
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

MOSER SILVA FAGUNDES

Integrating BDI Model and Bayesian
Networks

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dra. Rosa Maria Vicari
Advisor

Porto Alegre, March 2007



CIP - CATALOGAÇÃO NA PUBLICAÇÃO

Fagundes, Moser Silva

Integrating BDI Model and Bayesian Networks / Moser Silva
Fagundes. – Porto Alegre: PPGC da UFRGS, 2007.

104 f.: il.

Thesis(Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2007. Advisor: Rosa Maria Vicari.

1. BDI Model. 2. Bayesian Networks. 3. Ontologies. I. Vicari,
Rosa Maria. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquíria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Profa. Luciana Porcher Nedel
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“It is the mark of an educated mind to be able
to entertain a thought without accepting it.”

— ARISTOTLE
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ABSTRACT

Individually, Artificial Intelligence research areas have proposed approaches to solve
several complex real-world problems. The agent-based paradigm provided autonomous
agents, capable of perceiving their environment, reacting in accordance with different
situations, and establishing social interactions with other software agents and humans.
Bayesian networks provided a way to represent graphically the conditional probability
distributions and an evidence-based probabilistic reasoning. Ontologies are an effort to
develop formal and explicit specifications of concepts, which have been used by a wide
range of research areas, including Multiagent Systems.

However, there are applications whose requirements can not be addressed by a single
technology. Circumstances like these demand the integration of technologies developed
by distinct areas of Computer Science. This work is particularly concerned with the
integration of Belief-Desire-Intention (BDI) agent architecture and Bayesian networks.
Moreover, it is adopted an ontology-based approach to represent the agent’s uncertain
knowledge.

To bring together those technologies, it was developed an ontology to represent the
structure of Bayesian networks knowledge representation. This ontology supports the
interoperability among agents that comply with the proposed architecture, and it also fa-
cilitates the understanding necessary to abstract the agents’ mental states and cognitive
processes through elements of Bayesian networks. Once specified the ontology, it was
integrated with the BDI agent architecture. By integrating BDI architecture and Bayesian
networks, it was obtained a cognitive agent architecture capable of reasoning under un-
certainty. It was performed in two stages: abstraction of mental states through Bayesian
networks and specification of the deliberative process.

Finally, it was developed a case study, which consists in applying the probabilistic
BDI architecture in the Social Agent, a component of a multiagent educational portal
(PortEdu).

Keywords: BDI Model, Bayesian Networks, Ontologies.



RESUMO

Integrando Modelo BDI e Redes Bayesianas

Individualmente, as linhas de pesquisa da Inteligência Artificial têm proposto aborda-
gens para a resolução de inúmeros problemas complexos do mundo real. O paradigma
orientado a agentes provê os agentes autônomos, capazes de perceber os seus ambientes,
reagir de acordo com diferentes circunstâncias e estabelecer interações sociais com out-
ros agentes de software ou humanos. As redes Bayesianas fornecem uma maneira de
representar graficamente as distribuições de probabilidades condicionais e permitem a
realização de raciocínios probabilísticos baseados em evidências. As ontologias são es-
pecificações explícitas e formais de conceituações, que são usadas em uma variedade de
áreas de pesquisa, incluindo os Sistemas Multiagentes.

Contudo, existem aplicações cujos requisitos não podem ser atendidos por uma única
tecnologia. Circunstâncias como estas exigem a integração de tecnologias desenvolvidas
por distintas áreas da Ciência da Computação. Esta dissertação trata a integração do
modelo de agentes BDI (Belief-Desire-Intention) e das redes Bayesianas. Além disso, é
adotada uma abordagem baseada em ontologias para representar o conhecimento incerto
dos agentes.

O primeiro passo em direção a integração foi o desenvolvimento de uma ontologia
para representar a estrutura das redes Bayesinas. Esta ontologia tem como principal ob-
jetivo permitir a interoperabilidade agentes compatíveis com a arquitetura proposta. No
entanto, a ontologia também facilita o entendimento necessário para abstrair os estados
mentais e processos cognitivos dos agentes através de elementos das redes Bayesianas.
Uma vez construída a ontologia, a mesma foi integrada com a arquitetura BDI. Através
da integração do modelo BDI com as redes Bayesianas foi obtida uma arquitetura cogni-
tiva de agentes capaz de deliberar sob incerteza. O processo de integração foi composto
de duas etapas: abstração dos estados mentais através de elementos das redes Bayesianas
e especificação do processo deliberativo.

Finalmente, foi desenvolvido um estudo de caso, que consistiu na aplicação da ar-
quitetura proposta no Agente Social, um componente de um portal educacional multia-
gente (PortEdu).

Palavras-chave: Modelo BDI, Redes Bayesianas, Ontologias.
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1 INTRODUCTION

The present master dissertation is contextualized in the Artificial Intelligence (AI),
more specifically, in the Autonomous Agents and Multiagent Systems area. However,
it also involves researches on ontologies and Bayesian networks. Each mentioned area
addresses specific issues, in example: the agent-oriented paradigm provides autonomous
agents, capable of perceiving their environment, reacting in accordance with the situation,
and establishing social interactions with other software agents and humans; Bayesian net-
works correspond to graphical representations of conditional probability distributions,
which enable an evidence-based probabilistic reasoning; and ontologies are an effort to
specify concepts, which can be shared between applications in order to achieve an inter-
operability at semantic level.

Individually, those knowledge areas have proposed solutions to several complex real-
world problems. However, there are circumstances that require features exhibited by dis-
tinct technologies. Circumstances like these demand the integration of distinct knowledge
areas to fulfill the application requirements. This research is particularly concerned with
the integration of the Belief-Desire-Intention (BDI) agent architecture and the Bayesian
networks. Moreover, it adopts an ontology-based approach to represent the agent’s un-
certain knowledge. Throughout this dissertation, it is discussed and highlighted the syn-
ergistic effects of integrating those technologies.

Ontologies have been used by Computer Science to deal with several tasks, such as
conceptual modeling and interoperability promotion. Currently, the ontology research is
closely related to the Semantic Web (BERNERS-LEE; HENDLER; LASSILA, 2001).
The purpose of the Semantic Web is to aggregate meaning to Web pages, in a way that
not only humans, but also computer software may interpret its content. Considering the
Semantic Web as an open system, populated by autonomous agents carrying out activ-
ities in behalf of its owners, interoperability issues (i.e. how these autonomous agents
from distinct domains and with distinct goals will share their knowledge, cooperate and
maximize the utility of the whole system) arise.

Historically, traditional knowledge representation formalisms did not take into ac-
count uncertainty. Examples of those languages include the W3C (World Wide Web Con-
sortium) standard for Semantic Web, the OWL (Web Ontology Language), and its pre-
decessors XML (eXtensible Markup Language) and RDF (Resource Description Frame-
work). Efforts to represent probabilistic information within ontologies (i.e. PR-OWL
(Probabilistic-OWL) (COSTA; LASKEY, 2006)) have been performed in the Semantic
Web context. However, this lack of support is also noticed in other areas, such as BDI
agent systems.

Most proposals of BDI agent architectures do not concern with the representation
of the uncertainty inherent to the agent’s environment (GEORGEFF; INGRAND, 1989;
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JENNINGS et al., 1992; MÜLLER, 1996; RAO, 1996), despite the fact that real-world ap-
plications have to deal often with uncertain and imprecise information. Resource-bounded
agents that inhabit complex and dynamic environments (i.e. Internet) can not always have
accurate information about it. Consequently, to take a rational action in a fashion time
becomes a challenge.

1.1 Related Research

The work presented in (SANTOS, 2006; SANTOS; BOFF; VICARI, 2006) uses on-
tologies to promote the semantic interoperability among heterogeneous agents. It defines
an ontology that covers elementary aspects necessary to construct Bayesian network in-
dividuals, but it does not specify the complete structure of that knowledge representation.
By this it means that the network’s elements were partially specified. Moreover, this
work defines an engine to automatically generate OWL individuals from Bayesian net-
works constructed with the HUGIN (JENSEN et al., 2002) tool. This conversion mech-
anism, together with the ontology, allows the interoperability with other Bayesian agents
through the OWL standard. Summarizing, this work focuses on providing a framework
to develop interoperable Bayesian agents.

Another work developed in the scope of the Artificial Intelligence Group (AIG) of the
Universidade Federal do Rio Grande do Sul (UFRGS) is the Probabilistic Agent Com-
munication Language (PACL) (GLUZ et al., 2006). It is an extension of the FIPA-ACL
(Foundation for Intelligent Physical Agents - Agent Communication Language) (FIPA:
Foundation For Intelligent Physical Agents, 2002) designed to deal with probabilistic
knowledge communication. The PACL specifies new axioms that are necessary to ac-
complish the probabilistic communication. Besides the axioms, the language also designs
assertive and directive probabilistic speech acts, which extends FIPA-ACL. The PACL
provides a way to communicate probabilistic knowledge by extending the FIPA-ACL, al-
lowing more expressiveness to this language. It does not deal with the communication of
uncertainty at the message content level, concerning how different Bayesian agents might
exchange knowledge regarding their networks and evidences.

BayesOWL (PAN et al., 2005) was developed to handle the issue of automatic on-
tology mapping. This approach defines additional markups that can add probabilities to
concepts, individuals, properties and its relationships. It also defines a set of translation
rules to convert the probabilistic annotated ontology into a Bayesian network. The fo-
cus on ontology mapping limits the BayesOWL markups since it was not necessary to
represent variables with states different than true or false. The reason for this is that the
probabilistic knowledge associated with each ontology concept was used only for telling
if two concepts from different ontologies were the same.

Another approach that represents probabilistic knowledge through OWL is PR-OWL
(COSTA; LASKEY, 2006). It aims to provide a framework for probabilistic ontologies.
It constitutes an extension of OWL to express probabilistic knowledge. The PR-OWL
language adds new definitions to OWL allowing the expression of uncertainty. The need
for standardization represents a drawback for short-term solutions but also points to a very
interesting medium to long term solution, as it fits well (providing the formal foundation
of a first-order logic) in the W3C model of standards.

The Petri net ontology (GASEVIC; DEVEDZIC, 2006) has common aspects with the
Bayesian network ontology proposed by this dissertation, since there are similarities in
the conceptual modeling task. The objective of that research is to provide the necessary
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structure to share Petri nets on the Semantic Web context. This work reviews previous
efforts done in Petri net sharing and Petri net formalizations. Then, it specifies a Petri
net ontology using OWL language. Another work concerning Petri net representation is
(BRETON; BÉZIVIN, 2001). Its main goal is the understanding of the model executabil-
ity. In order to achieve this goal, it discusses Petri net related concepts, classifying them
in static or dynamic. The final result is a three level Petri net metamodel. The first level is
the definition metamodel that specifies the static part of the nets. The second level defines
a particular situation of a Petri net. The third level is an execution metamodel that defines
a sequence of situations.

The AgentSpeak(L) (RAO, 1996) is a language that can be viewed as an abstraction
of the PRS (Procedural Reasoning System) (GEORGEFF; INGRAND, 1989). This agent
model represents beliefs through first-order logic. The plans are composed by a trigger, a
context and a body. The trigger can be the insertion or removal of a belief or an object.
The context specifies under which circumstances a plan can be applied. The body contains
a sequence of actions.

BayesJason (CALCIN, 2006) is an extension of the Jason (BORDINI et al., 2005) tool
that addresses the integration of Bayesian networks and BDI agents. Jason is a java-based
AgentSpeak(L) interpreter that allows the development of BDI agents and their execu-
tion over the Internet as a distributed system. The BayesJason implements a probabilistic
module for Jason, enabling BDI agents to act on uncertain environments. To allow the
programming of Bayesian networks within the Jason, the AgentSpeak(L) grammar was
modified and extended. In the new grammar, beliefs have probabilities and each belief
corresponds to a Bayesian network node. The Jason’s API (Application Programming
Interface) was extended to allow the dynamic specification of Bayesian networks, the
development of functions to handle the perceived evidences, and the execution of prob-
abilistic inference on the networks. Finally, it was implemented new internal actions to
manipulate the networks. Although integrating Bayesian networks and BDI model, the
BayesJason does not explore the features of the Bayesian networks to improve the cogni-
tive processes. The networks are used to associate probabilities with beliefs and to select
the best predefined plan according to the circumstance.

1.2 Motivation

This dissertation is developed in the context of the Artificial Intelligence Group (AIG)
of the Universidade Federal do Rio Grande do Sul (UFRGS), supervised by the profes-
sor Rosa Vicari. The AIG have been researching and constructing educational systems,
using AI techniques to propose solutions to issues that have not been addressed by other
Computer Science areas.

The first step of this work was motivated by the ontology-based approach proposed
by Santos (SANTOS, 2006) to enhance the interoperability of the PortEdu agents. One of
the pointed future works consists in remodeling and extending the ontology to represent
the complete structure of a Bayesian network. By doing this, the abstraction of mental
states through Bayesian networks was clear, since the ontology allowed the unambigu-
ously understanding of that probabilistic model.

By performing a case study, which consisted of applying the ontology in the So-
cial Agent (SANTOS; FAGUNDES; VICARI, 2007), it was detected a lack between the
knowledge representation and the goal-oriented behavior. It was the motivation of inte-
grating BDI architecture and Bayesian networks.
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Throughout the probabilistic BDI architecture development, it was realized that most
agents that represent knowledge through Bayesian networks have reasoning processes
dependent of the network instances. It makes impossible the reuse of that component.
Bayesian networks share a common structure (causal relations, conditional probability
tables, chance variables, mutually exclusive states), which can be explored to specify a
deliberation process.

Finally, the results obtained by this work contribute directly to the AIG researches.
The integration of Bayesian networks and BDI agent architecture will be applied in the
Social Agent, a component of PortEdu (NAKAYAMA; VICARI; COELHO, 2005). Be-
sides, the approach can be applied to the remaining PortEdu agents.

1.3 Objectives

The general objective of this research is to enable the BDI agent architecture to oper-
ate, in an interoperable way, on environments where uncertain information are present. In
order to attain the general objective, the following specific objectives were proposed:

• Development of an ontology that specifies the Bayesian network concepts to ad-
dress the semantic interoperability among BDI agents.

• Representation of the BDI mental states through Bayesian networks, more specif-
ically, though the Bayesian network ontology. This abstraction is the first step to-
wards the probabilistic BDI model.

• Specification of the cognitive processes taking into account that the beliefs corre-
spond to Bayesian networks, and the desires and intentions correspond to particular
states of chance variables that agents intend to reach.

• Development of the Social Agent case study to demonstrate the integration of tech-
nologies proposed by this work.

1.4 Contribution

The most expressive contribution of this research is the probabilistic BDI model,
which is capable of reasoning under uncertainty. Differently from BayesJason, which
abstracts beliefs through Bayesian networks and proactive mental states through plans,
this work abstracts beliefs, desires and intentions through Bayesian networks. The delib-
erative process described in this dissertation uses the knowledge representation to reason,
instead of particular Bayesian network instances. This feature enables the reuse of this
cognitive process.

It is possible to claim that the Bayesian network ontology is itself an independent
contribution, since it can be employed in several applications beyond the architecture
here presented. The understanding about the Bayesian networks’ domain provided by the
ontology, more specifically by conceptual modeling task, facilitated the integration of that
knowledge representation with other technologies, such as the BDI model here presented.

1.5 Organization

This dissertation is organized as follows: the Chapter 2 presents the foundations that
underlie this research; the Chapter 3 presents the specification of the Bayesian network
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ontology; the Chapter 4 presents the integration of the BDI model and the Bayesian net-
works; the Social Agent case study is detailed in the Chapter 5; finally, the Chapter 6
presents the conclusion and future work.
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2 FOUNDATIONS

This Chapter presents the foundations that underlie this dissertation. The Section 2.1
presents the discrete Bayesian networks, which representation is modeled through an on-
tology described in the Chapter 3. To provide the theory necessary to understand the
model described in the Chapter 3, the Section 2.2 presents the ontology theoretical ref-
erences. Finally, considering that the Chapter 4 proposes a BDI architecture, the Section
2.3 complements the foundations by presenting the BDI model theory.

2.1 Discrete Bayesian Networks

For Jensen (JENSEN, 2001), a Bayesian network consists of the following:

• A set of variables and a set of directed arcs between variables.

• Each variable has a set of mutually exclusive states.

• The variables together with the directed arcs form a directed acyclic graph (DAG).

• To each variable A with parents B1,...,Bn, there is attached the potential table
P(A|B1,...,Bn).

Discrete Bayesian networks can contain only chance variables, which represent an
exhaustive set of random events, referred to as domain of the variable. In Bayesian net-
works, the notion of variables and nodes are often used interchangeably. For models that
contain decision nodes and utility functions it is convenient to differentiate nodes and
variables, since in those models a node does not necessarily represents a variable. States
of chance variables are not necessarily Boolean. They can represent numerical values,
intervals, or labels, beyond the Boolean values true and false.

Since prior chance variables do not have parent nodes, their probability table is re-
duced to unconditional probabilities. This kind of variable is only conditioning, since it is
not conditioned by other variables. On the other hand, non prior nodes are always condi-
tioned by their parent nodes. In the Figure 2.1, the variables Earthquake and Burglary are
conditioning variables. The RadioNews variable is conditioned by the Earthquake vari-
able. The Alarm variable is conditioned by Burglary and Earthquake, and WatsonCalls is
conditioned by Alarm.

The Figure 2.1 illustrates the Bayesian network example Burglary or Earthquake
(PEARL, 1988). In this very known example, Mr. Holmes is working in his office when
he receives a phone call from his neighbor Dr. Watson, who tells Mr. Holmes that his
alarm has gone off. Convinced that a burglar has broken into his house, Mr. Holmes
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rushes to his car and heads for home. On his way home, he listens to the radio, and in
the news it is reported that there has been a small earthquake in the area. Knowing that
earthquakes have a tendency to make burglar alarms go off, he returns to his work.

TRUE

FALSE

0.9

0.1

TRUE FALSE

0.01

0.99

Earthquake Burglary

AlarmRadioNews

WatsonCalls

TRUE

FALSE

0.01

0.99

TRUE

FALSE

0.05

0.95

Earthquake

TRUE

FALSE

0.99

0.01

TRUE

0.95

0.05

Burglary

0.1

0.9

0.01

0.99

FALSE

TRUE FALSEEarthquake TRUE FALSE

TRUE

FALSE

0.9

0.1

TRUE FALSE

0.01

0.99

Alarm

Figure 2.1: Burglary or Earthquake Bayesian network.

Bayesian networks are used for calculating chances when you perceive information
about the states of the network’s variables. These information are named evidences. They
can be classified in hard evidences or soft evidences. Evidences that assign zero probabil-
ity to all except one state of a chance variable are considered hard evidences; otherwise
they are considered soft evidences. Hard evidences indicate that a particular state has
been observed.

2.1.1 Connections and D-Separation Criterion

The Figure 2.2 depicts the three kinds of connection among nodes of Bayesian net-
works: serial, converging and diverging. In a serial connection, a hard evidence on the
middle variable (Alarm) will block the flow of information. In other words, if the state of
Alarm variable is known, an evidence on Burglary will not affect our beliefs about Wat-
sonCalls. Otherwise, if there is not evidences on the middle variable (Alarm), an evidence
on Burglary will affect our beliefs about Alarm and consequently about WatsonCalls.

In a diverging connection, a hard evidence on the Earthquake will block the flow of
information, and the inexistence of evidences will allow the flow. Assuming that there is
not evidence on Earthquake, it is possible to claim that an evidence on Alarm will affect
our beliefs about Earthquake, since earthquake is an explanation for alarm. Once affected
our beliefs about Alarm, our beliefs about RadioNews will be also affected.

Finally, the converging connection will allow the flow of information under the avail-
ability of evidences (possibly soft) in the middle variable, in that example, Alarm. It is
possible to conclude that if a descendant of Alarm (i.e. WatsonCalls) receives an evi-
dence, Alarm will be affected, and the flow of information through Alarm allowed. The
flow of information in the converging connections is blocked if no evidences are available
on the middle variable. This happens because it is not possible to infer the chances of a
state of a parent node (Earthquake) given an evidence on another parent node (Burglary).
On the other hand, if the Alarm goes off, information about Burglary will confirm or dis-
miss Earthquake as the cause of Alarm. This property of converging connections, that
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information about a state of Earthquake provides an explanation for an observed event on
Alarm, and hence confirms or dismisses Burglary, is often referred to as the explaining
away or intercausal inference.

