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Impact-parameter dependence of the electronic energy loss of fast ions
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In this work we describe a model for the electronic energy loss of bare ions at high velocities. Starting from
first-order perturbation theory we propose a simple formula to calculate the impact-parameter dependence of
the electronic energy loss for all impact parameters. The physical inputs are the electron density and oscillators
strengths of the atoms. A very good agreement is obtained with full first-order calculations.
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I. INTRODUCTION strengths for each allowed optical transition. If not indicated

. . . . ._otherwise, atomic units =1, m,=1, A=1) are used
The energy loss of light ions slowing down in matter 'Sthroughout the paper.

dominated by electronic processes at projectile velocities
higher than the mean electron velocity. The basic mecha-
nisms of the energy loss of a swift projectile are ionization

and excitation of target atoms, well described in the frame- According to the impact-parameter meﬂ"{d(s] the elec-

work of perturbation theory. The well known quadraic  tronic energy loss at high projectile energies can be obtained

(projectile chargedependence of the electronic energy lossfrom first-order perturbation theory using straight line trajec-

per unit paththe electronic stopping powgfollows imme-  tories for the impinging ions. The energy loss due to capture

diately from such a treatmeft]. Also, the Bethe formula and loss processes is of minor importance at high velocities

[2] which yields the asymptotic high-energy limit of the and will be not considered in what follows. In order to cal-

stopping power may be derived directly from first-order per-culate the energy loss due to target ionization and excitation

turbation theory. we have to consider the amplitudes for each electronic tran-
Nowadays, besides the electronic stopping power, théition from the ground-statg0) with energys, to a final

impact-parameter-dependent energy loss is important due ggate(f)

an increasing number of experimefiss-7] and applications

that require an accurate determination of the inelastic energy . o _ ..

loss under channeling conditions. Although there exists a af(b):_if dte @™o f VI —R(1))[0). (1)

simple formula(the Bethe formulafor the integrated elec- -

tronic stopping power at high energies, there is no corre-

sponding solution, so far, for the electronic energy loss as ggre V(- ﬁ(t)) is the Coulomb interaction potential be-
function of the impact parameter. In the literature, we mayyyeen the bare projectile ion with nuclear cha@end a
find only approximate analytical solutions using either theiarget electron. Except for extraordinary small impact param-
dipole expansiori8,9], or the closure relatiof8,10], or SO-  gters the ion trajectories are generally well described by

lutions with the final states replaced by plane wa\&41]. . . e e LT .
All of these models are valid for a restricted range of impactStralght linesR(t) =vtb. As shown in Fig. 1o is the

parameters projectil_e_ velocity ar_wdj is the impact parameter vector of
N : the collision. Each final bound or continuum state f can be
Full calculations of the impact-parameter-dependent en- fined b | i i B d
ergy loss using first-order perturbation theory have been pe|ge ined by angular momentum quantum numBbersmy an
formed only recently[12] and a few years later the first energye; . . .
coupled-channel calculations appeafd,14. These calcu- The electronic energy loss is calculated from the expres-
lations are time consuming and results are only available for' "
a few selected collision systems. Therefore, the computer-
simulation community has preferred to use semiempirical ~
formulas[15] or other greatly simplified models6,17 in Q(b)=2f |as(b)|*(er— €o), v
order to deal with inelastic collisions.
In this work we propose a model for the calculation of the
impact-parameter-dependent energy loss at high projectilehich involves a sum over all final target states and the
velocities, which reproduces full first-order calculations for corresponding computation of transition amplitudes. Usually
all impact parameters without large-scale calculations. The¢his demands an computational effort that precludes the use
physical inputs are the electronic density and the oscillatoof Egs.(1) and(2) in a computer simulation code. Therefore,

Il. MODEL
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FIG. 1. Schematic representation of the collision geometry, \
showing the target and the projectile nucleus, the impact-parameter \,
vectorb and the projectile velocity. The cylinder represents the '\\
integrated electronic density along the ion flight direction. 00 bl — v uennl o asnnl o asul S aaunl (0
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we search for an approximate solution of both equations

2vb
without being a large-scale calculation.
In the literature we may find many studies addressing th

%escribe the dipole terms and quasifree collisions, respectively. At
same problen{8—11]. They propose different approxima- P g - Tesp .

