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Impact-parameter dependence of the electronic energy loss of fast ions
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In this work we describe a model for the electronic energy loss of bare ions at high velocities. Starting from
first-order perturbation theory we propose a simple formula to calculate the impact-parameter dependence of
the electronic energy loss for all impact parameters. The physical inputs are the electron density and oscillators
strengths of the atoms. A very good agreement is obtained with full first-order calculations.
@S1050-2947~98!01111-1#

PACS number~s!: 34.50.Bw, 34.10.1x
is
tie
h
on
e

s

e
er

th
e

r
s
-
rre
s
a
he

ac

en
pe
t

fo
te

ica

he
ct
o
h
to

ed

ned
c-
ure
ties
l-

tion
an-

-

m-
by

f
be

es-

the
lly
use
e,
I. INTRODUCTION

The energy loss of light ions slowing down in matter
dominated by electronic processes at projectile veloci
higher than the mean electron velocity. The basic mec
nisms of the energy loss of a swift projectile are ionizati
and excitation of target atoms, well described in the fram
work of perturbation theory. The well known quadraticZ
~projectile charge! dependence of the electronic energy lo
per unit path,the electronic stopping power, follows imme-
diately from such a treatment@1#. Also, the Bethe formula
@2# which yields the asymptotic high-energy limit of th
stopping power may be derived directly from first-order p
turbation theory.

Nowadays, besides the electronic stopping power,
impact-parameter-dependent energy loss is important du
an increasing number of experiments@3–7# and applications
that require an accurate determination of the inelastic ene
loss under channeling conditions. Although there exist
simple formula~the Bethe formula! for the integrated elec
tronic stopping power at high energies, there is no co
sponding solution, so far, for the electronic energy loss a
function of the impact parameter. In the literature, we m
find only approximate analytical solutions using either t
dipole expansion@8,9#, or the closure relation@8,10#, or so-
lutions with the final states replaced by plane waves@8,11#.
All of these models are valid for a restricted range of imp
parameters.

Full calculations of the impact-parameter-dependent
ergy loss using first-order perturbation theory have been
formed only recently@12# and a few years later the firs
coupled-channel calculations appeared@13,14#. These calcu-
lations are time consuming and results are only available
a few selected collision systems. Therefore, the compu
simulation community has preferred to use semiempir
formulas @15# or other greatly simplified models@16,17# in
order to deal with inelastic collisions.

In this work we propose a model for the calculation of t
impact-parameter-dependent energy loss at high proje
velocities, which reproduces full first-order calculations f
all impact parameters without large-scale calculations. T
physical inputs are the electronic density and the oscilla
PRA 581050-2947/98/58~5!/3796~6!/$15.00
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strengths for each allowed optical transition. If not indicat
otherwise, atomic units (e51, me51, \51) are used
throughout the paper.

II. MODEL

According to the impact-parameter method@18# the elec-
tronic energy loss at high projectile energies can be obtai
from first-order perturbation theory using straight line traje
tories for the impinging ions. The energy loss due to capt
and loss processes is of minor importance at high veloci
and will be not considered in what follows. In order to ca
culate the energy loss due to target ionization and excita
we have to consider the amplitudes for each electronic tr
sition from the ground-stateu0& with energy«0 to a final
stateu f &

af~bW !52 i E
2`

`

dt ei ~e f2e0!t^ f uV„rW2RW ~ t !…u0&. ~1!

Here V„rW2RW (t)… is the Coulomb interaction potential be
tween the bare projectile ion with nuclear chargeZ and a
target electron. Except for extraordinary small impact para
eters, the ion trajectories are generally well described
straight linesR(t)5vW t1bW . As shown in Fig. 1,v is the
projectile velocity andb is the impact parameter vector o
the collision. Each final bound or continuum state f can
defined by angular momentum quantum numbersl f , mf and
energye f .