Burglary Alarm WatsonCalls

Earthquake BurglaryAlarm

Earthquake AlarmRadioNews

serial

converging

diverging

e

e

Figure 2.2: Serial, Diverging and Converging connections.

Besides intercausal inference, Bayesian networks allow causal reasoning (deductive)
and diagnostic reasoning (abductive). The causal reasoning follows the direction of the
arcs between variables. If it is observed that the Alarm has gone off, the beliefs about
WatsonCalls are updated. The abductive reasoning goes against the direction of the causal
arcs. An example of abductive reasoning consists in updating Alarm beliefs given an
observation on WatsonCalls.

Once presented the three connections among variables, and consequently, the three
possible cases in which evidence may be transmitted through a variable, it is presented
the d-separation criterion. Jensen (JENSEN, 2001) asserts that two distinct variables A
and B in a causal network are d-separated if, for all paths between A and B, there is an
intermediate variable V (distinct from A and B) such that either

• the connection is serial or diverging and V has received evidence, or

• the connection is converging, and neither V nor any of V’s descendents have re-
ceived evidence.

2.1.2 Probabilities

Bayesian networks have qualitative and quantitative aspects. Qualitative aspects are
defined by the graphical (topological) characteristics of the network. They relate to the
causal relations among variables. The quantitative aspects are defined by probabilities.
They are the numerical part, which relates to the uncertainty representation. Assuming
that Bayesian networks can be expressed as joint probability distributions, it is introduced
the probabilistic foundations that support this model.

The conditional probability concept is crucial to understand the Bayesian networks. It
means that given an event b, the probability of occurrence of an event a is x. In example,
the probability of RadioNews given Earthquake is 0.9:

P(RadioNews=true| Earthquake=true) = 0.9.
Each non prior node of a Bayesian network has a Conditional Probability Table (CPT).

This table contains the probabilities of occurrence of a state (event) given the conditions.
These conditions are imposed by the parent nodes. The Table 2.1 depicts the Alarm



20

variable’s CPT. In example, if the Burglary and Earthquake have been observed, then the
probability of the Alarm going off is 0.99.

Table 2.1: Conditional Probability Table for the Alarm variable.
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To solve a Bayesian network is to compute all posterior marginal distributions given
a set (possibly empty) of evidences. This process is known as Bayesian inference. The
Figure 2.3 illustrates the computed marginal distributions for the network presented in the
Figure 2.1.
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Figure 2.3: Computed marginal distributions for Burglary or Earthquake Bayesian net-
work.

Instead of the conditional probability tables, it is presented the marginal distribution
tables. The network depicted in the Figure 2.3 has an evidence indicating that the state
TRUE of WatsonCalls has been observed. The inference process takes into account this
evidence to estimate the chances of the remaining variables. For details about the infer-
ence process, see (COWELL et al., 1999; JENSEN, 2001).

2.2 Ontologies

Guarino (GUARINO, 1997) suggests the following ontology definition: an ontology
is an explicit, partial account of a conceptualization.

Another definition of ontology is proposed by (SCHREIBER; WIELINGA; JAN-
SWEIJER, 1995): an ontology is an explicit, partial specification of a conceptualization
that is expressible as a meta-level viewpoint on a set of possible domain theories for the
purpose of modular design, redesign and reuse of knowledge-intensive system compo-
nents.

The ontology definition is closely related with the conceptualization definition. A
conceptualization consists in defining concepts (entities, attributes, processes) and their
inter-relationships (USCHOLD; GRUNINGER, 1996).

Ontologies, independently of representation language, share common features, includ-
ing concepts and properties. A concept (class) is an abstract idea that denotes all of the
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objects in a particular category of entities. Properties characterize the concepts, represent-
ing existent relationships among them. The Ontologies can also specify axioms in order
to impose restriction (facts that must hold) in the interpretation of elements.

In the Computer Science field, ontologies are commonly employed in AI systems.
However, the ontologies cover topics including philosophy, metaphysics, knowledge rep-
resentation formalisms, development methodologies, knowledge sharing and reuse, knowl-
edge management, business process modeling, commonsense knowledge, systematization
of domain knowledge, information retrieval from Internet, evaluation and standardization
(DEVEDZIC, 2002).

2.2.1 Ontology Languages

2.2.1.1 Frames

The frame theory was proposed by Minsky (MINSKY, 1974) aiming to semantically
direct the reasoning. Minsky uses a scene-analysis system to illustrate his frame the-
ory. However, several posterior works employ the frames just to represent a structure to
store information, developing the reasoning separately. According to Minsky, the theory
essence is on those circumstances where we select from our memory a structure called
frame, which is adapted complying the reality.

A frame consists of a data structure to represent stereotyped situations. It contains
several types of information, part of them being about how to manipulate that frame.
It also contains information about the expectations related to the future frames, or even
about how to react if the expectations do not become true. Frames usually represent
typical situations, based on the idea that the conceptual codifications done in the brain
is related with the most evident properties of objects. There is not a concern in defining
exhaustively the all properties of the objects.

Frames are identified by a name and they contain a set of slots. A slot represents
a property and it is composed by attributes called facets. Each facet imposes semantic
constraints in the values that the slot can assume. Facets can specify the slot datatype,
domain of possible values, default values, frames to describe the slot or procedures to
determine the slot value. The Figure 2.4 illustrates an abstract representation of a frame
and the example representing a Car.

The abstract frame representation is composed by a frame name and two slots. The
Car frame is composed by two slots: number of wheels and category. The former slot is
numeric and its default value is 4. The last slot is a string and it can assume the values
sedan, pickup or hatchback.

The inheritance of frames is obtained through a specific inheritance slot. Specialized
frames inherit properties from their parents, including slots, default values and methods.

2.2.1.2 DAML+OIL

DAML+OIL (Darpa Agent Markup Language + Ontology Interchange Language) is
a semantic markup language for Web resources. It was developed based on the RDF and
RDF Schema, and it extends those languages with primitives for a richer modeling (CON-
NOLLY et al., 2001). DAML was developed by a DARPA (Defense Advanced Research
Projects Agency) project called DAML-ONT, which aimed to improve the accessibility
and the interpretation of data on the Web context. The DAML-ONT was developed si-
multaneously with the OIL (Ontology Inference Layer) (FENSEL et al., 2000), which had
similar objectives. The DAML-OIL resulted from the integration of those efforts.
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<Frame Name>
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Figure 2.4: Frame abstract representation (left) and Car frame example (right).

This language was built as an additional layer over the RDF, using the same XML syn-
tax, however, providing extensions such as cardinality constraints, transitivity, inverse and
uniqueness of property values, and the capability of expressing disjoint classes. Basically,
the DAML+OIL was developed to create ontologies in such way that the information can
be logically computed. The DAML+OIL is not a W3C (World Wide Web Consortium)
recommendation, but it has contributed significantly to the OWL development.

2.2.1.3 RDF and RDF Schema

Resource Description Framework (MANOLA; MILLER, 2004) is a language to rep-
resent information about resources on the World Wide Web. More accurately, it was built
to express metadata about Web resources, such as title, author, copyright, licensing of
documents, or availability of a particular shared resource. Generalizing the concepts of
Web resource, the applicability of the RDF increases significantly since that language can
be used to express information about anything that can be identified in the Web.

According to (CARROLL; KLYNE, 2004), the RDF development was motivated by
the following usages, among others:

• Web metadata: providing information about Web resources and the systems that
use them.

• Applications that require open information models.

• To allow data to be processed outside the particular environment in which it was
created, in a fashion that can work at Internet scale.

• Automated processing of Web information by software agents: the Web is moving
from having just human-readable information to being a world-wide network of
cooperating processes.

RDF intends to represent information in a flexible and minimally constraining way.
Following the Semantic Web goals, the RDF is directed towards circumstances where in-
formation has to be used by software applications instead of simply displayed to humans.
The RDF language provides a common framework to express and share such information
among heterogeneous applications without loss of semantics.

The RDF syntax is a set of triples, called RDF graph. The triples are composed by:
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• The subject, which is a RDF URI (Uniform Resource Identifier) reference or a blank
node.

• The predicate (property), which is a RDF URI reference.

• The object, which is a RDF URI reference, a literal or a blank node.

To store the graphs it is used a syntax based on XML, called RDF/XML. This syntax,
like HTML (Hypertext Markup Language), is machine processable, and using URIs it
can connect pieces of information across the Web. However, unlike the HTML, the RDF
URIs can refer to any identifiable thing, even those that may not be directly retrievable
on the Web. The RDF can be viewed as a XML application to represent metadata, in
other words, it provides a standard way to represent metadata using XML. This language
has not primitives to declare classes, properties and relationships. Those primitives are
specified by the RDF Schema.

The RDFS (RDF Schema) does not provide a vocabulary of application-specific classes.
Instead, it provides the facilities need to describe such classes and properties. In other
words, it provides a type system for RDF. The schemas (vocabulary descriptions) written
in RDFS are valid RDF graphs. By this it means that an application that was not de-
veloped to process the RDFS additional vocabulary still interpret those schemas as valid
ones. However, that software application is incapable of interpreting the meaning of the
pre-defined RDFS terms (BRICKLEY; GUHA, 2004).

The RDFS can be considered an ontological language since it defines the semantics
for classes and properties, constraints, and inheritance. However, this language is very
limited in the sense that it does not provide an inference mechanism, and it needs to be
improved to describe information in a more detailed way. The RDFS was taken as base
for the OIL, DAML+OIL and OWL.

2.2.1.4 OWL

Web Ontology Language (OWL) (SMITH; WELTY; MCGUINNESS, 2004) is in-
tended to provide a language to specify the classes and relations between them in Web
documents and applications. This language is part of an effort of W3C to make the Se-
mantic Web possible.

The OWL classes provide a way to group resources with similar characteristics. The
classes are associated with a set of individuals, called class extension. The individuals
are called instances of the class. Class descriptions correspond to basic building blocks
of class axioms. It describes an OWL class either by a class name or by specifying the
class extension of an unnamed anonymous class. The OWL language differentiates the
following types of class descriptions (SMITH; WELTY; MCGUINNESS, 2004):

• A class identifier: it describes a class through a class name, syntactically repre-
sented as a URI reference. It is a subclass of rdfs:Class.

• An exhaustive enumeration of individuals that together form the instances of a class.
It is defined with the owl:oneOf property.

• A property constraint is a special type of class description. It describes an anony-
mous class, namely a class of all individuals that satisfy the restriction. There are
two kinds of property constraints: value constraints and cardinality constraints.
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• Intersection, union and complement of two or more class descriptions. They repre-
sent the more advanced class constructors that are used in Description Logic. They
can be viewed as representing the and, or and not operators on classes.

OWL properties can be grouped in two main categories: object properties, which con-
nect individuals to individuals, and datatype properties, which link individuals to values.
Property axioms define the characteristics of a property.

Individuals are described using individual axioms, also known as facts. The OWL
considers two kinds of facts: those about class membership and property values of indi-
viduals, and those facts about individual identity. On the Web, the unique names (dif-
ferent names refer to different things) assumptions is not possible. Therefore, the OWL
provides three constructs for stating facts about the identity of individuals: owl:sameAs,
owl:differentFrom and owl:allDifferent.

This Section does not intend to be an exhaustive description of the OWL features.
Further information about the OWL syntax, semantics and other related issue, can be
found in (SMITH; WELTY; MCGUINNESS, 2004).

According Horrocks (HORROCKS; PATEL-SCHNEIDER; HARMELEN, 2003), the
OWL uses the fact-stating ability of the RDF and the structure of classes and properties ca-
pabilities from RDFS, and it extends them in important ways. Like RDFS, the OWL also
can declare classes, and organize these classes in a subsumption hierarchy. The classes
can be specified as logical combinations (intersections, unions, or complements) of other
classes, or as enumerations of specified objects, going beyond the capabilities of RDFS.
The OWL can also declare properties and subproperties (a hierarchical organization like
the classes and subclasses). The domains of OWL properties are OWL classes, and ranges
can be either OWL classes or externally-defined datatypes such as string or integer. OWL
can state that a property is transitive, symmetric, functional, or is the inverse of another
property, here again extending RDFS.

There are three OWL sublanguages. They present different levels of expressiveness,
and they are intended to be used by different community of users and developers. They
are:

• OWL Lite: designed to those users needing a classification hierarchy and simple
constraint features. Through this improvement on tractability, the OWL Lite pro-
vides a simpler and quick migration for thesauri and other taxonomies. However,
that improvement comes with relatively loss in the expressive power. In example,
the OWL Lite only allows cardinality values of 0 or 1. The OWL Lite is a subset of
the OWL DL.

• OWL DL: designed to those users who want the maximum expressiveness, without
losing computational completeness and decidability of reasoning systems. Accord-
ing to (HORROCKS; PATEL-SCHNEIDER; HARMELEN, 2003), the OWL DL is
an extension of a restricted use of RDF and RDFS, because, unlike RDF and RDFS,
they do not allow classes to be used as individuals, and the language constructors
cannot be applied to the language itself. OWL DL was designed to support the ex-
isting Description Logic segment and it has desirable computational properties for
reasoning systems.

• OWL Full: it provides the full expressiveness and the syntactic freedom of RDF,
however, with no completeness and decidability guarantees. The OWL Full con-
tains the OWL DL. Horrocks (HORROCKS; PATEL-SCHNEIDER; HARMELEN,
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2003) claims that the penalty for that is two-fold. First, reasoning in OWL Full is
not decidable, since the constraints required to maintain the decidability of OWL
DL do not apply to OWL Full. Second, the abstract syntax for OWL DL is inad-
equate for OWL Full, and the official OWL exchange syntax, RDF/XML, must be
used. The OWL Full allows an ontology to improve the meaning of the pre-defined
RDF and OWL vocabulary. However, reasoning systems developed to those lan-
guages will not be able to perform inferences considering the expanded vocabulary.

Despite the fact that OWL is a recent language, its development is the result of OIL,
DAML-ONT and DAML+OIL efforts. The OWL is maintained by the W3C, which spec-
ified the language to be used in the Semantic Web (BERNERS-LEE; HENDLER; LAS-
SILA, 2001).

2.2.2 Building Ontologies

Uschold and Gruninger (USCHOLD; GRUNINGER, 1996) claim that there is no stan-
dard methodology for building ontologies. In an attempt to fill this gap, the authors pro-
pose a skeletal methodology for building ontologies. It is composed by the following
stages:

• Identify Purpose and Scope: it is fundamental to be clear about why the ontology is
being developed and what its intended uses are.

• Building the Ontology: it is composed by three stages. The first begins by captur-
ing the ontology, what means: identification of the key concepts and relationships
in the domain of interest, production of precise unambiguous text definitions for
such concepts and relationships, selection of terms to refer to such concepts and
relationships, and finally, agreeing on all of the above. The second stage is the
ontology coding, which involve committing to the basic terms that will be used to
construct the ontology, selecting a language to codify the ontology, and writing the
code. The last stage consists in integrating the ontology with existing ones.

• Evaluation: to check if the ontology addresses its requirements (competency ques-
tions, requirements specifications) it is necessary to make a technical judgment.

• Documentation: an adequate documentation allows the reuse and integration of ex-
isting ontologies. Concepts, relationships and other entities important to provide the
ontology understanding should be documented according to the type and purpose
of the ontology.

Ontological engineering encompasses the tasks conducted during conceptualization,
design, implementation and deployment of ontologies. A discussion about ontological
engineering is presented in (DEVEDZIC, 2002). This work also intends to cover the
relations among the ontological engineering and other disciplines.

2.3 BDI Agent Architecture

Franklin and Graesser (FRANKLIN; GRAESSER, 1996) review and discuss agent
definitions proposed by several researchers. It becomes clear that there is no general
agreement about what constitutes an agent or what differs agents from programs. In order
to capture the essence of being an agent and clearly distinguish an agent from an ordinary
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program, the authors propose a formal definition of an autonomous agent: an autonomous
agent is a system situated within and a part of an environment that senses that environment
and acts on it, over time, in pursuit of its own agenda and so as to effect what it senses in
the future.

According to Wooldridge and Jennings (WOOLDRIDGE; JENNINGS, 1995), it is
possible to differentiate two general usages for the term agent. The first is weak, and
relatively uncontentious. The second is stronger, and potentially more contentious. In
the weak notion of agency, the term agent denotes a hardware or software system that
exhibits:

• Autonomy: agents operate without intervention of humans and control their behav-
ior and internal state.

• Social Ability: agents interact with other agents and their environment in order to
achieve their goals.

• Reactivity: it is a property of agents that perceive their environment and respond in
a fashion time when necessary.

• Pro-activeness: agents do not simply respond to environment changes, they take the
initiative to achieve their goals.

For some researchers, the agency has a stronger and more specific meaning. In a
strong notion, an agent is described as a computing system that exhibits the above men-
tioned characteristics and also additional properties common to human beings, such as:

• Mobility: mobile agents have the ability to migrate from a platform to another using
a computer network infrastructure.

• Benevolence: it is the agent’s capability in cooperating with other agents.

• Rationality: rational agents always choose the best alternative available in order to
achieve its goals.

• Veracity: it means that agents will not intentionally communicate false information.

• Adaptability: adaptable agents learn through experiences and consequently change
their behavior to adapt to dynamic environments.

The agent-oriented paradigm can be applied to several contexts, including those that
involve distributed control, distributed data management, complex problems that have to
be decomposed, heterogeneity of knowledge representations, multiple functionalities to
be carried through by the system, and some degree of system autonomy.

The taxonomy presented by (BRENNER; ZARNEKOW; WITTIG, 1998) classifies
agents taking into account their functionalities: information agents, cooperation agents,
transaction agents. Information agents search for particular information to their owners
in a distributed system or computer network. They extract information from sources,
filter results and present the result in an adequate way. The cooperation agents focus on
the resolution of complex problems through communication and coordination. They are
employed in circumstances that demand synergy. Finally, the transaction agents monitor
and process transactions. The usage of this kind of agent guarantees a higher security,
robustness and trustiness to the transaction.
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However, that perspective does not fit to most cases, being necessary to classify the
agents by their processing strategy (internal architecture), independently of the role played
by them. The agent architecture specifies how this agent can be decomposed in modules,
and how these modules interact. The modules and their interactions describe how the
perceptions and the agent’s internal state determine the actions (MAES, 1995). Usually,
agents are classified in reactive or cognitive, but some authors also employ the notion of
hybrid architecture to classify those that mix characteristics of both.

Reactive agents have competency modules, which allow the response to particular
events (BROOKS, 1986). Agents of this class tend to be structurally simple since they
do not have an explicit representation of its environment, and they are not capable to
perform sophisticated logic reasoning. They made their decisions based on the current
situation since no history is stored. Their intelligent behavior is obtained through the
interaction with the environment and other agents. The reactive agents are closely related
to the Swarm Intelligence area, which designs algorithms and techniques for distributed
problem resolution based on the collective behavior exhibited by the social insects and
other animal societies.

Cognitive agents, also known as deliberative agents, have an explicit and symbolic
representation of their environment. They keep the history of their internal states and
actions, what enables to consider past decisions in the future deliberations. Generally,
they take their decisions through logic reasoning on the knowledge base. Most cognitive
architectures are founded on the human practical reasoning, which is explained through
the ascription of mental states to the agents. The human practical reasoning consists in
choosing between competing alternatives, where relevant considerations are determined
by what the agent believes, values, and cares about (WOOLDRIDGE, 2000). It is impor-
tant to distinguish practical reasoning from theoretical reasoning. The former is directed
towards action, and the last is directed towards beliefs. The human practical reasoning is
composed by at least two distinct processes: deliberation, which involves deciding what
states of affairs the agent will pursue, and means-end reasoning, which defines how the
agent will achieve the states selected in the deliberation process.

Architectures based on mental states adopt a psychological perspective to define the
structures of the agents: such as beliefs, desires, intentions, expectations, capabilities,
commitments and choices. The BDI model (BRATMAN; ISRAEL; POLLACK, 1988) is
probably the most known cognitive agent architecture. The name received by this model
is justified by its three mental states: belief, desire and intention. It recognizes the primacy
of those three mental states in rational action.