. : O s . high ion velocities the flat parts of both functions have a consider-
tions, all of them being valid in a limited range of impact able overlap
parameters. Alarge impact parameterthe so-called dipole '

approximation fov(r — R(t)) is used, where

FIG. 2. The functiong(x) andh(x) from Egs.(5) and(11) that

For intermediate impact parameters (somewhat larger

. than the shell radius,g,o;) and at high velocities the expo-

V(- R(1)= — Z __<Z _F R(r)Z 3 nential factor in Eq(1) can be neglected, when the collision
|F_ ﬁ(t)| R(t) "R31)’ time 7=rgne/v is small compared to &, . Then, it is pos-

sible to sum over all final states analyticalB] by using the
and thus, an analytical expressi@19 for Q(b) has been closure relation to obtain
obtained:

272 w;b ;b Q(b)=f derT<6—FT>f dzp(ry,2) (6)
Qb)=—=5x> fig|—|=T(b)x > fig
vb i v 7 v
4
with T(b)=2Z2/(v?b?), which corresponds to the classical

with T(b)=22%/(v?b?) and energy transfer to an electron at rest in the sudden approxi-

2 5 mation[19]. As shown in Fig. 1, the vectcﬁcr is perpendicu-

g(x) =x=(Kg(x) +K1(x)). (5

lar to z, the direction of the projectile motiorfd Zp(FT ,2) is

the electronic density integrated along the ion pétie cyl-
inder in Fig. 2. Therefore, Eq(6) agrees with the classical
sudden-approximation expression of the energy loss for elec-
trons at rest, distributed according to the coordinate-space

densityp(FT,z). At small impact parameters, however, en-

Ky and K; are the modified Bessel functions; are the
transition energiesd;=¢€;— ¢;), andf; are the well-known
dipole-oscillator strengthff;=2|(i|z|0)|?(e;— )], which
fulfill the sum rule 2,f;=1 [1]. The functiong(wb/v) is
displayed as dashed curve in Fig. 2. With increasiiduv it

increases slightly from the value of 1 to a shallow maximumergy transfers as high as;=2v? gain importance and a

at wb/v=0.17 and at larger parameter values the functiorproper treatment of the two-body collision kinematics be-
approaches zero exponentially. The solution given by(&q.

comes necessary.
is exact for asymptotically large values bf but it is com-

The influence of the target potential can be neglected for
pletely inadequate for small impact parameters, where othesmall impact parameterat high projectile energieg8]. In
multipole terms gain importance. In fact, Ed) diverges for  this case an analytical formula f@(b) can also be obtained
b—0. This follows from Z;f; g(w;ib/v) in Eq. (4 which by replacing the final target-continuum states by plane
approaches 1 in the limkh— 0. As a consequend@(b) for

waves. The momentum distribution of the bound electron as
b— 0 turns out to be equal to tHdivergenj classical energy well as the correct kinematics are considered in this case, so

transfer to an electron at rest, when the projectile velocity othat the result should be similar to the classical binary-
the maximum energy transfer approaches infifiitythe so-

encounter approximatiof20]. By following this procedure
called sudden approximatipn the electronic energy loss reads
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. k2 [ o fd?r... in EQ.(12) describes a convolution with the initial
alZ(b)|2:J dskff dtdt, e'*721712)  glectron density also outside the projectile path and yields
- nonlocal contributions to the energy loss.

