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ABSTRACT

Multidimensional Similarity Search for 2D-3D Medical Data Correlation and
Fusion

Images of the inner anatomy are essential for clinical practice. To establish a correlation
between them is an important procedure for diagnosis and treatment. In this thesis, we
propose an approach to correlate within-modality 2D and 3D data from ordinary acquisition
protocols based solely on the pixel/voxel information. The work was divided into two
development phases. First, we explored the similarity problem between medical images
using the perspective of image quality assessment. It led to the development of a 2-step
technique that settles the compromise between processing speed and precision of two
known approaches. We evaluated the quality and applicability of the 2-step and, in the
second phase, we extended the method to use similarity analysis to, given an arbitrary
slice image (2D), find the location of this slice within the volume data (3D). The solution
minimizes the virtually infinite number of possible cross section orientations and uses
optimizations to reduce the computational workload and output accurate results. The
matching is displayed in a volumetric three-dimensional visualization fusing the 3D with
the 2D. An experimental analysis demonstrated that despite the computational complexity
of the algorithm, the use of severe data sampling allows achieving a great compromise
between performance and accuracy even when performed with low gradient intensity
datasets.

Keywords: 2D-3D image fusion, medical images, volumetric visualization, within-
modality registration.





RESUMO

Busca de similaridade para correlação e fusão de imagens médicas
multidimensionais

Imagens da anatomia interna são essenciais para as práticas médicas. Estabelecer
correlação entre elas, é um importante procedimento para diagnóstico e tratamento. Nessa
dissertação, é proposta uma abordagem para correlacionar dados multidimensionais de
mesma modalidade de aquisição baseando-se somente nas informações de intensidade de
pixels e voxels. O trabalho foi dividido em duas fases de implementação. Na primeira,
foi explorado o problema de similaridade entre imagens médicas usando a perspectiva de
análise de qualidade de imagem. Isso levou ao desenvolvimento de uma técnica de dois
passos que estabelece um equilíbrio entre a velocidade de processamento e precisão de duas
abordagens conhecidas. Avaliou-se a qualidade e aplicabilidade do algoritmo e, na segunda
fase, o método foi estendido para analisar similaridade e encontrar a localização de uma
imagem arbitrária (2D) em um volume (3D). A solução minimiza o número virtualmente
infinito de possíveis orientações transversais e usa otimizações para reduzir a carga de
trabalho e entregar resultados precisos. Uma visualização tridimensional volumétrica
funde o volume (3D) com a imagem (2D) estabelecendo uma correspondência entre os
dados. Uma análise experimental demonstrou que, apesar da complexidade computacional
do algoritmo, o uso de amostragem, tanto na imagem quanto no volume, permite alcançar
um bom equilíbrio entre desempenho e precisão, mesmo quando realizada com conjuntos
de dados de baixa intensidade de gradiente.

Palavras-chave: Fusão de imagens 2D-3D, Imagens médicas, Visualização volumétrica,
Regristro de dados de mesma modalidade.
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1 INTRODUCTION

Images of the inner anatomy are essential for clinical practice as they support diagnosis,
surgery planning, lesions characterization and physiological studies to treat human diseases.
Several image acquisition modalities are available. They emphasize different internal body
structures (anatomical or functional) and present varied number of dimensions. Some of
them are captured and analyzed in real-time, others through batch processes for posterior
analysis. Computed tomography (CT), magnetic resonance imaging (MRI), ultrasound,
x-ray and laparoscopic images are the most common. Today, all types of medical images
are available in digital representations. This allows computational systems to perform
medical data analysis and image processing. Virtual three-dimensional representations of
datasets from MRI and CT, segmentation and classification of organs functional segments,
similarity analysis and image registration are some examples.

To establish a correlation between medical images from multiple sources is an im-
portant procedure for diagnosis and treatment. While within-modality image correlation
allows following disease evolution, cross-modality correlation permits to combine a percep-
tion of the different structures visible in either modality. Fusion of computed tomography
(CT) and ultrasound (US), for example, can improve the diagnostic value to an extent
beyond the sum of the individual modalities (WEIN et al., 2008). Despite its importance,
this correlation procedure is most often performed manually in clinical practice. The physi-
cian’s confidence in a lesion identification and classification with multimodal acquisition
sources is still a challenging clinical procedure (WOOD; CHUNG; ALLEGRA, 2000).
Results are then quite dependent of the physician’s skills to produce a mental image of the
data correlation.

It is expected that fast and accurate automatic medical image correlation of within-
modality and cross-modality can lead to an improved diagnosis and treatment. Image
features captured in different timestamps or with different imaging devices would be
highlighted in a fused single view, increasing accuracy in diseases localization and precise
apparatus placement in lesion ablation.

The registration of medical images is widely explored (MAINTZ; VIERGEVER, 1998;
KHALIFA et al., 2011; MANI; RIVAZHAGAN, 2013). Solutions for a variety of images
correlations have been proposed. They approach registration between pre-operative data
from same or different dimensionalities and modalities, such as 2D-3D: X-ray CT and
MRI (TOMAEVIC; LIKAR; PERNUš, 2002); 3D-3D: whitin-modality MRI (BEN SASSI
et al., 2008), CT-MRI (DEAN et al., 2012). These works focus on registration between
images in the three main anatomical axes, axial, coronal and sagittal.

On the other hand, in registration between pre- and intra-operative modalities, such as
US-CT (WEIN et al., 2008; CROCETTI et al., 2008), US-MRI (KING et al., 2010; NIKAS
et al., 2003; LINDSETH et al., 2003) the captured data are often misaligned to the main
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axes. To overcome the user dependent acquisition, previous solutions track the position
and orientation of the US imaging transducer and patient’s body to match the modalities
coordinates system.

1.1 Goal

The ideal system would be able to perform real-time fusion of distinct modalities,
even when the data is freely captured disrespecting the anatomical axes. This leads to a
variety of subproblems, such as, to establish a matching criteria, defining the geometrical
transformations to align the distinct data, implementing algorithm optimizations and
finding the best fitting plane in the three-dimensional data given the 2D arbitrary image.
The challenges involved in each sub-problem are complex research subjects and involve
the computer science and medicine fields.

In this thesis, we design an approach to correlate within-modality 2D and 3D data from
ordinary acquisition protocols based solely on the pixel/voxel information. Our method
uses similarity analysis to, given an arbitrary slice image (2D), find the location of this
slice within the volume data (3D). Our solution minimizes the virtually infinite number
of possible cross section orientations and uses optimizations to reduce the computational
workload and output accurate results.

Volumetric rendering techniques are applied for visualization. The volumetric medical
image is cross-sectioned to highlight the 2D image location.

An extensive evaluation was performed to assess the precision, accuracy and efficiency
of the proposed technique.

1.2 Contributions

Following the technical contributions of this thesis are summarized:

• A 2-step algorithm for multidimesional medical images matching;
• A multidimensional similarity search for 2D-3D data correlation and fusion;
• Three sets of experiments performed to evaluate the quality and applicability of our

methods;
• A visualization tool that integrates real-time volumetric rendering of dataset cross-

sectioned with arbitrary plane image.

1.3 Outline of this thesis

In the next chapter, we introduce the fundamental concepts for the understanding of
this thesis. The related works are presented in Chapter 3. In the next two chapters we
deal with the investigation, implementation and evaluation of two medical image matching
techniques. They are the result of a spiral methodology, where, in the first research cycle
(Chapter 4), we have explored the similarity between images using the perspective of image
quality assessment for image similarity. It led to the development of a two-step technique
for within-modality medical image matching. We evaluate its quality and applicability and,
in the second cycle (Chapter 5), we extend the method to match arbitrary plane images
within volumetric data. In the end of this cycle, we have evaluated the technique with
controlled data and in Chapter 6 we validate our prototype in a medical context. The
conclusion and next research cycles are in Chapter 7.



19

2 BACKGROUND

This chapter introduces the fundamental concepts developed throughout this thesis.
They are: medical imaging (Sec. 2.1), medical image registration (Sec. 2.2), volumetric
visualization of medical data (Sec. 2.3) and image similarity assessment (Sec. 2.4).

2.1 Medical Imaging

Medical imaging aims to produce images from the human body internals. It is important
for the understanding of the human anatomy, function and physiological behavior of organs
and tissues. Thus, it is an essential tool for diagnosis as well as monitoring and evaluation
the treatment of an illness.

Medical imaging modalities can be classified into anatomical (or structural) and func-
tional (or metabolic) (DHAWAN, 2011). The anatomical imaging modality can be charac-
terized depending on its ability to discriminate different body structures such as bone, soft
tissue and body fluids. The main anatomical imaging modalities include X-ray imaging
(X-ray radiograph, X-ray computer tomoghaphy (CT)), ultrasound (US), and magnetic
ressonance imaging (MRI). The functional imaging modality is characterized depending
on its ability to discriminate different levels of metabolism caused by specific biochemical
activity. Major functional imaging modalities include functional MRI (fMRI), single
proton emission computed tomography (SPECT), positron emission tomography (PET)
and fluoroscopy imaging.

Only the anatomical modalities are covered in this work and detailed in the next
subsections.

2.1.1 Radiograph

The radiograph imaging (Fig. 2.1a) records a two-dimesional projection of a three-
dimensional (3-D) human body anatomical structure. The radiograph images are composed
in gray gradient where the tissue density is mapped to an intensity value. This imaging
modality is effective to accuse fractures, tumors, pneumonia, among other information
being less used to visualize soft tissues.

The X-ray is situated between the ultraviolet and gamma rays in the elelectromagnetic
spectrum. Because of their wavelength, X-rays have high energy providing excellent
capability of straight penetration and transmission in human body. There are two main
wavelength ranges in the X-ray spectrum, the called soft X-rays, identified as having
wavelengths from 10nm to 0.1nm and the hard X-rays with wavelenghts shorter than 0.1nm
down to 0.001nm.

For medical applications, it is important to select X-rays with wavelengths that provide
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linear attenuation coefficients for human body. The intensity attenuation is determined at
each scan location by measuring the difference between the source and the detector due to
the mass attenuation coefficients of body’s physiological structures. The soft X-ray range
is quite reasonable to discriminate bones, soft tissues and air. For this reason are the most
used for medical diagnostic purposes.

Wavelengths shorter than those used for diagnosis provide much higher photon energy
and therefore less attenuation. This hard X-ray is commonly applied in therapeutic
procedures. These high energy particles create molecule ruptures that affects cancerous
cells as they generally have poorer repair capacities than healthy tissues.

The rays emitted by the X-ray may have a harmful effect on the human body depending
on the time of exposure to its radiation.

2.1.2 Computed Tomography

Conventional radiography creates a 2-D projection image of a 3-D object. While
radiographs may be adequate for many diagnostic applications, it does not provide 3D
quantitative and qualitative information about the anatomical structures and associated
pathology necessary for diagnostic and treatment of a number of diseases. For example, the
volume of an organ and the tumor size and its shape are important features for diagnostic
and surgery planning purposes (DHAWAN, 2011). The basic principle of X-ray CT is
the same as that of X-ray digital radiography. But, in the CT imaging, X-rays beams
are emitted from different angles through an X-ray tube that rotates around the axis of
the pacient’s body. Mathematical reconstruction techniques creates cross-sectional slice
images of X-Ray attenuation inside the human body (RUSS, 2011). A stack of axial slices
are obtained from few millimeters between them, comprising a three-dimensional dataset,
as shown in Figure 2.1b. Both for X-Ray and CT, the vasculature can be emphasized by
injecting contrast agent, a fluid with high attenuation. The overall imaging is then denoted
Angiography or Computed Tomography Angiography (CTA).

2.1.3 Magnetic Resonance

Magnetic resonance (MRI), like the CT, is a tomographic imaging method that produces
3D images of the human body (DHAWAN, 2011). But, unlike CT it is not based on the
transmission of external radiation for imaging, and is therefore considered a non-invasive
modality. MRI uses nuclear magnetic ressonance (NMR) property of selected nuclei.
Among the nuclei that generate signals of MRI, the most important is the hydrogen nucleus.
The hydrogen protons are readily available in water and other fluids in the body and vary in
density within a tissue if its chemical composition changes, providing the basis for better
imaging. Morover, they are stable and very sensitive to magnetic resonance core in tissues.
Because of the underlying physics of MRI acquisiton, it provides high-resolution images
with superior soft-tissue contrast when compared to X-ray CT. An MRI image example is
shown in Figure 2.1c.

2.1.4 Ultrasound

Medical ultrasound imaging (Fig. 2.1d) is a non invasive technique that uses sound
pulses in order to visualize biological tissues. Different from CT and MRI modalities, the
ultrasound allows real-time imaging with user interaction. An ultrasound transducer device
is positioned at the patients skin and transmits sound pulses through the patient’s body.
The sound pulses are reflected at the boundary between two different density tissues. The
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Figure 2.1 - Visual representation of the main medical imaging acquisiton sources. (a)
Radiograph, (b) Computed tomography, (c) Magnetic ressonance (d) Ultrasound.

Source: Compiled by author.

higher the difference the stronger the resulting echoes are. The echoes are detected and
captured by the transducer and sent to a computer for image processing and visualization.
The depths of the boundaries are estimated based on the time interval between sending the
pulse and receiving the echoes, which is also known as the pulse-echo principle (GILL,
2012). The received signal is post processed and the resulting echoes are displayed using
the depth information and a brightness value according to the signals strength of the
received echoes. More details on image formation in real-time ultrasound can be found in
HEDRICK; HYKES (1995) and (DHAWAN, 2011).

2.1.5 Medical Images Classification

We summarize this section with a classification of the medical imaging methods
discussed, seen in Table 2.1. We highlighted the main modalities’ characteristics regarding
the focus of this thesis.

2.2 Medical Image Registration

Image registration (JV HAJNAL, 2001) also known as image matching or alignment,
tries to establish spatial correspondence between bidimensional and/or tridimensional
images. Several similar scenes can be captured and registered. The captured data may
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Table 2.1 - Classification of the medical imaging methods.

Modality Radiograph CT MRI US
Acquisition X-ray magnetic ressonance sound pulse-echo
Structures hard tissues soft tissues hard and soft tissues
Operative phase pre-operative intra-operative
Invasive yes no

Source: Compiled by author.

be acquired from different sensors (image modalities), different time instants (tempo-
ral/functional data) or from different viewpoints.

Since information captured from distinct imaging modalities is usually complementary,
means to proper integrate this separate images are needful. The main step in the integration
process is to spatially align the modalities involved. This step, plays an important hole in
medical image analysis, both in research and medical applications.

Medical image registration can be applied during diagnosis, surgery planning, guiding
treatment, and monitoring disease progression. It has fundamentally many uses in medicine
such as multi-modality fusion, image-guided surgery, monitoring changes in size, shape,
or image intensity of tissues over time, image segmentation, functional brain mapping and
many others.

All current image registration methods can be classified based on the criteria formulated
by Maintz et al (MAINTZ; VIERGEVER, 1998) and Mani et al (MANI; RIVAZHAGAN,
2013). The diagram in Figure 2.2 shows all criteria and in the following subsections they
are explained.

Figure 2.2 - Medical image registration classification.

Source: Diagram extracted from MANI; RIVAZHAGAN (2013).
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2.2.1 Dimensionality

The registration process involves the calculation of transformations between coordinate
system. There are three main dimensionalities involved, 2D-2D, 2D-3D and 3D-3D. In
addition, images can be captured at time intervals creating a time series.