2.3.1 Mental States

According to the folk psychology, the human behavior can be predicted and explained
through the ascription of mental states, such as beliefs, desires and intentions. The main
idea behind of this approach is that cognitive agents have internal states that relate to the
state of the agents’ environment. These states have a correspondence with the human
mental states in terms of significance and existence (CORRêA, 1994).

McCarthy (MCCARTHY, 1979) claims that to ascribe beliefs, abilities, intentions,
free will, or wants to a machine is legitimate when such an ascription expresses the same
information about the machine that it expresses about a person. It is useful when the
ascription helps to understand the machine structure, its past and future behavior, or how
repair or improve it.

There are other reasons, beyond the high abstraction level, to believe that the agent
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modeling as intentional system is useful to understand computer programs. First, maybe
the most important, is the communication ability among heterogeneous agents, which
results in the ability of communicating mental states. Second, the mentalist models can
be employed to represent information about final users.

Mental states can be categorized in informational or proactive. Informational mental
states are related to the information that the agent has about its world (i.e. beliefs). The
proactive mental states tend to lead agents to action (i.e. desires and intentions).

Beliefs represent the agents’ knowledge about their world. From a computational
viewpoint, beliefs are a way to represent the state of the word, through variables, a re-
lational database or symbolic expressions. Beliefs are fundamental because the world is
dynamic (past events need to be remembered), and the systems have just a local view of
that world (GEORGEFF et al., 1999). Wooldridge (WOOLDRIDGE, 2000) claims that
beliefs correspond to information that agents have about their world, and these informa-
tion may be incomplete or incorrect.

Desires correspond to states of the world that agents want to bring about. They do not
necessarily cause actions. By this it means that before performing any action, the agent
will deliberate about which desires it will commit to achieve. Desires have the following
characteristics:

• Represent states of affairs that the agent would like to achieve.

• Desires can be inconsistent (mutually exclusive) with other desires. If an agent
desires competing desires, it does not mean that will act to reach them.

• Desires do not lead directly to actions, but they can generate their occurrence when
they become intentions.

Intentions correspond to states of the world that agents have committed to achieve.
They can be considered a subset of desires, since agents will intend only states of af-
fairs they desire. However, differently from desires, intentions have to be consistent with
other intentions. They are formed through a deliberative process and other intentions, but
agents may have initial intentions defined by the application developer. Generally, the
intention notion is employed to characterize both states of mind and intentional action.
The intention mental state is directed to actions in the future and it will not necessarily
lead to action. The intentional actions are directed to the present and they represent the
immediate actions.

Wooldridge (WOOLDRIDGE, 2000) asserts that intentions play the following roles
in the practical reasoning:

• Intentions drive the means-end reasoning: once formed an intention, the agent will
have to deciding how to achieve the intention; moreover, if a course of action fails,
the agent has to attempt others if available.

• Intentions persist: they will persist until the agent believes it has successfully achieved
them, it believes it is impossible to achieve them, or it believes the reason for the
intention is no longer present.

• Intentions constrain future deliberations: agents will not entertain options that are
inconsistent with their current intentions.
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Intentions influence beliefs upon which future practical reasoning is based: agents
assemble future plans assuming that the current intentions will be successful. Having
an intention, while believing that it will not bring about is named intention-belief incon-
sistency, and it is not rational. Having an intention without believing that it will be bring
about is named belief-intention incompleteness, and it is an acceptable property of agents.
The distinction between those two cases is known as asymmetry thesis (BRATMAN, 1987
apud WOOLDRIDGE, 2000).

2.3.2 Reasoning

In the deliberation process, BDI agents examine which desires are possible, choose
between competing desires, and commit to achieving them (WOOLDRIDGE, 2000). The
deliberation process begins by verifying which desires are possible to be achieved (option
generation). Following, it checks the consistency among possible desires and intentions
(filtering).

Once formed the intentions, the agent has to assemble action plans to achieve them.
This process is known as means-end reasoning. Research on AI has proposed several
solutions concerning the planning problem, such as methods for searching the space of
possible actions. However, in the cognitive multiagent domain, most applications use
a plan library to address the means-end reasoning issue. These libraries are commonly
composed by previous assembled plans and the circumstances they can be applied.

When an intention is formed by the deliberation process, the agent has committed
to achieve that intention. The commitment strategy implies temporal persistence and
it specifies how committed an agent should be to its intentions. The three following
commitment strategies are commonly discussed in the BDI literature:

• Blind: intentions will be kept until the agent achieves them.

• Single-Minded: intentions will be kept until the agent achieves them or the agent
believes that it is not possible to achieve them.

• Open-Minded: intentions will be kept while the agent believes it is possible to
achieve them.

Usually, a cautious agent reconsiders its intentions after the following conditions:
achievement of an intention (or impossibility of achieve an intention) and conclusion of a
plan execution. Supposing that an agent reconsiders its intentions during the execution of
a plan, possibly after each action, it is called audacious (WOOLDRIDGE, 2000).

The intention reconsideration is related to changes on the agent’s environment. In an
environment that rarely changes, a cautious agent will spend a lot time reconsidering its
commitments, while an audacious agent will be busy pursuing its intentions. In dynamic
environment where changes happen frequently, cautious agents have better chances than
audacious ones to detect opportunities in the environment.

2.3.3 Examples of BDI Architectures

The IRMA (Intelligent Resource-bounded Machine Architecture) (BRATMAN; IS-
RAEL; POLLACK, 1988) abstract architecture aims the description of the processes in-
volved in the practical reasoning in resource-bounded agents. It can be classified as a BDI
model since it includes the representation of beliefs, desires and intentions. The Figure
2.5 illustrates the IRMA architecture.

Intentions are structured inside plans, which can be grouped in two categories:
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Figure 2.5: IRMA Abstract Architecture.

• Plan Library: corresponds to a subset of agent’s beliefs about actions and their
effects under specific conditions.

• Intention Structure: corresponds to the agent’s current plans.

The IRMA plans can be partial, in other words, it is possible to decide about the state
to be pursued, but postpone the decision about how to achieve that state. The means-end
reasoner is responsible for the assembling of plans. If the system has already built partial
plans, the means-end reasoner tries to complete them. The opportunity analyzer compo-
nent aims the option proposal in response to environment changes perceived by the agent.
The compatibility filter checks if the options are consistent with the current intentions.
Options considered inconsistent are forwarded to the override mechanism, which is sen-
sitive to problems and opportunities perceived by the agent. Those perceptions indicate
conditions under which plans have to be dropped or checked against other options. The
surviving options are forwarded to the deliberation process, which forms the intentions to
be introduced inside the plans.

The PRS (Procedural Reasoning System) (GEORGEFF; INGRAND, 1989) is a hybrid
architecture that considers the BDI mental states. The PRS is probably the most known
BDI system. It was implemented by several researchers (RAO, 1996; D’INVERNO et al’.,
1998; HUBER, 1999). Its internal structure is composed by the following components:
database (beliefs), goals, intention structure, KA (knowledge area) library (plans) and
interpreter (reasoner). The Figure 2.6 depicts the PRS architecture.

The database stores the beliefs which are specified using first-order logic. The goals
correspond to the current desires. Agent can have goals related to the current intentions,
named sub-goals, and goals that have not relation with current intentions. The KA li-
brary contains the plans, which are composed by a body (sequence of actions) and the
conditions under which the plan fits. It is possible to specify partial plans. The intention
structure contains the tasks (plans) to be executed by the agent. The reasoner manages
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the other components, selecting the plans taking into account the beliefs and goals, and
putting the selected plans inside the intention structure to be executed.

Environment

Effectors

Interpreter
(Reasoner)

Database
(Beliefs)

KA Library
(Plans)

Goals
Intention
Structure

Sensors

Monitor

Command
Generator

Figure 2.6: PRS architecture.

The InteRRaP (MÜLLER, 1996), illustrated in the Figure 2.7, is a layered BDI ar-
chitecture, whose goals consist in treat unexpected events, react in a fashion time, and
exhibit goal-oriented behavior and multiagent coordination abilities. These requirements
are fulfilled by integrating reactivity, deliberations, interaction and cooperation is the same
architecture. According to the author, previous approaches do not address these require-
ments, focusing just in a subset of them.

The InteRRaP architecture is divided in three layers:

• Behavior: reactivity and procedural knowledge.

• Local Planning: goal-oriented behavior and means-end reasoning.

• Cooperative Planning: reasoning about other agents, and coordinated actions.

To guide the InteRRaP development, it was taken into account design decisions such
as layered control and layered knowledge base. It enabled the different abstractions levels
and the storage of beliefs in a hierarchic way. The layer activation is bottom-up. If a layer
is not capable of dealing with the situation, it forwards the control to the next layer. The
action execution is top-down. The higher layers use primitives defined by the lower ones.

2.3.4 Interoperability for Agents

Efforts concerning interoperability for cognitive agents have been done mostly at the
syntactic level. However, it is desirable to achieve also the semantic interoperability. In
the multiagent context, it consists in exchanging information between agents, ensuring
that the receiving agent will interpret accurately the meaning of that information.

The KQML (Knowledge Query Manipulation Language) (FININ et al., 1994) sup-
ports the social interaction between agents by providing an ACL (Agent Communication
Language) based on the speech acts theory. However, it is not considered a standard
since there is not an agreement among the KQML community about the specification of
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Figure 2.7: InteRRaP architecture.

the language. Currently, there are several KQML dialects, what goes against the desired
interoperability.

The FIPA (Foundation for Intelligent Physical Agents) (FIPA: Foundation For Intel-
ligent Physical Agents, 2006) is an IEEE Computer Society standards organization that
promotes agent-based technology and the interoperability of its standards with other tech-
nologies. To promote the communication among agents that organization proposed the
FIPA-ACL (FIPA: Foundation For Intelligent Physical Agents, 2002). The structure of
this language has resemblances with the KQML since it is also founded on the speech
acts theory. A FIPA-ACL message is composed by parameters, including performative
(speech act), sender, receiver, content, language and ontology.

Differently from KQML and FIPA, the OMG (Object Management Group) MASIF
(Mobile Agent System Interoperability Facility) effort focuses on the agents’ mobility.
The KQML and FIPA point out that the social interaction is the most fundamental feature
of a multiagent system. The MASIF does not approach interoperability among agents
of different platforms. The interoperability proposed by that initiative is limited to the
CORBA (Common Object Request Broker Architecture) architecture, and it also does
not treat semantic interoperability.

Both KQML and FIPA standards do not treat the semantics of the message content.
However, they contain a parameter to indicate the ontology used to specify the concepts
present in the message content. Thus, the agent has to adopt an language, such as OWL,
to specify the ontology. Through the ontology, the semantic interoperability is obtained.
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3 AN ONTOLOGY-BASED APPROACH TO REPRESENT
BAYESIAN NETWORKS

One of the contributions of this research is the specification of an ontology to formal-
ize the Bayesian network knowledge representation. This ontology remodels and extends
the concepts defined in (SANTOS; BOFF; VICARI, 2006), allowing a broader utiliza-
tion of it. In the next Chapter is presented one of these utilizations, an ontology-based
approach to interoperability for cognitive Bayesian agents.

To guide the ontology development, it was adopted the methodology proposed by
Uschold and Gruninger (USCHOLD; GRUNINGER, 1996), detailed in the Section 2.2.3.
The organization of this Chapter has a correspondence to the methodology stages. The
Section 3.1 aims the description of the purpose and the scope of the ontology. The con-
ceptualization capture is detailed in the Section 3.2. The explicit representation of the
captured concepts in OWL are presented in the Section 3.3. The Chapter is closed by the
final considerations in the Section 3.4.

3.1 Ontology Purpose and Scope

The ontology purpose is to enable the interoperability and the reusability of the Bayesian
network knowledge representation. In this work, the application scope is restricted to a
cognitive agent architecture, where the ontology addresses interoperability issues and rep-
resentation of agent’s knowledge. Intended users are developers and researchers that need
to share common concepts about Bayesian networks. Users that desire to build models
of other probabilistic networks are also expected, since they can do it by extending the
proposed conceptualization.

3.2 Ontology Capture

This Section aims the identification of concepts and relationships in the domain of
discrete Bayesian networks, and their representation independently of implementation
language. The capture process is supported by the Bayesian networks theoretical founda-
tions presented in the Section 2.1.

The conceptual maps were adopted to graphically represent the concepts, since they
provide a straightforward way to visualize classes and their relationships. The classes are
represented through rectangles and the relationships are represented through labeled ar-
rows. A special kind of relationship, the inheritance, is represented through the isA arrow.
In an isA relationship, the child class inherits all father’s relationships. The following
conceptual maps hide relationships already depicted in a previous map. The semantic
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restrictions of properties are specified in natural language.
In the Section 3.2.1 it is presented the graph representation. It defines the common

concepts among different probabilistic networks. The Section 3.2.2 presents the discrete
Bayesian network ontology. The concepts related to evidences and their relation with the
evolution of Bayesian network individuals are presented in the Section 3.2.3. Finally, the
Section 3.2.4 is concerned with the ontology extensions.

3.2.1 Graph Representation

Probabilistic networks are graphical models of causal interactions among a set of vari-
ables, where the variables are represented as nodes of a graph and the interactions as di-
rected arcs between nodes (COWELL et al., 1999). A graph is the basic structure shared
between probabilistic network models. It is formalized in the ontology by the Graph class
(Figure 3.1). It has two properties named hasNode and hasArc, which respectively are
links to multiple individuals of classes Node and Arc. These two properties represent ele-
mentary components of a graph. It is considered that a graph has at least one node. Such
cardinality constraint is imposed in the Graph property hasNode.

hasArc

hasNode

hasLabel

hasLabel

Graph Node

Arc

Variable Label label

string

Figure 3.1: Graph representation.

The DirectedGraph class (Figure 3.2) is a subclass of Graph that represents a directed
graph. This graphical model is common to variations of probabilistic network knowledge
representation (i.e. Bayesian networks, influence diagrams and object-oriented proba-
bilistic networks). The common elements are the directed arcs and the nodes, respec-
tively indicated by the inherited properties hasArc and hasNode. The hasArc property is
semantically restricted to link DirectedArc class individuals.

hasArc hasNodeDirectedGraph

NodeDirectedArc

hasParent

hasChild

isA Graph

isA Arc

Figure 3.2: Directed Graph representation.
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To represent a directed edge between a parent and a child node it is defined the Di-
rectedArc class, a specialization of the Arc class. The DirectedArc has two properties:
hasChild and hasParent. The value of these properties is a single individual of the Node
class. This class is defined by a unique label, denoted by the hasLabel property. The
label, a common attribute among chance, decision and utility nodes, is a string datatype.
Since this work deals with Bayesian networks it was specified only chance nodes.

Another general concept concerning probabilistic networks is defined by the Variable
class. It represents a set of mutually exclusive states. The states, also called events or
choices, correspond to the domain of the variable, which can be discrete or continuous.
In this work it is considered only discrete variables (finite sets). A probabilistic network
has two categories of variable: chance variables, representing random states, and decision
variables, representing choices controlled by some agent. As the Node class, the Variable
has only the hasLabel property. The purposes of the Variable class are the same of the
Node class, which are to abstract the complexity and model common aspects between its
subclasses.

3.2.2 Discrete Bayesian Network Representation

A discrete Bayesian network consists of a DAG (Directed Acyclic Graph) and a set of
conditional probability distributions (JENSEN, 2001). Each node in the network, called
chance node, corresponds to exactly one discrete random variable which has a finite set
of mutually exclusive states. The directed arcs specify the causal relation between the
random variables. Each random variable associated with a chance node has a conditional
probability distribution.

The BayesianNetwork class (Figure 3.3) is the core of the Bayesian network definition.
It is a subclass of DirectedGraph. The differences among these classes are the semantic
constraints imposed to the properties to specify the correct type of nodes and arcs allowed
in a Bayesian network. Such kinds of nodes and arcs are represented by the ChanceNode
and BayesianArc classes respectively.

A BayesianArc individual defines an edge between two chance nodes. It inherits the
hasParent and hasChild properties from the DirectedArc class, and imposes additional
constraints to formalize that only individuals of the ChanceNode class can be assigned
to these properties. A ChanceNode individual has a chance variable associated to its
definition. Such variable is indicated by the hasChanceVariable property. This property
allows only individuals of PriorChanceVariable and ConditionalChanceVariable classes.
Such constraint is necessary to differentiate variables of prior nodes from variables of
non-prior nodes. The Figure 3.4 represents the Prior Chance Variable and the Figure 3.5
represents the Conditional Chance Variable.

Before defining a chance variable it is necessary to define a state and its related con-
cepts. A state is represented by the State class, which has only the hasLabel property re-
sponsible for the node identification. The State class has two direct subclasses. The first,
called StateProbability, denotes a chance associated with a state. It has two properties:
the inherited hasLabel and the probability (float data type). The second specialization of
State is named ConditionalState and it specifies the multiple conditional chances associ-
ated with a state. A set of ConditionalState individuals, mutually exclusives, constitutes
a Conditional Probability Table (CPT). The ConditionalState class has two properties:
the inherited hasLabel, which represents the label of the state and the hasConditional-
Probability property, which indicates multiple individuals of the ConditionalProbability
class.
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Figure 3.3: Bayesian network representation.

The ConditionalProbability class represents the conditional chances associated with
a state. This class has two properties: probability and hasCondition. The former is a float
data type property that represents the numerical probability of a variable’s state under the
conditions specified in the hasCondition property. This property indicates multiple indi-
viduals of the Condition class, and it denotes the conditions imposed in the probability of
a state. The Condition class is constituted by a conditioning node and a state of this node,
respectively indicated by the properties hasNode and hasState. The individual indicated
by the hasNode property must be a ChanceNode since only chance nodes have random
variables. The hasState property indicates an individual of the State class that represents
the specific state of the conditioning chance variable.

StateProbabilityhasStatePriorChanceVariable probability

float

State

isA

ChanceVariable

isA

Figure 3.4: Prior Chance Variable representation.

The ChanceVariable class is a specialization of Variable and it represents a chance
variable. Additionally to the inherited properties from the Variable class, it specifies the
hasState and hasMarginalDistribution properties. The first property indicates the neces-
sity of at least one state (State individuals) associated with a variable (i.e. true or false in
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the context of a Boolean variable). The second property indicates the computed marginal
distribution for the chance variable, and it is restricted to multiple StateProbability indi-
viduals. Each individual represents a state and its computed chance of occurrence. The
marginal distribution is optional in the model since it can be computed using the CPT.

hasNodeChanceNode

ConditionalStatehasStateConditionalChanceVariable

hasConditionalProbability

ConditionalProbabilityprobabilityfloat

hasCondition

Condition hasState

StateisA

isA

ChanceVariable

Figure 3.5: Conditional Chance Variable representation.

It was necessary to differentiate prior node variables from non-prior ones, since a
non-prior node has a CPT, and a prior node has only states and probabilities without
conditioning variables. Thus, the classes PriorChanceVariable and ConditionalChance-
Variable were created as subclasses of ChanceVariable. The difference between these two
subclasses lies in the hasState property constraint. In the PriorChanceVariable class the
hasState property has been restricted to StateProbability individuals. As stated earlier,
a state probability represents a state and its chance of occurrence. The StateProbabil-
ity individuals indicated by hasState of PriorChanceVariable indicate all possible states
associated with a prior chance variable. The hasState property of ConditionalChanceVari-
able class has also been constrained in way that only ConditionalState individuals can be
assigned to it. The ConditionalState individuals represent a Conditional Probability Table
of a variable associated with a non-prior node.

3.2.3 Bayesian Network Situation Representation

In this work, a situation is considered a particular configuration that a probabilistic
network assumes given a set (possibly empty) of evidences. These evidences are used
in the inference and the result of this process is a new Bayesian network situation. Such
situations are useful to keep the history of modifications of a Bayesian network. The
Figure 3.6 depicts the situation related concepts.

An evidence, represented by the Evidence class, corresponds to any information re-
garding the state of a variable from a probabilistic network. The Evidence class is com-
posed by a node, a label and a chance, represented by the properties hasNode, hasLabel
and probability, respectively. The hasNode property can indicate only individuals of the
ChanceNode class, since chance nodes are the only kind of node that represent random
events. In order to specify a hard evidence (an observation of an event), it was special-
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ized the Evidence class creating the HardEvidence class. This class specifies a constraint
defining that the probability property must assume the numeric value one.

