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RESUMO 

 

O câncer de tireoide constitui o tipo de câncer endócrino mais comum, representando 

aproximadamente 1-1,5% de todas as doenças malignas humanas. O carcinoma papilar de 

tireoide (CPT) compreende o subtipo mais comum (~80% dos casos) e é caracterizado por um 

curso indolente e do prognóstico favorável. No entanto, cerca de 20-30% dos pacientes podem 

apresentar um curso clínico mais agressivo, com elevadas taxas de recidiva. Mutações 

pontuais nos genes BRAF e RAS, bem como rearranjos RET/PTC e NTRK1 são identificados 

em mais de 70% dos casos e levam a ativação aberrante da via MAPK. Estudos sugerem que 

a presença a mutação BRAF
V600E

 estaria associada com o comportamento tumoral mais 

agressivo, no entanto seu papel como marcador prognóstico ainda não está bem definido.   

Os hormônios tireoidianos (HT) influenciam uma grande variedade de eventos 

biológicos. A ativação do hormônio tiroxina (T4) no hormônio biologicamente ativo 

triiodotironina (T3), é catalisada pelas iodotironinas desiodases tipo 1 (D1, DIO1) e tipo 2 

(D2, DIO2). Em contraste, a iodotironina desiodase tipo 3 (D3, DIO3) é responsável pela 

inativação dos hormônios T4 e T3. A ação orquestrada das desiodases é essencial na 

manutenção de níveis adequados dos HT. Estudos sugerem que alterações nos níveis dos HT 

estariam implicadas na transformação neoplásica, proliferação e sobrevida celular. Alterações 

na expressão das desiodases são frequentemente observadas em tumores humanos, sugerindo 

um possível papel como marcadores ou mesmo como moduladores da proliferação de células 

tumorais. Diminuição dos níveis da D2 e aumento da D3 foram demonstrados em diversas 

neoplasias, sugerindo que o hipotireoidismo local causado pela diminuição da ativação do HT 

e/ou aumento da inativação hormonal, poderia favorecer o crescimento tumoral. 

Recentemente demonstramos aumento da expressão da D3 no CPT e correlação positiva entre 

os níveis de expressão da enzima com o tamanho do tumor e doença avançada ao diagnóstico. 

A presença da mutação BRAF
V600E

 foi associada aos níveis mais elevados da atividade 

enzimática. De modo interessante, a D3 não foi detectada em tumores medulares ou 

anaplásicos, sugerindo que mecanismos moleculares celular-específico possam influenciar na 

desregulação da expressão desta enzima.  

No presente estudo observamos que aterações genéticas na via de sinalização MAPK, 

como a mutação BRAF
V600E

 e o rearranjo RET/PTC, modulam a expressão da D3 no CPT. 

Além disso, a ativação da via Sonic Hedgehog também parece regular os níveis da D3 

possivelmente através da cooperação com a via MAPK. De forma interessante, observamos 
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que o silenciamento da expressão da D3 foi capaz de reduzir significativamente a proliferação 

celular das células malignas tireoidianas. Estes dados em conjunto sugerem que a D3 pode 

exercer um papel importante na proliferação celular, possivelmente devido ao hipotireoidismo 

intracelular gerado, o que poderia contribuir para o crescimento e agressividade tumoral. 
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ABSTRACT 

 

The thyroid cancer is the most common type of endocrine cancer, representing 

approximately 1-1.5% of all human malignancies. Papillary thyroid carcinoma (PTC) 

comprising the most common subtype (~ 80% of cases) and is characterized by an indolent 

course and favorable prognosis. However, about 20-30% of patients may have a more 

aggressive clinical course, with high recurrence rates. Point mutations in the BRAF or RAS 

genes or rearrangements RET/PTC or NTRK1 are identified in over 70% of cases and lead to 

aberrant activation of the MAPK pathway. Studies suggest that the presence of the BRAF
V600E 

mutation would be associated with more aggressive tumor behavior; however its role as a 

prognostic marker is not well defined.  