• 2D-2D: The simplest dimensionality registration. It uses only rotations and transla-
tions to image alignment.

• 2D-3D: Establish correspondence between 3D volumes and projected images, such
as, x-ray. The main application for this type of registration is in image guided
surgery.

• 3D-3D: Registration of volumetric data provide spatial relationship between the
internal organs. The input images can be from the same or distinct modalities. The
scanner devices should be calibrated to match the voxels size.

• Temporal series: The medical images are captured over time. They are used to
monitor the progress of bodily disorders and diseases, for example, to monitor the
tumor growth.

2.2.2 Modalities Involved

The correlation between medical images can be classified in within-modality and
cross-modality. The clinically established modalities are computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomography (PET) and single-
photon emission computed tomography (SPECT) (TURGEON et al., 2005; MATTES et al.,
2003; DU et al., 2006; WONG; BISHOP, 2007).

• Within-modality: The same imaging device is used to capture the same type of
information. This method has application in growth monitoring, verify results of
surgical interventions (kidney removal) and others.

• Cross-modality: different imaging devices are used to capture information from the
same anatomy. Multi-modal registration is more complex due to distinct nature of
the signals. The applications of these methods are more diverse, but predominately
used during the diagnostic phase.

2.2.3 Nature of registration basis

Can be divided into intrinsic, methods based only on information of the captured image,
or extrinsic, use external objects inserted in the imaged space during the capture procedure.

• Intrinsic: The main approaches are based on the voxels intensity and on the image
characteristics (landmarks) (CHUI; RANGARAJAN, 2003).

• Extrinsic: Fiducial marks are inserted in the imaged area or attached to the patient
body. The markers must be visible by all modalities. Detection algorithms locate
patterns and calculate the image transformations needed for the correct alignment.
This registration method can be easily automated and is computationally efficient.
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2.2.4 Nature of the transformation

The movements or distortions required to proper align the images. The main transfor-
mations are rigid, affine and non-rigid.

• Rigid Transformation: only rotations and translations are applied. Examples are
the non-deformable register of body structures, such as bones. The transformations
are applied globally. Rigid transformations are popular because they have a good
registration approximation and because they are fast computed (few parameters have
to be taken into account during the calculations).

• Affine transformation: Preserves the parallelism between lines. This transformation
allows more freedom when compared to rigid transformation by adding scale and
shear in each dimension.

• Non-rigid Transformation: The human body, due to its composition, has many soft
tissues, e.g. organs and skin structures. Therefore, a rigid or affine transformation
does not always provide a good registration approximation. Thus, the registration
using non-rigid transformations is ideal to establish better correlation between
soft tissue structures. This transformations may be non-linear, relies on complex
equations and remains a research problem due to the high degree of freedom in the
deformation process. Several algorithms have emerged for non-rigid registration.
All techniques require high computational power, which is the biggest problem for
most medical applications. The main techniques used in non-rigid transformations
are: splines, elastic models and finite elements.

2.2.5 Domain of transformation

The transformation can be global if it is applied to the entire data and local if it is
applied to a data’s portion.

2.2.6 Optimization procedure

Optimization procedures are used to fast and reliably determine the optimum transfor-
mation parameters for the image alignment. The transformation parameters are computed
in an explicit way from the available data, or by finding an optimum of some cost function
defined. The cost function determines the similarity between the two images given a certain
transformation. The functions are less complex in mono modal registrations since there is
a linear relationship between the source and the target image and the similarity metric is
straightforward (MANI; RIVAZHAGAN, 2013).

For the non-rigid registration, it is hard to choose/build the optimizer because more
parameters are generally required to describe it.

2.2.7 Subject

Subject refers to the patients, whose images are to be registered. The images to be
registered may be captured from the same patient or from different patients. Based on the
subject, registration algorithms can be classified into intra-subject, captured from a single
patient, inter-subject, captured from different patients and atlas, acquired from a single
patient and registred with a image constructed from many subjects.
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2.2.8 Object

The object in medical image registration is the part of the anatomy involved. The
main anatomic structures imaged are: head (brain, retina, dental), thorax (breast, cardiac),
abdomen (liver, kidney, prostate), spine and vertebrae and limbs.

2.2.9 Important classifications for this work

This work is specially focusing on:

• Dimensionality (Subsection 2.2.1): we are dealing with 2D and 3D images correla-
tion;

• Modalities Involved (Subsection 2.2.2): within-modalities;

• Nature of registration basis (Subsection 2.2.3): pixel/voxel-based intrinsic methods;

2.3 Volumetric Visualization of Medical Data

Both clinical diagnostics and registration need means to visualize the informations
contained within a volume. In earlier methods, the visualization was done by extracting
surfaces from the volumetric information and transform them into graphical primitives
that could be rendered with traditional techniques. This approach is referred to as indirect
volume rendering (MEIBNER et al., 2000). However, such transforming approach is
susceptible to loose volume information. In this way, direct volume rendering techniques
(MAX, 1995) have been proposed, that construct and render the volumetric dataset directly,
without changes is the representation. The pioneer methods, were volume ray-casting
(LEVOY, 1988) and volume splatting (WESTOVER, 1990). But, due to the high computa-
tional demands of this methods, they were not capable to build 3D volumetric renderization
in real-time. Figure 2.3 shows the visual differences of indirect and direct methods.

Today, the advance of graphics hardware and their programmability capabilities allowed
texture based direct volume rendering with high quality and better performance (ENGEL;
KRAUS; ERTL, 2001; ENGEL et al., 2004). Some examples of medical volumetric
rendering are shown in Figure 2.4.

The volumetric rendering techniques are applied in many scientific fields, such as
biology, archeology, geology, material science, computational science and engineering;
and entertainment like games and movies (HADWIGER et al., 2006). Medical imaging
was one of the early fields that adopted volume rendering. In medical imaging, 3D data
is typically acquired by some kind of scanning device (Section 2.1). Stacks of two-
dimensional images from CT and MRI are the main data sources for these applications.
Both modalities generate an image series that represents cross-sections through the patient’s
anatomy. The unitary volumetric value is called voxel.

Although medical professionals are able to perform diagnoses based on the raw data,
three-dimensional visualization is proving to be useful especially in complex organs
like the liver and its vascular system, diagnosis, treatment planning, surgical simulation,
medical training and intra-operative procedures (TOMBROPOULOS, 1999). The three-
dimensional visualization methods provides very precise anatomical details and it allows a
faster learning curve for medicine students and also a reduction of medical errors caused by
misinterpretation of two-dimensional data that may result in complications to the patient.
This occurs especially with less experienced physicians (MARESCAUX et al., 1998).
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Figure 2.3 - Comparison between indirect and direct. (a) Traditional surface representation
of a volumetric dataset. (b) Direct volume rendering of the same dataset.

(a) (b)

Source: Image taken from (BRUCKNER, 2008).

Figure 2.4 - Volumetric rendering examples. (a) high-quality volumetric rendering of an
abdomen CT scan, (b) skull CT, (c) simulation of the electron density of a Buckminster-
Fullerene molecule and (d) feet of the Visible Female CT dataset.

Source: (a)Image taken from (BRUCKNER, 2008), (b) and (c) Compiled by author and (d)Image
taken from (HADWIGER et al., 2006)
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2.4 Image Similarity Measures

Similarity functions quantify signal correspondences between a target and a reference
image. They should have global maximum when the evaluated images are identical or are
correctly aligned.

In the remaining of this section, we describe the most commonly used measures: sum of
squared differences, structural similarity, normalized cross-correlation, mutual information
and scale-invariant feature transform.

2.4.1 Mean Squared Error

Mean squared error (MSE), can be computed by averaging the squared intensity of the
pixel differences in two images, normally one is the reference image and the other is the
distorted one (to be evaluated). The result is a quantitative score that describes the degree
of similarity or the level of distortion between them (WANG; BOVIK, 2009). The MSE
between two images is given by:

MSE =
1

k

k∑
i=1

(xi − yi)2, (2.1)

where x and y are the two images data, k is the number of signal samples (pixels) and
xi and yi are the values of the ith samples in x and y, respectively. The difference between
the original and distorted images is given by ei = xi − yi. Similarity values close to zero
represent better image match whereas MSE = 0 means that a perfect match was found.

According to WANG; BOVIK (2009), MSE has many positive features, here we
highlight two of them:

• It is easy to compute and memoryless. The complexity is of only one multiplication
and two additions per sample.

• It is a convention. It has been extensively used for optimization and assessment
in signal compression, restoration, denoising, reconstruction, and classification.
Moreover, throughout the literature, it provides a convenient and extensive standard
against which new algorithms have most often been compared.

The main disadvantage of MSE is the restrictive assumption that the image intensities
are identical. Therefore non-matching structures entering one of the images easily cause
larger increases of the error value than the shift to a correct alignment. In that sense, its
robustness with respect to outliers and noise is generally bad. This measure is mostly
useful for registering images of the same modality.

2.4.1.1 Mean of Absolute Differences

The MSE measure is very sensitive to a small number of voxels that have very large
intensity differences between images A and B. This might arise, for example, if contrast
material is injected into the patient between the acquisition of images A and B or if
the images are acquired during an intervention and instruments are in different positions
relative to the subject in the two acquisitions.

One common modification to reduce the sensitivity with respect to outliers is to use the
Mean of Absolute Differences (MAD).

MAD =
1

k

k∑
i=1

| (xi − yi) |, (2.2)
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2.4.1.2 Peak Signal-to-Noise Ratio

In the literature of image processing, MSE is often converted into a peak signal-to-noise
ratio (PSNR) measure:

PSNR = 10log10
L2

MSE
, (2.3)

where L is the dynamic range of allowable image pixel intensities. For images that
have allocations of 8 bits/pixel of gray-scale, L = 28− 1 = 255. The PSNR is useful when
comparing images with different dynamic range, otherwise it does not add new information
relative to the MSE.

In summary, MSE deals with images in the pixel domain and it is not similar to the way
that human visual system perceives images. Moreover, psychophysical and physiological
features of the HVS are not accounted for by the MSE.

2.4.2 Structural Similarity Approach

The motivation of the structural similarity (SSIM) approach (WANG et al., 2004) is to
find a more direct way to compare a reference and a distorted image. The pixels of natural
images have strong dependencies that carry important information about the structure of
objects in the scene, especially when pixels are spatially close. In this way, Wang et al.
(WANG, 2001; WANG et al., 2002) proposed a new framework to assess image quality,
based on the hypothesis that the human visual system is highly adapted to extract structural
information from images seen.

The measure of structural information change can provide a good approximation to
perceived image distortions. The system diagram of the proposed quality assessment
system is shown in Fig. 2.5 where x and y are two nonnegative image signals. If we
consider one of the signals to have perfect quality, then the similarity measure can serve as
a quantitative measurement of the quality of the second signal. The task is separated into
three comparisons: luminance, contrast and structure.

Figure 2.5 - Diagram of the structural similarity (SSIM) meassurement system.

Source:
Image extracted from (WANG et al., 2004).

All three comparisons are mixed into one equation, formulated as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (2.4)
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where µx, σx and µy, σy denote the mean intensity and standard deviation of images x
and y, respectively, while σxy denote their cross correlation. C1 and C2 are small constant
values used to avoid instability problems when the denominator is too close to zero. The
SSIM mathematical formulation is detailed in WANG; BOVIK (2006).

The mean SSIM (eq. 2.5) is used to assess the overall quality of an entire image.

MSSIM(X, Y ) =
1

M

M∑
j=1

SSIM(xj, yj), (2.5)

where X and Y are the reference and the distorted images, xj and yj are the image at
the jth local window and M is the number of local image windows.

The major difference between error sensitivity metric and the structural similarity
approach is that the first estimates perceived errors to quantify image distortion while the
second considers image distortion as perceived changes in structural information variation.
Figure 2.6 shows an example extracted from WANG et al. (2004) that illustrates the
differences between the approaches. As the MSE does not takes into account the image
structural formation, it cannot predict witch image has the best quality, or is the less
degraded. The SSIM has more consistent results.

Figure 2.6 - Quality comparison between MSE and MSSIM. Images with different types of
distortions, all with MSE = 210. (a) Original image (8 bits/pixel; cropped from 512x512 to
256x256 for visibility). (b) Contrast-stretched image, MSSIM = 0:9168. (c) Mean-shifted
image, MSSIM = 0:9900. (d) JPEG compressed image, MSSIM = 0:6949. (e) Blurred
image, MSSIM = 0:7052. (f) Salt-pepper impulsive noise contaminated image, MSSIM =
0:7748.

Source: Images and data extracted from WANG et al. (2004).

2.4.3 Normalized Cross-Correlation

Normalized Cross-Correlation (NCC), also denoted as correlation coefficient (CC) is a
very common technique in statistics, signal processing and many other fields. It assesses
the amount of linear relationship between the intensity values in the images by computing
the average product of its demeaned values, divided by their standard deviation. It is a
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slightly less strict assumption than the mean-squared error. The correlation coefficient is
presented in equation 2.6.

NCC =

∑
k(ik − ī)(jk − j̄)√∑

k(ik − ī)2
∑

k(jk − j̄)2
, (2.6)

where ī and j̄ are the mean voxel values and have to be calculated previously. The CC
is a normalized version of the cross correlation measure C (Equation 2.7)

C =
1

N

∑
k

ik.jk, (2.7)

Unlike MSE, the NCC measure is independent of linear changes. If the intensities i and
j are completely independent, the value of NCC will be around zero. If the linear mapping
is correct for all intensities, its value will be 1 or -1 (depending if the linear mapping is
positive or negative).

2.4.4 Mutual Information

Image registration can be thought as a process to maximize the amount of shared
information in two images. The most commonly used measure of information in image
and signal processing is the Shannon-Wiener entropy measure (Equation 2.8).

H = −
∑
i

pi log2 pi, (2.8)

where pi are the marginal probability distribution function of image. Entropy will have
a maximum value if all symbols have equal probability of occurring and have a minimum
value of zero if the probability of one symbol occurring is one, and the probability of all
the others occurring is zero.

2.4.4.1 Joint Entropy

Joint entropy measures (eq. 2.9) the amount of information that the combined images
have. If A and B are totally unrelated, then the joint entropy will be the sum of the entropies
of the individual images. The more similar the images are, the lower the joint entropy
compared to the sum of the individual entropies.

H(A,B) ≤ H(A) +H(B), (2.9)

2.4.4.2 Conditional Entropy

The conditional probability p(b | a) is the probability that B will take the value b given
that A has the value a. The conditional entropy is therefore the average of the entropy of B
for each value of A, weighted according to the probability of getting that value of A.

H(B | A) = H(A,B)−H(A) = −
n∑

i=1

m∑
i=1

pij log2 pi|j, (2.10)

2.4.4.3 Mutual Information

Mutual information (MI) (MAES et al., 1997) is the most successful and commonly
used universal and highly accurate similarity measure for aligning multimodal images and
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2-D/3-D rigid and nonrigid registration. The MI equation is described below:

MI(A,B) = H(A)−H(B | A) = H(B)−H(A | B) =
n∑

i=1

m∑
i=1

pij log2

pij
piqj

(2.11)

where H(.) is the Shannon’s entropy (eq. 2.8) of the signals, H(., .) (eq. 2.9) is their
joint entropy, and H(. | .) (eq. 2.10) is the conditional entropy.