A situation, represented by the Situation class, has two properties. The first property
is the hasGraph, used to indicate a graph individual which configuration corresponds
to the given situation. The second property is the hasEvidence that indicates the set of
evidences that originates the situation. A particular kind of situation is represented by
the BayesianSituation class. Its inherited hasGraph property can indicate only Bayesian
networks.

probability

hasLabel

float

Label

hasPriorSituation

BayesianSituationhasEvidence

hasPosteriorSituation

Evidence

BayesianSituationTransition

hasGraph

BayesianNetwork

isA

HardEvidence

hasNode

ChanceNode

isA

SituationTransition

Situation

isA

Figure 3.6: Bayesian Network Situation representation.

In order to establish a link between two sequential situations it was created a class
named SituationTransition. This class has two properties: hasPriorSituation and hasPos-
teriorSituation. They respectively represent a prior and a posterior situation. A situation
transition between Bayesian networks is represented in the class BayesianSituationTran-
sition. This class inherits the properties from SituationTransition, constraining them to
link only BayesianSituation individuals.

3.2.4 Ontology Extensions

The purpose of this Section is to present in a summarized way some possible exten-
sions of the ontology. Graphical representations, such undirected graphs, junction trees,
influence diagrams and decision trees, are following discussed. The undirected graphs
and the junction trees are better detailed since they are already implemented.

The ontology does not define how the Bayesian network model is executed. A step
towards it consists in defining the intermediary structures used in the belief updating (in-
ference). Jensen (JENSEN, 2001) presents an algorithm for belief updating that uses
undirected graphs and junction trees (Figure 3.7). To represent the undirected graphs it
was created a Graph subclass, named UndirectedGraph. It has two inherited properties:
hasNode and hasArc. The hasArc property is semantically constrained to indicate only
UndirectedArc class individuals. The UndirectedArc class has only the hasNode property,
which indicates exactly two Node individuals.
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hasArc

hasNode

JunctionTree

UndirectedArc UndirectedGraph

hasSeparator

isA

hasNode

isA

GraphArc

hasClique

isA

hasArcSeparatorArc

isA

CliqueNode

isA

Node

Figure 3.7: Undirected Graph and Junction Tree representations.

Junction trees are undirected graphs composed by a set of cliques and a set of separa-
tors. The cliques are also undirected graphs. The separators correspond to the common
nodes between two cliques. In order to represent junction trees it was created an Undirect-
edGraph subclass, named JunctionTree. It inherits two properties: hasNode and hasArc.
The hasNode property is constrained to at least one individual of CliqueNode class. The
hasArc property is restricted to SeparatorArc individuals. The CliqueNode class is a sub-
class of Node and has the hasClique property, which is restricted to one UndirectedGraph
individual. The SeparatorArc class is an UndirectedArc subclass that has the hasSepara-
tor property, which is constrained to at least one Node individual. The inherited hasNode
property of SeparatorArc is restricted to CliqueNode individuals.

3.3 Ontology Coding

As stated earlier, the described ontology was implemented using the Web Ontology
Language (OWL). The development of the OWL ontology used most of the available
functionality of OWL. Our concepts were represented as classes, the isA relationship be-
comes a class specialization, and the remaining relationships were implemented as OWL
properties - with the necessary constraints. The utilization of constraints in OWL makes
possible the contextualization of concepts and helps to avoid ambiguities.

A snippet of the OWL source code corresponding to the Bayesian network ontology
is illustrated in the Figure 3.8. It begins by specifying the ChanceVariable class. The
next tag contains the comment about the ChanceVariable class. Following, it specifies
the hasState property, with a restriction denoting the minimum cardinality. Finally, it
is specified that the ChanceVariable class is a subclass of Variable. The label of the
ChanceVariable class is inherited from the Variable class. The full OWL source code of
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the Bayesian network ontology is shown in Appendix A.

{...}
< ="ChanceVariable">

< ="http://www.w3.org/2001/XMLSchema#string">
Variables representing random events. A Chance Variable
is composed by a label and a set of states representing the
random events.
</ >
< >
< >
< >
< ="hasState"/>

</ >
< ="http://www.w3.org/2001/XMLSchema#int">
1
</ >

</ >
</ >
< >
< ="Variable"/>

</ >
</ >
{...}

owl:Class rdf:ID
rdfs:comment rdf:datatype

rdfs:comment
rdfs:subClassOf
owl:Restriction
owl:onProperty
owl:ObjectProperty rdf:ID
owl:onProperty
owl:minCardinality rdf:datatype

owl:minCardinality
owl:Restriction

rdfs:subClassOf
rdfs:subClassOf
owl:Class rdf:ID
rdfs:subClassOf

owl:Class

Figure 3.8: Snippet of the OWL source code of the Bayesian network ontology.

Since the Bayesian network ontology is a reengineering and extension of a previous
work developed in the context of our research group, it was selected as implementation
language the OWL. This technology is currently a W3C standard, an additional reason to
adopt it.

3.4 Final Considerations

The presented ontology is the result of an effort to remodel and to extend the concepts
defined by a previous research (SANTOS, 2006; SANTOS; BOFF; VICARI, 2006) per-
formed by members of the Artificial Intelligence Group of UFRGS. This previous work
defined an ontology that covers partially the concepts necessary to represent Bayesian
networks. The present proposal formalized the Bayesian network knowledge representa-
tion, taking into account its structure, its semantics, and possible future improvements to
allow its broader utilization.

It is worth to stress that the ontology itself is an independent contribution of this re-
search. The ontology can be used to represent uncertain knowledge in several contexts
(i.e. Semantic Web, content language for communication of agents, and interchange for-
mat for Bayesian network tools and applications). The ontology can also be improved
or modified to cover different graphical representations, such other probabilistic network
dialects, and then to support a greater number of applications. In example, the undirected
graph and junction tree extensions, exhibited in the Section 3.2.4, can be used for inter-
operability in a society of agents responsible for a distributed processing of a Bayesian
belief updating.

During the ontology development, it was realized that the arcs among variables can
be replaced by a property of the parent chance variables representing causal relations.
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Their inverse relation is the consequence, which correspond to a property in the child
chance variable indicating the parent nodes. Supposing only Bayesian networks will be
specified, the node and the variable concepts can be merged in only one concept, which
will maintain the structure of a chance variable.

The semantic restrictions of Bayesian networks were not fully coded as OWL con-
straints, since some of them are not supported by the language. One example is the
verification of cycles in a graph corresponding to a Bayesian network. Such verification
should be performed as the ontology is used - as individuals are updated in the knowledge
base - but there are no means to specify such restrictions directly on the OWL code.
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4 INTEGRATING BDI MODEL AND BAYESIAN
NETWORKS

This Chapter presents an integration of BDI agent model and Bayesian networks. The
synergistic effects resulting from the integration of these Artificial Intelligence technolo-
gies include the capability of dealing with uncertain information in a BDI architecture and
the improvement of the agent’s cognitive processes.

Each node in a Bayesian network corresponds to exactly one random variable which
has a finite set of mutually exclusive states. We claim that a BDI agent, whose beliefs
are represented through Bayesian networks, believes that a state of a chance variable has
a probability of occurrence given a set of conditions imposed by the parent variables.
Assuming that desires correspond to states of affairs that an agent wishes to bring about,
our model represents this mental state through states of chance variables that the agent
desires to observe. Intentions are also represented in this way, since they are desires that
an agent has committed to achieve.

Assuming that agent’s beliefs are represented through Bayesian networks, the belief
updating process correspond to a probabilistic inference. Evidences perceived by the
agents play an important role in that process, since up to date beliefs express the current
state of world. Thus, agents can recognize circumstances where desires are considered
feasible and intentions are considered successful. Up to date beliefs provide support to
the deliberative process, responsible for deciding which states of affairs the agent will
intend to achieve. In order to improve that process, it takes into account the quantitative
and the qualitative aspects of the Bayesian networks to detect incompatible desires and to
decide between competing ones.

In cognitive multiagent systems, inhabited by a relative small number of knowledge
intense agents, the interoperability is fundamental to enable the information exchange
among agents. As presented in the previous Chapter, this work adopts an ontology-based
approach to specify the Bayesian network concepts. Agents that share that ontology are
able to interoperate that representation of uncertain knowledge. Since the BDI mental
states are represented through Bayesian networks and the Bayesian networks’ domain is
specified in an ontology, the mental states can also be viewed as ontology individuals.

Throughout this Chapter it will be used the Burglary or Earthquake Bayesian network
(PEARL, 1988) to demonstrate the integration of the BDI model and the Bayesian net-
works. In this very known example, Mr. Holmes is working in his office when he receives
a phone call from his neighbor Dr. Watson, who tells Mr. Holmes that his alarm has gone
off. Convinced that a burglar has broken into his house, Mr. Holmes rushes to his car and
goes home. On his way home, he listens to the radio, and in the news it is reported that
there has been a small earthquake in the area. Knowing that earthquakes have a tendency
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to make burglar alarms go off, he returns to his work.
The Figure 4.1 illustrates the Burglary or Earthquake Bayesian network example. The

HolmesGoesHome variable, which represents Mr. Holmes going home, does not exist in
the original construction of this network. It was added in order to represent a possible
world state to be achieved by Mr. Holmes. This example is developed using only Boolean
variables, however the proposed agent architecture is capable of dealing with all types of
discrete chance variables.
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Figure 4.1: Burglary or Earthquake Bayesian network.

This Chapter is organized as follows: the Section 4.1 concerns with the architecture’s
mental states; the cognitive processes are detailed in the Section 4.2; the Section 4.3
addresses the interoperability of Bayesian cognitive agents implemented in compliance
with the present architecture; finally, the Section 4.4 presents the final considerations.

4.1 Representing Mental States through Chance Variables

The proposed BDI architecture represents its mental states through discrete Bayesian
networks, more accurately, through an ontology that models the Bayesian network do-
main. The ontology-based approach is closely related with interoperability issues, later
discussed in detail.

Before presenting the representation of mental states, it is worth to stress two distinc-
tions made by Searle (SEARLE, 1983) that are relevant to this Chapter. The former dis-
tinguishes Intentional state, a state of mind wherein the mind has some object (Intentional
content) towards which it is directed, from Intentional content, also called propositional
content, which determines conditions of satisfaction for the Intentional state. In exam-
ple, consider a situation where agent Smith intends to find Neo. We can claim that the
Intentional state is an intention and the Intentional content corresponds to find Neo. The
last distinction is between Intentionality, a property of many mental states by which they
are directed at something (abouteness), and intention, a mental state whose propositional
content represents a state of affairs that an agent has committed to achieve.
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4.1.1 Beliefs

Beliefs are informational mental states that express the world’s state. In the context
of this work, a BDI agent believes that a state has conditional probabilities. In other
words, the Intentional content of a belief is composed by a chance variable, a state of
that variable, a probability of occurrence of that state, and the conditions (states of parent
variables) under which the probability is estimated. Beliefs of prior chance variables
are exceptions, since they are unconditional. Such belief abstraction is related to the
probabilities specified by the expert (developer) in the conditional probability tables. By
performing a Bayesian inference it is obtained the probabilities of each state considering
perceived evidences. Thus, agents also believe that states have a computed probability
taking into account the current situation of the network. Summarizing, for each variable
state we have conditional probabilities defined by the domain expert, and the probability
resulting from the Bayesian inference process. Both cases are depicted in the Figure 4.2.
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FALSE

0.014

0.986

Conditional Probability Table:
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Mr. Holmes believes that the state
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current evidences on the network

TRUE RadioNews

INFERENCE

Figure 4.2: Representation of beliefs.

The Figure 4.2 shows the Earthquake and RadioNews variables of the Mr. Holmes’
beliefs. The remaining variables were omitted. Both tables belong to the RadioNews
node. The conditional probability table contains the agent’s beliefs about the probability
of occurrence of states under the observation of conditions (parent nodes’ states). One
could argue that these beliefs are expectations, since they relate to beliefs in the future
(i.e. Mr. Holmes believes that the state TRUE of RadioNews has the probability 0.9
of occurrence if the state TRUE of Earthquake gets observed). The probability table of
the computed marginal distribution, resulting from the Bayesian inference, expresses the
agent’s beliefs about the current state of the world (i.e. currently, Mr. Holmes believes
that the state TRUE has the probability 0.986 of occurrence).

Taking into account that beliefs may change over the time, it is important to spec-
ify which Bayesian network elements are mutable. We assume that only the computed
marginal distribution values (see Figure 3.3 in the Chapter 3) are vulnerable to those
changes in order to reflect the evolution of the agent’s environment. The remaining el-
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ements, such as conditional probability tables, causal relations, variables and states, are
immutable. Of course, these restrictions are imposed by the architecture, and to remove
them demand the employment of learning techniques (i.e. Expectation Maximization al-
gorithms for parameter and topology learning in Bayesian networks (LUNA, 2004; COW-
ELL et al., 1999)) beyond the probabilistic inference.

Beliefs are updated to express the state of the agent’s environment. In the present
agent architecture, the changes take place when a probabilistic inference (see Section
4.2.1) is performed based on evidences perceived by the agent. After each probabilistic
inference, a new network situation (BayesianSituation class individual) arises. The Figure
4.3 illustrates an example where an agent perceives an evidence and updates its beliefs
according to the perception.
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100.0
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Figure 4.3: An agent perceiving an evidence and updating its beliefs (inferring) according
to the perception.

The perception is represented by the gray arrow on the left side of the agent. The per-
ceived evidence, coded in OWL language, indicates that the state TRUE of the Earthquake
variable has been diagnosed with certainty. The Figure 4.3 shows only two variables,
Earthquake and RadioNews, and the last two situations of the agent’s network. The first,
named Sn, represents the current situation before the execution of the inference process
that considers the perceived evidence in the variable Earthquake. The second is the cur-
rent situation, called Sn+1, resulting from the inference process. The inference is depicted
in the figure by the gray arrow from the situation Sn to the situation Sn+1. Following the
information flow: the agent perceives the evidence, and since the state of Earthquake
is known, it is necessary to perform an inference to recalculate the probabilities associ-
ated with the variable RadioNews. After the inference execution a new situation Sn+1 is
generated from the situation Sn, considering the evidence in the Earthquake variable.

A snippet of the OWL source code corresponding to the evidence perceived by the
agent is illustrated in the Figure 4.4. It begins by specifying three Label individuals. The
former represents the variable’s name (Earthquake) and the remaining the labels of the
variable’s states (TRUE and FALSE). After them, it is specified a PriorChanceVariable
individual, followed by a ChanceNode individual. Finally, the Evidence individual has
three properties that point respectively state’s label, its probability, and the node that the
state belongs.

The expert responsible for specifying the agent’s beliefs have to construct the Bayesian
networks in conformance with this knowledge representation, where the causal relations
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< f "Label_1">
< "{...}#string">Earthquake< >

< >
< "Label_2">

< "{...}#string">TRUE< >
< >
< "Label_3">

< "{...}#string">FALSE< >
< >
< "PriorChanceVariable_1">

< "#Label_1"/>
< >

{...}
< >
< >

{...}
</ >

< >
< "ChanceNode_1">

<
"#PriorChanceVariable_1"/>

< "#Label_1"/>
< >
< "Evidence_1">

< "#Label_2"/>
< "{...}#float">1.0< >
< "#ChanceNode_1"/>

< >

Label rd :ID=
name rdf:datatype= /name

/Label
Label rdf:ID=

name rdf:datatype= /name
/Label
Label rdf:ID=

name rdf:datatype= /name
/Label
PriorChanceVariable rdf:ID=

hasLabel rdf:resource=
hasState

/hasState
hasMarginalDistribution

hasMarginalDistribution
/PriorChanceVariable
ChanceNode rdf:ID=

hasChanceVariable
rdf:resource=

hasLabel rdf:resource=
/ChanceNode
Evidence rdf:ID=

hasLabel rdf:resource=
probability rdf:datatype= /probability
hasNode rdf:resource=

/Evidence

Figure 4.4: Snippet of the OWL code of an evidence.

and the initial conditional probabilities should be as accurate as possible in order to ex-
press the domain’s reality. This modeling task is fundamental because in some situations
the agent will not have evidences about all states it needs, and the agent’s decisions will
be taken based in the conditional probability tables initially defined. Before perceiving
evidences, an agent has only unverified beliefs meaning that it believes that states of world
can occur with a conditional probability.

Concerning beliefs, it is worth to stress some points. A variable Earthquake in an
agent’s network has the same meaning of a variable Earthquake in a network of other
agents. This design decision was taken since the focus of this research is the integration
of the BDI model and the Bayesian networks. However, the structure necessary to add
semantics to the chance variables is provided. The ChanceNode, ChanceVariable and
State classes have a property named hasLabel, which may indicate individuals for adding
semantics to the concepts represented by those Bayesian network elements. In example,
the hasLabel property of a ChanceVariable could point to an individual of a class named
Earthquake, which has two properties: hasMagnitude and hasArea. The hasArea property
can be a map of the area affected by the earthquake. The magnitude of an earthquake,
measured in a scale (i.e. Richter), can be denoted by a property named hasMagnitude. It
is clear that the ontological modeling of those concepts could be as detailed as necessary.

It is allowed the existence of Bayesian networks with only one node and without
relations. One could argue that they are not networks, but in the context of this cognitive
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agent architecture they are viewed as beliefs without causal relations.

4.1.2 Desires and Intentions

Desires are Intentional mental states that represent the states of affairs that an agent
would, in an ideal world, wish to be brought about, and intentions represent desires that it
has committed to achieving (WOOLDRIDGE, 2000).

Since desires are states of affairs that an agent wishes to bring about, this work con-
siders that desires correspond to states of variables. The intentions are also represented in
this way, since the only difference between them and the desires is the commitment es-
tablished by the agent with the intentions. Assuming that desires and intentions relate to
particular states of the world (chance variable states) to be achieved, those mental states
are considered successful if the agent believes in their Intentional content (the variable
states have been observed).

The Figure 4.5 illustrates how the desires are viewed through Bayesian networks. The
desire consists of the variable and the desired state. In this case, Mr. Holmes desires
the state TRUE of the HolmesGoesHome variable. The probabilities associated with each
state of HolmesGoesHome are conditioned by the states of the parent variables. The
desire selection, discussed in detail in the deliberation process Section, takes into account
the probabilities of those states of parent variables.
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Figure 4.5: Representation of desires through Bayesian networks.

In opposition to beliefs, the Intentional state of desires and intentions were explicitly
represented because there is not a way to identify these mental states just by checking
the networks. Since desires and intentions relates to particular states of the world (chance
variable states) to be achieved, it is possible to assert that the Intentional content of desires
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and intentions are subsets of beliefs. Besides, it is possible to assert that intentions are a
subset of desires, assuming that it is possible to intend a state that is desired.

These proactive Intentional states were specified as OWL ontology classes, which
are illustrated by the conceptual map in the Figure 4.6. To represent a proactive mental
state it was created the ProActiveMentalState class, which has two properties: hasState
and hasChanceVariable. These properties indicate the Intentional content of a proactive
mental state, that is, its conditions of satisfaction. In this work, the Intentional content
of proactive mental states corresponds to a chance variable and one of its states. Two
classes are specialized from ProActiveMentalState: Desire and Intention, which do not
specify additional properties. This distinction is justified by the difference of meaning be-
tween these two mental states: both represent state of affairs to be achieved, but intentions
represent the agent’s commitment to those states.

ChanceVariable

ProActiveMentalState

isA

hasChanceVariable

Desire

isA

Intention

hasState

State

Figure 4.6: Representation of the desires and intentions concepts and relationships.

In variables of prior nodes, the Intentional content of proactive mental states is rep-
resented by a PriorChanceVariable and a StateProbability individual. In non prior node
variables, the Intentional content of desires and intentions is represented by a Condition-
alChanceVariable and a ConditionalProbability individual.

The Figure 4.7 illustrates an OWL code snippet an intention. It corresponds to an
intention to achieve the state TRUE of a chance variable labeled HolmesGoesHome (see
Figure 4.1). The code begins by specifying two labels (Label individual). Following
them, there are a prior chance variable (PriorChanceVariable individual) and one of its
states (StateProbability individual). Finally, it is specified the Intention individual.