Thyroid hormones (TH) influence a variety of biological events. The activation of the 

hormone thyroxine (T4) to the biologically active hormone triiodothyronine (T3), is catalyzed 

by the iodothyronine deiodinases type 1 (D1, DIO1) and type 2 (D2, DIO2). In contrast, the 

iodothyronine deiodinase type 3 (D3, DIO3) is responsible for the inactivation of hormones 

T4 and T3. The orchestrated action of deiodinases is essential in maintaining adequate levels 

of circulating TH. Studies suggest that changes in the HT levels might be involved in 

neoplastic transformation, cell proliferation and survival. Expression changes in deiodinases 

are frequently observed in human tumors, suggesting a possible role as a marker or as 

modulator of tumor cell proliferation. Reduction in D2 and increase of D3 levels have been 

demonstrated in several tumors, suggesting that the local hypothyroidism caused by reduction 

of activation and/or increase in TH inactivation could contribute to tumor growth. Recently, 

we have demonstrated increased expression of DIO3 in the PTC and a positive correlation 

between the enzyme levels and tumor size and advanced disease at diagnosis. Moreover, the 

presence of BRAF
V600E

 mutation was associated with higher levels of enzyme activity. 

Interestingly, D3 was not detected in anaplastic and medullary thyroid tumors, suggesting that 

cell-specific molecular mechanisms may influence the expression of this enzyme.  

In the present study, we have demonstrated that DIO3 expression is modulated by 

specific MAPK genetic alterations, as BRAF
V600E

 mutation and RET/PTC rearrangement, in 

PTC. Moreover, SHH activation might be also involved in DIO3 upregulation in PTC, 

probably by cooperation with MAPK pathway. Finally, the reduction in cell proliferation after 

DIO3 silencing support the hypothesis that the intracellular decreases in thyroid hormone 
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levels might be associated with induction of tumor growth and interfere in tumor 

aggressiveness. 
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INTRODUÇÃO 

 

Câncer de tireoide 

 

O câncer de tireoide constitui o tipo de câncer endócrino mais comum, representando 

aproximadamente 1-1,5% de todas as doenças malignas, com uma taxa de incidência anual de 

12,9 casos para cada 100.000 habitantes (CURADO et al., 2007). Estudos epidemiológicos 

indicam que a incidência de câncer de tireoide vem aumentando nos últimos anos, sendo 

considerado o de maior índice de crescimento nos Estados Unidos (6,6%) (PELLEGRITI et 

al., 2013). No Brasil, a estimativa para o câncer da tireoide em mulheres para o ano de 2014 é 

de 9.200 casos novos, sendo o 4º tumor maligno mais freqüente em mulheres e o 13º em 

homens (INCA; http://www.inca.gov.br/estimativa/2014/estimativa-24042014.pdf).  

O carcinoma diferenciado de tireoide (CDT), originário da célula folicular tireoidiana, 

representa mais de 90% dos tumores da glândula e compreende o carcinoma papilar de 

tireoide (CPT, ~80% dos casos) e o 

carcinoma folicular de tireoide (CFT; 

~10% dos casos). O carcinoma anaplásico 

ou indiferenciado de tireoide representa 

cerca de 1% dos tumores tireoideanos, 

podendo se originar de novo ou ser 

resultado da progressão e/ou 

desdiferenciação dos CDT.  O carcinoma 

medular de tireoide (CMT) é originado 

das células C ou parafoliculares 

tireoidianas e representam de 3-4% dos 

tumores malignos tireoidianos. O CPT é 

caracterizado por um curso indolente e por um prognóstico favorável. No entanto, cerca de 

20-30% dos pacientes apresentam um curso clínico mais agressivo, com elevadas taxas de 

recidiva/persistência da doença (DELELLIS et al., 2004). Atualmente, um grande desafio na 

prática clínica é identificar o risco específico de cada paciente a fim de permitir uma 

abordagem terapêutica mais individualizada e minimizar a morbidade relacionada ao 

tratamento. Ativação aberrante da via de sinalização mitogen-activated protein kinase 

(MAPK) devido a mutações ou rearranjos de genes é o evento genético mais comum no CPT. 
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Mutações pontuais no gene BRAF ou RAS, e rearranjos RET/PTC ou NTRK1 são 

mutualmente exclusivos e identificados em cerca de 70% dos casos (ROMITTI et al., 2013). 