2.4.5 Scale-Invariant Feature Transform (SIFT)

Another approach that can be used to detect similarity between images is by feature
matching. These techniques compute abstractions of image information and make local
decisions in every image point where there are "interesting" points of a given type. The
scale invariant feature transform (SIFT) (LOWE, 1999, 2004) is a robust image feature
matching algorithm. It aims to solve many of the practical problems in interest points
extraction and their use for matching images. One of the most important properties of the
SIFT is that it is invariant to image scaling and rotation, and partially invariant to change
in illumination and 3D camera viewpoint. The interest points are localized in both the
spatial and frequency domains, reducing the probability of disruption by occlusion, clutter,
or noise. The features are highly distinctive, which allows it to be correctly matched with
high probability against a large database of features, providing a basis for object and scene
recognition. However, interest points extraction is costly even with a cascade filtering
approach, in which the more costly operations are applied only at locations that pass an
initial test. Preliminary tests with our set of medical images revealed that the SIFT can be
used with our data, but it is not suitable for our problem. The CT datasets have very similar
images among their neighbors. This causes the algorithm to detect the same features in
more than one image, confusing the detection. The algorithm was compared with our
solution and the results are exposed in Section 4.2.

The problem with feature-based techniques to matching medical images was discussed
in the work by McLauglin et al. (MCLAUGLIN et al., 2001). The authors compared the
intensity-based gradient difference similarity presented in (PENNEY et al., 2001) and a
feature-based technique presented in (KITA; WILSON; NOBLE, 1998) in registration on
DSA images of a neurovascular phantom. In this case, the intensity-based registration
algorithm was found to give more accurate registrations, 1.2mm error, against 2.3mm error
of feature-based section.
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3 RELATED WORK IN MEDICAL IMAGE CORRELATION
AND REGISTRATION

The work developed in this thesis uses similarity metrics to match an input image with
volumetric data. We are interested in match multidimensional medical images. General
purpose methods to match and assess similarity between images is widely explored. The
survey conduced by ZITOVá; FLUSSER (2003) presents and discusses several works that
match many distinct images sources with a variety of methods. Limiting the research
field, a comprehensive analysis of medical image match and registration were done in
the surveys elaborated by MAINTZ; VIERGEVER (1998), KHALIFA et al. (2011) and
MANI; RIVAZHAGAN (2013).

Although there are several classifications for works in the area, we have divided the
related works into three groups: pre- and intra-operative correlation, intrinsic 2D/3D
correlation and feature matching. The methods are detailed in the following sections. The
works were arranged in those groups according with their main contribution. Some of
them could be classified in more than one group.

3.1 Extrinsic Pre- and intra-operative correlation

One branch of related works include those that focus on 2D-3D image correlation of
pre- and intra-operative procedures. The most common, but not limited to, correlation is
performed between US-CT and MRI data. WEIN et al. (2008) developed a technique to
automatically register US images with CT. The US transducer position is tracked with
magnetic sensors and a 3D sweep acquisition is performed. To accomplish a successful
match against the modalities, they simulate medical ultrasound effects from CT data and
elaborate a robust similarity function. The registration was tested in 25 patients with inde-
terminate lesions in liver and kidney with average registration error of 8.1mm in relation to
the ground truth, which is high for precise interventional navigation. And, despite the user
dependent US acquisition, they only present results matching the informations in axial
image plane.

In the same direction, KING et al. (2010) explored the registration of segmented
preoperative MRI images to intraoperative 3D US data. The technique incorporates
knowledge of the physics of US acquisition into the registration process. It increases
the similarity measure when the alignment is correct. They also track the US transducer
position to match the modalities coordinate system. Beyond the rigid registration, the
authors developed a registration correction for respiratory motion. The technique is
validated with six subjects and two patients and they achieve accuracy of 2.1 to 4.4mm.

The objective of the work developed by LINDSETH et al. (2003), is to integrate
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intraoperative 3D ultrasound and preoperative MR images in one 3D scene. The setup
focus on visualizing brain shift during the ultrasound-based neuronavigation. Commercial
optical positioning tracker captures the US freehand movement. The integration of pre-
and intraoperative data into a common coordinate system is achieved using skin-fiducials.
Furthermore, they developed a multimodal volume visualizer that supports both orthogonal
and oblique slicing relative to the volume axis where the 2D US images are displayed
along with 3D MR volumetric rendering.

NIKAS et al. (2003) co-register intraoperative ultrasonography with MRI using an
optical 3D tracker. The tracker records the patient’s head position and the US transducer
position to define the rigid transformations between them. In the same direction, Crocetti et
al. (CROCETTI et al., 2008) use a commercial real-time CT-US fusion system in targeting
radio-frequency (RF) ablation of a liver target. They register the real organ with the CT
images using fiducial markers to calibrate the coordinate systems. The position of the US
transducer is electromagnetic tracked. A monitor shows the intervention with the biopsy
needle in the US images and the CT data in real-time in a side-by-side visualization.

The works presented in this section have solid contributions to improve the medical
analysis and treatment. However, all techniques need means to track the environment, the
patient and the imaging apparatus to transform the distinct acquisition modalities into the
same coordinate system. Moreover, some of them do not benefit from the free acquisition
capabilities of the US modality, fusing the data only in the axial anatomical plane. On of
them does not fuse the modalities into a single visualization. The long term goal of our
project is to use only pixel/voxel intensity information to correlate and fuse user dependent
intra-operative acquisition data with pre-operative CT and MRI dataset eliminating the
need of external tracker.

3.2 Intrinsic 3D/2D registration methods

Intrinsic image matching depends on the relationship between images intensities. It
is based solely on the pixel/voxel intensities or with the help of landmarks placed in
the imaged scene. This work assumes that the same anatomical structures have similar
intensity values. Thus, the sum of squared (SSD), absolute differences (SAD) or peak
signal-noise ratio (PSNR) can be used as matching criteria. The choice between them
depends on the assumption regarding the noise that corrupts the image intensities and the
image dynamic range. In the case that a linear relation is assumed between the signal
intensities, the optimal criterion should be the cross-correlation and correlation coefficient
(AVANTS et al., 2008), (KIM; FESSLER, 2004).

The use of methods previous created to assess image quality was introduced by XIAO;
ZHENG (2011). They developed a novel image fusion scheme by integrating the structural
information of the image using the SSIM technique and directive contrast information
for line, edges and contours extraction. The contrast information is defined as the ratio
of the local maxima of the detail components in a Gaussian window and the mean of
the corresponding approximate components. They perform a qualitative and quantitative
experiment comparing their technique against 5 other image fusion approaches by fusing
an MRI slice with a CT slice. Their technique exacted the largest similarity features, this
information is claimed to be a good quantitative metric.

The use of mutual information as matching criterion to the problem of medical image
registration was first proposed by MAES et al. (1997). The method presented applies MI to
measure the statistical dependence between the image intensities, which is assumed to be
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maximal if the images are geometrically aligned. In maximization of MI, no assumptions
are made regarding the nature of this dependence and no limiting constraints are imposed
on the image content of the modalities involved. The accuracy of the MI criterion was
validated for rigid body registration of computed tomography (CT), magnetic resonance
(MR), and photon emission tomography (PET) images by comparison with the stereotactic
registration solution.

PENNEY et al. (1998) present a extensive comparison of six intensity similarity tech-
niques to register a CT scan into fluoroscopy images. Fiducial markers were used for
ground truth. The authors report that pattern intensity and gradient difference measures
were able to register accurately and robustly even when soft tissue structures and interven-
tional instruments were present. Mutual information (MI) was the worst technique with
their setup. However, WEST et al. (1997) achieve a great success in the registration of 3-D
to 3-D images (single or multi modality) using MI.

Based on the analysis in PENNEY et al. (1998), PENNEY et al. (2001) developed
an automated intensity-based algorithm for updating the 3D position of an interventional
instrument using a single plane angiogram registered to a 3D volume. They align preopera-
tive CT and intraoperative fluoroscopy using two similarity measures: pattern intensity and
gradient difference. Comparative experiments obtained surface-target error of the order
of 1-2mm. This work was expanded to register 3D cerebral magnetic resonance with 2D
X-ray angiograms (HIPWELL et al., 2003) and matching 3D X-ray digital subtraction
angiography images (BYRNE et al., 2004).

ROHLFING; MAURER JR. (2002) developed a image similarity method based on
probabilities rather than intensities or geometric features for registration of 3D MR images
and X-ray projection images. The method successfully identifies the correct position of an
MR image with respect to a set of orthogonal digitally reconstructed radiographs computed
from a co-registered CT image.

SCHARFE; PIELOT; SCHREIBER (2010) addressed functional and structural data
registration. They register 2D PET scans with MRI. They propose an implementation of
the normalized mutual information (NMI) similarity criteria on a cell broadband engine
(CBE), which allows multi-core processing in a PS3 game console. However, the images
are captured only in the axial plane, reducing the problem to 2D-2D slice matching. Other
assumptions are made in relation to the anatomy as the brain shape is constrained by the
skull.

3.3 Chapter summary

To the maximum of our knowledge, based on the research done, we could not find
works that address the similarity between images not aligned to the main axis planes using
pixel/voxel information. The research was done in many fields that deal with volumetric
data. We believe that our work has great potential contributions both in general purpose
areas that generate analyses of volumetric information and in the medical field.
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4 TWO-STEP ALGORITHM FOR MULTIMODAL MEDICAL
IMAGES MATCHING

In this chapter, we explored the problem of similarity between images using the
perspective of image quality assessment (IQA) (WANG; BOVIK, 2006). Regardless that
techniques in this field have focused on evaluating the loss of quality in images and videos
after its compression and transmission, the general goal of image quality assessment
methods is to be flexible enough to be used in a variety of different applications. With this
in mind, we explored IQA techniques to assess similarity between medical images. Some
of these techniques are based on simple and easy to compute mathematical approaches,
as the mean squared error an its variation peak signal-to-noise ratio. Other more complex
methods use common features or make assumptions about the human vision system, i.e.
structural similarity algorithms.

The main contribution of this chapter is an image similarity analysis system to match
same or different protocols of two and three-dimensional images from within-subject data.
We also present a set of experiments to assess the precision an efficiency of the method to
produce correct matches between real-time and previously stored data. In Section 4.1 we
describe how we analyzed and combined existing techniques, leading to the development of
a two-step algorithm that settles the compromise between processing speed and precision
of two known approaches. Another contribution is a set of experiments we performed to
evaluate the quality and applicability of our methods (Section 4.2).

The discussion about the results, limitations, insights and future improvements in our
approach are raised in Section 4.3.

4.1 Two-step Algorithm Development

This section exposes the medical data characteristics and the overall design of our
medical image similarity strategy based on a two-step algorithm using PSNR and SSIM.

4.1.1 Medical data characteristics

The data we are dealing with are axial slice images from the thorax to the pelvis of
a male human body acquired with a computed tomography (CT) system. In total, four
datasets from the same individual were converted and prepared for use in the testing phase.
Our datasets were acquired from the same individual in one single exam session but using
four different protocols. The difference that distinguishes the datasets is the perfusion
phases of a radio-contrast agent injected in the patient. The phases are shown in Fig. 4.1
and are described below:

• No contrast phase: before contrast injection;
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• Arterial phase: performed approximately 30 seconds after the contrast injection;

• Venous phase: performed 70-90 seconds post contrast;

• Late phase: performed 5-10 minutes post contrast.

CT image slices are stored in datasets, in DICOM format, a standard for handling,
storing, printing, and transmitting information in medical imaging. The DICOM format
has lots of metadata, from individuals information to the type of imaging device used. We
discarded them, storing only the raw images.

The resulting images have 8- or 16- bit stored in one color channel. The pixel data
represents luminance values. The datasets are composed of 140 images (slices) with
512x512 pixels resolution. The datasets were also scaled down by factors of two and four.
This gives us three resolutions to be experimentally evaluated: 512x512 (native), 256x256
and 128x128. The inter slice distance is very small (2.5mm). Thus, in Fig. 4.4 we show
six neighbor slices from the dataset with arterial contrast phase. As observed, the images
change slightly from one to another.

Figure 4.1 - Image samples from four datasets with distinct acqusition protocols. (a)
without contrast, (b) arterial phase contrast, (c) venous phase contrast, (d) late phase
contrast.

Source: Compiled by author.

4.1.2 Our two-step image matching algorithm

With the above image characteristics, one possible experimental question is: given a
slice in the late phase (Fig. 4.1d), which slice in the arterial phase (Fig. 4.1b) is the most
similar to the given late slice? This question can be answered by a human specialist that
observes the reference image and compares it with all images in the dataset. This analysis
is rather effective, but its efficiency worsens as the dataset grows with more images, the
process is tedious and boring, and the quality of the results depends on the user experience
and attention. Computer methods exist that can solve this problem with greater efficiency
and reliability, as described in the related works, Chapter 3. The inputs for any of these
methods are: one reference image and one complete dataset (stack of images). The goal is
to find a slice in the complete dataset that is the most similar to the reference input slice.
This must be done without requiring any additional information. The reference image may
be in different radiocontrast phase than the stack of images.

In a quest for a computer automated solution for this problem, we first implemented
the PSNR and SSIM algorithms (Subsections 2.4.1.2 and 2.4.2) in C++. Preliminary tests
reveled that PSNR is fast but is imprecise in some cases. On the other hand, SSIM is
slower but obtains more accurate results in average. We then developed an algorithm that
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settles the compromise between processing speed and accuracy of the two approaches.
Comparative experiments and results are discussed later in Section 4.2.

Our algorithm has two steps. In a first step, PSNR calculation is performed to quickly
create a list of slices that best match with the reference image. In the second step, SSIM is
computed only for the top ranked slices that resulted from PSNR and reorders them in the
ranking according to their best matches. The algorithm pipeline is shown in Figure 4.2

Figure 4.2 - The 2-step algorithm pipeline. The input data are a 2D image (in this case,
the fourth slice of a CT in the axial view in late radio-contrast phase) and a 3D dataset
(CT arterial radio-contrast phase). First, the 2D slice is compared with all dataset images
using PSNR. The 3D dataset is ranked from the most to the less similar images. Only
the n top ranked slices are then compared with the 2D image using the SSIM. After that,
new similarity values are assigned to the top ranked slices and they are reordered again in
decreasing order.

Source: Compiled by author.

The computer vision and image processing library OpenCV gave the necessary support
with the structures that facilitate the data storage and manipulation. It also provides easy
to use methods to build the algorithms both in CPU and GPU. The system is capable to
load CT and MRI datasets and display the images in the three main viewing axes: axial,
coronal and sagittal (Fig. 4.3).

Figure 4.3 - Three main anatomical views. (a) Axial, (b) Coronal, (c) Sagittal.

Source: Compiled by author.
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Figure 4.4 - Dataset slices sequence with arterial contrast phase. The images were taken
from the middle of the dataset. The numbers represents the slice number inside the dataset.
The images has slightly changes from one to another.

Source: Compiled by author.