Desires of a BDI agent do not need to be compatible, since there is no commitment
to achieve them. Consider a situation where an agent desires multiple states of the same
chance variable. We know that these states are mutually exclusive, but from a BDI view-
point it is not wrong to desire them. Based on this assertion, the architecture allows an
agent to desire more than just one state, though only one state can be intended.

It is known that intentions should be consistent. Thus, an agent can not entertain op-
tions that are not consistent with its intentions. The only restriction explicitly imposed
by the Bayesian networks is the mutual exclusiveness of the states, which denies inten-
tions to point to states of the same chance variable. However, in some way, the agents
have to know which intentions can not coexist. This issue is addressed by the deliberation
process.
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< f "Label_4”>
< "{...}#string">HolmesGoesHome< >

< >
< "Label_2">

< "{...}#string">TRUE< >
< >
{...}
< "PriorChanceVariable_2">

< "#Label_4"/>
< >

{...}
< >
< >

{...}
</ >

< >
< "StateProbability_2">

< "#Label_2"/>
< "{...}#float">1.0< >

</ >
< "Intention_1">

< "#StateProbability_2"/>
< "#PriorChanceVariable_2"/>

</ >

Label rd :ID=
name rdf:datatype= /name

/Label
Label rdf:ID=

name rdf:datatype= /name
/Label

PriorChanceVariable rdf:ID=
hasLabel rdf:resource=
hasState

/hasState
hasMarginalDistribution

hasMarginalDistribution
/PriorChanceVariable
StateProbability rdf:ID=

hasLabel rdf:resource=
probability rdf:datatype= /probability

StateProbability
Intention rdf:ID=

hasState rdf:resource=
hasChanceVariable rdf:resource=

Intention

Figure 4.7: Snippet of the OWL code of an intention.

4.2 Processes

Once introduced the beliefs, desires and intentions, it is detailed the processes respon-
sible for manipulating these mental states. The flow of information in our agent model
begins by perceiving the environment and updating the beliefs. Up to date beliefs, to-
gether with desires and intentions, provide the support for the deliberation process, which
results in the intentions to be pursued by the agent.

4.2.1 Belief Updating

To keep beliefs up to date is a crucial task to an agent, since in a dynamic world it
is necessary to make decisions and execute actions taking into account the state of the
environment.

The belief updating process is triggered when agents perceive new evidences. The
evidences, perceived as Evidence class individuals, have to be analyzed by the agent in
order to associate them with the chance variables. Concerning analysis, the simplest one
consists in comparing the variable pointed by the evidence with the agent’s variables.
It is assumed that the hasLabel property of the ChanceVariable class can indicate other
individuals except the Label ones, what gave rise to a better description of the concept
modeled by the chance variable.

In the Figure 4.3 the agent perceives an evidence indicating that an Earthquake has
occurred. Comparing this evidence with its beliefs, the agent realizes that it has a variable
that represents this event. Therefore, the agent performs an inference which updates the
chances of its beliefs.

As stated in the Section 3.2.3, a Bayesian network situation consists of a particular
configuration that a network assumes given a set of evidences. The current situation of



50

a network is computed considering the most recent evidences and it is the most up to
date knowledge the agent has about its environment. A situation is represented by a
BayesianSituation class individual, and a transition between two situations is represented
by a BayesianSituationTransition class individual. The evidence (Evidence individual)
and the current situation (BayesianSituation individual) are the Bayesian inference input.
As output it has a BayesianSituation individual, representing the new situation, and a
BayesianSituationTransition individual, establishing a link between the new situation and
that used as input.

4.2.2 Deliberating Under Uncertainty

In the deliberation process, BDI agents examine which desires are possible, choose
between competing desires, and commit to achieving them (WOOLDRIDGE, 2000). In
this work, the deliberation process was divided in two stages: the first verifies which de-
sires are possible to be achieved, and the second checks the compatibility among possible
desires and intentions.

Possible desires are those considered reachable by the agent. In order to select the
possible desires, the agent checks the availability of action plans and the probabilities
of the desired states (degree of belief in the desired state). The action plans are closely
related to the construction of the Bayesian networks. By this it means that the action
plans are suppose to cause particular variable states, and the combination of action plans
can be made to obtain a condition (combination of variable states). The state TRUE of
the variable HolmesGoesHome in the Figure 4.1 is desired by Mr. Holmes. In order to
achieve that state, the agent has an available action plans that consists in driving home
with his car. The action plans are not represented in the Bayesian networks, only the state
of world that they are supposed to cause.

If there is at least one action plan available to achieve the desired state, the second step
to decide which desires are possible is the evaluation of the computed marginal probabil-
ity associated with the desired state. Assuming that the probabilities associated with the
states indicate their chance of occurrence, and desires are represented by variable states, it
is possible to assert that the probabilities indicate the chance of occurrence of the desired
state. In this work, a BDI agent will intend only states of the world that it believes to be
possible to achieve. Some applications require cautious agents, which act only under high
probabilities. Other applications demand bold agents, which act also under low probabil-
ities. It means that the threshold used to select the desires is specified in accordance with
the expected behavior.

In example, consider that Mr. Holmes goes home when the probability of the state
TRUE of HolmesGoesHome gets higher than 0.5. By adopting that bold behavior, Mr.
Holmes is more susceptible to the intention failure. However, Mr. Holmes will go home in
most part of times that a burglar breaks into his house. Now, assume that Mr. Holmes goes
home only when the probability of the state TRUE of HolmesGoesHome gets higher than
0.99. That very cautious behavior will guarantee that the intention will be created only
under a high degree of certainty, but it decreases the chances of reaction to an ongoing
burglary.

It is known that BDI agent can entertain incompatible (mutually exclusive) desires,
but it is not allowed to commit to them. The incompatibility is detected in two contexts:
local and global. The local incompatibility happens between states of the same chance
variable. Since they are mutually exclusive, an agent can not intend more than one. The
global incompatibility happens on the network context. Desires represented by states in
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different chance variables are incompatible when the achievement of one decreases the
probabilities of occurrence of another. The evaluation of the degree of incompatibility
(how significant is the decrease of probability?) fits to the threshold issue, previously
discussed: in some domain of application a small decrease is not significant and in other
domain it is. For a cautious agent, who intends a state only under high probabilities, any
decrease of chances can mean an intolerable incompatibility.

To detect global incompatibilities, the agent simulates a fake evidence indicating that
the desired state has been observed. Once forged the fake evidence, a probabilistic infer-
ence is performed. If the resulting network situation exhibits an interference on probabil-
ities of other desires, there is an incompatibility among those mental states.

The second stage begins by checking the compatibility (global and local) of the pos-
sible desires (those approved on the previous stage) with the agent’s intentions. In this
work, the desires considered incompatible with the agent’s intentions are dropped. In
some circumstances to drop an intention to select a desire can be advantageous, how-
ever this research does not address issues such as commitment strategies and intention
reconsideration.

Desires compatible with the agent’s current intentions compete between themselves to
become intention. Differently from checking compatibility among desires and intentions,
now the agent has to employ a criterion for deciding between competing desires. The
main criterion employed by this approach consists in checking the probability associated
with the desired state. It is known that this probability does not mean the chance of
success of a plan, but the chance of occurrence of that state. Since our agent desires states
of affairs that it believes that are possible, it will decide in favor of the desire with the
highest probability.

It is important to point out that the strategy used to set the threshold has to take into
account the quantitative aspects of agent’s beliefs. The maximum probability value that
can be inferred in the state TRUE of the variable HolmesGoesHome is 0.99, if the state
FALSE of the variable RadioNews and the state TRUE of the variable WatsonCalls get
observed. To assume a value higher than 0.99, the state TRUE of HolmesGoesHome has
to receive an evidence. Supposing that a very cautious agent set the threshold value to
0.999, the desire TRUE of HolmesGoesHome will never be selected as a possible one.

The desires selected by the deliberation process become intentions, leading the agents
to action through their plans. Intentions are considered successful if the intended state
receives an evidence indicating that it has been observed with certainty. Otherwise, the
agent assumes that the intention has failed.

In the Earthquake or Burglary example, the agent will wait until the world becomes
favorable to its desire. An evidence on WatsonCalls is enough to increase the chance
of HolmesGoesHome from 0.036 to 0.967. Supposing a threshold of 0.9, Holmes will
immediately go home. However, in some cases, agents have available action plans to
change the world state. By this it means that agent can affect the parent variables to
produce a situation where desires become possible. Those action plans are based on the
relation among variables. Although that kind of relation does not necessarily imply in
causality (JENSEN, 2001), the parent variables have an influence on the probabilities of
the conditioned variables that did not receive evidences.

Until now it was discussed only action plans in the context of the desired state. This
kind of plan is named local plan because it is limited to the variable context. Of course,
a successful local plan execution will collaterally affect states of other unobserved vari-
ables. The local action plan is executed locally in the context of the variable, but its effects
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can be noticed by other variables. By acting in the parent variables, the agents can cause a
state of world where their desires are feasible. This kind of plan, that intends to change the
states of parent variables, is named global plan. Global plans are assembled at runtime,
and they can be extended recursively to the parent variables of parent variables.

Before explaining how global plans are assembled, it is presented the Identify Suspect
example. In this example, Mr. Holmes acts proactively to produce a world state where the
desire to identify the suspect becomes possible to achieve. The Figure 4.8 illustrates the
Holmes’ beliefs. The Bayesian network with three variables: Witness, Fingerprints and
IdentifySuspect. The Witness variable models someone who saw the crime and accused
the suspect. Witness variable can assume two states: trustworthy or untrustworthy. The
Fingerprints variable informs if there are fingerprints of the suspect in the gun used in
the crime. The TRUE state means that there are fingerprints of the suspect. The Identi-
fySuspect chance variable has two states: TRUE and FALSE. If the variable assumes the
state TRUE, the suspect has been identified. Holmes desires to achieve the state TRUE
of the node IdentifySuspect, and identify the author of the crime. Differently from the
previous example, now Mr. Holmes has actions available make the desire feasible. The
action plans, presented now in a high level of abstraction, are to analyze the fingerprints
and to interrogate the witness. After executing those action plans, it is expected evidences
indicating the chances of Witness and Fingerprints.
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TRUSTWORTHY
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Figure 4.8: Identify Suspect example.

The requirement for assembling global plans is the availability of actions to change
particular states of the desire’s parent variables. The plan construction begins by checking
the conditional probabilities of the desired variable. In example, to increase the probabil-
ity of the state TRUE of the variable IdentifySuspect, Mr. Holmes checks the conditional
probabilities of that state, and realizes that if the states trustworthy of Witness and TRUE
of Fingerprints get observed, the probability of the state TRUE of IdentifySuspect goes
to 0.99. The second entry has probability 0.5 and the conditions are composed by the
states FALSE of Fingerprints and trustworthy of Witness. All entries are checked, and the
available plans are stored within the desire.

To update the beliefs before deliberating is crucial, since evidences can dismiss the
necessity of executing actions. Supposing that the state trustworthy of Witness receives
an evidence, an available action for TRUE of Fingerprints would increase the chances of
the state TRUE of the variable IdentifySuspect.

Global plans have to be checked for incompatibilities in the same way as local plans.
The second stage of the deliberation process also applies to the intended states of the
parent variables. By this it means that intended states of global plans have to present
local compatibility, in the variable context, and global compatibility, in the Bayesian net-
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work context. Thus, for each intended state of parent variables, the agent simulates a
fake evidence and performs a Bayesian inference. Global plans considered incompati-
ble are dismissed. Desires are considered incompatible if all of its plans are considered
incompatible.

Agents can be programmed to take decisions under uncertainty, where there are not
evidences in all parent nodes, just inferred probabilities. Suppose that the Fingerprints
variable, in the example of the Figure 4.8, specifies 0.99 as chance of the state TRUE
instead of 0.2. That high probability would be specified in a circumstance where the
suspect was viewed with a gun in his hands in the crime scene.

Again, it is worthy to stress that global plans intend to achieve states of world where
desires become feasible. Given that affirmation, the deliberation process could give pri-
ority to those desires which have only local plans, since the state of world is already
favorable to them. In circumstances where the agent has not actions, it has to wait until
the environment becomes favorable, or interact cooperatively with other agents.

4.3 Interoperability Example

An example of interoperability between two BDI agents, Watson and Holmes, is il-
lustrated in the Figure 4.9. The beliefs of the agent Watson are represented through a
Bayesian network with two nodes: Alarm and WatsonCalls. If it perceives the Holmes’
alarm has gone off, it calls Holmes. The beliefs of Holmes, presented in the Figure 4.1,
are partially exhibited in the Figure 4.9. Since this Section focuses on the integration of
BDI model and Bayesian networks, it is considered that variables in different networks,
but with the same label, have the same semantics. In other words, the node Alarm in
the Holmes’ beliefs has the same meaning of the node Alarm in the Watson’s beliefs.
As previously stated, ontology classes representing these concepts can be developed and
associated with the chance variables and states.
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Figure 4.9: Interoperability example.
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In the Figure 4.9 is depicted only the current situation Sm of Watson’s beliefs. In the
situation Sm, the node Alarm has an evidence that indicates the occurrence of the state
TRUE. The Bayesian network of Holmes, as stated above, is partially represented. It is
shown the last two situations of Holmes’ beliefs. The first, named Sn, represents the
current situation before the execution of the Bayesian inference process that considered
the received evidence in the node WatsonCalls. The second is the actual situation, called
Sn+1, resulting from the inference process. The inference is illustrated in the figure by a
gray arrow from the situation Sn to the situation Sn+1.

A message exchanged among Watson and Holmes is represented by the gray arrow be-
tween them. The message, written in OWL, contains an evidence associated with the node
WatsonCalls. The Figure 4.10 presents a snippet of the OWL source code corresponding
to the message content.

< f "Label_1">
< "{...}#string">Alarm< >

< >
< "Label_2">

< "{...}#string">TRUE< >
< >
< "Label_3">

< "{...}#string">FALSE< >
< >
< "ChanceVariable_1">

< "#Label_1"/>
< >

{...}
< >
< >

{...}
</ >

< >
< "ChanceNode_1">

< "#ChanceVariable_1"/>
< "#Label_1"/>

< >
< "Evidence_1">

< "#Label_2"/>
< "{...}#float">1.0< >
< "#ChanceNode_1"/>

< >

Label rd :ID=
name rdf:datatype= /name

/Label
Label rdf:ID=

name rdf:datatype= /name
/Label
Label rdf:ID=

name rdf:datatype= /name
/Label
ConditionalChanceVariable rdf:ID=

hasLabel rdf:resource=
hasState

/hasState
hasMarginalDistribution

hasMarginalDistribution
/ConditionalChanceVariable
ChanceNode rdf:ID=

hasChanceVariable rdf:resource=
hasLabel rdf:resource=

/ChanceNode
Evidence rdf:ID=

hasLabel rdf:resource=
probability rdf:datatype= /probability
hasNode rdf:resource=

/Evidence

Figure 4.10: Snippet of the OWL source code corresponding to a evidence.

Following the flow of information, Watson sends to Holmes a message containing
the evidence associated with the node WatsonCalls. Upon receiving the OWL message,
Holmes analyzes the message content and realizes that it is informing an evidence that
WatsonCalls is TRUE. It means that Watson perceived that the alarm is gone off and
called to Holmes to notice a possible burglary. Since the state of WatsonCalls is known,
it is necessary to perform the inference to recalculate the probabilities of the network.
The inference generates a new situation Sn+1 from the situation Sn considering the evi-
dence from the node WatsonCalls. Changes on beliefs may give rise to intentions through
deliberation process, in this case the intention of achieving the state TRUE of Holmes-
GoesHome.
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4.4 Final Considerations

In this Chapter it was presented an integration of the BDI agent model and Bayesian
networks, which gave rise to an agent model capable of reasoning under uncertainty. It
was proposed a straightforward way to abstract beliefs, desires and intentions through
Bayesian networks, making possible to represent probabilistic information within those
mental states. To keep beliefs up to date, it was employed the Bayesian inference process.
That evidence-based reasoning updates the conditional probabilities taking into account
the relations among beliefs.

The Bayesian networks were codified in an ontology language (Chapter 3), allow-
ing the agents to interoperate with other agents that share those ontology concepts. The
understanding about the Bayesian networks’ domain provided by the ontology, more
specifically by conceptual modeling task, facilitated the integration of the BDI model
and Bayesian networks, since concepts and relationships were clearly defined.

The deliberative process is employed to cover the goal-directed behavior of the agent.
This process is improved by the Bayesian networks, allowing the estimative of probabil-
ities of state occurrence, the verification of compatibility between competing desires and
the assembly of global plans. The means-end reasoning of our agents is embedded inside
the deliberative process. By this it means that they decide how to achieve a desire before
committing to it.

Distinct behaviors can be obtained by tuning the way that the agent evaluates the prob-
abilities in the deliberation process. Cautious agents desire only states that they believe
that have high chances of occurrence. On the other hand, audacious agents do not require
high probabilities to desire a state. We claim that this tuning is domain specific, since
different applications call for different agent behaviors.

The Bayesian networks, through their causal relations, provide a support that enables
the agent to act in order to increase the chances of occurrence of desired states. Global
action plans are composed in a dynamic way, which gives flexibility to the model since
the agent can construct plans considering the current state of world. The global plan con-
struction can be considered a proactive attempt to change the environment. BDI models
such as AgentSpeak(L) and Procedural Reasoning System perform a plan only when a
context (condition) is established. The inexistence of causal relations among beliefs in
those models does not allow the causal reasoning. BayesJason represents beliefs through
Bayesian networks, but the deliberative process does not explore aspects of that knowl-
edge representation to promote improvements on the BDI model.

Finally, there is not a unique implementation of the proposed integration. Several
different model can be obtained by taking into account different aspects. In example, a
particular agent implementation can exhibit a cautious behavior, performing local plans
under high probabilities, and assembling global plans only if it has actions to achieve all
intended states of parent nodes.
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5 CASE STUDY

This Chapter presents a case study, which consists in applying the agent architecture,
presented in the previous chapter, in the Social Agent. By this, it is intended to discuss
the pragmatic aspects of the proposed integration and present how this dissertation fits in
the AIG research.

5.1 Context

The PortEdu (NAKAYAMA; VICARI; COELHO, 2005) is a portal that provides ac-
cess to educational content and systems. That portal is a FIPA-compliant (FIPA: Founda-
tion For Intelligent Physical Agents, 2006) multiagent system, designed to support agent-
based learning environments, such as AMPLIA (VICARI et al., 2003). Among PortEdu’s
features are the Information Retrieval Agent (NAKAYAMA; VICARI; COELHO, 2005),
the User Profile Agent (ALMEIDA, 2004) and the Social Agent (BOFF; SANTOS; VI-
CARI, 2006).

The AMPLIA is an intelligent multiagent learning environment, designed to support
training of diagnostic reasoning and modeling of domains with complex and uncertain
knowledge, which focuses on the medical area. The AMPLIA’s functionalities are also
provided by an agent society, which includes the Learner Agent and the Mediator Agent.
The Learner Agent represents the student beliefs in a specific domain and the confidence
degree this learner has on its tasks. The Mediator Agent has knowledge about the domain,
in this case, the medical one. It allows the Mediator Agent to evaluate the student actions
outcome.

This case study is specifically concerned with the Social Agent, which is currently
being developed by Elisa Boff in an ongoing PhD thesis of the PPGC/UFRGS. The main
goal of the Social Agent is to improve student’s learning by stimulating his interaction
with other students, tutors and professors. The interaction is stimulated by recommending
the students to join workgroups to provide and receive help from other students.

To reach its purposes, the Social Agent interacts with other agents following the FIPA
specifications, which are considered the current standard for interoperability among het-
erogeneous agents and, since 2005, are sponsored by IEEE. However, the FIPA standard
solves the interoperability issue just at the syntactic level. The semantics of the messages’
content is addressed by the ontology presented in the Chapter 3.
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5.2 Social Agent

In the previous implementation of the Social Agent (BOFF; SANTOS; VICARI,
2006) it was employed Influence Diagrams (COWELL et al., 1999) as knowledge rep-
resentation. This approach exhibited gaps and limitations. Influence Diagrams do not
represent states of the world to be achieved, just decisions that may lead the agent to
those states. Consequently, it is not possible to represent incompatible states of affairs
that an agent wishes to bring about. The decisions taken in the Influence Diagrams are
sequential and they are evaluated through utility functions. They do not take into account
the relations among variables, which together with the quantitative aspects can give rise
to a more sophisticated reasoning.