A figura 1 resume os mecanismos de sinalização envolvidos na patogênese do CPT. Estudos 

indicam que a presença de mutações no gene BRAF (~ 40% dos casos) estaria associada com 

um comportamento tumoral mais agressivo podendo ser considerado um marcador 

prognóstico, no entanto este papel ainda não está bem determinado (XING, 2005; LEE et al., 

2011; ZOGHLAMI et al., 2014). 

 

Metabolismo dos hormônios tireoidianos 

 

 Os hormônios tireoidianos (HT) são reguladores de uma grande variedade de eventos 

biológicos, dentre os quais desenvolvimento embrionário, crescimento, diferenciação e 

metabolismo em praticamente todos os tecidos. Embora a glândula tireóide secrete em sua 

maior parte tiroxina (T4), as ações dos hormônios tireoidianos são mediadas pelo hormônio 

biologicamente ativo, triiodotironina 

(T3) (YEN, 2001). 

Os efeitos celulares dos HT 

são classificados como genômicos 

(nuclear) ou não-genômicos 

(citoplasma ou membrana através de 

receptores do tipo integrinas) (Figura 

2). O mecanismo genômico é 

promovido principalmente pela ação 

T3 e requer o envolvimento dos 

receptores nuclear dos hormônios 

tireoidianos. Os genes THRα e THRβ 

codificam as isoformas dos 

receptores TRα1 e TRβ1-β3 (KIM et al., 2012). A ligação do T3 aos receptores nucleares leva 

a ativação da transcrição, geralmente através da ligação com o receptor retinóide X (RXR), 

elementos de resposta aos hormônios tireoidianos (TREs) localizados nas regiões reguladoras 

dos genes alvo. A transcrição gênica é então regulada pelo balaço entre corepressores (CR) e 

coactivatores (CoA). Os elementos de resposta aos hormônios tireoidianos negativos (nTRE) 

podem mediar a repressão transcricional, no entanto neste caso o papel de coativadores e co-
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repressores não é bem definida (YEN, 2001). A natureza da resposta transcricional é 

determinada pelo tipo de célula, promotor e estado hormonal (HULBERT, 2000; ARANDA 

& PASCUAL, 2001). Em relação aos efeitos não-genômicos, estes são iniciados pela ligação 

do HT aos receptores do tipo integrina αvβ3, o que leva à ativação de diferentes vias de 

sinalização intracelulares, incluindo a MAPK, phosphatidylinositol 3-kinase (PI3K) e signal 

transducer and activator of transcription proteins (STAT), resultando em eventos celulares 

distintos, como a proliferação celular e angiogênese (DAVIS et al., 2006; DAVIS et al., 2008; 

CHENG et al., 2010) (Figura 2). 

A principal via de regulação dos níveis dos HT ocorre via ação das iodotironinas 

desiodases através da ativação e inativação hormonal. As desiodases tipos 1, 2 e 3 (D1, D2 e 

D3) constituem uma família de oxiredutases que 

contêm o raro aminoácido selenocisteína em seu 

sítio ativo, um resíduo essencial para uma 

atividade catalítica eficiente (CALLEBAUT et 

al., 2003). A via da desiodação é um passo 

crítico na ativação e inativação do hormônio da 

tireoide, permitindo rápidas modificações no 

status tireoidiano intracelular de uma forma 

tecido-específica, sem afetar as concentrações 

circulantes dos mesmos. Assim, é possível 

controlar a concentração e a atividade 

intracelular de T3 independentemente dos níveis 

de T3 sérico.  