The electronic energy loss is calculated from the expr
sion

Q~b!5(
f

uaf~bW !u2~e f2e0!, ~2!

which involves a sum over all final target states and
corresponding computation of transition amplitudes. Usua
this demands an computational effort that precludes the
of Eqs.~1! and~2! in a computer simulation code. Therefor
3796 ©1998 The American Physical Society
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we search for an approximate solution of both equati
without being a large-scale calculation.

In the literature we may find many studies addressing
same problem@8–11#. They propose different approxima
tions, all of them being valid in a limited range of impa
parameters. Atlarge impact parametersthe so-called dipole
approximation forV„rW2RW (t)… is used, where

V„rW2RW ~ t !…52
Z

urW2RW ~ t !u
'2

Z

R~ t !
2rW.

RW ~r !Z

R3~ t !
, ~3!

and thus, an analytical expression@9,19# for Q(b) has been
obtained:

Q~b!5
2Z2

v2b2
3(

i
f i gS v ib

v D5T~b!3(
i

f i gS v ib

v D
~4!

with T(b)52Z2/(v2b2) and

g~x!5x2
„K0

2~x!1K1
2~x!…. ~5!

K0 and K1 are the modified Bessel functions,v i are the
transition energies (v i[e i2e0), and f i are the well-known
dipole-oscillator strengths@ f i52u^ i uzu0&u2(e i2e0)#, which
fulfill the sum rule ( i f i51 @1#. The functiong(vb/v) is
displayed as dashed curve in Fig. 2. With increasingvb/v it
increases slightly from the value of 1 to a shallow maximu
at vb/v50.17 and at larger parameter values the funct
approaches zero exponentially. The solution given by Eq.~4!
is exact for asymptotically large values ofb, but it is com-
pletely inadequate for small impact parameters, where o
multipole terms gain importance. In fact, Eq.~4! diverges for
b→0. This follows from ( i f i g(v ib/v) in Eq. ~4! which
approaches 1 in the limitb→0. As a consequenceQ(b) for
b→0 turns out to be equal to the~divergent! classical energy
transfer to an electron at rest, when the projectile velocity
the maximum energy transfer approaches infinity~in the so-
called sudden approximation!.

FIG. 1. Schematic representation of the collision geome
showing the target and the projectile nucleus, the impact-param
vector b and the projectile velocityv. The cylinder represents th
integrated electronic density along the ion flight direction.
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For intermediate impact parameters b~somewhat larger
than the shell radius,r shell) and at high velocities the expo
nential factor in Eq.~1! can be neglected, when the collisio
time t5r shell /v is small compared to 1/v i . Then, it is pos-
sible to sum over all final states analytically@8# by using the
closure relation to obtain

Q~b!5E d2r T T~bW 2rWT!E dzr~rWT ,z! ~6!

with T(b)52Z2/(v2b2), which corresponds to the classic
energy transfer to an electron at rest in the sudden appr

mation@19#. As shown in Fig. 1, the vectorrWT is perpendicu-

lar to z, the direction of the projectile motion.*dzr(rWT ,z) is
the electronic density integrated along the ion path~the cyl-
inder in Fig. 1!. Therefore, Eq.~6! agrees with the classica
sudden-approximation expression of the energy loss for e
trons at rest, distributed according to the coordinate-sp

densityr(rWT ,z). At small impact parameters, however, e
ergy transfers as high asv i52v2 gain importance and a
proper treatment of the two-body collision kinematics b
comes necessary.

The influence of the target potential can be neglected
small impact parametersat high projectile energies@8#. In
this case an analytical formula forQ(b) can also be obtained
by replacing the final target-continuum states by pla
waves. The momentum distribution of the bound electron
well as the correct kinematics are considered in this case
that the result should be similar to the classical bina
encounter approximation@20#. By following this procedure
the electronic energy loss reads

,
ter

FIG. 2. The functionsg(x) andh(x) from Eqs.~5! and~11! that
describe the dipole terms and quasifree collisions, respectively
high ion velocities the flat parts of both functions have a consid
able overlap.
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Q~b!5E d3k
k2

2
uakW~bW !u25E d3k

k2

2 E2`

`

dt1dt2 ei ~k2/2!~ t12t2!