4.2 Image Matching Evaluation

We set up a test protocol to assess and compare the performance and effectiveness
between our 2-step approach, PSNR and SSIM algorithms to predict similarity. In this
section we detail the metrics used. Our concern is that the algorithms run faster and deliver
the best possible results in the detection of similarity between images. Thus, we evaluate
both their precision and accuracy. Accuracy stands for nearness of the results average to
the ideal value, while precision is how close the results are to each other. In this thesis,
accuracy and precision can be referred as quality as well. Since all algorithms are accurate
enough (the results are always scattered around the optimum), we are more concerned with
measuring and evaluating the precision achieved by our technique compared to others.

The relevant data are logged in runtime and saved automatically for analysis. The
machine used during the tests is a Core i7-2600 running at 3.4GHz and a GeForce 560Ti
with 384 CUDA cores running at 880MHz.

4.2.1 Experimental protocol

The long term goal of this project is to find a section plane in a 3D dataset that corre-
sponds to reference planar image obtained in real time from another modality. However, to
push the limits of the system and to assess its performance in this situation, we decided,
for testing purposes, to replace the reference planar image with a reference dataset. In this
case, the comparison is performed between all the slices of one dataset with the other one.

All datasets were previously visually aligned. This was necessary to establish a pattern
that we can trust as a correct matching score. Although both datasets were obtained from
the same subject and in a single test session, the stacks of images were slightly shifted,
then requiring this preliminary alignment. The difference in DICOM was small (about 3-5
slices), but this offset could affect the confidence in the results. After correction, we can
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rely that, for example, the correct match for slice 42 in the first dataset is the slice 42 in the
second.

At every dataset comparison, we store the most similar slice (highest score) and its n
neighbors sorted in decreasing order (most similar to less similar). This information is
useful when the algorithm outputs a different slice as the most similar. It allows to calculate
the distance (delta) to the exact matching. Moreover, it lets us know if the correct match
neighbors are within the rank. This information may also be an accuracy indicative. The
number of ranking positions, n, directly affects the second step of the 2-STEP algorithm.
It means that more comparisons need to be made with the slower SSIM algorithm.

4.2.2 Test variables

The independet variables used in our test are:

• Dataset resolutions: 512x512x140, 256x256x140, 128x128x140;

• Orthogonal orientation planes: Axial (XY), Coronal (XZ) and Sagittal (YZ);

• Algorithms: 2-STEP, PSNR, SSIM;

• Datasets radiocontrast phases: arterial, venous and late;

The dependent variables colletected are:

• Runtime: in seconds;

• Correct match distance: in slices;

• Ranking: image slice precision in the maximum distance of ten slices;

4.2.3 Precision evaluation

The hypothesis for precision evaluation is that PSNR will be less precise against the
other two algorithms, but faster. If the results of PSNR falls into the ten most similar slices,
the 2-STEP can achieve precision very similar to SSIM with lower runtime. If not, the
precision of 2-STEP is compromised.

To evaluate the hypothesis, in this first test, we arbitrated the comparison of the venous
phase dataset against the late phase. Both with a resolution set to 256x256x140 in the axial
orientation plane. The graph in 4.5(a) shows the results. As we can observe, the PSNR has
some instabilities to predict the correct match (the red spikes). The 2-STEP is more stable,
as all correct matches are in PSNR rank results. This way, the second step of the algorithm
solves the instability. The SSIM results were very similar to the 2-STEP, as expected.

Another view of the results is shown in graph 4.5(b). This graph highlights how many
slices are closest to the correct match. The zero in the center of the x axis is the best result.
-1 (and subsequently) means that the slice was matched with the previous slice in the other
dataset. The opposite occur with +1 and subsequent distances. The red spikes seen in the
previous graph were cut out because they are out of the range (-10 to 10).

The graph in 4.6(a), shows the instability problem hypothesized. The PSNR has a high
instability in the beginning of the dataset comparison (slices 1-30). In this case, the set of
best ranked slices does not contain the correct match. Consequently, the second step of the
2-STEP algorithm cannot predict the best match successfully, even though the results are
slightly better in the instability zone. This comparison was made between venous and late
phases datasets at 256x256x140 resolution.
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Figure 4.5 - Precision evaluation. Comparison of venous and late datasets with
256x256x140 resolution in the axial orientation plane. The upper chart shows the precision
to predict the best match with 2-STEP and PSNR algorithms (SSIM hidden as it gives the
same results as 2-STEP). The green peaks show some PSNR instabilities. The lower chart,
shows the closest slices to the correct match, the zero in x axis.
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The solution for the instability problem was to increase the number of entries in the
slice ranking to increase the chances for the correct match to be inside (graph 4.6(b)).
It increased the 2-STEP computation time as it has to perform more comparisons. The
ranking was increased to 20 entries instead of the default 10, the runtime increased from
6.9 to 12.89 seconds ( 87%). Another hypothesis raised from the literature review is that
SIFT would perform slower and less accurately than our solution. The results with the
SIFT algorithm are also displayed in the graph 4.6(b). Notice that the algorithm is very
unstable, it outputs a number of sharp spikes that diverge from the optimal result.

The total runtime for this test is shown in the chart of Fig. 4.7. PSNR is significantly
fast against 2-STEP and SSIM, but lacks on robustness as discussed above. The interesting
conclusion here is that 2-STEP performs much faster than SSIM with the same level of
precision. SIFT (ommited in the graph) was the slowest, concluding the calculations on
CPU in 264.4 seconds.
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Figure 4.6 - Instability correction of the 2-STEP algorithm by widening the ranking
selection. In the left graph (a), the PSNR instability affects the 2-STEP algorithm due the
fact that the optimal slices are not in the first step ranking. After the increase to 20 ranking
entries the instability is solved (b). SSIM results are not presented here as it has the exact
same plot as 2-STEP. SIFT presents even worse spikes (peaks ommitted in the graph as
they are higher than 20 slices away).
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4.2.4 Dataset resolutions evaluation

Another hypothesis is that there will be little difference in the precision results with
lower datasets resolution. On the other hand, the runtime will drop quadratically as the
resolutions decrease.

This test compares the runtime and similarity precision obtained with the 2-STEP
algorithm for of all datasets combinations for each resolution. In this test the orientation
plane was fixed in axial view. The ranking set used for the 2-STEP is the larger one (20
comparisons in the second step). The results are exposed in the graph of Fig. 4.8 and
the runtime comparison in Fig. 4.9. Precision and time results displayed correspond to
the results from all dataset combinations (3 combinations of 2-by-2). Notice that, while
the runtime greatly drops, the loss of precision is small when lowering the resolution,
confirming the hypothesis. The resolution 256x256 best balances perforance and precision.
In very low resolution, the GPU implementation has no advantages against the one in CPU.
Only with higher resolutions the parallelization makes difference.
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Figure 4.7 - The algorithms runtime for the tests 4.6. The 2-STEP algorithm was evaluated
with 20 slices ranking. In the GPU bar, both steps were executed in the GPU processor.
PSNR does not take advantages of the GPU parallelization.
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4.2.5 Evaluation of orientation planes

We hypothesize that the 2-STEP algorithm will perform with similar precision in the
three orthogonal cutting planes evaluated. The independent variables are: sum of the three
combinations of dataset comparison, with 256x256x140 resolution running the 2-STEP
algorithm. Results are presented In the graph of Fig. 4.10.

Unlike our hypothesis, the datasets in axial orientation presented a lower precision
rate, represented by the red line in the chart. One cause for this behavior is that in this
orientation plan, most of the times, large areas of the image contain no information (black
parts seen in Figs. 4.3(a) and 4.4). Thus, with less information, the algorithm can not
make the best analysis, leading to results comparatively worse than the other axes. This
difference in information population can be seen in Fig. 4.3.

4.3 Chapter summary

The two-step technique developed and evaluated integrates two similarity methods
into a technique that match within-modalities with distinct acquisition protocols. An
experimental evaluation demonstrated that it is faster than SSIM and as much more
accurate and precise than PSNR.

Our experiments compare the two-step algorithm with other representative algorithms
found in the literature. The fastest algorithm tested, PSNR, generates unstable results,
with some errors peaks. The SSIM is the opposite. It produces more precise matching,
but is more computationally demanding. Higher processing times make it unaffordable
for a robust solution in our application area. Our solution is an algorithm that solves the
problem in two steps. It first ranks the most similar images using PSNR and then applies
SSIM only to a set of top ranked images, thus saving computation power.

The tests showed that a vital point to obtain good accuracy with our method is the
number of elements in the set of slices stored in the ranking created after calculating the
first step. For most datasets tested, ten slices stored are sufficient, but in some situations
the number of comparisons is not enough for a perfect match with SSIM in the second step.
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Figure 4.8 - Precision achieved in three distinct resolutions. The results of all dataset
combinations were merged for each resolution. The orientation plane is in axial view.
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For these odd cases, results without error peaks were achieved by doubling the ranking
storage. This consequently increases the algorithm runtime. In the future a solution with
adaptive ranking comparisons could better balance performance and accuracy.

Interestingly, one hypothesis not confirmed is that all orientation planes would have
similar precision. The results reveled that in the axial view the algorithm results in a higher
number of incorrect matches with the datasets tested. It was not worrying, however, as
the results are in the interval. We believe that this difference is caused by the lack of
information in black regions of the image that disturbs the similarity check. They are
actually large areas that look similar in all images. Further investigation should be carried
out to segment and remove these areas or use partial images as input.

One challenging issue was how to define what is acceptable error. Making a visual
comparison of the CT slices, it is difficult to notice significant changes between neighboring
images. In the evaluation, we have considered as acceptable the results sitting within the
distance of 5 slices from the optimal. Remember that our dataset has 2.5mm between
slices.

The algorithms presented here are highly parallelizable. In the pursuit for the best
possible performance, they have also been implemented to take advantage of graphics
cards parallel processing power. As expected, the test results showed significant reduction
of the computation time for the proposed technique with the same results quality.

We also tried to increase performance by resampling the images to lower resolutions.
Datasets resolutions lower than native only slightly altered the precision of the results and
highly increased performance. Among the tested resolutions, the 256x256x140 has shown
to be a good compromise between correct matches and execution time.

In the next chapter we extend the search to non-orthogonal axes, allowing slices at
arbitrary angle as input.

A possible secondary application envisioned for the technique developed is to align
different datasets. Before the tests reported, we performed preliminary experiments. With
these experiments we noticed that our datasets were not perfectly aligned and required
registration. They basically had different starting and ending slice locations for each of
the different radiocontrast phases. A difference around 3 to 5 slices. Such difference was
detected when our first plots showed a peak about 3 unities away from zero. A visual
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Figure 4.9 - The sum of all dataset combinations runtime for each dataset resolution from
Fig. 4.8. In CPU the time grows exponentially with the resolution, but in GPU it only
doubles.
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Figure 4.10 - Sum of all dataset combinations in the three orientation planes. The coronal
and sagittal planes have stable results, while the axial plane is unstable in some regions.
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inspection of the slices has proven later that they were actually shifted. The method might
then be promising also for fast dataset registration.



47

5 ARBITRARY IMAGE-PLANE SEARCH AND VISUALIZA-
TION FOR MULTIDIMENSIONAL MEDICAL IMAGE COR-
RELATION

The work presented in Chapter 4 and most related works in medical images registration
(Chapter 3) address similarity between images aligned on one of the three planes: axial,
coronal and sagittal. However, in daily practice, the acquisition tend to be outside the main
planes. This occurs especially when image capture is user dependent, for example, during
ultrasonic imaging.

In this chapter, we propose an approach to correlate 2D and 3D data from ordinary
acquisition protocols based solely on the pixel/voxel information. Our method uses local
similarity analysis to, given an arbitrary slice image (2D), find the location of this slice
within the volume data (3D). The approach aims at establishing a correlation between
medical images that can be arbitrarily oriented and that only partially cover a section plane
of the volume.

One can imagine a brute force solution that compares the image with all possible
total and partial cross sections of the volume using some similarity criteria. The most
similar section will correspond to the planar image location within the volume. As the
computational cost of such exhaustive search is prohibitive, we propose here a smarter
approach that minimizes the virtually infinite number of possible cross section orientations.

In the following sections, we present all steps and methods of our approach.

5.1 Inputs and Arbitrary Plane Extraction

Two elements compose the input data for our algorithm: a 3D volume dataset; a planar
image of any size generated as a subset of the volume aforementioned.

Given an input 3D volume, the planar image can be generated, for testing purposes,
as a cross-section of the volume (Fig. 5.1). The volume voxels are first mapped in the
interval -1 to 1 in x,y and z axis. We then generate the arbitrary image-plane selecting
three non collinear points, p1, p2 and p3. The normal vector ~n is calculated as ~n =
v̂1(p2, p1)× v̂2(p3, p1). To complete the plane equation, the distance from the coordinate
system origin, d coefficient is calculated as d = −(~n ·p1). A 2D nearest-neighbor sampling
is then applied to generate the final image. The plane coordinate system has the same
spacing as the original coordinate system. In this conditions, the nearest-neighbor sampling
guarantees that the sampled image-plane exactly reproduces the original data.
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Figure 5.1 - Visual representation of the arbitrary oriented image sampling. The image
(solid pink contour) is sampled from the original volume (dashed line) in a plane arbitrarily
oriented and positioned using nearest-neighbor.

Source: Compiled by author.

5.2 Image-Volume Search and Similarity Criteria

The algorithm (Fig. 5.2) works locally evaluating similarity between subimages and
subvolumes sampled from the original input data (Sec. 5.1). A size s defines the resolution
of the subimage (SIs×s) and subvolume (SVs×s×s).

The similarity of each SI is evaluated against nine oriented planes of the SV (three
cardinal planes plus six intermediary planes, see Figure 5.3 for a visual representation).
The similarity is calculated by averaging the squared intensity of the pixels differences
(SSD), explained in Subsection 2.4.1. Each of the nine planes are stored if their computed
similarity is below a threshold (>85% of similarity). Finally, only the most similar plane is
picked and its voxel position, similarity value and orientation are stored in a best match
list Lk for later use (Section 5.3). The pseudo-code of the image-volume search can be
seen in Algorithm 1.

Since the evaluation is done within-modality and only in a small area of the original
image, the SSD is the method that delivers the lowest execution time with good match
precision (see the evaluation made in Section 4.2).

At this point, we have only addressed the similarity comparison problem. The ap-
proach described in this section uses local similarity evaluation to reduce the amount of
plane comparisons. Figure 5.4 shows the three-dimensional localization of all calculated
similarity points. Even though we can clearly see where the plane searched may be located,
we need means to explicitly calculate it. Another problem, present in the four images in
the first line, is the sparse black voxels. These artifacts may potentially influence on the
plane fitting calculations.

These regions have pixel/voxel intensity near zero, both in the image and volume. The
similarity for some volume planes fell inside the threshold interval and they were inserted
in the Lk list. To avoid that, two strategies were carried out. We analyze the Lk list to find
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Figure 5.2 - For each pixel and voxel a square subimage and subvolume with the neigh-
bouring data is taken. Nine image-planes with different angles are generated from the
subvolume and their similarity evaluated against the subimage. For each voxel, the most
similar subplane among the 9 orientations with every subimage are stored. After all
comparisons, PCA is computed to extract the best fitting plane from the voxels set.

Source: Compiled by author.

Figure 5.3 - The nine image-planes sampled from the subvolume. The subimage similarity
is evaluated against all image-planes. Only the most similar is stored. The green cube is
the voxel analyzed and the yellow cubes are its neighbors.