A principal via de produção da forma bioativa nos tecidos periféricos ocorre via 

desiodação do anel externo do T4, catalisada pelas iodotironinas desiodases tipo 1 (D1, DIO1) 

e tipo 2 (D2, DIO2). Em contraste, a iodotironina desiodase tipo 3 (D3, DIO3) é responsável 

por catalisar a inativação do T4 e T3 através da desiodação de anel interno dessas moléculas 

(Figura 1). Em humanos, os níveis mais altos de atividade da D1 são encontrados na tireoide, 

fígado e rim. A D2 é mais expressa na hipófise, cérebro, tireoide, pele, músculos esquelético e 

cardíaco (MAIA et al., 2005; MEYER et al., 2007). A D3 é altamente expressa no feto, 

placenta, útero, cérebro e pele. A expressão da D3 possui um papel essencial no 

desenvolvimento fetal, pois previne a exposição do embrião ao excesso de T3 o que está 
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associado com malformações, alterações no crescimento, retardo mental ou até mesmo morte 

(GALTON, 2005; MEYER, WAGNER e MAIA, 2007). 

 

Expressão das iodotironinas desiodases em neoplasias 

 

O hormônio tireoidiano, dentre outras ações estimula a diferenciação e proliferação 

celular. Diversos estudos indicam que as alterações nos níveis dos hormônios tireoidianos 

poderiam contribuir para a transformação neoplásica bem como na progressão tumoral 

(CHENG, 2005; KRESS et al., 2009).  A primeira associação entre o HT e câncer foi relatada 

em 1896, quando Beatson utilizou extrato tireoidiano como um potencial tratamento para 

câncer de mama (BEATSON, 1986). Nas últimas décadas, estudos sugerem que o 

hipotireoidismo pode ser um possível fator de risco para diversas neoplasias, como o câncer 

de fígado (REDDI et al., 2007; HASSAN et al., 2009) e neoplasias da tireóide (BOELAERT 

et al., 2006; POLYZOS et al., 2008; FIORE et al., 2010). Em contraste, os baixos níveis dos 

HT parecem ser clinicamente favoráveis em glioblastomas de alto grau (HERCBERGS et al., 

2003). No entanto, no câncer de mama a conexão entre hipotireoidismo e patogênese tumoral 

ainda é uma questão controversa (CRISTOFANILLI et al., 2005; ANGELOUSI et al., 2012; 

HARDEFELDT et al., 2012).  

Recentemente, estudos in vitro e in vivo demonstram que mudanças nos níveis dos HT 

devido a desregulação na expressão das desiodases podem estar envolvidas na proliferação, 

diferenciação, sobrevivência e invasão celular em uma grande variedade tumores (LIN et al., 

2008; PERRA et al., 2009; PINTO et al., 2011). Alterações na expressão das desiodases já 

foram demonstradas em tumores benignos e malignos. Embora o papel do desiodases em 

neoplasias não seja totalmente compreendido, estudos avaliando o perfil de expressão da 

DIO1 e DIO2 relataram níveis diminuídos ou inalterados do RNA mensageiro (RNAm) na 

maioria das neoplasias tireoidianas, com exceção da atividade aumentada da D2 nos CFT e  

CMT (KIM et al., 2003; ARNALDI et al., 2005; MEYER et al., 2008). Redução da expressão 

da D1 também foi descrita em amostras de adenocarcinoma renal, e estudos celulares indicam 

que essa alteração seria mediada através da indução dos microRNAs, miR-224 e miR-383, 

através de ligação direta na região 3’UTR do gene DIO1. De modo interessante, observou-se 

uma correlação inversa entre as alterações específicas na expressão de miR-224 no tumor com 

a expressão da D1 e com a concentração intracelular T3 (BOGUSLAWSKA et al., 2011). de 

maneira semelhante, estudos em amostras de hepatocarcinoma identificaram um conjunto de 
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miRNAs envolvidos na regulação  da região genômica DLK1-DIO3. Os autores mostram que 

a superexpressão do complexo DLK1-DIO3/miRNA foi associada a uma maior taxa de 

metástases e  menor sobrevida global em pacientes com carcinoma hepatocelular (LUK et al., 

2011). 