. . .. In the following it will be shown that Eq912) and (13
X f d3r 1A% 255 (r1) po(r2)V(ri—R(ty)) are consistent with the above-discussed three limiting impact
parameter behaviors as well as with the Bethe formula. For

k2
Q(b)= f dgkf

e large impact parameters $r,,¢;) the convolution from Eq.
elklr=ra), (7) (12 can be separated using a peaking approximation as

I 1
XV(r—R(ty))
T

(2m)®

An integration over the orientation &f leads to the follow- ) I -
ing integral: drr K(b—=ry) | dzp(ry,2)

sin(k|ry— 1))

[l
Klry—r,

, (8) ~fd2rTIC(6)f dzp(rr,2)=K(b), (14)

which deviates significantly from zero only for the very nar- since the range of perpendicular distancgs where the
row range|r,—r,|<1/k. Since at high velocities large val- electron density is significant, is small comparedtand the
ues ofk dominate the integral, the electronic ground-statefunction IC(B—FT) is not sensitive to small variation of- at
wave functioney(r,) can be replaced by(r,). However, high velocities. Hence, Eq12) agrees with the results ob-
this peaking approximation removes the exact treatment dfined from the dipole approximation given by H¢), be-
the momentum distribution of the bound electron. Withoutcauseh(2vb) approaches 1 for large impact paramef{see
any further approximations the energy loss from &tj.can  Fig. 2).
be written as On the other hand, the model from Ed.3) reproduces
the small-impact-parameter limit described by EX) since
>;f, g(w;b/v) tends to 1 forb— 0 (see Fig. 2 Finally, ac-
cording to Fig. 2, the higher the projectile velocity the
. better the separation of the limits of small and large impact
with parameters, where the functiogsindh approach zero. Con-
sequently, the flat impact-parameter regions of both func-
_ tions merge into each other at intermediate impact param-
Xh(2vb)=T(b)xh(2vb), (10 giors fwhere both functionsS f; g(w;b/v) and h(2ub)
approach unity Therefore K(b) approached (b) from Eq.
and (6) and the proposed energy-loss function incorporates all
the above-discussed approximations in their restricted
impact-parameter regimes.

At high projectile velocities»?> w;, there exists an im-
pact parameteb, (in general even an impact-parameter
A similar expression was also derived in REf1] but in-  range for which both functions andg are nearly equal to 1.
volving Bessel functions of higher order. The function Then, the integrated electronic stopping cross se@jocan
h(2vb) approaches zero fdr<1/v and it reaches 1 for large be calculated from
values ofb. In the latter case, the energy transfer resembles
again the classical energy transfer to a statistical distribution ) o
of electrons at rest. It is pointed out that the results from Eq. Se:f d*b Q(b)=27N fo db bK(b)

(10) are target independent.
In what follows we propose a general formula that inter-

Q(b)zf erTﬂB—FT)f dzo(ir2 (9

2

T(b)=
(b) 202

2
00 =5 | dy y Koty?) Jo0 Ty 1

2 o :
polates between all approximations described above and is _ 4mNZ fbcdb h(21;b)/b+f dbz 3 g(w—'b>/b
applicable for all impact parameters, namely, v? |Jo be T v

. - or
Q(b)=fd2rTlC(b—rT)fdzp(rT,z) (12 :4wrxiz |n(zvb;)+2 n 1.123))
p2 | \112 i wib,

with

47NZ% | 202
= In( e) (15

27?2 wib >
K(b)= == Xh(2vb)x >, figl —/, (13) v Ieth
v?b? i v

This function joins smoothly all three regions of impact pa—W'th

rameters described above. The first two terms in @8)
describe violent binary collisions and the last term accounts In(l hS)ZE f.In(w;) (16)
for the long-range dipole transitions. The first integral Bet SR
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andN is the total number of electrons. Thus, the integration T T T T T T T
of Eq.(12) over all impact parameters provides the electronic 10° B
stopping cross section according to the Bethe fornjdla ;
Therefore, for asymptotically high projectile energies the
present model gives the exact limiting impact-parameter de-
pendences of the electronic energy loss.
For use in practical applications the functionéx) and

g(x) can be expressed in terms of elementary functions fitted
to the numerical results,

x? Bx?