3E d3r 1d3r 2f0* ~rW1!f0~rW2!V„rW12RW ~ t1!…

3V„rW22RW ~ t2!…
1

~2p!3
eikW~rW12rW2!. ~7!

An integration over the orientation ofkW leads to the follow-
ing integral:

E dVk eikW .~rW12rW2!54p
sin~kurW12rW2u!

kurW12rW2u
, ~8!

which deviates significantly from zero only for the very na
row rangeurW12rW2u,1/k. Since at high velocities large va
ues of k dominate the integral, the electronic ground-st
wave functionf0(rW2) can be replaced byf0(rW1). However,
this peaking approximation removes the exact treatmen
the momentum distribution of the bound electron. Witho
any further approximations the energy loss from Eq.~7! can
be written as

Q~b!5E d2r T T ~bW 2rWT!E dzr~rWT ,z! ~9!

with

T ~b!5
2Z2

v2b2
3h~2vb!5T~b!3h~2vb!, ~10!

and

h~x!5
x2

2 E0

1

dy y K0~xy2! J0~xyA12y2!. ~11!

A similar expression was also derived in Ref.@11# but in-
volving Bessel functions of higher order. The functio
h(2vb) approaches zero forb!1/v and it reaches 1 for large
values ofb. In the latter case, the energy transfer resemb
again the classical energy transfer to a statistical distribu
of electrons at rest. It is pointed out that the results from
~10! are target independent.

In what follows we propose a general formula that int
polates between all approximations described above an
applicable for all impact parameters, namely,

Q~b!5E d2r TK~bW 2rWT!E dzr~rWT ,z! ~12!

with

K~b!5
2Z2

v2b2
3h~2vb!3(

i
f i gS v ib

v D , ~13!

This function joins smoothly all three regions of impact p
rameters described above. The first two terms in Eq.~13!
describe violent binary collisions and the last term accou
for the long-range dipole transitions. The first integ
e
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t
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n
.
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-
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l

*d2r T . . . in Eq.~12! describes a convolution with the initia
electron density also outside the projectile path and yie
nonlocal contributions to the energy loss.

In the following it will be shown that Eqs.~12! and ~13!
are consistent with the above-discussed three limiting imp
parameter behaviors as well as with the Bethe formula.
large impact parameters (b@rshell) the convolution from Eq.
~12! can be separated using a peaking approximation as

E d2r TK~bW 2rWT!E dzr~rWT ,z!

'E d2r TK~bW !E dzr~rWT ,z!5K~bW !, ~14!

since the range of perpendicular distancesr T , where the
electron density is significant, is small compared tob and the
functionK(bW 2rWT) is not sensitive to small variation ofr T at
high velocities. Hence, Eq.~12! agrees with the results ob
tained from the dipole approximation given by Eq.~4!, be-
causeh(2vb) approaches 1 for large impact parameters~see
Fig. 2!.

On the other hand, the model from Eq.~13! reproduces
the small-impact-parameter limit described by Eq.~10! since
( i f i g(v ib/v) tends to 1 forb→0 ~see Fig. 2!. Finally, ac-
cording to Fig. 2, the higher the projectile velocityv the
better the separation of the limits of small and large imp
parameters, where the functionsg andh approach zero. Con
sequently, the flat impact-parameter regions of both fu
tions merge into each other at intermediate impact par
eters @where both functions( i f i g(v ib/v) and h(2vb)
approach unity#. Therefore,K(b) approachesT(b) from Eq.
~6! and the proposed energy-loss function incorporates
the above-discussed approximations in their restric
impact-parameter regimes.

At high projectile velocitiesv2@v i , there exists an im-
pact parameterbc ~in general even an impact-paramet
range! for which both functionsh andg are nearly equal to 1
Then, the integrated electronic stopping cross sectionSe can
be calculated from

Se5E d2b Q~b!52pNE
0

`

db bK~b!