Alterações no equilíbrio entre ativação (D2) e inativação (D3) do HT parece ser 

fundamental na modulação do balanço entre proliferação e diferenciação celular (DENTICE 

et al., 2007; DENTICE et al., 2012). Níveis aumentados da D3, associados com redução da 

expressão D2, foram observados em amostras de carcinoma basocelular, bem como em 

modelos animais. Além disso, o crescimento de células tumorais implantadas em animais foi 

reduzido drasticamente após a inibição da D3, o que sugere que o hipotireoidismo 

intratecidual, resultante do aumento na inativação hormonal, pode ter um importante papel no 

processo de crescimento tumoral (DENTICE et al., 2007). Do mesmo modo, a expressão 

oposta entre D3 e D2 também ocorre em células tumorais do cólon, e parece ser regulado via 

sinalização Wnt/β-catenina. Estudos experimentais com inibição desta via demonstraram 

redução nos níveis da D3 e indução da D2 e evidenciaram que a presença do T3 ocasionou 

uma redução significativa na proliferação, enquanto estimulou a diferenciação celular 

(DENTICE et al., 2012). Recentemente realizamos estudos avaliando o papel da D3 nas 

neoplasias tireoidianas. Observamos aumento significativo da expressão da DIO3 em 

amostras de CPT e, mais interessante, que o aumento da atividade foi associado com o 

tamanho tumoral e com doença avançada ao diagnóstico. Além disso, a mutação BRAF
V600E

 

esteve diretamente associada com os maiores níveis de RNAm e atividade da enzima. 

Curiosamente, não encontramos expressão da D3 em tumores medulares ou anaplásicos 

(ROMITTI et al., 2012).  

Com base nestes conhecimentos, o objetivo deste estudo foi avaliar o papel da  D3 no 

processo neoplásico, particularmente os mecanismos de sinalização envolvidos na indução da 

D3 observada no CPT. 

 

  

 

 

 

 

 



19 

 

 
 

 

 

 

 

 

 

Parte I 

 

 

 

 

 

 

Signaling Pathways in Follicular Cell-Derived Thyroid 

Carcinomas (review) 

 

 

 

 

 

 

 

 

 

Artigo publicado no International Journal of Oncology 2013 Jan; 42(1):19-28. 

 

 

 



INTERNATIONAL JOURNAL OF ONCOLOGY  42:  19-28,  2013

Abstract. Thyroid carcinoma is the most common malig-
nant endocrine neoplasia. Differentiated thyroid carcinomas 
(DTCs) represent more than 90% of all thyroid carcinomas 
and comprise the papillary and follicular thyroid carcinoma 
subtypes. Anaplastic thyroid carcinomas correspond to less 
than 1% of all thyroid tumors and can arise de novo or by dedif-
ferentiation of a differentiated tumor. The etiology of DTCs is 
not fully understood. Several genetic events have been impli-
cated in thyroid tumorigenesis. Point mutations in the BRAF 
or RAS genes or rearranged in transformation (RET)/papillary 
thyroid carcinoma (PTC) gene rearrangements are observed 
in approximately 70% of papillary cancer cases. Follicular 
carcinomas commonly harbor RAS mutations and paired box 
gene 8 (PAX8)-peroxisome proliferator-activated receptor γ 
(PPARγ) rearrangements. Anaplastic carcinomas may have a 
wide set of genetic alterations, that include gene effectors in the 
mitogen-activated protein kinase (MAPK), phosphatidylino-
sitol 3-kinase (PI3K) and/or β-catenin signaling pathways. 
These distinct genetic alterations constitutively activate the 
MAPK, PI3K and β-catenin signaling pathways, which have 
been implicated in thyroid cancer development and progres-
sion. In this context, the evaluation of specific genes, as well as 
the knowledge of their effects on thyroid carcinogenesis may 
provide important information on disease presentation, prog-
nosis and therapy, through the development of specific tyrosine 
kinase targets. In this review, we aimed to present an updated 
and comprehensive review of the recent advances in the under-
standing of the genetic basis of follicular cell-derived thyroid 
carcinomas, as well as the molecular mechanisms involved in 
tumor development and progression.
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1. Introduction