Source: Compiled by author.

most recurrent plane orientation excluding all other planes. The Empty-space skipping is
the second strategy and it is discussed in Section 5.4.1.

5.3 Plane Fitting

After the similarity calculations we need to extract the best plane that fits all voxels
stored in the list Lk. The method is based on the first order 3D plane fitting proposed by
BERKMANN; CAELLI (1994). The problem of determining the plane equation of Lk is a
least-square plane fitting estimation. The plane is represented as a point x and a normal
vector ~n. The centroid of Lk is defined as: p̄ = 1

k
.
∑k

i=1 pi.
The solution for ~n is given by analyzing the principal components of Lk. Eigenvalues

and eigenvectors of the covariance matrix C, expressed in eq. A.4, are then calculated.

C =
1

k

k∑
i=1

(pi − p̄).(pi − p̄)T , C.~vj = λj.~vj, j ∈ {0, 1, 2} (5.1)

Matrix C is symmetric and positive semi-definite and its eigenvalues (λj) are real
numbers. The eigenvector ~vj with the smaller eigenvalue is therefore the approximation
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Figure 5.4 - Three-dimensional localization of all calculated similarity points. The top
images shows the artifacts present in may add. The were removed in bottom images using
an analysis of the most recurrent plane orientation.

Source: Compiled by author.

of the normal ~n = (nx, ny, nz) or −~n. The d component of the plane equation is the dot
product of ~n and the p̄ of Lk.

5.4 Algorithm Optimization

Two simple optimization strategies were applied in the algorithm to avoid unnecessary
calculations: empty-space skipping and image downscaling/downsampling.

5.4.1 Skipping Empty-Space

Empty-space skipping is useful when a dataset contains large portions of completely
dark space. The imaging apparatus, such as CT and MR, capture and store all information
inside its view area, as shown in Figure 5.5. The data captured are composed by intensity
values of the patient’s body tissues and the surrounding body areas (it includes the table
under the patient present in the bottom of the figure). The surrounding areas represented as
very low image intensities are not important for diagnosis. The "black" image portions
may also introduce false positive information, confusing the plane fitting calculation. This
occurs mainly in our algorithm because we analyze small samples of the original image. In
order not to waste time on features that do not contain relevant information, empty-space
skipping can be employed to save computation power and avoid the false positive problem.
In this way, the subimages and subvolumes with more than 80% of very low intensity
values, less than 20 in an 8-bits (0-255) image, are skipped from the similarity calculation
process. On the other hand, with less comparisons, datasets with high amount of low
intensity areas may have inferior plane fitting accuracy.

A similar idea of the empty-space skipping is used in volumetric rendering techniques
to skip dark volume regions, thus, reducing memory access and save computation power
(HADWIGER et al., 2006).

We perform the calculations to quantify the amount of data that would be skipped
using this strategy. The datasets and their comparisons performed are presented in Table
5.1. The results were calculated with 128x128x128 dataset resolution minus one pixel
in each border (to avoid the composition of the subimages with information outside the



51

Algorithm 1 - Arbitrary plane search pseudo-code.
Require: Img {2D image}
Require: V ol {3D volume}
Require: size {image and volume size in each dimension}

1:
2: {We exclude one pixel in each image and volume border }
3: for pixel = 0 ... pixel < size× size do
4: Sub_Img ← pixel and its 8 neighbors
5:
6: for voxel = 0 ... voxel < size× size× size do
7: Sub_V ol← voxel and its 26 neighbor
8:
9: {The nine volume planes Figure 5.3}

10: for 0 ... 9 do
11: take a subimage Sub_V olImg from Sub_V ol with size equal to Sub_Img
12: similarity_value← SSD(Sub_Img,Sub_V olImg)
13:
14: if similarity_value < previous Sub_V olImg and similarity_value < th-

eashold then
15: most_similar_candidate ← voxel_position and similarity_value and

plane_orientation {Temporary structure}
16: end if
17: end for
18:
19: Lk ←most_similar_candidate
20:
21: end for
22:
23: end for
24:
25: return Lk {List with the most similar voxels found.}

volume) for nine 3x3 subimages orientations. It results in 126x126x126 resolution times 9
subimages, totaling 18,003,384 maximum comparisons.

These sets of data are presented in Figure 5.8, explained in the next sections and they
are used in the experimental evaluations. Note that the table shows only the comparison
reduction for datasets. The image comparison is suppressed as the amount of black regions
of the input image varies with its angle and position. To know exactly the total comparisons
decrease, it is necessary to sum both dataset and image reductions.

5.4.2 Image/Volume Downscaling and Downsample

The performance of our technique is bounded by the image and volume resolutions.
To overcome this problem, the second strategy adopted is the image/volume downscaling
and downsample (ZITOVá; FLUSSER, 2003). Both are basic optimization strategy widely
adopted in image processing that reduce the number of image/volume fragments tested.
This optimization is handy to our technique since we are not interested in visual results
(i.e. display the downscaled data).
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Figure 5.5 - A CT slice from a patient’s thorax. The surrounding areas (black image
portions) are composed of unimportant information. This parts are likely to be skipped.
The lines in the inferior represent the CT table where the patient is on top of.

Source: Compiled by author.

Table 5.1 - Number of comparisons performed for each dataset. The resolution was set
to 126x126x126 (volume borders excluded) times 9 subimages. The Random dataset
performs the comparisons for all voxels. On the other hand, only 12.1% of the voxels are
compared in Engine.

Full resolution
Dataset # Comp. %
Random 18,003,384 100%
Bucky 8,015,703 44.5%
Engine 2,179,032 12.1%
Skull 6,092,194 33.8%

Thorax 8,719,107 49.37%
Source: Compiled by author.

In the in image/volume downscale we reduce the data resolution before load it in the
computer’s memory.On the other hand, in the downsample case, the full resolution data
is uploaded on memory. A downsample factor is stipulated and the algorithm performs
the calculations only in the sampled pixels/voxels. Since we have the full resolution
information, our image-volume search algorithm (Sec. 5.2) still uses neighbor pixel/voxels
from the original resolution to build the subimage and the subvolume.

The scaling and sampling factors adopted are 2x and 4x. For example, a 128x128x128
resolution with downscaling of 2x becomes 64x64x64 and with 4x becomes 32x32x32.
The Table 5.2 shows the decrease of comparisons when the downsample factor increase.
Observe that the empty-space skipping optimization has less contribution with higher
downsample factors are applied.

5.5 Visualization

The technique developed works together with systems for volumetric visualization.
The objective is to slice the volumetric data in a cross-section where the plane calculated
in Section 5.3 passes through.
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Table 5.2 - Number of comparisons performed for each 128x128x128 dataset with down-
sample factors of 2x and 4x. The values of the second column of each downsample factor
are: the amount of the original data that are processed with the downsample factor plus
empty-space skipping skipping; the values in brackets represents the contribution of the
skipping optimization in the downsampled volumes.

2x Downsample 4x Downsample
Dataset Comp. % Comp. %
Random 9,001,692 50% (0%) 4,500,846 25% (0%)
Bucky 7,753,518 43.1% (13.8%) 4,334,386 24.1% (3.6%)
Engine 7,026,922 39.1% (21.9%) 4,239,345 23.5% (5.8%)
Skull 7,510,705 41.7% (16.5%) 4,304,642 23.9% (4.3%)

Thorax 7,841,485 43.5% (12.8%) 4,344,748 24.1% (3.4%)
Source: Compiled by author.

We modified an implementation of a volumetric render system developed by ENGEL
et al. (2004). The system provides real-time rendering achieved by GPU implementation
of direct texture rendering (discussed in Section 2.3). Great visual results are obtained by
the use of trilinear interpolation of the 3D texture mapping.

We have implemented two main modifications in the volumetric render algorithm.

Figure 5.6 - Skull cross-sectioned based on an input 2D image. Plane position and
orientation is calculated and the result visualized in 3D. The actual plane location (a) has
been shifted to (b) for illustration purposes.

Source: Compiled by author.

First, the loader function was replaced to deal with the type of data in our datasets.
Basically, our 3D data is stored in a RAW file that contains, for each fragment, 16-bits
or 8-bits intensity values. We had to parse the RAW information to correctly fit in a 3D
OpenGL texture.
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Second, we modified the system to display a plane and the volume cut based on the
plane information. Figure 5.7 shows the result.

The plane equation is uploaded to the fragment shader. We implemented four possible
volume cuts by calculating the dot product of the volume voxels Vk and the plane equation
pe. To discard the volume voxels that are above the plane we test if Vk · pe > 0 (Fig.5.7a).
To discard the voxels below the plane we test if Vk · pe < 0 (Fig.5.7b). To show only
the voxels that are on the plane we discard the upper and the lower voxels using the dot
product changing the zero to > 0.2 and < -0.2 (Fig.5.7c). This makes the slice thicker. The
opposed result is shown in Figure 5.7d. The four visualization types can be changed in
execution time.

Then, in Figure 5.6, the original input image is displayed at the location found in the
volumetric data, fusing the 3D with the 2D image. Transparency and other rendering
effects can also be applied to highlight features of interest and apply the best information
visualization techniques available. Ideally, a real time implementation of the algorithm
would allow to control the input image interactively and display an animated visual
feedback.

Figure 5.7 - The four possible volume representations for the same plane.

(a) (b)

(c) (d)

Source: Compiled by author.
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5.6 Evaluation and results with controlled data

We set up a test protocol to assess and compare the performance and effectiveness
of our technique among different datasets, resolutions and downsample factors. In this
section we detail the metrics used. Our concern is that the algorithm run faster and deliver
the best possible results in terms of finding the best fitting plane.

5.6.1 Experimental Setup

The datasets evaluated are: Bucky, Engine and Random. They are general purpose
datasets (see Figure 5.8). Random is composed with randomized intensity values and is
hardly optimized due the lack of black regions (Tables 5.1 and 5.2). Bucky is a simulation
of the electron density of a Buckminster-Fullerene molecule and Engine is a scan of two
cylinders of an engine block. Both, Bucky and Engine can be obtained online (FAU-3D,
2014). All datasets are stored in one color channel of 8-bit (0-255) precision. Each voxel
represents luminance values. The dataset resolutions and downsample factors used in all
tests are listed below:

Figure 5.8 - Volumetric representation of the experimental datasets.

Source: Compiled by author.

• Resolutions: 128x128x128 (original), 64x64x64 and 32x32x32;

• Downsampling factors: 1x (original), 2x and 4x for Image XY, Volume XY and
Volume Z.

We defined a notation for quick reference: when we say Bucky 128_142, it means that
the input image has 128x128 pixels and the volume is downscaled from 128x128x128 to
128x32x64 in runtime. Note that all original datasets are 128x128x128 except Bucky that
is 32x32x32 and was upscaled to equalize the comparisons.

The goal of our algorithm is to find the best fitting plane given a 2D slice as input.
However, for testing purposes, we created sets of 32 planes and average the results. The
set represents a sweep with one fixed edge and angles increasing by 2◦ successively. The
Figure 5.9 shows the planes sweep. We repeat the execution for the hole plane set. The
planes are the same for all tests to allow comparison among datasets. Despite that the
algorithm was designed to work with partial images, for testing purposes, all tested planes
fit inside the volumetric cube and are composed with only one rotation axis .

We store the plane equations of all input 2D images and use them as the ground truth
for precision evaluation. The error between the input p and the result q planes is measured
with two variables: the mean of the euclidean distance between the correspondent vertex
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Figure 5.9 - One example of a plane sweep set.

Source: Compiled by author.

in each plane (Eq. 5.2) and angle between p and q normals (Eq. 5.3). The runtime for each
execution is measured in seconds.

d(p, q) =
1

N

N∑
i=1

(pi − qi) (5.2)

cosα =
n̂p · n̂q

|n̂p| |n̂q|
(5.3)

All tests were conducted using an Intel Core i7-2600 running at 3.4GHz with 8GB
of RAM. The algorithm was developed in C++, compiled with GCC 4.8.2 in Arch Linux
kernel 3.12 box. Eight parallel threads are used with openMP API.

5.6.2 Accuracy-Performance compromise evaluation

Due to the high number of data dimensions it evaluates, our algorithm has a compu-
tational complexity of O(n7). Nevertheless, we hypothesize that it can obtain consistent
results working on a very reduced set of samples from the input data. Moreover, we
believe that there is an optimal combination of resolution and image scaling factor that is
sufficiently accurate and performs in low runtime. As some data are more homogeneous
than others, accuracy and runtime can also be dependent on the nature of the dataset. The
experiment described below should test some of these hypotheses. To eliminate uncer-
tainties due to heterogeneous datasets, the first test was performed only with the Random
dataset. The test aims to find out the best compromise between quality and runtime of
the all downscale and downsample combinations. The charts in Figure 5.10 show the
plots of all resolution and downsample combinations that fit in the interval. We noticed
that distance and angle errors are correlated, allowing us to evaluate only one of them
in next experiments and suggesting a possible unified metric to be investigated in future
works. The 128 resolution without downscale is very accurate (0.17◦ error), but performs
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Figure 5.10 - Top: Error in terms of distance vs. runtime in log scale. Bottom: Error in
terms of angle vs. runtime in log scale.
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Source: Compiled by author.

in inviable time (1200s, out of the chart range). Smaller resolutions and coarser samplings,
however, still provide similar high precision with times up to 3 degrees of magnitude
smaller. As examples, locate points 32_121, 64_122, 128_141 in the chart. For a typical
200x200x200mm dataset, the normalized distance error of 0.49 obtained for 32_121 is
equivalent to 3.2mm, and it took less than 1 second to compute.

Next, to find out how dataset differences interfere with precision, we selected the two
most accurate and the two fastest downscale combinations of each resolution for further
analysis. These combinations were evaluated for all datasets and results are shown in
Fig. 5.11. The combinations are sorted from the lowest to the highest runtime in each
resolution. As expected, Random is the slowest dataset. Plane distances (errors) are
consistent between datasets, except in part for Bucky that presented a higher error in
128_424. We believe this is due to the lack of information as it was originally upscaled.

The four setup combinations that equilibrate the performance and quality are 32_121
and 32_111 (prioritizing runtime); and 64_121 and 64_211 (prioritizing quality).

5.6.3 Sweep Planes Accuracy evaluation

In the charts plotted above we used the mean of the sweep planes. To assess instabil-
ities in all angles, here we plotted all planes errors for the four selected resolutions and



58

Figure 5.11 - Runtime impact of different datasets in 12 selected resolution and sampling
combinations. Error and runtime are consistent among datasets, with the Skull being the
fastest. Notice that an excellent time-precision compromise is found for combination
32_121.
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downsample scale combinations in the previous assessment. The charts Figure 5.12 show
the results for 32x32x32 resolution and charts Figure 6.2 show the results for 64x64x64
resolution.

As observed, for these optimal cases the results are consistently stable. The maximum
distance error of 0.52 (Random dataset) is equivalent to 5.3mm. Instabilities appear only
with severe downsamples. Chart Figure 5.14 shows that the planes with higher angles are
more prone to errors for severely downsampled data.