'
4pNZ2

v2 F E
0

bc
db h~2vb!/b1E

bc

`

db(
i

f i gS v ib

v D /bG
5

4pNZ2

v2 F lnS 2vbc

1.123D1(
i

f i lnS 1.123v
v ibc

D G
5

4pNZ2

v2
lnS 2v2

I Bethe
D ~15!

with

ln~ I Bethe!5(
i

f i ln~v i ! ~16!
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andN is the total number of electrons. Thus, the integrat
of Eq. ~12! over all impact parameters provides the electro
stopping cross section according to the Bethe formula@2#.
Therefore, for asymptotically high projectile energies t
present model gives the exact limiting impact-parameter
pendences of the electronic energy loss.

For use in practical applications the functionsh(x) and
g(x) can be expressed in terms of elementary functions fi
to the numerical results,

h~x!5
x2

x21a2
1

bx2

11gx4
~17!

with a51.551,b50.0123,g50.0009, and

g~x!5~120.174Ax1px!exp~22x!, ~18!

which yield negligible uncertainties in Eq.~12! for 0<x
,`.

It is pointed out that the formulas for Q(b) as given above
are strictly valid only for a one-electron system. In t
framework of the independent-particle model, however,
can still use the results of Eq.~12!, but we have to conside
the electronic density and the oscillator strengths for e
electron of all occupied target shells.

III. DISCUSSIONS AND CONCLUSIONS

In Figs. 3–5 we show the results of the present model
the impact-parameter dependence of the mean energy lo
bare ions colliding with H, He, and Ne targets~dashed lines!
in comparison with full first-order calculations@semiclassical
approximation~SCA!# @22# ~solid lines!. The electronic den-
sities were obtained from the analytical formula for the
target and from Hartree-Fock-Slater densities for He and
@21,22#. The oscillators strengths are taken from Ref.@23# for
H and from Ref.@22# for the He target.

For collisions with hydrogen~see Fig. 3! we have consid-
ered two initial states, namely, H(1s) and H(2s). All curves
are labeled with the corresponding ion energy. In all
cases we obtain a very good agreement with full SCA ca
lations. Even the influence of the node structure of thes
wave function is very well described by the present mod
As we have shown in earlier@13,14#, first-order perturbation
theory ~SCA! yields reliable results for protons at energi
above 150 keV. For heavier ions the projectile veloc
should be high enough (Z/v,0.8 for the hydrogen ground
state! to fulfill the condition of a small perturbation.

For a quick estimate of the electronic energy loss a
function of the impact parameter we may replace the set
oscillator strengths$ f i% and transition energies$v i% by just
one oscillator strengthf 51 corresponding to a mean energ
transfer v̄. Since small energy transfers are dominant
large impact parameters, the use of a single oscilla
strength will underestimate the energy loss at asymptotic
large impact parameters. The result of this approximat
represented by a dotted line, is shown in Fig. 4 for a
target excited from the ground-state by a bare projectile
300 keV/u. Here we have usedv̄5exp@(i f i ln(vi)#539.3 eV
n
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with f i andv i obtained from Ref.@22#. From this figure we
can observe a good agreement with full SCA calculations
intermediate and small impact parameters. Only for la
impact parameters the use of the exact set of oscilla
strengths andv i turns out to be important. At small impac
parameters all results are in good agreement with an exp
mental data point from Ref.@24# (4566 eV), which was
derived for an impact parameter of 0.02 a.u. from differen
ionization, electron-capture and excitation probabilities.

Finally, Fig. 5 shows a comparison for Ne that has th
subshells and therefore the electronic density for each s
shell was taken into account. Here, only a single oscilla
strength and transition energy was considered for each
shell and the mean transfer energyv̄s was assumed to be
equal toaI s , with I s being the binding energy of the shells
under consideration and

a5I Bethe/expS 1

N(
s

nsln~ I s! D , ~19!

wherens is the number of electrons of the shells. For Ne the
Hartree-Fock-Slater@21# values of I s were used (I 1s
5857 eV, I 2s543 eV, andI 2p520 eV). This choice is
consistent with the mean energy transferI Bethe from the Be-
the formula@see Eqs.~15! and ~16!#. For heavy targets the
value of I Bethe is proportional to the atomic number of th
target atom (Ztarget), i.e., I Bethe'12eV* Ztarget @25,26#.

