
Hamiltonians in position and momentum space.

It was shown in Ref. [12] that the superfluid fraction
undergoes a very sharp transition around � = 2 for essentially
all lattice sizes. This sharpness makes it difficult to directly
extract the correlation-length exponent, as done for random
disorder. Here, we concentrate on a narrow region around
�c, searching for the appropriate scaling variable proportional
to g ≡ � − �c = � − 2, and the appropriate scaling of the
superfluid fraction. Our results are shown in Fig. 2. The data
collapse onto two universal curves, for even and odd numbers
of lattice sites. Although the scaling functions are different for
these two cases, the critical exponents for which the curves
collapse are the same. In view of Eq. (3), we immediately
identify the correlation-length exponent ν = 1 from the x-axis
scaling variable in Fig. 2 and the dynamic exponent z = 2.374
from the y-axis scaling. It was already known [10] that ν = 1
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FIG. 2. (Color online) Finite-size scaling of the superfluid frac-
tion for the AA model. The data collapse in different curves for
even and odd numbers of lattice sites (respectively, lower and upper
curves).

for this model. Next we discuss the obtained value of z in the
light of properties of the energy spectrum.

The spectrum of the Harper model has been thoroughly
studied in the past [17–21]. For general rational values of β

it is multifractal at � = 2, yielding the famous Hofstadter
butterfly [22], shown in Fig. 3. There we highlight the case
that we are studying here, with β being a rational approximant
of the golden ratio. In particular, the figure shows our result
obtained from numerical diagonalization of the Hamiltonian
for a lattice of size L = 610. The two bottom panels illustrate
the fractal nature of this spectrum.

With our replacement of β by a ratio of two Fibonacci
numbers, βn = Fn+1/Fn, the spectrum is equivalent to the
one for β̄n = βn − 1 = Fn−1/Fn, which contains Fn bands
and Fn−1 gaps. As discussed in detail in Refs. [19,20], when
Fn = L → ∞ the width �EL of a given band belonging to
the spectrum scales as �EL ∼ L−γ , with different regions
of the spectrum associated with different values of γ (not
to be confused with the susceptibility critical exponent). In
particular, a maximum value γmax = 2.374 corresponds to
band-edge states. On the other hand, the band width is a
characteristic energy of the system and therefore should scale
as ξ−z, which means that �EL ∼ L−z. Our finding of z = γmax

is in agreement with the relevant state for the zero-temperature
superfluid-insulator transition being the bottom edge of the
lowest-lying band.

Effects of interaction. The interaction term in Eq. (4) can
be treated as a relevant field close to the QCP. The knowledge
of the dynamic exponent allows us to generalize the scaling
relations close to the QCP for small but finite U . The free
energy, for example, is given by

Fs ∝ |g|ν(d+z)P (U/|g|νz) , (6)

where again we used the fact that U is an energy and thus scales
with ξ−z. From the above equation, we see that the scaling
contribution to the critical line separating the superfluid and
insulating phases is

Uc(g) ∝ |g|νz . (7)

β

FIG. 3. (Color online) Spectra of the Harper model, highlighting
the spectrum corresponding to the AA model (for a rational
approximation of the golden ratio β = 987/610). Its fractal nature
is illustrated in the bottom by expanding the small box drawn inside
the middle panel. We show the spectrum for β − 1, which is the same
as for β according to Eq. (5).

The critical exponents are those associated with the disordered
noninteracting QCP at U = 0, � = �C = 2. Since the product
νz = 2.374 is large we have to take into account analytic
contributions to the shape of the critical line. This line can
be written in general as

Uc = f (g) + a±|g|νz , (8)

where f (g) is an analytic function and ± refers to the sign of
g. Expanding close to the QCP, analytic contributions up to
the second order dominate over the scaling term when g → 0.
To illustrate this point, in Fig. 4 we show a phase diagram
close to the noninteracting fixed point at �c = 2, for repulsive
(U > 0) and attractive (U < 0) interactions. This is a plot of
the superfluid fraction (color scale) as a function of � and
U , obtained by diagonalizing the Hamiltonian (4) for N = 8
interacting bosons on a lattice of L = 8 sites. We can see that
a straight line [i.e., f (g) ∼ g] is a very good approximation
to the boundary between the superfluid and localized regions.
Even though the transition is smoothed out by the small lattice
size, it is worth mentioning that the value of fs at the critical
point (U = 0,� = 2) is compatible with the lower curve of
Fig. 2 for L = 8.

Conclusions. We studied the superfluid-insulator transition
for bosons on a one-dimensional lattice, both with random
disorder and the pseudodisorder described by the Aubry-André
model, the two prototype models employed in the investigation
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FIG. 4. (Color online) Zero-temperature phase diagram near the
localization transition in the presence of a small interaction. The color
scale indicates values of the superfluid fraction. The line Uc(g) in the
vicinity of the non-interacting QCP is essentially linear (with a slope
close to 0.1), implying that it is dominated by the analytic part f (g)
in Eq. (8).

of localization for ultracold atoms in optical lattices. Using
a finite-size-scaling analysis of the superfluid fraction, we
obtained the critical exponents characterizing this transition.
The superfluid fraction yields the correlation-length exponent
ν and the dynamic critical exponent z. For random disorder we

found ν = 2/3 and z = 2, while for the AA model the results
are ν = 1 and z = 2.374. The other critical exponents can be
obtained from the quantum hyperscaling relations [1] 2 − α =
ν(d + z) and 2β = ν(d + z − 2 + η). These two models fall
into different universality classes, which is not surprising
since the critical disorder strength for the superfluid-insulator
transition is zero for Anderson-like disorder and nonzero
for the AA model, which also exhibits a multifractal energy
spectrum at the QCP.

It is interesting to observe that the scaling form of the free
energy for nonzero temperature T can be used to determine
the thermodynamic behavior close to the superfluid-insulating
QCP. From it, a general dependence of the specific heat with
temperature is obtained [13], with the form C ∼ T d/z.

Our brief discussion of interaction effects in the AA
model shows that the critical point moves to stronger
disorder for repulsive interaction and to weaker disor-
der in the attractive case. Regions of the phase diagram
that correspond to localized and superfluid regimes in the
thermodynamic limit are separated by a line that is ap-
proximately linear, reflecting the dominance of nonsingular
contributions.
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