The Figure 5.1 depicts part of the Social Agent’s mental states (Bayesian network)
about a student. There is one Bayesian network instance for each student that the agent
intends to help. The integration with the BDI model eliminated the necessity of using
decision and utility nodes. This is the reason for representing beliefs through Bayesian
networks, instead of Influence Diagrams.

JoinGroup

AffectiveState

StudentActionOutcome

SocialProfile

The agent desires all
states of , but
only one can be intended.
The CPT can be used to
construct the global plans
(the agent believes that
states will assume the
specified probability if
the conditions get
satisfied).

JoinGroup

group 1 0.90

unfeasible

AffectiveState

group 2 0.07

StudentActionOutcome

SocialProfile

joy

high low

0.70

0.10

0.05

0.20

high low

0.05

0.60

shame

group 3 0.03 0.20 0.75 0.35

joy

shame

0.2759

0.5026

reproach 0.2215

high 0.5

low 0.5

unfeasible 0.3089

incorrect 0.2479

incomplete 0.2000

feasible 0.1172

complete 0.1260

The computed marginal probabilities of each
state of express the degree of belief
that the Social Agent has about the states, taking
into account the current  evidences on the network.
The agent will intend one of these states only if it
believe that the state is feasible.

JoinGroup

INFERENCE

group 1 0.4030

group 2 0.3326

group 3 0.2644

LearningStyle PersonalityTraits

GoalsCredibility InteractionPatterns

SatisfiedGoals

Figure 5.1: Social Agent’s mental states.
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The SocialProfile is built during the students’ interaction. This node has the states
high and low sociability. The student’s AffectiveState is composed by three states: joy,
reproach and shame. From this variable it is also possible to infer distress, admiration
and pride. The variable StudentActionOutcome represents information about a problem
solution given by the student. In this case study, the evidences for this variable are pro-
vided by the educational environments hosted in PortEdu, and the variable can assume
the states incorrect, feasible, unfeasible, incomplete, and complete. The chance variable
JoinGroup represents the student workgroups that can be suggested to the student by the
Social Agent. Each group corresponds to a state. Its conditional probabilities indicate
the chances of the student to join that workgroup given the conditions. The remaining
variables and the pedagogical aspects are beyond the scope of this case study.

In the Figure 5.1 there are two tables associated with the JoinGroup variable. The
conditional probability table contains the agent’s beliefs about the chance of occurrence
of states under the observation of conditions. The Social Agent believes that the state
group1 of JoinGroup has the probability 0.9 of occurrence if the state unfeasible of Stu-
dentActionOutcome, high of SocialProfile and joy of AffectiveState get observed. The
probability table of the computed marginal distribution, resulting from the Bayesian in-
ference process, expresses the agent’s beliefs about the current state of the world. The
Social Agent believes that the state group1 has the probability 0.4030 of occurrence. The
desires are pointed out by the gray elements: the states group1, group2 and group3, and
the variable JoinGroup. The Social Agent desires all states of the JoinGroup variable,
despite the fact that only one of them can be intended. The probabilities associated with
each state of the JoinGroup CPT are conditioned by the states of the parent variables. The
Figure 5.2 shows a snippet of the OWL code corresponding to the Social Agent’s desire
group1 of JoinGroup.

It begins by specifying the four Label individuals: JoinGroup (1-3), group1 (4-6),
group2 (7-9) and group3 (10-12). The Label individuals are identified by a string datatype.
Following the labels, there is a ConditionalChanceVariable individual (14-17), whose
hasLabel property points to the label JoinGroup. The StateProbability individual (18-21)
is specified after the chance variable. It points to the group1 label and has the probability
value equal 1.0. Finally, the Desire individual (22-25) indicates the chance variable and
the state probability. It means that the Social Agent desires to bring about the state group1
of the variable JoinGroup. The probability 1.0 indicates that the event have to occur to
make the desire successful.

The Figure 5.3 illustrates the Mediator Agent sending a FIPA-ACL message to Social
Agent. The message performative is an inform, the content language is the OWL, and the
agreed ontology specifies the Bayesian network domain.

In the message content is the OWL code of an Evidence individual that indicates the
observation of the state complete in the node StudentActionOutcome. The reception of
this evidence by the Social Agent will trigger the Bayesian inference, generating a new
situation in the Bayesian network (beliefs).

Assuming that the Social Agent has three desires that belong to the same variable
(group1, group2 and group3 of JoinGroup), the deliberation process can choose only one
to become intention. This process begins by checking the availability of actions to bring
about each desired state. The Social Agent action plan consists in suggesting a particular
workgroup to the student. Since the agent has action plans to achieve the three desires,
the second stage (evaluation of the probabilities) is performed. It begins by checking the
probability of the state group1. In the Figure 5.1, that probability corresponds to 0.4030.
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01 < f "Label_4”>
02    < "{...}#string">JoinGroup< >
03 < >
04 < "Label_1">
05      < "{...}#string">group1< >
06 < >
07 < "Label_2">
08      < "{...}#string">group2< >
09 < >
10 < "Label_3">
11      < "{...}#string">group3< >
12 < >
13  {...}
14 < "PriorChanceVariable_1">
15      < "#Label_4"/>
16        {...}
17 < >
18 < "StateProbability_1">
19     < "#Label_1"/>
20      < "{...}#float">1.0< >
21  </ >
22  < "Desire_1">
23      < "#StateProbability_1"/>
24      < "#PriorChanceVariable_1"/>
25   </ >
26  {...}

Label rd :ID=
name rdf:datatype= /name

/Label
Label rdf:ID=

name rdf:datatype= /name
/Label
Label rdf:ID=

name rdf:datatype= /name
/Label
Label rdf:ID=

name rdf:datatype= /name
/Label

ConditionalChanceVariable rdf:ID=
hasLabel rdf:resource=

/ConditionalChanceVariable
StateProbability rdf:ID=

hasLabel rdf:resource=
probability rdf:datatype= /probability

StateProbability
Desire rdf:ID=

hasState rdf:resource=
hasChanceVariable rdf:resource=

Desire

Figure 5.2: Snippet of the OWL source code of a desire of the Social Agent.

If the threshold value is lower than this value, the Social Agent will consider the group1
desire unfeasible. The remaining desires have chances lower than 0.4030, thus they will
also be considered unfeasible.

Desires that have an action plan available, but have been considered unfeasible by the
probability checking stage, will be forwarded to the global plan verification. Global plans,
as stated in the Chapter 4, intend to achieve a world state where desires become feasible.
In this case study, the Social Agent has not available action plans to change the states of
the parent variables of JoinGroup. Therefore, the agent will have to wait until the world
becomes favorable.

To update the beliefs before deliberating is crucial, since evidences can dismiss the
necessity of executing action plans. Supposing that the states joy of AffectiveState and
unfeasible of StudentActionOutcome receive evidences, an available action for high of
SocialProfile would turn the state group1 feasible.

5.3 Final Considerations

It was concluded that the Bayesian network ontology can be integrated with the FIPA
standards, more specifically with the FIPA-ACL. The adoption of OWL as a content lan-
guage for FIPA-ACL messages handles the issue of a common knowledge language. The
ontology aggregates meaning to the message content. The utilization of the OWL and the
specification of the ontology to contextualize the content, allow the expression of knowl-
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Social AgentMediator Agent

PERFORMATIVE:
SENDER:
RECEIVER:
LANGUAGE:
ONTOLOGY:
CONTENT:

Label rd :ID=
name rdf:datatype= /name

/Label
Label rdf:ID=

name rdf:datatype= /name
/Label

ChanceNode rdf:ID=
hasLabel rdf:resource=

/ChanceNode
Evidence rdf:ID=

hasLabel rdf:resource=
probability rdf:datatype= /probability
hasNode rdf:resource=

/Evidence

inform
MediatorAgent@PortEdu

SocialAgent@PortEdu
OWL
Bayesian Network

< f "Label_1">
< "{...}#string">StudentActionOutcome< >

< >
< "Label_2">

< "{...}#string">Complete< >
< >
{...}
< "ChanceNode_1">

< "#Label_1"/>
{...}

< >
< "Evidence_1">

< "#Label_2"/>
< "{...}#float">1.0< >
< "#ChanceNode_1"/>

< >

FIPA-ACL

Figure 5.3: Interoperability among Social Agent and Learner Agent.

edge in an open and explicit way.
By applying the BDI architecture to the Social Agent, it was constructed a basis where

cooperative tasks can be performed. Since PortEdu is a multiagent environment, inhabited
by knowledge intense agents, the possibility of exchange evidences enables those agents
to update their beliefs and to achieve a more reasonable behavior under uncertainty. The
BDI Social Agent, differently from the previous implementation, has an explicit repre-
sentation of the states of affairs to be achieved. By representing beliefs about the states
to be achieved, the agent can recognize when a plan has been successful. A deliberation
mechanism, instead of decision and utility variables, enabled the Social Agent to check
for incompatible desires, and to select desires based on feasibility and action availability.
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6 CONCLUSION AND FUTURE WORK

By employing an ontology-based approach to specify the Bayesian networks do-
main, this research provided the support for knowledge intense agents to interoperate
their knowledge with other agents. The resulting interoperability aids agents’ specific
decision-making since it facilitates the discovery of new knowledge and the exchange of
information, allowing the agents to take into account evidences that were not part of their
initial beliefs. Applications that demand cooperation among agents are also benefited,
since agents may communicate desires to be achieved collectively.

The ontology can be applied to represent uncertain knowledge in several contexts
beyond the multiagent systems, in example, Semantic Web and interchange format for
Bayesian network tools and applications. The concepts and relationships were specified
in such way that they can be extended to represent other probabilistic network dialects,
such as Influence Diagrams.

Assuming that the interoperability is the main issue to be addressed by the ontology,
the development process focuses on the conceptual modeling and on the implementation
using OWL. Ontology aspects such as description logics reasoning are not addressed by
this work. Beyond the interoperability, another contribution provided by the conceptual
modeling perspective was the deeper understanding of the Bayesian networks domain. It
was fundamental to the abstraction of the BDI model through that probabilistic knowledge
representation.

The presented approach to represent uncertain knowledge, differently from PR-OWL
and PACL, does not propose any modification in standards such OWL and FIPA. It was
applied a current standard (OWL) to model the discrete Bayesian networks, allowing
Bayesian agents (including FIPA-compliant ones) to interoperate their knowledge by
adopting the ontology for defining the semantics of their messages’ content.

By integrating BDI model and Bayesian networks it was obtained a BDI architecture
capable of reasoning under uncertainty. It was proposed an approach to abstract the Inten-
tional content of the mental states through Bayesian networks, enabling the association
of probabilistic information within those mental states. Those probabilities are updated
by the Bayesian inference process, which is triggered by the evidences perceived by the
agent.

Under perceived evidences, the agents reason about their desires and take decisions
about which ones to commit. This goal selection takes into account the qualitative and the
quantitative aspects of the Bayesian networks. Synergistic effects can be observed in the
estimative of the chances of mental states’ occurrence (degree of belief to decide which
desires are feasible), in the verification of compatibility between competing desires, and
in the assembly of global plans involving parent variables.

The BDI agent architecture presented in the Chapter 4 do not discuss the format or
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structure of the action plans. The plans and the perceptions (agent’s interface with its
world) can be designed and implemented in accordance with the specific applications. The
mental states were completely represented through Bayesian networks. Systems such as
AgentSpeak(L) interpreters represent the desires and intention through plans that achieve
those mental states. The BayesJason tool (an extension of the Jason tool, an AgentS-
peak(L) interpreter). This work represents desires and intentions as states of world to be
achieved and the plans have to be represented separately. The consideration of the causal
relations (qualitative aspect of the networks) in the deliberation process enabled the agent
to reason about causes and consequences. By this it means that the agents can bring about
states of world that increase the chances of success.

Bringing together ontologies, Bayesian networks and the BDI agent model, gave rise
to a probabilistic BDI agent architecture. The architecture is capable of interoperating
its probabilistic knowledge thanks to the ontology, capable of dealing with uncertainty
thanks to the Bayesian networks, and finally, capable of representing goals and taking
decisions under uncertain circumstances thanks to the BDI model.

To verify the applicability of the proposal of integration, it was developed a case
study in the PortEdu environment. By applying the proposed BDI agent model to the So-
cial Agent, it was constructed the basis where cooperative tasks can be performed. Since
PortEdu is a multiagent environment, inhabited by knowledge intense agents, the possi-
bility of exchange evidences enables those agents to update their beliefs and to achieve a
more reasonable behavior under uncertainty. The BDI version of the Social Agent, dif-
ferently from the previous implementation, has an explicit representation of the states of
affairs to be achieved. By representing beliefs about the states to be achieved, the agent
can recognize when a plan has been successful. The BDI deliberation mechanism, instead
of decision and utility nodes, enabled the Social Agent to check for incompatible desires,
and to select desires based on feasibility and action availability.

The following research topics can be pointed as future work:

• To extend the ontology to describe Influence Diagrams. In order to represent this
kind of probabilistic network, decision and utility nodes must be incorporated in the
ontology. Other network models, such as Decision Trees can also be represented in
the ontology by including new concepts and relationships.

• The employment of ontology alignment techniques can contribute with the im-
provement of the agent’s perception. The belief updating process depends of a
trustful perception, since the evidences have to be associated with the nodes in or-
der to express the world’s current state.

• The belief updating corresponds to the Bayesian inference, but this process is lim-
ited to update the computed marginal probabilities given the perceived evidences.
To bypass that constraint it is necessary to use Bayesian network learning tech-
niques, such as network topology learning and adjustment of probabilities in the
conditional probability tables.

• Neuroscience researchers claim that the emotions play an important role in the de-
cision making process, improving the time of response in situations that demand
an acceptable result in a fashion time. From this affirmation, it is deduced that
the representation of affective mental states can contribute considerably to the im-
provement of the deliberative process in time-constrained environments, where it is
impossible to evaluate all available information. Integrating affective mental states



63

and Bayesian Networks, it is expected an agent capable of adapting to environment
uncertainties.

• The presented architecture discusses the communication (interoperability) of be-
liefs about evidences. But it can be used to communicate also desires and intentions.
Cooperative agent systems can be developed with that framework by communicat-
ing desires and intention to be achieved collectively.

• To explore the incompatibilities among desires beyond those detected with the
Bayesian networks aid. In example, spatial and temporal aspects. To take into
consideration commitment strategies and intention reconsideration in the deliber-
ation process. To represent conditional probabilities of success for plans. Beliefs
about plans will help the agent to select the best ones.

• To extend the approach to the remaining agents hosted in the PortEdu. To share the
ontology among the agents in the portal.

• To aggregate meaning to the chance variables and states in the Social Agent case
study. It can be done by developing an ontology to specify the concepts used in
the Social Agent’s beliefs. Once developed the ontology, to explore this domain
specific knowledge to improve the agent’s cognitive processes.
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7 INTEGRANDO MODELO BDI E REDES BAYESIANAS

A presente dissertação de mestrado está contextualizada na área de Inteligência Artifi-
cial, mais especificamente, na área de Agentes Autônomos e Sistemas Multiagente. Con-
tudo, este trabalho também envolve pesquisas na área de ontologias e redes Bayesianas. O
paradigma orientado a agentes provê os agentes autônomos, capazes de perceber os seus
ambientes, reagir de acordo com diferentes circunstâncias e estabelecer interações sociais
com outros agentes de software ou humanos. As redes Bayesianas fornecem uma maneira
de representar graficamente as distribuições de probabilidades condicionais e permitem a
realização de raciocínios probabilísticos baseados em evidências. As ontologias são es-
pecificações explícitas e formais de conceituações, que são usadas em uma variedade de
áreas de pesquisa, incluindo os Sistemas Multiagente.

Individualmente, as linhas de pesquisa da Inteligência Artificial têm proposto abor-
dagens para a resolução de inúmeros problemas complexos do mundo real. Contudo,
existem aplicações cujos requisitos não podem ser atendidos por uma única tecnologia.
Circunstâncias como estas exigem a integração de tecnologias desenvolvidas por distintas
áreas da Ciência da Computação. Esta dissertação trata a integração do modelo de agentes
BDI (Belief-Desire-Intention) e das redes Bayesianas. Além disso, é adotada uma abor-
dagem baseada em ontologias para representar o conhecimento incerto dos agentes.

As ontologias têm sido usadas pela Ciência da Computação para lidar com diver-
sas tarefas, dentre as quais citamos a modelagem conceitual e promoção de interoper-
abilidade. Atualmente, as pesquisas em ontologia estão fortemente relacionadas à Web
Semântica (BERNERS-LEE; HENDLER; LASSILA, 2001). O propósito da Web Semân-
tica é agregar significado às páginas Web, de modo que não somente os humanos, mas
também os programas de computador possam interpretá-las. Considerando a Web Semân-
tica um ambiente aberto e heterogêneo, habitado por agentes autônomos executando ativi-
dades em prol dos seus usuários, problemas relacionados à interoperabilidade (por exem-
plo, como estes agentes autônomos de domínios distintos e com objetivos distintos com-
partilham seu conhecimento, cooperam e maximizam a sua utilidade no sistema) surgem.

Historicamente, formalismos tradicionais para representação de conhecimento não
consideram a incerteza. Exemplos dessas linguagens incluem o padrão W3C (World
Wide Web Consortium) para a Web Semântica, o OWL (Web Ontology Language), e os
seus predecessores XML (eXtensible Markup Language) e RDF (Resource Description
Framework). Esforços para representar informações probabilísticas através de ontolo-
gias (por exemplo, o PR-OWL - Probabilistic OWL (COSTA; LASKEY, 2006)) têm sido
feitos no contexto da Web Semântica. Contudo, esta lacuna é também percebida em outras
áreas, dentre as quais podemos citar os sistemas de agentes BDI.

Maior parte das propostas de arquiteturas de agente BDI não é direcionada para lidar
com representações de conhecimento incerto inerente a muitos ambientes (GEORGEFF;
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INGRAND, 1989; JENNINGS et al., 1992; MÜLLER, 1996; RAO, 1996), apesar do fato
que aplicações do mundo real têm que constantemente lidar com informação incerta e
imprecisa. Agente com recursos limitados que habitam ambientes complexos e dinâmicos
nem sempre têm acesso a informações precisas e completas. Conseqüentemente, tomar
ações racionais em um tempo aceitável se torna um desafio.

7.1 Motivação

Esta dissertação foi desenvolvida no contexto do GIA (Grupo de Inteligência Artifi-
cial) da UFRGS (Universidade Federal do Rio Grande do Sul) sob a supervisão da pro-
fessora Rosa Vicari. O GIA tem pesquisado e construído ambientes educacionais, usando
técnicas de Inteligência Artificial para propor soluções não atendidas por outras áreas da
Ciência da Computação.

O primeiro passo dado pelo presente trabalho foi motivado pela abordagem baseada
em ontologias proposta por (SANTOS, 2006) para promover a interoperabilidade entre
os agentes do portal PortEdu. Um dos trabalhos futuros apontados por Santos consistia
em remodelar e estender a ontologia para representar a estrutura completa de uma rede
Bayesiana. Estas tarefas facilitaram a abstração de estados mentais, uma vez que a ontolo-
gia permitiu um entendimento não ambíguo do referido modelo probabilístico. Através
do estudo de caso, o qual consistiu em aplicar a ontologia no Agente Social (SANTOS;
FAGUNDES; VICARI, 2007), foi detectada uma lacuna entre a representação de con-
hecimento e o comportamento orientado a objetivos. Tal lacuna motivou a integração da
arquitetura BDI com as redes Bayesianas.

Durante o desenvolvimento da arquitetura BDI probabilística foi detectado que maio-
ria dos agentes que representam seu conhecimento através de redes Bayesianas possui os
processos de raciocínio dependentes das instâncias das redes. Isso impossibilita o reuso
do componente de raciocínio. Redes Bayesianas compartilham uma estrutura comum
(relações causais, tabelas de probabilidade condicional, variáveis de chance, estados mu-
tuamente exclusivos), que pode ser explorada para especificar um processo deliberativo.