+
x2+a? 1+yx?

h(x)= (17

Energy Loss (eV) /z*

with «=1.551,8=0.0123,v=0.0009, and
10" F 500keV/n

g(x)=(1—0.174/X+ mX)exp — 2X), (18)

which vyield negligible uncertainties in Eq12) for 0<x L |H(1s)
<o,
-2 P P P P
It is pointed out that the formulas for @) as given above 02 35 4 5 6 7 8 9 10
are strictly valid only for a one-electron system. In the Impact Parameter (A)
framework of the independent-particle model, however, we _ o )
can still use the results of E¢12), but we have to consider FIG. 3. The electronic energy loss is displayed as a function of

the electronic density and the oscillator strengths for eace impact parameter for bare iofwith nuclear charge equal &)
electron of all occupied target shells. colliding with H atoms. Results are shown for scaled projectile

energies of 100, 300, 500, and 600 keV per atomic mass(unit

and for the 5 ground state as well as for thes hitial state(these
lll. DISCUSSIONS AND CONCLUSIONS curves are multiplied by a factor of B0The solid lines represent
Full first-order calculations from Ref22] and the dashed lines cor-
r&spond to the present model.

In Figs. 3—5 we show the results of the present model fo
the impact-parameter dependence of the mean energy loss
bare ions colliding with H, He, and Ne targd€tiashed lines
in comparison with full first-order calculatiofisemiclassical
approximation(SCA)] [22] (solid lineg. The electronic den-

with f; and w; obtained from Ref{22]. From this figure we
can observe a good agreement with full SCA calculations for

sities were obtained from the analytical formula for the H!ntermedlate and small impact parameters. Only for large

target and from Hartree-Fock-Slater densities for He and Ngnpact parameters the use of the exact set of oscillators

[21,22. The oscillators strengths are taken from R2g] for strengths andy; turns out to be important. At small impact
H a’nd from Ref[22] for the He target parameters all results are in good agreement with an experi-

mental data point from Ref24] (45+6 eV), which was

F llisi ith hyd Fig. h id-
or collisions with hydrogetsee Fig. 3we have consi derived for an impact parameter of 0.02 a.u. from differential

ered two initial states, namely, H§l and H(ZX). All curves -~ """ oo S
are labeled with the corresponding ion energy. In all sixionization, e_Iectron-capture and excitation probabilities.
cases we obtain a very good agreement with full SCA calcu- Finally, Fig. 5 shows a comparison for Ne that has three
lations. Even the influence of the node structure of tke 2 subshells and thgrefore the electronic densny . each Sl
wave function is very well described by the present model.s'he” was taken Into account. Here, only a single oscillator
As we have shown in earliéd 3,14}, first-order perturbation strength and transition energy was_con5|dered for each sub-
theory (SCA) vields reliable results for protons at energiesshell and the mean transfer energy was assumed to be
above 150 keV. For heavier ions the projectile velocity€qual toals, with I being the binding energy of the shell
should be high enoughZ(v <0.8 for the hydrogen ground under consideration and
state to fulfill the condition of a small perturbation.

For a quick estimate of the electronic energy loss as a 1
function of the impact parameter we may replace the sets of a=| Bethe/ex% —> nsln(|s)>, (19
oscillator strengthgf;} and transition energiew;} by just N*s
one oscillator strength=1 corresponding to a mean energy