5.6.4 Runtime versus optimizations evaluation

In chart Figure 5.15 we show the impact of the optimization approaches adopted. To
assess the performance gain with the optimization strategies, we compare the algorithm
execution time in different cases. We use only the downscale and downsample selected
in Subsection 5.6.2. Random 64_111 is our ground truth as it is never optimized. Engine
64_111 is only optimized with the empty-space skipping (Subsection. 5.4.1), with higher
angles the portion of the input image with black pixels increase. The correspondent images
extracted with 30◦, 15◦ and 3◦ are in Figure 5.16. Note that the chart’s y axis is in logarithm
scale.

5.7 Chapter Summary

We have proposed a simple algorithm for fast and accurate search of an arbitrary cross-
sectional plane image within volumetric datasets. An experimental analysis demonstrated
that despite the computational complexity of the algorithm, there are combinations of
downsample and downscale data that allows achieving a great compromise between
performance and accuracy even when performed with low gradient intensity datasets. We
came up with four optimal setups as result of the evaluation performed. They are:
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• Prioritizing runtime:
– 32_111
– 32_121

• Prioritizing precision:
– 64_121
– 64_211

In the next chapter we extend the algorithms evaluation to medical data to assess their
ability in patient data correlation and visualization.
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Figure 5.12 - Sweep planes precision evaluation of three ordinary datasets with 32_111
and 32_121. (a) Shows the plane fitting precision with downscale resolution of 4x without
downsample. (b) Precision with same downscale but now with downsample of 2x in
volume slice. Note that Random has the worst precision but it still in the acceptable error.
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Figure 5.13 - Sweep planes precision evaluation of three ordinary datasets with 64_121
and 64_211. (a) Shows the plane fitting precision with image downscale resolution of
2x and downsample of 2x in volume slices. (b) precision with same downscale but now
with downsample of 2x in image slice. Random still has the worst precision but is in the
acceptable error.
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Figure 5.14 - Precision versus sweep planes with severe downsampling . Instabilities
occurs in higher angles with severe image and volume downsacle and downsample of 2x
and 4x.
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Figure 5.15 - Performance with agorithm optimization.
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Figure 5.16 - Three image samples taken in different plane angles.

(a) 30◦ = 14,830 black pixels (b) 15◦ = 12,389 black pixels (c) 0◦ = 13,556 black pixels

Source: Compiled by author.



63

6 APPLICATION OF ARBITRARY PLANE SEARCH AND
VISUALIZATION FOR IMAGE CORRELATION WITH MEDI-
CAL DATA

The deep evaluation performed in chapter 5.6, has defined the optimal parameters to
achieve the ideal balance between performance and precision. In this chapter, we use the
same evaluation protocol to assess medical data.

6.1 Medical Data Characteristics

Three datasets, two from conventional CT (Skull and Thorax) and one from MRI (Head)
were evaluated. Their 3D render can be seen in Figure 6.1. Skull covers the mandible and
the maxillary and Thorax comprehends the base of the lungs to the kidneys. Skull and Head
can be obtained in (FAU-3D, 2014). The Thorax datasets was stored in DICOM format.
We exclude all DICOM’s meta-data saving only the information regarding to the image.
The datasets were originally in different resolutions. Head and Skull were in 256x256x256
with 8-bits and Thorax was in 16-bits precision with 512x512x512 resolution. It was
necessary to bring the data to equivalent evaluation conditions of the previous assessment,
so all datasets were downscaled to 128x128x128 resolution with 8-bits precision.

Figure 6.1 - Medical datasets evaluated in the experiments.

Source: Compiled by author.

The resolutions and downsample combinations are shown below:
• 32_111: Data downscaled to 32 pixels of resolution per dimension without down-

sample;
• 32_121: Same downscale as the above item, volume slices downsampled 2x;
• 64_121: Data downscaled to 32 pixels of resolution per dimension, volume slices

downsampled 2x;
• 64_121: Same downscale as the above item, image downsampled 2x;
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6.2 Plane Search and Fitting Scenario

In this section, we present a detailed analysis and the visual results of one plane search
and fitting.

The algorithm inputs for this scenario are: the MRI Head dataset (Figure 6.2a) and an
arbitrary image previous taken from the Head volume, Figure 6.2b. In this scenario, we
are evaluating the image and dataset with 64 pixels/voxels resolution per dimension. Note
that it is hard to guess the image (Fig. 6.2b) position and orientation that fits inside the
volumetric data.

Figure 6.2 - The evaluation input. (a) MRI Head dataset. (b) An arbitrary orientated image
slice taken from Head.

(a) (b)

Source: Compiled by author.

6.2.1 Optimization data

In Table 6.1, we show the data amount prone to empty-space leaping optimization.
The information present in this example is represented in resolution 64 per dimension.
Approximately 48% of the input data are skipped by the similarity calculations. The
"#Comp". column represents the maximum comparisons with 62x62x62 volume resolution
plus 9 planes and 62x62 image resolution (1 voxel in each border is ignored). In the
"Black" column are the number of voxels and pixels skipped. It results in 1,906,782,363
comparisons and represents only 23.12% of the entire pixel/voxel evaluation.

Table 6.1 - Data amount prone to empty-space leaping optimization. Volume = 43.38%
voxels skipped. Image = 45.48% pixels skipped.

Head #Comp. Black %
Volume 2,144,952 1,023,501 47.71%
Image 3,844 1,863 48.46%

Source: Compiled by author.

Regarding to the downsample factors, the 121 and 211 downsample combinations are
equivalent in the amount of data they evaluate.
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6.2.2 Plane fitting

We performed the similarity evaluation for the combinations of downsample with fixed
64 pixels resolution per dimension. The Figure 6.3 shows the match of the input image
slice with the cross sectioned volume. Figure 6.4 visually shows the planes precision error
when compared with the input image plane. The maximum error obtained was ≈ 2.5mm.
Finally, Figure 6.5 shows the other possible visualizations.

Figure 6.3 - Volume cross sectioned (dashed plane) where the input image was found. The
input image (green plane) was fused in the same visualization with transparency to show
the similarity between the image plane found and the input image.

Source: Compiled by author.

Figure 6.4 - Plane fitting errors with different resolution and downsample combinations.
The worst case, 64_121(green plane) was fitted with 190 similarity points and has 0.011
normalized distance and 0.33◦. It is equivalent to ≈ 2.5mm error.

Source: Compiled by author.
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Figure 6.5 - Other possible visualizations of the cross sectioned volume.

Source: Compiled by author.

6.3 Assessment Results

We evaluated the precision and performance of the three datasets. As expected (see
Fig. 6.6), the results achieved correspond to the previous evaluation with controlled data.
The optimizations have heavy impact on runtime and it still maintain great precision.

Figure 6.6 - Precision and runtime evaluation. Head and Skull achieve the same precision
even with distinct number of comparisons performed.
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6.4 Chapter summary

In this chapter, we have evaluated our technique with medical images. The technique
is robust in the search and match process. The precision was not affected by the complex
input data. It delivers high precision and acceptable processing time. The technique has
potential to be applied in other scientific fields that deal with volumetric informations.
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7 DISCUSSION AND CONCLUSION

In this thesis we have investigated means to establish correlation and fusion of within-
modality 2D and 3D medical images based on only pixel/voxel intensities. It was divided
into two development cycles.

First, we approach the problem of matching 2D and 3D data aligned to anatomical
planes. We optimize the correlation search integrating two similarity measures into one
technique. It ranks all data in a coarse but fast computation and in a second step, a more
refined but computational demanding similarity measure evaluates only the best classified
data rearranging to the matching results achieved. This 2-step approach proved to have a
good compromise between computational coast and effectiveness to match intra-subject
medical data even with distinct acquisition protocols, especially when parallelized with
GPU threads.

In the second development cycle, we use the knowledge acquired in the previous
investigation and expand the similarity search to arbitrary aligned image planes. Due to
the virtually infinite comparisons possible when using the previous technique applied to
this problem, we propose an approach to reduce the comparisons set and keep high quality
matches. The technique works locally evaluating similarity in small image and volume
subsamples. It generates a three-dimensional point cloud with only the highest similarities
found. By performing principal component analysis, we extract the best fitting plane that
comprehends all the cloud points. We minimized the expected computational cost working
on a very reduced set of samples, with image and volume downscale and downsample
factors combined.

The design of this algorithm is the main contribution of this work. Other contribution
of this thesis is the set of experiments accomplished with experimental and medical data.
They reveled that there are downscaling and downsampling optimal combinations that can
be applied to achieve a balance between precision and performance. The plane fitting is
good enough to correctly match dozens of arbitrary oriented planes with precision higher
than those found in literature.

The long-therm goal of the project started here is to address real-time correlation and
fusion of pre-operative and user dependent intra-operative medical image modalities. The
development cycles performed in this thesis have accomplished the foundations of the
long-term goal. Despite that, they individually have their own contributions and possible
real applications, both in medical and general context. In the medical context, the 2-step
technique could be applied to perform fast CT dataset alignment of different acquisition
protocols. In a broader approach, as the similarity measures are vastly adopted in IQA field,
it could be proposed to assess loss of quality in images and videos after its compression and
transmission and match ordinary images in databases. Expanding the possible applications
of our arbitrary plane search, the technique could be applied to automatically align many
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intersecting US frames with different orientation in the same 3D reference frame. The
resulting data could then be visualized in 3D as an incomplete volume.

The work developed in this thesis has potential applications in the medical field. We
believe that in the future, our technique would be integrated in medical context contribut-
ing in the analysis and operative procedures with a seamless multi-modal visualization.
Nevertheless, due its general formulation, the technique can be extended and modified to
benefit other fields and other data structures.

7.1 Limitations and Future work

The techniques developed through this thesis are applied in the context of within-
modality correlation. Despite their usefulness in this context, a generalization of the
algorithms to deal with cross-modal is planned for future works. Based on the related works,
we consider two possible paths. First, change the similarity criteria to an information theory
approach, such as mutual information. Second, simulating one modality into another, as
performed by WEIN et al. (2008) allowing us to still use pixel/voxel intensity approaches.

Even though the evaluations have shown that the techniques perform precise matching
in acceptable runtime using two simple optimizations, they are far from the desired real-
time execution. To achieve higher performance, more sophisticate optimizations have
to be addressed in the future. Some strategies are: adaptive multi resolution, such as
Powell method, gradient descent or quasi-Newton (KLEIN; STARING; PLUIM, 2007) and
KD-tree space subdivision. Furthermore, the technique can be boosted up with massive
GPU parallelization.

We plan to explore in depth a possible error metric to assess similarity between arbitrary
oriented planes unifying to their position and orientation error in space.

Other limitation not addressed in this work, is that the input 2D image have to be in the
same scale as the input volume and cannot be rotated.
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APPENDIX A BUSCA MULTIDIMENSIONAL DE
SIMILARIDADE PARA CORRELAÇÃO E FUSÃO 2D-3D

DE DADOS MÉDICOS

Resumo da Dissertação em Português

A.1 Introdução

Imagens da anatomia interna humana são essenciais para as práticas clínicas, elas auxil-
iam diagnósticos, planejamento de cirurgias, caracterização de lesões e estudos fisiológicos
para tratamento de doenças humanas. Diversas modalidades de aquisição de imagens
estão disponíveis. Cada uma delas enfatizam diferentes estruturas internas (anatômicas e
funcionais) e apresentam diferentes dimensionalidades. Algumas delas são capturadas e
analisadas em tempo real, e outras capturadas e armazenadas para uma análise posterior.
Tomografia computadorizada (TC), ressonância magnética (RM), ultrassom (US), raios-X
e laparoscopia são as mais comuns. Hoje, todas as modalidades de imagens médicas
estão disponíveis em formato digital, isso permite que sistemas computacionais realizem
análises e processamentos automáticas dos dados médicos. Representações tridimensionais
virtuais dos datasets de TC e RM, segmentação e classificação de segmentos funcionais de
órgãos, análise de similaridade e registro de imagens de diferentes modalidades são alguns
exemplos.

Estabelecer correlações entre imagens médicas de múltiplas fontes de aquisição é pro-
cedimento importante para diagnósticos e tratamentos. Enquanto correlação entre imagens
de mesma modalidade permitem acompanhar a evolução e o crescimento de uma doença,
correlação entre imagens de diferentes modalidades permite combinar a percepção da
mesma estrutura vista por cada modalidade. Fusão entre imagens de TC e US, por exemplo,
pode melhorar significativamente a validade de um diagnóstico quando comparada com a
análise separada das modalidades (WEIN et al., 2008). Apesar da sua importância, esses
procedimentos de correlação são frequentemente realizados manualmente nas práticas
clínicas. A confiança do médico na identificação da lesão é ainda um desafio durante
os procedimentos clínicos (WOOD; CHUNG; ALLEGRA, 2000). Os resultados são,
então, muito dependentes das habilidades do médico para produzir uma imagem mental
da correlação dos dados. Espera-se que uma correlação automática rápida e precisa de
imagens médicas de mesma e diferentes modalidades possa levar a um melhor diagnóstico
e tratamento. Características das imagens capturadas em diferentes instantes de tempo ou
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com diferentes dispositivos seriam enfatizadas em uma única visualização, aumentando a
precisão na localização de doenças e posicionamento preciso de aparelhos de tratamento.
O registro de imagens médicas é amplamente explorado (MAINTZ; VIERGEVER, 1998;
KHALIFA et al., 2011; MANI; RIVAZHAGAN, 2013). Soluções para uma variedade de
combinações de correlações de imagens já foram propostas. Elas abordam registro entre
dados pré-operatórios de mesma ou diferente dimensionalidade e modalidades, como por
exemplo, 2D-3D: raios-X com TC e RM (TOMAEVIC; LIKAR; PERNUš, 2002); 3D-3D:
RM-RM (BEN SASSI et al., 2008) e TC-RM (DEAN et al., 2012). Esses trabalhos focam
no registro em um dos três eixos anatômicos principais, axial, coronal e sagital.

Por outro lado, no registro entre modalidades pré- e intra-operatórias, como US-TC
(WEIN et al., 2008; CROCETTI et al., 2008), US-RM (KING et al., 2010; NIKAS et al.,
2003; LINDSETH et al., 2003) os dados capturados estão normalmente desalinhados aos
eixos principais. Para resolver o problema da aquisição dependente do posicionamento do
aparelho de aquisição, as soluções anteriores rastreiam a posição e orientação do transdutor
do ultrassom e do corpo do paciente para registrar as modalidades no mesmo sistema de
coordenadas.

A.1.1 Objetivos

Nesta dissertação, projetamos uma abordagem para correlacionamento de dados 2D e
3D de uma mesma modalidade de aquisição baseada somente nas informações dos pixels
e voxels. Nossa abordagem usa análise de similaridade para, dada uma imagem (2D)
arbitrária, achar a localização dessa imagem dentro de um volume (3D). Nossa solução
minimiza os infinitos cortes transversais possíveis e utiliza otimizações para diminuir a
carga computacional para exibir resultados precisos. Técnicas de rendering volumétrico
são aplicadas para visualização. Os volumes médicos são cortados transversalmente para
enfatizar a imagem 2D localizada. Uma avaliação extensa foi realizada para avaliar a
precisão e a eficiência da técnica proposta.

A.1.2 Contribuições

A seguir, as contribuições técnicas deste trabalho são resumidas.

• Um algoritmo de dois passos para correlacionamento multidimensional de imagens
médicas;

• Uma nova abordagem para busca de similaridade para correlação e fusão de dados
multidimensional.