Finalmente, os resultados obtidos por este trabalho contribuem diretamente com as
pesquisas do GIA. A integração de redes Bayesianas e arquitetura de agentes BDI será
aplicada no Agente Social, um componente do PortEdu (NAKAYAMA; VICARI; COELHO,
2005). Além disso, a abordagem poderá ser estendida para os demais agentes do portal
PortEdu.

7.2 Objetivos

O objetivo geral desta pesquisa é permitir que agentes BDI operem de uma maneira
interoperável em ambientes onde informações incertas estão presentes. De modo a atingir
o objetivo geral foram estabelecidos os seguintes objetivos específicos:

• Desenvolvimento de uma ontologia que especifica os conceitos de redes Bayesianas
para atender a interoperabilidade semântica entre agentes BDI.

• Representar os estados mentais BDI através de redes Bayesianas, mais especifica-
mente, através de elementos da ontologia de redes Bayesianas. Tal abstração é o
primeiro passo em direção a um modelo BDI probabilístico.
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• Especificação dos processos cognitivos da arquitetura de agentes levando em con-
sideração que as crenças correspondem a redes Bayesianas, e desejos e intenções
correspondem a estados particulares das variáveis de chance.

• Desenvolver do estudo de caso do Agente Social para demonstrar a integração das
tecnologias propostas por este trabalho.

7.3 Contribuição

A contribuição mais expressiva desta pesquisa é o modelo probabilístico BDI, capaz
de executar raciocínio deliberativo sob condições incertas. Diferentemente da ferramenta
BayesJason (CALCIN, 2006), o qual abstrai crenças através de redes Bayesianas e esta-
dos mentais pró-ativos através de planos, este trabalho abstrai crenças, desejos e intenções
através de elementos das redes Bayesianas. O processo deliberativo descrito neste tra-
balho usa a estrutura da representação de conhecimento e a sua semântica ao invés de
instâncias particulares das redes Bayesianas. Esta abordagem permite o reuso deste com-
ponente, bem como o estudo das estruturas comuns às diferentes instâncias das redes.

Podemos afirmar que a ontologia de redes Bayesianas uma contribuição independente
por si somente, uma vez que pode ser emprega em uma variedade de aplicações além da
arquitetura de agente aqui apresentada. O entendimento proporcionado pela ontologia,
mais especificamente pela tarefa de modelagem conceitual, facilita a integração das redes
com outras tecnologias, incluindo o modelo BDI.

7.4 Representando Redes Bayesianas através de uma ontologia

Uma das principais contribuições desta dissertação é a ontologia que especifica a es-
trutura das redes Bayesianas. A ontologia remodela e estende os conceitos definidos
em (SANTOS; BOFF; VICARI, 2006), permitindo a sua mais ampla utilização. Para
guiar o desenvolvimento foi adotada a metodologia proposta por Uschold e Gruninger
(USCHOLD; GRUNINGER, 1996), detalhada na Seção 2.2.3.

O principal propósito da ontologia é permitir a interoperabilidade e reuso da estru-
tura da representação de conhecimento de redes Bayesianas. Nesta dissertação, o es-
copo de aplicação foi restrito à arquitetura de agentes cognitivos, onde a ontologia atende
problemas de interoperabilidade de conhecimento incerto. Os usuários alvos são de-
senvolvedores e pesquisadores que precisam compartilhas conceitos comuns sobre redes
Bayesianas. Usuários que desejam construir modelos de outras redes probabilísticas tam-
bém são considerados, uma vez que eles podem estender esta conceitualização para cobrir
conceitos relacionados aos diferentes dialetos de redes probabilísticas.

A ontologia foi especificada em dois níveis. O primeiro foi em mapas conceituais,
onde as restrições semânticas foram expressas parte nos mapas e parte em linguagem nat-
ural. Esta fase foi chamada captura. A segunda fase foi chamada codificação e consistiu
na transição da representação capturada na fase anterior para linguagem OWL.

7.4.1 Fase de Captura

Esta fase tem como objetivo identificar os conceitos e relacionamentos do domínio das
redes Bayesianas discretas, e representá-los independentemente de linguagem de codifi-
cação. O processo de captura é suportado pelos fundamentos de redes Bayesianas intro-
duzidos na Seção 2.1.
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Redes probabilísticas são modelos gráficos de interações causais entre conjuntos de
variáveis, onde as variáveis são representadas por nodos de um grafo e as interações são
arcos dirigidos entre nodos (COWELL et al., 1999). O grafo é a estrutura mais básica
compartilhada entre redes probabilísticas. Esta estrutura, representada na Figura 7.1, é
centrada no conceito de grafo (classe Graph). A classe Graph tem duas propriedades
chamadas hasNode e hasArc, que respectivamente se referem a múltiplos indivíduos das
classes Node e Arc. Estas duas propriedades representam componentes elementares de
um grafo. É considerado que um grafo tenha ao menos um nodo. Tal restrição de cardi-
nalidade é imposta à propriedade hasNode da classe Graph.

hasArc

hasNode

hasLabel

hasLabel

Graph Node

Arc

Variable Label label

string

Figure 7.1: Representação de um grafo.

Os demais conceitos e relacionamentos da ontologia (redes Bayesianas discretas, situ-
ações) seguem a mesma metodologia de construção, usando relacionamentos isA para a
herança de propriedades e restrições semânticas. Para maiores detalhes, ver a Seção 3.2.

7.4.2 Fase de Codificação

Conforme previamente mencionado, a presente ontologia foi codificada usando a lin-
guagem OWL. O desenvolvimento da ontologia usou maior parte dos recursos da OWL.
Os conceitos foram moldados através de classes, o relacionamento isA foi codificado
como especialização, e os demais relacionamentos foram codificados como propriedades
OWL. As restrições semânticas do OWL tornaram possível a contextualização dos con-
ceitos e ajudou evitar ambigüidades dos conceitos.

Um trecho do código fonte da ontologia é ilustrado na Figura 7.2. O código começa
especificando a classe ChanceVariable. A próxima marcação contém o comentário acerca
da classe ChanceVariable. Seguindo, é especificada a propriedade hasState juntamente
com a restrição de cardinalidade mínima. Por fim, é especificado que a classe Chance-
Variable é uma subclasse de Variable. O código completo da ontologia é mostrado no
Apêndice A.

7.5 Integrando Modelo BDI e Redes Bayesianas

Esta Seção apresenta a integração do modelo BDI com as redes Bayesianas. O efeitos
sinérgicos resultantes da integração destas tecnologias da Inteligência Artificial incluem a
capacidade de lidar com informação incerta em uma arquitetura BDI baseada em estados
mentais.

Cada nodo em uma rede Bayesiana corresponde a exatamente uma variável de chance
que tem um conjunto finito de estados mutuamente exclusivos. Afirmamos que agentes
BDI, cujas crenças são representadas através de redes Bayesianas, acreditam que cada
estado de uma variável de chance tem uma probabilidade de ocorrência dado um conjunto
de condições impostas pelas variáveis incidentes. Supondo que os desejos correspondem
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{...}
< ="ChanceVariable">

< ="http://www.w3.org/2001/XMLSchema#string">
Variables representing random events. A Chance Variable
is composed by a label and a set of states representing the
random events.
</ >
< >
< >
< >
< ="hasState"/>

</ >
< ="http://www.w3.org/2001/XMLSchema#int">
1
</ >

</ >
</ >
< >
< ="Variable"/>

</ >
</ >
{...}

owl:Class rdf:ID
rdfs:comment rdf:datatype

rdfs:comment
rdfs:subClassOf
owl:Restriction
owl:onProperty
owl:ObjectProperty rdf:ID
owl:onProperty
owl:minCardinality rdf:datatype

owl:minCardinality
owl:Restriction

rdfs:subClassOf
rdfs:subClassOf
owl:Class rdf:ID
rdfs:subClassOf

owl:Class

Figure 7.2: Trecho do código fonte da ontologia de redes Bayesianas.

a estados de mundo que um agente deseja conferir, nosso modelo representa este estado
mental através de estados das variáveis de chance que o agente deseja observar. Intenções
são também representadas desse modo, uma vez que as mesmas são desejos com os quais
o agente estabeleceu um comprometimento.

Supondo que as crenças do agente são representadas por redes Bayesianas, o processo
de atualização de crenças corresponde à inferência probabilística. Evidências percebidas
pelos agentes desempenham um importante papel no processo de atualização de crenças,
uma vez que informações atuais expressam o atual estado do mundo. Então, os agentes
podem reconhecer circunstâncias onde desejos são considerados atingíveis e intenções
consideradas com sucesso. As informações atualizadas proporcionam suporte para o pro-
cesso deliberativo, responsável por decidir quais intenções o agente deverá escolher. De
modo a melhorar este processo, o agente leva em consideração os aspectos quantitativos e
qualitativos das redes Bayesianas para detectar incompatibilidades e decidir entre desejos
competitivos.

Para obter detalhes sobre a abstração dos estados mentais através de elementos das re-
des Bayesianas, consulte a Seção 4.1. Para obter detalhes sobre o processo de atualização
de crenças e processo deliberativo se dirija a Seção 4.2. Aspectos de interoperabilidade
dos agentes são discutidos na Seção 4.3.

7.6 Considerações Finais

Este Capítulo apresentou em língua portuguesa uma discussão geral sobre a pesquisa
apresentada nesta dissertação de Mestrado. Primeiramente, o assunto foi introduzido, e
logo após apresentadas motivação, objetivos e contribuições. Finalmente, foram forneci-
dos maiores detalhes sobre as contribuições mais significativas deste trabalho.

Através do emprego de uma abordagem baseada em ontologias para especificar as



69

redes Bayesianas, essa pesquisa proveu o suporte para interoperabilidade entre os agentes
Bayesianos. A interoperabilidade resultante auxilia o agente nos processos de tomada de
decisão, uma vez que facilita a descoberta de novos conhecimentos e troca de informação,
permitindo que os agentes levem em conta conhecimentos que não faziam parte das suas
crenças iniciais. Aplicações que requerem cooperação também são beneficiadas, uma vez
que agentes podem comunicar desejos a serem atingidos cooperativamente.

A integração do modelo BDI e das redes Bayesianas resultou em uma arquitetura
BDI capaz de representar informação incerta e deliberar sob estas condições. Foi feita
uma proposta para abstrair o conteúdo Intencional dos estados mentais através das redes,
permitindo a associação de probabilidades condicionais aos estados mentais. Estas proba-
bilidades são atualizadas pela inferência Bayesianas, a qual é disparada pelas percepções
dos agentes. Através das evidências percebidas e conhecimento atualizado, os agentes
deliberar sobre quais desejos devem ser eleitos como intenções. Esta seleção de obje-
tivos leva em consideração os aspectos qualitativos e quantitativos das redes Bayesianas.
Efeitos sinérgicos podem ser notados na estimativa de chances de ocorrência dos estados
mentais (graus de crença), na verificação de compatibilidade entre desejos competitivos,
e na montagem de planos globais envolvendo variáveis incidentes.
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APPENDIX A OWL SOURCE CODE OF THE BAYESIAN
NETWORK ONTOLOGY

<?xml version="1.0"?>
<rdf:RDF

xmlns="http://www.owl-ontologies.com/Probabilistic_Networks.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://www.owl-ontologies.com/Probabilistic_Networks.owl">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="ConditionalProbability">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Class that associates a probability to multiple conditions. This class is
used to model the conditional probability of an event occurrence in the
CPT (Conditional Probability Table).
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="probability"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:minCardinality>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasCondition"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="DirectedGraph">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Probabilistic Networks are graphical models of causal interactions among
a set of variables, where the variables are represented as nodes of a graph
and the interactions as directed arcs between the nodes.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:ID="DirectedArc"/>

</owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasArc"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
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<rdfs:subClassOf>
<owl:Class rdf:ID="Graph"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="ChanceVariable">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Variables representing random events. A Chance Variable is composed by a
label and a set of states representing the random events.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasState"/>

</owl:onProperty>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class rdf:ID="Variable"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="UtilityNode">
<rdfs:subClassOf>
<owl:Class rdf:ID="Node"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#DirectedArc">
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>
<owl:onProperty>
<owl:FunctionalProperty rdf:ID="hasChild"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class rdf:ID="Arc"/>

</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Directed Arc is a link from a child node to a parent node. A Directed Arc
is represented by an arrow from parent node to child node.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasParent"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="#Node">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A node represents variables or utility functions. In models containing
neither decision variables nor utility functions, the concepts of Node
and Variable can be used interchangeably. For models that contain decision
variables and utility functions it is convenient distinguish between
nodes and variables, as a node does not necessarily represents a variable.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>
<owl:onProperty>
<owl:FunctionalProperty rdf:ID="hasLabel"/>

</owl:onProperty>
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</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>
<owl:Class rdf:ID="BayesianSituation">
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:ID="BayesianNetwork"/>

</owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasGraph"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A bayesian situation is a situation that can reference only bayesian
networks.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Class rdf:ID="Situation"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Evidence">
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasNode"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
An Evidence is an information received from external sources about the
state or value of a variable of a probabilistic network. The information
contained in an evidence modifies the chances associated with a variable.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasNode"/>

</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="ChanceNode"/>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>
<owl:onProperty>
<owl:FunctionalProperty rdf:about="#hasLabel"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:about="#probability"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>
<owl:Class rdf:about="#ChanceNode">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
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This category of Node represents a chance variable. It is represented
graphically by a labeled circle.
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Node"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:FunctionalProperty rdf:ID="hasChanceVariable"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:ID="ConditionalChanceVariable"/>
<owl:Class rdf:ID="PriorChanceVariable"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
<owl:onProperty>
<owl:FunctionalProperty rdf:about="#hasChanceVariable"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="BayesianArc">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Bayesian Arc is a specialization of a Directed Arc that only connects
chance nodes.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#ChanceNode"/>
<owl:onProperty>
<owl:FunctionalProperty rdf:about="#hasChild"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#DirectedArc"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasParent"/>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#ChanceNode"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="JunctionTree">
<rdfs:subClassOf>
<owl:Class rdf:ID="UndirectedGraph"/>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasArc"/>

</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="SeparatorArc"/>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:ID="CliqueNode"/>

</owl:allValuesFrom>
<owl:onProperty>
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<owl:ObjectProperty rdf:about="#hasNode"/>
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="#SeparatorArc">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasNode"/>

</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#CliqueNode"/>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasSeparator"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class rdf:ID="UndirectedArc"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="BayesianSituationTransition">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Bayesian Situation Transition is a specific kind of transition that
occurs only in Bayesian Networks.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Class rdf:ID="SituationTransition"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#BayesianNetwork">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Bayesian Networks are Probabilistic Networks that contain only random
variables (chance nodes) and directed arcs that represent direct
dependencies among the variables.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasNode"/>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#ChanceNode"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#DirectedGraph"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasArc"/>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#BayesianArc"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="DecisionVariable">
<rdfs:subClassOf>
<owl:Class rdf:about="#Variable"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#Variable">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:FunctionalProperty rdf:about="#hasLabel"/>
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</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Variable represents an exhaustive set of mutually exclusive events,
referred to as the domain of the variable.
</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>
<owl:Class rdf:ID="HardEvicence">
<rdfs:subClassOf rdf:resource="#Evidence"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:about="#probability"/>

</owl:onProperty>
<owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:hasValue>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
An Evidence that assigns one to the probability property. The indicated state
has been observed.
</rdfs:comment>

</owl:Class>
<owl:Class rdf:ID="ConditionalState">
<rdfs:subClassOf>
<owl:Class rdf:ID="State"/>

</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Conditional State has multiple conditional probabilities. Each conditional
probability specifies the conditions and the state chance of occurrence
under these conditions. This class corresponds to a line in a CPT.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:minCardinality>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasConditionalProbability"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#Arc">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
An Arc is a link between two nodes.
</rdfs:comment>

</owl:Class>
<owl:Class rdf:about="#Situation">
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasGraph"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A situation corresponds to a particular configuration of a probabilistic
network given a set of evidences.
</rdfs:comment>

</owl:Class>
<owl:Class rdf:about="#CliqueNode">
<rdfs:subClassOf>



80

<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasClique"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Node"/>

</owl:Class>
<owl:Class rdf:about="#PriorChanceVariable">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Prior Chance Variable corresponds to a variable of a prior node. It
has associated multiple individuals of State Probabilities class. Each
state probability denotes a state and its chance.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:ID="StateProbability"/>

</owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasState"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#ChanceVariable"/>

</owl:Class>
<owl:Class rdf:ID="Condition">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasNode"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasNode"/>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#ChanceNode"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Condition is a specification of a particular state in a chance node variable.
The state was explicited since it is necessary in order to differentiate from
others states from the same node.
</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasState"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="#UndirectedArc">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Undirected Arc is a undirected link between two nodes.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasNode"/>
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</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
2
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Arc"/>

</owl:Class>
<owl:Class rdf:about="#State">
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>
<owl:onProperty>
<owl:FunctionalProperty rdf:about="#hasLabel"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
States are also often called events, levels, values, choices or options.
They are associated with a variable and they are mutually exclusive.
</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>
<owl:Class rdf:about="#ConditionalChanceVariable">
<rdfs:subClassOf rdf:resource="#ChanceVariable"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#ConditionalState"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasState"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Conditional Chance Variable corresponds to a CPT (Conditional Probability
Table). The states are references to individual of Conditional State class
which denotes the state and its conditional probabilities. Each individual
in the state property is an abstraction of a line in a CPT, supposing each
line represents a state of the Conditional Chance Variable.
</rdfs:comment>

</owl:Class>
<owl:Class rdf:about="#StateProbability">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A State Probability is the chance of occurrence of a variable state. It is
composed by the state label and the state chance of occurrence.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>
<owl:onProperty>
<owl:DatatypeProperty rdf:about="#probability"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>
<owl:Class rdf:about="#UndirectedGraph">
<rdfs:subClassOf>
<owl:Class rdf:about="#Graph"/>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasArc"/>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#UndirectedArc"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
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<owl:Class rdf:ID="InfluenceDiagram">
<rdfs:subClassOf rdf:resource="#DirectedGraph"/>

</owl:Class>
<owl:Class rdf:about="#Graph">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#hasNode"/>

</owl:onProperty>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>
<owl:Class rdf:ID="DecisionNode">
<rdfs:subClassOf rdf:resource="#Node"/>

</owl:Class>
<owl:Class rdf:about="#SituationTransition">
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasPosteriorSituation"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Situation Transition occurs because an evidence has been received. These
evidences cause modifications in the chances of some variables in the
network. These modifications are executed in the network referenced by
prior situation and the updated network is stored in the posterior
situation.
</rdfs:comment>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:FunctionalProperty rdf:ID="hasPriorSituation"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">
1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="Label">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
A Label is used to denote a name.
</rdfs:comment>

</owl:Class>
<owl:ObjectProperty rdf:about="#hasState">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#ChanceVariable"/>
<owl:Class rdf:about="#Condition"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes one or more states associated with a Chance Variable.
A state is also called level, value, choice, or option.
</rdfs:comment>
<rdfs:range rdf:resource="#State"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasEvidence">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes a set of evidences.
</rdfs:comment>
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<rdfs:range rdf:resource="#DirectedGraph"/>
<rdfs:domain rdf:resource="#Situation"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasSeparator">
<rdfs:domain rdf:resource="#SeparatorArc"/>
<rdfs:range rdf:resource="#Node"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasGraph">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes the probabilistic network individual that
represents the actual situation of the network.
</rdfs:comment>
<rdfs:domain rdf:resource="#Situation"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="#Graph"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasArc">
<rdfs:range rdf:resource="#Arc"/>
<rdfs:domain rdf:resource="#Graph"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasConditionalProbability">
<rdfs:range rdf:resource="#ConditionalProbability"/>
<rdfs:domain rdf:resource="#ConditionalState"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes a set of individuals of class Conditional Probability
associated with a particular state in a non prior node variable.
</rdfs:comment>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasCondition">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes a set of conditions.
</rdfs:comment>
<rdfs:range rdf:resource="#Condition"/>
<rdfs:domain rdf:resource="#ConditionalProbability"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasClique">
<rdfs:domain rdf:resource="#CliqueNode"/>
<rdfs:range rdf:resource="#UndirectedGraph"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasPosteriorSituation">
<rdfs:domain rdf:resource="#SituationTransition"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="#Situation"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes a situation after a notification of an evidence.
</rdfs:comment>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasMarginalDistribution">
<rdfs:domain rdf:resource="#ChanceVariable"/>
<rdfs:range rdf:resource="#StateProbability"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes the computed marginal distribution of a variable. It
is composed by multiple state probabilities.
</rdfs:comment>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasNode">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property of a Probabilistic Network that denotes its set of nodes.
</rdfs:comment>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Condition"/>
<owl:Class rdf:about="#Evidence"/>
<owl:Class rdf:about="#UndirectedArc"/>
<owl:Class rdf:about="#Graph"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:range rdf:resource="#Node"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasParent">
<rdfs:domain rdf:resource="#DirectedArc"/>
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<rdfs:range rdf:resource="#Node"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property of a Directed Arc that denotes the parent node.
</rdfs:comment>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="label">
<rdfs:domain rdf:resource="#Label"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>Property that denotes a name or an identification.</rdfs:comment>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#probability">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes a probability associated with a variable state.
</rdfs:comment>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#StateProbability"/>
<owl:Class rdf:about="#ConditionalProbability"/>
<owl:Class rdf:about="#Evidence"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