transfer . Since small energy transfers are dominant atwheren, is the number of electrons of the shellFor Ne the
large impact parameters, the use of a single oscillatoHartree-Fock-Slater[21] values of I were used i
strength will underestimate the energy loss at asymptotically=857 eV, 1,,=43 eV, andl,,=20 eV). This choice is
large impact parameters. The result of this approximationgonsistent with the mean energy transfgs;,. from the Be-
represented by a dotted line, is shown in Fig. 4 for a Hethe formula[see Eqgs(15) and (16)]. For heavy targets the
target excited from the ground-state by a bare projectile ajalue of I 5yeis proportional to the atomic number of the
300 keV/u. Here we have uses=exd ZifiIn(w))]=39.3 eV target atom Ziarged, i-€., lgetne™ 128 V* Ziarget [25,26).
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FIG. 4. The electronic energy loss is displayed as a function of ] o )

colliding with He atoms. Results are shown for a scaled projectilethe impact parameter for bare iofwith nuclear charge equal @)
energy of 300 keV per atomic mass utit) and the target 4  colliding with Ne atoms. Results are shown for a scaled projectile
ground state. The solid line represents full first-order calculation€nergy of 1 MeV per atomic mass uiif) and for the target shells
from Ref. [22] and the dashed line corresponds to the presen?—S: 2s, and 2. The solid lines represent full first-order calcula-
model. The dotted line is also computed using the present modefions from Ref.[22] and the dotted lines correspond to the present
but the sum over oscillator strengtBsf; g(w;b/v) in Eq.(13) has  model, using a single functiag(w b/v) for each shels with bind-

been replaced by a single functig{w b/v) with ©=39.3 eV. ing energyls, where the mean excitation energy was simply
The experimental data point &=0.02 a.u. stems from triple- replaced byw,=2.43*1. The total energy loss, i.e., the sum over
coincidence measuremerf4]. the shell contributions, is multiplied by a factor of 2 and displayed

as thick solid and dotted curves.

The agreement between the present model usTrgg
=2.43* (dotted ling and the full first-order calculations
(solid lineg is worse than for the H and He targets but still

reasonable conceming the total electronic energy (dss all subshellsin a first-order treatment since the sum over all

cﬁscrepancy IS abqut 150 common feature of our simpli- fgrbidden transitions cancels o(the probability for a tran-
fied model results is the underestimated energy loss at Iar%é

impact parameters as discussed above. The largest discrei gr?git];g%merirto 23 'j egl;ﬁ:atgigr:e reverse one, but with a
ancy, however, is observed for excitation of the Neshell. gy PP
the electronic energy loss as a function of the impact param-

also for the unphysical deexcitation processes into occupied
states. Under this condition, the blocking effect due to the
Pauli principle disappears for the total energy IG@sm over

In this case the node structure of the @ave function is In conclusion, we have developed a simple formula for

known to lead to destructive interferences that reduce the ; . . . .
S L . : : éter that is valid at high energies and for a wide range of
ionization probabilities. Since the use of a single oscillator, . )

. -~ . impact parameters. The integral over all impact parameters
strength cannot account for this interference, our simplifie

model results overestimate the SCA results by 30—-40 % fO]Eecpvers the. Be;he :‘or.mula. (;I’he L]mplctjamer!t)atlo?] of (Euiz),d
the 2 shell or instance in simulation codes that describe channeled par-

Furthermore, it should be noted that the full SCA Calcu_t|cles, is straightforward and depends basically on the elec-

lations account for the Pauli exclusion principle. This meansyonIC density and the mean transition energy. If uncertainties

. in excess of 10% are not tolerable, the model results may be
that transition from the 21o the 2 state or from % to 2s or brought in nearly perfect agreement with full SCA results by

: . eusing tabulated oscillator strengths instead of only a single
taken into account by our present mofgd. (12)] if we use mean transition energy.

the exact sets of oscillator strengths, but it is clearly not
accounted for by the simplified single-oscillator model. The
energy loss due t&-shell ionization should be most sensi- ACKNOWLEDGMENTS

tive to this blocking effect due to the Pauli exclusion prin-

ciple and our model results for th€ shell overestimate the This work was partially supported by Conselho Nacional
SCA results by only about 20% at zero impact parameter. Ile Desenvolvimento Cieffico e Tecnolgico (CNPg, and
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