• Três conjuntos de experimentos realizados para avaliar a qualidade dos resultados e
aplicabilidade do nosso método;

• Uma ferramenta de visualização que integra em tempo real rendering volumétrico
de datasets com cortados transversalmente em planos arbitrários de acordo com uma
imagem bidimensional de entrada.

A.1.3 Organização da dissertação

Após a apresentação dos trabalhos relacionados (capítulo 3) e embasamento técnico
(capítulo 2), os dois próximos capítulos tratam da investigação, implementação e avaliação
de duas técnicas para correlação de imagens médicas: Uma técnica baseada em dois
passos para correlação de imagens médicas de mesma modalidade alinhadas a um dos
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eixos ortogonais (capítulo 4) e outra técnica para correlação de imagens arbitrariamente
orientadas com datasets (capítulo 5). As discussões, concluões e trabalhos futuros estão no
capítulo 7.

A.2 Trabalhos Relacionados

Vários trabalhos anteriores abordam o problema de correlação/registro de imagens.
Esta seção apresenta trabalhos que realizam correlação de imagens 2D-3D e discute apenas
os trabalhos mais intimamente relacionados com o foco desta dissertação. Para uma análise
mais abrangente dos trabalhos relacionados, as pesquisas por MAINTZ; VIERGEVER
(1998), KHALIFA et al. (2011) e MANI; RIVAZHAGAN (2013) apresentam vários
trabalhos focados em registro de imagens médicas.

WEIN et al. (2008) desenvolveu uma técnica para registrar automaticamente Imagens
dos US com TC. A posição do transdutor US é rastreada com sensores magnéticos e a
aquisição das imagens é feita através de uma varredura 3D realizada pelo transdutor. Para
cumprir o registro entre as modalidades, eles simularam efeitos de ultrassom nas imagens
de TC e desenvolveram uma função para o cálculo da similaridade entre o ultrassom e as
imagens simuladas. O registro foi testado em 25 pacientes com erro de registro médio de
8,1 milímetros em relação aos dados de referencia, que é muito alto para uma intervenção
médica precisa.

SCHARFE; PIELOT; SCHREIBER (2010) abordou o registro funcional e estrutural
de imagens 2D PET com ressonância magnética. Eles propõem uma implementação da
técnica de comparação de similaridade utilizando informação mútua normalizada (NMI)
na Cell Broadband Engine (CBE) do console PlayStation 3, que permite o processamento
multi-core. No entanto, as imagens são processadas apenas no plano axial, reduzindo o
problema para registro de imagens 2D-2D.

NIKAS et al. (2003) correlacionam ultrassonografia com RM usando um dispositivo
de rastreamento óptico 3D. O rastreador óptico captura a posição da cabeça do paciente
e do transdutor US para definir as transformações rígidas entre eles. Na mesma direção,
CROCETTI et al. (2008) usa um sistema comercial que registra imagens de TC e US
em tempo real para segmentação e posterior tratamento por radiofrequência (RF) de
tumores no fígado. Eles registram o órgão real com as imagens tomográficas utilizando
marcadores fiduciais para calibrar o sistema de coordenadas do aparelho enquanto a posição
do transdutor eletromagnético é rastreada.

Embora esses trabalhos confirmem o interesse médico para fundir diferentes fontes de
dados, eles ou dependem de marcas fiduciais invasivas ou sistemas de rastreamento para
registro. O nosso método, ao invés disso, usar apenas as informações dos pixels e voxels.

A.3 Embasamento Técnico

Nesta seção são detalhadas três abordagens para análise de similaridade entre imagens,
erro médio quadrático (MSE), peak signal-to-noise ratio (PSNR) e similaridade estrutural
(SSIM) que são fundamentais para o entendimento desta dissertação.

A.3.1 Erro médio quadrático

Erro quadrático médio (MSE) é uma métrica simples e popular, que é calculada pela
média quadrática da intensidade da diferença dos pixels de duas imagens, normalmente
uma é a imagem de referência e o outro é uma distorcida. O resultado é uma pontuação
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quantitativa que descreve o grau de semelhança ou o nível de distorção entre eles (WANG;
BOVIK, 2009).

O MSE entre dois sinais é dado por:

MSE =
1

N

N∑
i=1

(xi − yi)2, (A.1)

onde x e y são os dados de duas imagens, N é o número de amostras do sinal (quanti-
dade de pixels). A diferença entre o sinal original e o distorcido é dada por: ei = xi − yi

Na literatura de processamento de imagens, MSE pode ser convertido para o PSNR:

PSNR = 10log10
L2

MSE
, (A.2)

onde L é o intervalo dinâmico permitido para os valores de intensidade de cada pixel.
O PSNR é útil quando as imagens comparadas possuem intervalos dinâmicos diferentes,
caso contrário ele não adiciona novas informações relativas ao MSE.

A.3.2 Similaridade Estrutural

A motivação para a abordagem de similaridade estrutural (SSIM) é encontrar uma
maneira mais direta e precisa para comparar imagens. Os pixels das imagens possuem
fortes dependências e eles carregam informações importantes sobre a estrutura dos objetos
na cena, especialmente quando os pixels estão próximos espacialmente. Desta forma,
WANG et al. (2004) propôs um novo framework para avaliação da qualidade de imagens,
baseado na hipótese que o sistema visual humano é altamente adaptado para extrair
informações estruturais das imagens vistas. A medida de informação estrutural pode
fornecer uma boa aproximação para distorções de imagem percebidas pelos humanos. A
tarefa é separada em três comparações: luminosidade, contraste e estrutura. Todos os três
elas são misturadas em uma equação, formulada como:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (A.3)

onde µx, σx e µy, σy denotam a intensidade média e desvio padrão das imagens x e y
respectivamente, enquanto σxy denota sua correlação cruzada. C1 e C2 são constantes
pequenas utilizadas para evitar problemas de instabilidade quando o denominador está
próximo de zero.

A.4 Algoritmo de Dois Passos para Correlacionamento de Imagens
Médicas Multidimensionais

Nesta seção são descritos o projeto do algoritmo para correlacionamento de imagens
médicas multidimensionais utilizando duas fases análise de similaridade.

A.4.1 Características dos Dados Médicos

Os dados que estamos tratando são datasets de fatias de imagens de tomografia com-
putadorizada, capturadas no plano axial que compreendem a região inferior do tórax até a
pélvis de um corpo homem adulto. No total, quatro datasets do mesmo indivíduo foram
convertidos e preparados para o uso em nosso sistema. Os datasets foram capturados do
em uma única sessão de exame utilizando quatro diferentes protocolos. A diferença que
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distingue os datasets é a fase de perfusão de um agente de contraste radiológico injetado
no paciente. As fases são mostradas na figura A.1. As imagens resultantes possuem 16 bits
armazenados em um canal de cor que representa valores de luminância. Os datasets são
compostos de 140 fatias com resolução de 512x512 pixels. Os conjuntos de dados também
foram escalados para baixo por fatores de dois e quatro. Isso nos dá três resoluções para
serem avaliadas nos experimentos: 512x512 (nativo), 256x256 e 128x128. A distância
entre fatia é de 2,5 mm.

Figure A.1 - Imagens exemplos retirados dos quatro datasets. (a) antes do contraste. (b)
fase arterial: 30 segundos depois da injeção de contraste, (c) fase venosa: 70-90 segundos
após a injeção de contraste, (d) fase tardia: 5-10 minutos depois.

Fonte: Imagem compilada pelo autor.

A.4.2 Algoritmo de dois passos para correlação de imagens

Com as características apresentadas acima, uma possível questão a ser explorada é:
dada uma fatia na fase tardia (Figura A.1(d).) qual fatia mais semelhante presente na fase
arterial (Figura A.1(b))? Esta pergunta pode ser respondida por um ser humano especialista
que observa a imagem de referência e a compara com todas as imagens do conjunto de
dados. Esta análise é muito eficaz, mas sua eficiência piora à medida que o conjunto de
dados cresce. Métodos computacionais podem resolver este problema com uma maior
eficiência e confiabilidade. As entradas para qualquer uma destes métodos são: uma
imagem de referência e um dataset. O objetivo é encontrar uma fatia do conjunto de dados
completo que é a mais parecida com a fatia de entrada de referência sem o uso qualquer
informação adicional.

Implementamos primeiro as técnicas PSNR e SSIM em C++. Testes preliminares reve-
laram que PSNR é rápido, mas é impreciso em muitos casos. Por outro lado, SSIM é mais
lento, mas obtém resultados muito precisos em média. Nós, em seguida, desenvolvemos
um novo algoritmo que estabelece um equilíbrio entre velocidade de processamento e
precisão das duas abordagens. Os dois passos do algoritmo são: No primeiro passo, o
cálculo PSNR é realizado para criar rapidamente uma lista de fatias com a melhor corre-
spondência com a imagem de referência. No segundo passo, é calculado SSIM apenas
para as melhores fatias classificadas que resultaram na reordenação do ranking de acordo
seus resultados de similaridades mais altos.

A.4.3 Avaliação do algoritmo de dois passos para correlação de imagens

Montamos um protocolo de teste para avaliar e comparar o desempenho e eficácia entre
a nossa abordagem (2-STEP), PSNR e SSIM para a detecção de similaridade. Nossa pre-
ocupação é que os algoritmos sejam rápidos e obtenham os melhores resultados possíveis
na detecção de semelhança entre imagens. Todos os dados relevantes são registrados em
tempo de execução e salvos automaticamente para análise. O hardware utilizado durante
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os testes foi um computador com um processador Core I7-2600 rodando a 3.4GHz e uma
GeForce 560Ti com 384 núcleos CUDA rodando a 880MHz.

A.4.3.1 Protocolo experimental

Para fins de teste, executamos o teste muitas vezes, cada um com uma imagem referên-
cia diferente. Elas são obtidas a partir de um dataset referência. Assim, a comparação é
realizada entre todas as fatias de um conjunto de dados com o outro. As pilhas de imagens
são previamente alinhadas de tal maneira que, por exemplo, a correspondência correta para
a fatia 42 no primeiro conjunto de dados é a fatia 42 no segundo. Em cada conjunto de
dados comparado, nós armazenamos a fatia mais semelhante e seus n vizinhos classifi-
cados em ordem decrescente. Esta informação permite calcular a distância (delta) para a
correspondência exata. Além disso, ele permite saber se os vizinhos da correspondência
correta estão dentro do ranking gerado. O número de posições armazenadas no ranking
influencia diretamente o segundo passo do algoritmo.

A.4.3.2 Variáveis de teste

As variáveis independentes utilizados em nosso teste são: resoluções do conjunto
de dados (512x512x140, 256x256x140, 128x128x140), planos de orientação ortogonais
(Axial (XY), Coronal (XZ) e sagital (YZ)), algoritmos (2-STEP, PSNR, SSIM), fases de
contraste radiológico (arterial, venosa e tardia).

As variáveis dependentes coletadas são: tempo de execução (em segundos), distância
para a correlação correta (em fatias) e ranking (quantidade de fatias na distância máxima
de dez fatias).

A.4.3.3 Avaliação de precisão

Para avaliar a precisão, nos escolhemos arbitrariamente a comparação do dataset de
fase venosa contra o de fase tardia, ambos com resolução de 256x256x140 e alinhados
ao plano axial. No gráfico da Figura A.2, o PSNR tem uma elevada instabilidade no
início da comparação (fatias 1-30). Neste caso, o conjunto de fatias melhor classificados
não contém a correspondência correta. Por os resultados do segundo passo do algoritmo
dependerem do primeiro passo, os resultados de similaridade ficam limitados as fatias que
estão contidas no ranking e, portanto nunca representaram o casamento correto, embora
os resultados sejam ligeiramente melhores na zona de instabilidade. A solução para esse
problema de instabilidade foi aumentar o número de entradas no ranking para aumentar as
chances de um casamento correto estar contido. Essa modificação aumentou o tempo de
computação do algoritmo, uma vez que tem de realizar mais comparações. O ranking foi
aumentado de 10 para 20 comparações e o tempo de execução aumentou de 6,9 para 12,89
segundos (87%). A técnica SIFT é muito instável, gera diversos pontos que divergem do
resultado ótimo e seu tempo de execução é mais alto (264.4s executando em CPU). O
tempo de execução total para este teste é mostrado no gráfico da Figura A.3. A conclusão
interessante aqui é que o 2-Step executa muito mais rápido do que SSIM e mantém o
mesmo nível da precisão.

A.4.3.4 Avaliação variando a resolução dos datasets

Outra hipótese é que haveria pouca diferença nos resultados de precisão utilizando
datasets com resoluções menores. Por outro lado, o tempo de execução cairia de forma
quadrática como as resoluções. Este teste compara o tempo de execução e precisão na
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Figure A.2 - Avaliação de precição. Comparação entre os datasets de fase venosa com o de
fase tardia orientados no plano axial e com resoluções 256x256x140. no gráfico acima, a
instabilidade gerada pelo cálculo utilizado o PSNR afeta a precisão do algoritmo 2-STEP,
pois as fatias corretas não estão no ranking gerado pelo PSNR no primeiro passo. Após o
aumento das posições no ranking para 20 a instabilidade é resolvida (gráfico abaixo). Os
resultados para a técnica SSIM não são mostrados pois o gráfico é exatamente igual ao
2-STEP. A técnica SIFT apresenta os piores resultados.
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Fonte: Imagem compilada pelo autor.

similaridade obtida com o algoritmo 2-STEP para todas as combinações de datasets para
cada resolução. Neste teste o plano de orientação foi fixado na perspectiva axial. O ranking
utilizado para o 2-STEP foi o maior (20 comparações no segundo passo). Os resultados
estão expostos no gráfico da Figura A.4. De 512x512 para 256x256 o tempo de execução
diminuir em 45% e para 128x128, 76%. Precisão e tempo resultados correspondem a
compilação dos resultados de todas as combinações de conjunto de dados. Note que,
quando o tempo de execução cai bastante, a perda de precisão é pequena. A resolução
256x256 obteve o melhor equilíbrio entre desempenho e precisão. Na resolução mais
baixa, a implementação em GPU não tem tantas vantagens quando comparada com a
implementação em CPU. Apenas com resoluções maiores a paralelização faz diferença.

A.4.3.5 Avaliação variando a orientação dos planos

Tínhamos como hipótese que o 2-STEP iria executar com precisão semelhante nos
três planos de corte ortogonais avaliados. As variáveis independentes para esse teste



82

Figure A.3 - Tempo de execução dos algoritmos para o testes de precisão (Fig. A.2). O
2-STEP foi avaliado com ranking de 20 posições. Na barra GPU (em vermelho) todos os
algoritmos foram executados apenas na GPU.
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foram: soma das três combinações de comparação dos datasets, resolução 256x256x140
executando do algoritmo 2-STEP. Diferentemente da nossa hipótese, os conjuntos de
dados de orientação axial apresentou um taxa de precisão inferior, mais de 40% quando
comparado com o mais preciso, sagital. Uma das causas para esse comportamento são as
grandes áreas da imagem que não contêm informações (partes pretas vistas na Fig. A.1).

A.5 Algoritmo de busca multidimensional de planos para correlação
2D-3D

A abordagem em duas fases (seção A.4) resolve o problema de detecção de similaridade
entre imagens alinhadas em um dos três planos ortogonais: axial, coronal e sagital. No
entanto, na prática diária, a aquisição tende a estar fora dos planos principais. Isto ocorre
especialmente quando a captura de imagem é dependente do usuário, por exemplo, durante
o exame de ultrassom.