</owl:DatatypeProperty>
<owl:FunctionalProperty rdf:about="#hasPriorSituation">
<rdfs:range rdf:resource="#Situation"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes a situation before a notification of an evidence.
</rdfs:comment>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#SituationTransition"/>

</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:about="#hasLabel">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes an individual of the class Label.
</rdfs:comment>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Variable"/>
<owl:Class rdf:about="#Node"/>
<owl:Class rdf:about="#State"/>
<owl:Class rdf:about="#Evidence"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:range rdf:resource="#Label"/>

</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:about="#hasChanceVariable">
<rdfs:range rdf:resource="#ChanceVariable"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property that denotes the variable associated with a node. A prior node
has a Chance Variable and a not prior node is defined by multiple Conditional
Chance Variable, which represents a Conditional Probability Table (CPT).
</rdfs:comment>
<rdfs:domain rdf:resource="#ChanceNode"/>

</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:about="#hasChild">
<rdfs:domain rdf:resource="#DirectedArc"/>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Property of a Directed Arc that denotes the child node.
</rdfs:comment>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<rdfs:range rdf:resource="#Node"/>

</owl:FunctionalProperty>
</rdf:RDF>
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APPENDIX B PAPER ACCEPTED IN THE CONFERENCE
AAMAS 2007

The paper "An Ontology-Based Approach to Interoperability for Bayesian Agents"
was submitted and accepted as a short paper in the Sixth International Conference on
Autonomous Agents and Multiagent Systems, to be held May 14–18 2007 in Honolulu,
Hawaii.
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APPENDIX C PAPER ACCEPTED IN THE WORKSHOP
PROMAS 2007

The paper "Interoperability for Bayesian Agents in the Semantic Web" was submitted
and accepted in the Programming Multi-Agent Systems Workshop (ProMAS), to be held
with the Sixth International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2007).
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difference between these two subclasses lies in the hasState property constraint.
In the PriorChanceVariable class the hasState property has been restricted and
it can reference only StateProbability individuals. As stated earlier, a state prob-
ability represents a state and its chance of occurrence. The set of StateProbability

individuals referenced by the hasState property denotes all possible states associ-
ated with a prior chance variable. The hasState property of ConditionalChance-

Variable class has also been constrained and only ConditionalState individuals
can be assigned to it. The ConditionalState individuals represent a Conditional
Probability Table of a variable associated with a non-prior node.

The hasLabel, a common property among Node, Variable and State concepts,
has as default value a Label class individual. The Label class is composed just
by a string indicating the label name. However, the hasLabel property is also
able to indicate individuals of other classes, which enables the developers to add
semantics to those concepts.

3.3 Situation Concepts

In our definition, a situation is a particular configuration that a probabilistic
network assumes given a set (possibly empty) of evidences of events occurrence.
When the evidences of events are reflected in the network, a new situation arises.
Such situations are useful to keep the history of modifications of a Bayesian
network. The Figure 4 depicts the situation related concepts.

An evidence, represented by the Evidence class, corresponds to any informa-
tion regarding the state of a variable from a probabilistic network. The Evidence

class is composed by a node, a label and a chance, represented by properties
hasNode, hasLabel and probability, respectively. The hasNode property can ref-
erence only individuals of the ChanceNode class, since chance nodes are the
only kind of node that represent random events. In order to specify a hard evi-
dence (an observation of an event), we specialize the Evidence class creating the
HardEvidence class. This class specifies a constraint defining that the probability

property must assume the numeric value one.

hasNode

ChanceNode

Label

hasPriorSituation

BayesianSituationhasEvidence

hasPosteriorSituation

Evidence

BayesianSituationTransition

Bayesian
Network

hasProbabilistic
Network

hasLabel

Fig. 4. Situation representation.

A situation, represented by the Situation class, has two properties. The first
is the hasProbabilisticNetwork property used to reference the network individual
whose configuration corresponds to the given situation. The second property
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is the hasEvidence that corresponds to the set of evidences that originates the
situation. A particular kind of situation is represented by the BayesianSituation

class. Its inherited hasProbabilisticNetwork property can reference only Bayesian
networks.

In order to establish a link between two sequential situations we created
a class named SituationTransition. This class is described by hasPriorSituation

property and hasPosteriorSituation property, which represents a prior and a pos-
terior situation, respectively. A situation transition between Bayesian networks
is represented in the class BayesianSituationTransition. This class inherits the
properties from SituationTransition and restricts them specifying that they can
only reference BayesianSituation individuals.

4 Bayesian Agent Internal Architecture

The main goal of our agent internal architecture is to enhance the interoperability
of Bayesian network knowledge among agents. The interoperability is achieved by
an ontology-based approach to represent the uncertain knowledge of the agent.
Following, we detail the agents’ internal architecture, depicted in the Figure 5.

It is necessary to differentiate the architecture components from the agent
implementation specific ones. The architecture components are represented in
the figure by the gray elements. The Agent Implementation Specific Components

are represented in the figure by the white element. They are not specified by
this architecture since they relate to the particular purpose of each agent design.
However, we specify the way they interact with the architecture components.
Usually, the Agent Implementation Specific Components define the manner that
the agent reasons about its goals and how it achieves them (i.e. planning and
goal deliberation).

4.1 Architecture Components

The first component of the architecture is the Perception Handler, which receives
and forwards the perceptions to the respective components capable of interpret-
ing them. The characteristics of a perception (metadata) are taken into account
to decide which component will receive it. Since in the context of this work we
are dealing with interoperability among Bayesian agents, we focus on two par-
ticular categories of perception: Bayesian Network Knowledge and Query. The
first corresponds to individuals of the ontology presented in the Section 3. The
perceptions of this category are forwarded to the Knowledge Base (KB) Update

component. The second corresponds to queries about the agent’s knowledge that
are forwarded to the KB Query component.

The second component of the architecture is the KB Update. Its purpose is
to evaluate the incoming OWL Bayesian Network Knowledge, and insert the
selected ones in the knowledge base as individuals of the Bayesian network on-
tology. The information to be inserted is selected following the criteria defined
by the designer. A simple implementation of this component performs insertions
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PERCEPTIONS ACTIONS

BAYESIAN NETWORK
KNOWLEDGE BASE

(OWL)

PERCEPTION
HANDLER

AGENT
IMPLEMENTATION

SPECIFIC
COMPONENTS

BAYESIAN
INFERENCE

KB QUERYKB UPDATE

Current Situation
and Evidences New Situation

Answer

Bayesian
Network

Knowledge

Selected
Bayesian Network

Knowledge

Queried
Bayesian Network
Knowledge

Query

Answer

Query

Query

Fig. 5. Bayesian Agent Internal Architecture.

in the KB without restrictions. A more sophisticated implementation interacts
with the KB Query component to retrieve already inserted Bayesian information
to constrain the information to be inserted.

Our knowledge base is constituted by the Bayesian network ontology, detailed
in the Section 3, and its individuals. It stores the Bayesian networks situations,
the transitions between situations and the evidences. The base can contain mul-
tiple different Bayesian networks. Any modification in a Bayesian network char-
acterizes a new situation, and the sequence of situations represents a history of
a network. The history may be useful for an agent planning, in example.

In order to perform probabilistic reasoning in the Bayesian networks stored
in the knowledge base, we specify the Bayesian Inference component. Its inputs
are the Current Situation of a Bayesian network and a set of Evidences. The
Bayesian Inference output is the New Situation with its probabilities recalcu-
lated considering the Evidences. It is worth to point out that both situations are
individuals of the BayesianNetwork class and that the Evidences are Evidence

class individuals. The New Situation resulting from the inference process consti-
tutes the most up-to-date knowledge that the agent has about its domain. The
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presence of this component is indispensable since updated knowledge is necessary
to support the agent decisions and actions.

The KB Query component receives queries from Agent Implementation Spe-

cific Components, Perception Handler and KB Update. These queries can return
events (states) and their occurrence probabilities, causal relations between vari-
ables and other information that can be inferred from the Bayesian networks
knowledge base. Queries from the agent specific components usually are per-
formed to aid the agent in its decision making process. The queries forwarded
by Perception Handler are related to knowledge that external agents need to be
informed about. Finally, the queries from the KB Update component are exe-
cuted with the purpose of selecting which information will be inserted on the
KB.

The core of the interoperability relies on the Bayesian network ontology. It
provides the fundamental domain concepts among the Bayesian agents making
possible their knowledge exchange. The architecture supports the knowledge
representation in a broader way, not only in the interaction with other Bayesian
agents. The architecture also provides the means for the knowledge maintenance.

4.2 Interoperability Example

An example of interoperability between two Bayesian agents, Agent X and Agent

Y, is illustrated in the Figure 6. Both agents have one Bayesian network in
its knowledge base. Their Bayesian networks are different, but they have one
node, labeled A, which represents the same information in both networks. In
our approach, the ChanceNode, ChanceVariable and State classes have a prop-
erty named hasLabel, which may indicate individuals that add semantics to the
concepts represented by those Bayesian network elements.

The Bayesian network of Agent X has three nodes, labeled A, B and C. It
is depicted only the current situation Sm of the network of the Agent X. In the
situation Sm, the node A has an evidence that indicates the occurrence of the
state TRUE. The Bayesian network of the Agent Y has two nodes, labeled A

and D. It is shown the last two situations of the Agent Y network. The first,
named Sn, represents the current situation before the execution of the inference
process that considered the received evidence in the node A. The second is the
actual situation, called Sn+1, resulting from the inference process. The inference
is illustrated in the figure by a gray arrow from the situation Sn to the situation
Sn+1.

A message exchanged among Agent X and Agent Y is represented by the
gray arrow between them. The message, written in OWL language, contains the
evidence associated with the node A. In the bottom we present a snippet of the
OWL source code corresponding to the message content.

Following the flow of information, Agent X sends to Agent Y a message
containing the evidence associated with the node A. Upon receiving the OWL
message, the Agent Y updates its knowledge base by inserting the content of
the message in it. Since the state of A is known, it is necessary to perform
the inference to recalculate the probabilities associated with the node D. The
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< f "Label_1">
< "{...}#string">A< >

< >
< "Label_2">

< "{...}#string">TRUE< >
< >
< "Label_3">

< "{...}#string">FALSE< >
< >
< "PriorChanceVariable_1">

< "#Label_1"/>
< >

{...}
< >
< >

{...}
</ >

< >
< "ChanceNode_1">

<
"#PriorChanceVariable_1"/>

< "#Label_1"/>
< >
< "Evidence_1">

< "#Label_2"/>
< "{...}#float">1.0< >
< "#ChanceNode_1"/>

< >

Label rd :ID=
name rdf:datatype= /name

/Label
Label rdf:ID=

name rdf:datatype= /name
/Label
Label rdf:ID=

name rdf:datatype= /name
/Label
PriorChanceVariable rdf:ID=

hasLabel rdf:resource=
hasState

/hasState
hasMarginalDistribution

hasMarginalDistribution
/PriorChanceVariable
ChanceNode rdf:ID=

hasChanceVariable
rdf:resource=

hasLabel rdf:resource=
/ChanceNode
Evidence rdf:ID=

hasLabel rdf:resource=
probability rdf:datatype= /probability
hasNode rdf:resource=

/Evidence

OWL

Agent X

e
A

B

TRUE

FALSE

1.0

0.0

C A
TRUE

FALSE

0.7

0.3

D
TRUE

FALSE

0.25

0.75

e
A

TRUE

FALSE

1.0

0.0

D
TRUE

FALSE

0.1

0.9

A

e Agent Y

Sn

Sn+1

Sm

message

inference

EVIDENCE

TRUE

FALSE

1.0

0.0

Fig. 6. Bayesian Agents Interoperability Example.

inference generates a new situation Sn+1 from the situation Sn, considering the
evidence in the node A.

5 Case Study

The goal of this case study is to demonstrate a Bayesian knowledge exchange
among the Social Agent and the Student Model Agent. They are Bayesian agents
that belongs to PortEdu and AMPLIA [17] respectively. The idea is present a
way to apply our agent architecture, allowing the Student Model Agent to send
Bayesian information to the Social Agent [5].

PortEdu, a multiagent portal that hosts educational systems like Intelligent
Tutoring Systems (ITS), provides infrastructure and services for the systems
through an agent society. One of these agents is the Social Agent, responsible
for organizing the users in groups considering cognitive and emotional aspects.
The AMPLIA, one of the educational systems hosted in PortEdu, is an intelligent
multiagent learning environment that focuses on the medical area. The function-
alities of the AMPLIA are also provided by an agent society. The Student Model
Agent, part of the AMPLIA multiagent system, represents the student beliefs in
a specific domain and the confidence degree this learner has on the built network
model.

The main objective of the Social Agent is to improve student’s learning stim-
ulating his interaction with other students, tutors and professors. The interac-
tion is stimulated by recommending the students to join workgroups in order to
provide and receive help from other students. The Social Agent’s knowledge is
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implemented with Bayesian networks. In these networks it is represented stu-
dent features such as social profile, acceptance degree, sociability degree, mood
state, interest, commitment degree, leadership and performance. Figure 7 depicts
the Bayesian network related to the student features. However, to communicate
with PortEdu and AMPLIA agents, it is necessary to express such probabilis-
tic knowledge in a way that these agents may process it. Such requirement is
addressed using our agent architecture.

Interest Commitment

Performance

AffectiveState

PersonalityTraits

Humor Sociability Acceptance

Fig. 7. Bayesian network representing student features.

We begin the description of the architecture integration in the Social Agent
specifying how the Knowledge Base component is implemented. The knowledge
base is composed by the Bayesian network ontology specification (Section 3)
and the ontology individuals (i.e. Bayesian networks, evidences, situation tran-
sitions). The network illustrated in the Figure 7, in example, is stored in the
knowledge base of the Social Agent as a BayesianNetwork class individual. The
ontology specification and initial population of the knowledge base were created
in OWL using the Protégé tool [18].

The interaction of the Social Agent with other agents is done following the
FIPA specifications, which are considered the current standard for interoper-
ability among heterogeneous agents and, since 2005, are sponsored by IEEE.
Considering the relevance of the FIPA standards, PortEdu adopts them for the
platform specification and agent communication. The Social Agent was devel-
oped using the JADE [19] framework, which provides a FIPA-compliant middle-
ware for multiagent system development. Developing an agent with this kind of
abstraction allows more reutilization and directs the programming towards the
agent-oriented paradigm.

We implemented the Perception Handler, KB Update, KB Query and Bayesian

Inference as JADE Behaviors (implementations of agent’s tasks) of the Social
Agent. The Perception Handler manages interactions in compliance with FIPA
protocols specifications, using JADE communication resources. In order to allow
direct access to the Knowledge Base for the KB Update component we used the
Jena [20] toolkit, which provides support for applications using OWL. Specifi-
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cally, the current implementation of the KB Update component uses the Jena
API to create and insert new individuals on the KB. The KB Query component
also relies on Jena to execute the queries on the base. The Bayesian Inference

component adopts the same algorithm used in the AMPLIA system. The infer-
ence is performed every time a new evidence is provided.

The actions of the Social Agent are considered in our architecture as Agent

Implementation Specific Components. The main actions are the creation and
management of the workgroups. Since our focus is on the proposed architecture
components and its contributions to interoperability of Bayesian agents, we do
not detail the decision making processes and action execution.

Since the architecture is implemented in the Social Agent, it is possible to
perform an interaction aiming Bayesian knowledge exchange. The particular in-
teraction defined in this section describes the interoperation of Bayesian evidence
from Student Model Agent to Social Agent. The Figure 8 illustrates the Student
Model Agent sending a FIPA-ACL message to Social Agent. The message per-
formative is an inform, the content language is OWL and the agreed ontology
specifies the Bayesian network domain.

Social AgentStudent
Model Agent

PERFORMATIVE:
SENDER:
RECEIVER:
LANGUAGE:
ONTOLOGY:
CONTENT:

inform

StudentModelAgent@PortEdu

SocialAgent@PortEdu

OWL

Bayesian Network

< f "Label_1">
< "{...}#string">Humor< >

< >
< "Label_2">

< "{...}#string">Good< >
< >
{...}
< "ChanceNode_1">

< "#Label_1"/>
{...}

< >
< "Evidence_1">

< "#Label_2"/>
< "{...}#float">1.0< >
< "#ChanceNode_1"/>

< >

Label rd :ID=
name rdf:datatype= /name

/Label
Label rdf:ID=

name rdf:datatype= /name
/Label

ChanceNode rdf:ID=
hasLabel rdf:resource=

/ChanceNode
Evidence rdf:ID=

hasLabel rdf:resource=
probability rdf:datatype= /probability
hasNode rdf:resource=

/Evidence

FIPA-ACL

Fig. 8. Interoperability among Social Agent and Student Model Agent.

In the message content is the OWL code of an Evidence individual that
indicates the observation of the state Good in the node Humor. The reception
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of this evidence by the Social Agent will trigger the Bayesian inference process,
generating a new situation in the Bayesian network illustrated in the Figure 7.

6 Conclusion and Future Work

In this paper, we present a way to interoperate Bayesian network knowledge
among agents. In order to achieve it, we defined a Bayesian agent internal archi-
tecture (Section 4), an ontology to model the Bayesian network domain (Section
3), and developed a case study (Section 5) to demonstrate the integration of the
architecture with the Social Agent, dealing with interoperability issues in the
PortEdu environment.

Our approach to represent uncertain knowledge, differently from PR-OWL
and PACL, does not propose any modification in standards like OWL or FIPA.
We apply the current standards to provide a Bayesian knowledge representation
through OWL. This approach allows our Bayesian agents to interoperate their
knowledge and also contributes to researches on the expression of uncertain
knowledge on the Semantic Web.

We define an internal architecture that provides support for knowledge in-
tense agents to interoperate their knowledge. In this case, the interoperation is
in the scope of Bayesian knowledge regarding an adequate way to express it.
Besides that, the architecture provides resources for maintaining such Bayesian
knowledge. Maintenance features allow the execution of updates, queries and an
inference process to propagate evidences to the corresponding networks present
in the knowledge base. The interoperability provided by this architecture aids
agent specific decision making since it facilitates the discovery of new knowledge,
allowing the agent to consider evidences that were not part of its original KB.

In our case study we concluded that our proposal can be integrated with the
FIPA standards, more specifically with the FIPA-ACL. The adoption of OWL as
a content language for ACL messages handles the issue of a common knowledge
language. Our OWL ontology aggregates meaning to the message content. The
utilization of OWL and the specification of the ontology to contextualize the
content, allow the expression of knowledge in an open and explicit way.

Future works on ontology for Bayesian knowledge are twofold. The first is
concerned with the executability aspects of the Bayesian networks. Its goal is
to represent, in the ontology, concepts involved in the inference, expliciting this
operational knowledge. This kind of knowledge allows an agent to share the way
that the inference process is performed. The second corresponds to an extension
of the ontology to describe also influence diagrams. In order to represent this
kind of probabilistic network, decision and utility nodes must be incorporated
in the ontology.
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