FIG. 3. The electronic energy loss is displayed as a function
the impact parameter for bare ions~with nuclear charge equal toZ)
colliding with H atoms. Results are shown for scaled projec
energies of 100, 300, 500, and 600 keV per atomic mass unit~u!
and for the 1s ground state as well as for the 2s initial state~these
curves are multiplied by a factor of 30!. The solid lines represen
full first-order calculations from Ref.@22# and the dashed lines cor
respond to the present model.
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The agreement between the present model usingv̄s
52.43*I s ~dotted line! and the full first-order calculation
~solid lines! is worse than for the H and He targets but s
reasonable concerning the total electronic energy loss~the
discrepancy is about 15%!. A common feature of our simpli-
fied model results is the underestimated energy loss at l
impact parameters as discussed above. The largest dis
ancy, however, is observed for excitation of the Ne 2s shell.
In this case the node structure of the 2s wave function is
known to lead to destructive interferences that reduce
ionization probabilities. Since the use of a single oscilla
strength cannot account for this interference, our simplifi
model results overestimate the SCA results by 30–40 %
the 2s shell.

Furthermore, it should be noted that the full SCA calc
lations account for the Pauli exclusion principle. This mea
that transition from the 2s to the 2p state or from 1s to 2s or
2p states are explicitly excluded. The Pauli principle can
taken into account by our present model@Eq. ~12!# if we use
the exact sets of oscillator strengths, but it is clearly
accounted for by the simplified single-oscillator model. T
energy loss due toK-shell ionization should be most sens
tive to this blocking effect due to the Pauli exclusion pri
ciple and our model results for theK shell overestimate the
SCA results by only about 20% at zero impact parameter
principle, the mean energy transfer may be chosen to acc

FIG. 4. The electronic energy loss is displayed as a function
the impact parameter for bare ions~with nuclear charge equal toZ)
colliding with He atoms. Results are shown for a scaled projec
energy of 300 keV per atomic mass unit~u! and the target 1s
ground state. The solid line represents full first-order calculati
from Ref. @22# and the dashed line corresponds to the pres
model. The dotted line is also computed using the present mo
but the sum over oscillator strengths( i f i g(v ib/v) in Eq. ~13! has

been replaced by a single functiong(v̄ b/v) with v̄539.3 eV.
The experimental data point atb50.02 a.u. stems from triple
coincidence measurements@24#.
ge
ep-
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also for the unphysical deexcitation processes into occup
states. Under this condition, the blocking effect due to
Pauli principle disappears for the total energy loss~sum over
all subshells! in a first-order treatment since the sum over
forbidden transitions cancels out~the probability for a tran-
sition from 2s to 2p is equal to the reverse one, but with
transition energy of opposite sign!.

In conclusion, we have developed a simple formula
the electronic energy loss as a function of the impact par
eter that is valid at high energies and for a wide range
impact parameters. The integral over all impact parame
recovers the Bethe formula. The implementation of Eq.~12!,
for instance in simulation codes that describe channeled
ticles, is straightforward and depends basically on the e
tronic density and the mean transition energy. If uncertain
in excess of 10% are not tolerable, the model results may
brought in nearly perfect agreement with full SCA results
using tabulated oscillator strengths instead of only a sin
mean transition energy.
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FIG. 5. The electronic energy loss is displayed as a function
the impact parameter for bare ions~with nuclear charge equal toZ)
colliding with Ne atoms. Results are shown for a scaled projec
energy of 1 MeV per atomic mass unit~u! and for the target shells
1s, 2s, and 2p. The solid lines represent full first-order calcula
tions from Ref.@22# and the dotted lines correspond to the pres

model, using a single functiong(v̄s b/v) for each shells with bind-

ing energyI s , where the mean excitation energyv̄s was simply

replaced byv̄s52.43*I s . The total energy loss, i.e., the sum ov
the shell contributions, is multiplied by a factor of 2 and display
as thick solid and dotted curves.
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