Nesta seção, apresentamos todas as etapas e métodos de nossa abordagem para encon-
trar a localização de uma imagem planar em posição e orientação arbitrárias dentro de um
volume de dados. Pode-se imaginar uma solução por força bruta que compara a imagem
com todas as secções de um volume usando algum critério similaridade. A seção mais
semelhante corresponderá a localização de imagem planar no interior do volume. Como o
custo computacional de tal busca exaustiva é proibitivo, propomos aqui é uma abordagem
mais inteligente que minimiza o número virtualmente infinito de possíveis orientações da
seção transversal.

A.5.1 Entradas do Algoritmo

Dois elementos compõem os dados de entrada para o nosso algoritmo: Um dataset,
conjunto de dados 3D; uma imagem plana de qualquer tamanho gerado como um sub-
conjunto do volume anteriormente mencionado É gerado um corte aleatório de um dos
datasets. Em primeiro lugar os voxels do volume são mapeados no intervalo de -1 a 1 em
x, y e z. Em seguida, gera-se um plano de imagem arbitrário selecionando três pontos não
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Figure A.4 - Precisão atingida com três resoluções distintas. Os resultados foram combi-
nados para todas as combinações de datasets para cada resolução. O plano de orientação
avaliado foi o axial.
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colineares, p1, p2 e p3. O vetor normal n é calculado como ~n = v̂1(p2, p1) × v̂2(p3, p1).
Para completar a equação do plano, a distância do plano para a origem do sistema de
coordenadas, o coeficiente d é calculado como: d = −(~n · p1). Um sampling 2D utilizando
nearst-neighbor é aplicada para gerar a imagem final.

A.5.2 Busca de imagens em volumes

O algoritmo (Fig. A.5) trabalha localmente avaliando similaridade entre pequenas
sub-imagens e sub-volumes, provenientes dos dados de entrada originais. Um tamanho s
determina a resolução da sub-imagem (SIs×s) e sub-volume (SVs×s×s). A similaridade
de cada sub-imagem amostrada é avaliado contra nove planos orientados do sub-volume
(três planos cardinais mais seis planos intermediários) usando MSE. Os nove planos são
classificados por similaridade e, se o plano mais semelhante é abaixo de um determinado
limiar, a posição do voxel é armazenado. Além da posição do voxel encontrado, valor de
semelhança e a orientação do plano mais semelhante também são registrados para uso
posterior.

A.5.3 Plano Adequado

Após os cálculos de similaridade precisamos extrair o melhor plano que engloba todos
os voxels armazenados na lista das maiores similaridades Lk. O método baseia-se no plano
adequado 3D de primeira ordem proposto por BERKMANN; CAELLI (1994). O problema
de determinar a equação de plano de Lk é uma estimativa por mínimos quadrados para
o plano adequado. O plano é representado como um ponto x e um vector normal, ~n. O
centróid de Lk é definido como:p̄ = 1

k
.
∑k

i=1 pi.
A solução para ~n é determinado por meio da análise de componentes principais de Lk.

Os auto valores e auto vetores da matriz de covariância C, expressa em eq. A.4, são então
calculados.

C =
1

k

k∑
i=1

(pi − p̄).(pi − p̄)T , C.~vj = λj.~vj, j ∈ {0, 1, 2} (A.4)
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Figure A.5 - Para cada pixel e voxel uma sub-imagem e um sub-voluem quadrados são
extraídos. Nove planos de imagem com diferentes ângulos são gerados apartir do sub-
volume e sua similaridade é comparada com a sub-imagem. Para cada voxel, o sub-plano
mais similar entre as nove orientações é armazenado. Após todas as comparações, PCA é
computado para extrair o plano adequado a partir da lista de voxels Lk.

Fonte: Imagem compilada pelo autor.

A matriz C é simétrica e positiva semi-definida e seus autovalores (λj) são números
reais. O auto vetor ~vj com o menor autovalor é, por conseguinte, a aproximação da normal
~n = (nx, ny, nz) ou −~n. O componente d da equação do plano é encontrado calculando o
produto escalar de ~n e o p̄ of Lk.

A.5.4 Otimizações do algoritmo

Duas estratégias de otimização foram aplicadas no algoritmo para evitar cálculos
desnecessários. A primeira estratégia baseia-se no conhecimento sobre a aquisição de
imagens médicas. As áreas circundantes do corpo são representadas como preto nos pixels
na imagem. Essas porções não contêm informações relevantes e são excluídos dos cálculos.
A segunda estratégia é redução da resolução dos dados volumétricos. A resolução original
do volume é carregada na memória, um fator de redução da resolução é estipulado e o
algoritmo executa os cálculos apenas nos voxels amostrados. Nosso algoritmo de busca
de imagens em volumes ainda usa voxels vizinhos presentes na resolução original para
construir sub-volumes.

A.5.5 Visualização da correlação entre imagem e volume

A técnica desenvolvida trabalha em conjunto com nosso sistema de visualização
volumétrica de dados médicos. O objetivo é fatiar os dados volumétricos em uma secção
transversal no lugar exato onde o plano arbitrário foi localizado.

Neste momento temos todos os elementos necessários para visualizar o plano da im-
agem resultante, que são: a imagem arbitrária de entrada, o volume V 3D e a equação do
plano p que representa a posição e orientação da imagem arbitrária dentro do volume. A
visualização de volume em tempo real é realizada pelo rendering direto de texturas desen-
volvido por ENGEL et al. (2004). Mapeamento 3D de textura permite usar interpolação
trilinear apoiado pelo hardware gráfico e fornece uma taxa de amostragem consistente. O
volume é segmentado exatamente onde o plano calculado atravessa. Podemos descartar os
voxels superiores ao plano ou inferiores com Vk · pe > 0 e Vk · pe < 0, respectivamente.
Em seguida, a imagem original de entrada pode ser exibida naquele local, fundindo o 3D
com os dados 2D.
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A.6 Experimentos e resultados

Montamos um protocolo de teste para avaliar e comparar o desempenho e eficácia de
nossa técnica entre os diferentes conjuntos de dados, resoluções e fatores de amostragem.
Nesta seção, nós detalhamos as métricas utilizadas. Nossa preocupação é que o algoritmo
execute o mais rápido e entregue os melhores resultados possíveis em termos de encontrar
o melhor plano que representa a imagem arbitrária.

A.6.1 Configuração do experimento

Os conjuntos de dados avaliados são apresentados na Fig. A.6. Bucky, Engine e
Random são três datasets de uso geral. Random é composto com valores de intensidade
randômicos e é dificilmente optimizada devido à ausência de regiões com voxels com
valor de intensidade quase nulo. Thorax e Slull são datasets de TC de um ser humano do
sexo masculino. Thorax foi convertido a partir do protocolo DICOM para dados brutos,
excluindo todos os metadados existentes. Bucky, Engine e Skull podem ser obtidas on-line
(FAU-3D, 2014). Todos os conjuntos de dados são armazenados em um canal de cor de 8
bits que representa valores de luminância. As resoluções do conjunto de dados e fatores de
exemplos usados em todos os testes são listadas abaixo:

Figure A.6 - Representação volumétrica dos dados utilizados no experimento.

Fonte: Imagem compilada pelo autor.

• Resoluções: 128x128x128 (original), 64x64x64 and 32x32x32;

• Factores de escala: 1x (original), 2x and 4x para a imagem XY, para volume XY e
volume Z.

Definimos uma notação para uma consulta rápida: quando dizemos Bucky 128_142,
isso significa que a imagem de entrada tem 128x128 pixels e o volume é reduzido de
128x128x128 para 32x32x64, ou seja, cada uma das 64 fatias tem resolução de 32x32
pixels. Essa redução é realizada em tempo de execução. Note que todos os datasets
originais tem resolução de 128x128x128 exceto Bucky que tem 32x32x32 e foi super
amostrado para equalizar as comparações. O objetivo do nosso algoritmo é encontrar o
melhor plano em um volume que represente da melhor forma uma fatia 2D dada como
entrada. No entanto, para fins de teste, nós executamos os testes com um conjunto de
32 imagens de entrada construídas a partir de um plano axial e 31 planos arbitrários em
ângulos diferentes. As imagens amostradas em planos arbitrários são os mesmos para
todos os testes para permitir a comparação entre os diferentes datasets.

Nós armazenamos as equações do plano de cada plano arbitrário utilizado como entrada
nos testes e os usamos como referência para avaliação de precisão. O erro entre a entrada p
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e o plano q encontrado é medido com duas variáveis: a média da distância euclidiana entre
os vértices correspondentes em cada plano, Eq. A.5 e o ângulo entre as normais de p e q,
Eq. A.6. Quanto mais os resultados convergem para zero, mais correta é a correlação entre
imagem e volume. O tempo de execução do algoritmo nos testes é medido em segundos e
o resultado é a média de execução para a correlação de 32 imagens arbitrárias.

d(p, q) =
1

N

N∑
i=1

(pi − qi) (A.5)

cosα =
n̂p · n̂q

|n̂p| |n̂q|
(A.6)

Todos os testes foram realizados utilizando um computador com a seguinte config-
uração: processador Intel Core i7-2600@3.4GHz com 8GB de RAM. O algoritmo foi
desenvolvido em C++, compilado com o GCC 4.8.2. O algoritmo executa em paralelo
utilizando todos os núcleos do processador.

A.6.2 Avaliação no equilíbrio entre precisão e desempenho

Devido ao elevado número de dimensões de dados que são avaliadas, nosso algo-
ritmo tem uma complexidade computacional O(N7). No entanto, nossa hipótese de que é
possível obter resultados consistentes trabalhando com um conjunto muito reduzido de
amostras a partir dos dados originais de entrada. Além disso, acreditamos que há uma com-
binação ideal de resolução e fator de amostragem que é suficientemente preciso e rápido.
Como alguns dados são mais homogêneos do que outros, e precisão de execução, também
pode ser dependente da natureza do conjunto de dados. O experimento descrito a seguir
testa algumas dessas hipóteses. Em primeiro lugar, para descobrir a melhor combinação
amostragem, nós realizamos um teste com o conjunto de dados Random. Os gráficos da
Figura A.7 mostram todas as combinações de resolução e amostragem que se encaixam no
intervalo de tempo. Percebemos que os erros de distância e ângulo estão correlacionados,
permitindo-nos concentrar em distância e sugerindo uma possível unificação métrica a
ser investigada em trabalhos futuros. A resolução 128, sem amostragem é muito precisa,
mas executa em tempo inviável (1200s, fora do alcance do gráfico). Resoluções menores e
amostragens mais grosseiras, no entanto, ainda proporcionam uma elevada precisão. Como
exemplos, localizar pontos de 32_121, 64_122, 128_141 no gráfico. Para um conjunto de
dados 200x200x200mm, o erro normalizado 0,016 obtido para 32_121 é equivalente a 3,2
milímetros, e levou apenas um segundo para ser encontrado. Em seguida, para descobrir
como as diferenças de conjuntos de dados interferem na precisão, foram selecionados as
duas combinações de resolução e amostragem mais precisas e as duas mais rápidas para
análise. Estas combinações foram avaliadas para todos os datasets e os resultados são
mostrados na Fig. A.8 As combinações são classificadas a partir do menor para o maior
tempo de execução em cada resolução. Como esperado, o conjunto de dados Random é
mais lento. Distâncias entre planos (erros) são consistentes entre os conjuntos de dados, a
não ser, em parte, para Bucky que apresentou um erro maior em 128_424. Nós acreditamos
que isso ocorreu devido a falta de informação, pois Bucky foi super amostrado.
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Figure A.7 - Acima: Erro entre distância e tempo de execução em escala logaritmica.
Abaixo: Erro entre ângulo e tempo de execução em escala logaritmica.
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Fonte: Imagem compilada pelo autor.

Figure A.8 - Tempo de execução para as 12 combinações de resolução e fator de escala. O
erro e o tempo de execução são consistentes para todos os datasets, com o Skull sendo o
mais rápido. Note a ótima relação tempo de execução e precisão atingida pela combinação
32_121.
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A.7 Conclusões

Nesta dissertação investigamos meios para estabelecer correlação e fusão de imagens
2D e volumes 3D de dados médicos de mesma modalidade de aquisição baseados em
apenas intensidades de pixel/voxel. O trabalho foi dividido em dois ciclos de desenvolvi-
mento. Em primeiro lugar, abordamos o problema da correspondência 2D e 3D de dados
alinhados com os planos anatômicos. Nós aperfeiçoamos a busca de correlação integrando
duas medidas de similaridade em uma técnica. Esta abordagem de dois passos provou ter
um bom equilíbrio entre o desempenho e eficácia para correlacionar dados médicos de
mesma modalidade, mesmo com protocolos de aquisição distintos, especialmente quando
paralelizado em GPU. No segundo ciclo de desenvolvimento, utilizamos os conhecimentos
adquiridos na investigação anterior e expandimos a pesquisa de semelhança para com-
preender planos de imagem arbitrariamente alinhados. Propomos uma abordagem para
reduzir o conjunto das comparações e manter precisão na correlação entre imagem e vol-
ume. A técnica funciona localmente avaliando semelhança em sub-imagens e sub-volumes
subamostrados. Uma nuvem de pontos tridimensional é gerada com apenas os mais altas
semelhanças encontradas. Ao realizar a análise de componentes principais, podemos ex-
trair o melhor plano que compreende todos os pontos da nuvem. Nós minimizado o custo
computacional esperado trabalhando em um conjunto muito reduzido de amostras, com
uma combinação de imagem e volume subescalados e subamostrados. Outra contribuição
deste trabalho é o conjunto de experimentos realizados com os dados experimentais e
médicos. Eles revelaram que há uma combinação ótima de redução de escala e redução
da resolução que podem ser aplicadas para alcançar um equilíbrio entre precisão e desem-
penho. O ajuste dos planos encontrados é bom o suficiente para corresponder corretamente
dezenas de planos orientados arbitrariamente com precisão maior do que os encontrados na
literatura. O trabalho desenvolvido tem aplicações potenciais na área médica. Acreditamos
que, no futuro, a nossa técnica poderia ser integrada no contexto médico e contribuir na
análise e procedimentos operatórios com uma visualização multimodal. No entanto, devido
à sua formulação geral, a técnica pode ser estendida e modificada para beneficiar outros
campos e outras estruturas de dados.

A.7.1 Trabalhos futuros

Generalizar os algoritmos para lidar com dados médicos de diferentes fontes de
aquisição. Com base nos trabalhos relacionados, consideramos a mudança dos critérios de
similaridade para uma abordagem da teoria da informação, como a informação mútua e
simulação de uma modalidade para outra, realizada por [1] o que nos permite continuar
a utilizar abordagens de intensidade pixel/voxel. Para atingir um melhor desempenho,
otimizações mais sofisticadas têm de ser abordadas no futuro. Algumas estratégias são:
Multi-resolução adaptativa, como método de Powell, gradiente descendente ou quasi-
Newton e espaço de subdivisão por KD-tree. Além disso, a técnica pode ser acelerada com
paralelização em GPU. Pretendemos explorar em profundidade uma possível métrica de
erro para avaliar similaridade entre planos orientados arbitrariamente unificando posição e
orientação em uma única equação.
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