Thyroid carcinoma is the most common type of malignant 
endocrine neoplasia, accounting for approximately 1% of 
all new malignant diseases with an annual incidence of 
5.9 and 17.3 per 100,000 in men and women, respectively 
(US 2005-2009) (1,2). Follicular cell-derived thyroid neopla-
sias include differentiated thyroid carcinoma (DTC), which 
represents more than 90% of all thyroid malignancies and 
comprise the papillary and follicular thyroid carcinomas 
(FTCs). The anaplastic thyroid carcinoma (ATC) corresponds 
to 1% of all thyroid tumors and can arise de novo or by 
the dedifferentiation of a papillary or follicular tumor (3). 
Medullary thyroid carcinoma (MTC) is a malignancy arising 
from the parafollicular C-cells and accounts for approximately 
3-8% of all thyroid carcinomas (4).

The etiology of DTC is not yet fully understood. External 
radiation is the only exogenous factor which has been clearly 
identified as causing thyroid carcinoma, almost exclusively 
the papillary form. Iodine excess has been associated with 
the increase in the incidence of papillary thyroid carcinoma 
(PTC) (5,6). A number of genetic events have been described 
in thyroid carcinoma pathogenesis. Papillary carcinomas 
commonly present genetic alterations that lead to the activation 
of the mitogen-activated protein kinase (MAPK) pathway (7-9). 
In follicular carcinomas, the induction of both the MAPK and 
phosphatidylinositol 3-kinase (PI3K) cascades is frequently 
observed (10). On the contrary, anaplastic carcinomas harbor 
a wide set of additive genetic alterations, occurring mainly in 
the gene effectors of the MAPK, PI3K and β-catenin signaling 
pathways (11-13). These distinct signaling pathways have been 
implicated in follicular cell-derived thyroid cancer develop-
ment and progression (14-16).
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In this review, we aimed to present a comprehensive account 
of the recent advances in the understanding of the signaling 
pathways in follicular cell-derived thyroid carcinomas, as well 
as the molecular mechanisms involved in tumor development 
and progression.

2. Papillary thyroid carcinoma

PTC represents ~80% of all malignant thyroid tumors. The 
overall incidence of PTC is 7.7 per 100,000 and is increasing, 
in part due to the increase in the detection of small tumors (16). 
PTC is often diagnosed at approximately the 5th decade of 
life and is known to be a slow-growing tumor (17,18). Patients 
usually present with a palpable nodule and the absence of any 
other clinical findings is common (3). The majority of patients 
have a favorable outcome; however, ~10% of the cases have 
tumor recurrence and metastatic disease (18,19).

Aberrant activation of the MAPK pathway due to muta-
tions or gene rearrangements is the most common genetic 
event in PTC (7-9). Point mutations in BRAF or RAS genes and 
(RET)/PTC or NTRK1 rearrangements are mutually exclusive 
and identified in more than 70% of PTCs (7-9). The Fig. 1A 
summarizes the major signaling pathways involved in PTC.

BRAF oncogene. Mutations in the BRAF gene are the most 
common genetic alteration in PTC, occurring in ~45% of 
cases (6). BRAF is a serine-threonine kinase protein, member 
of the RAF (v-raf-1 murine leukemia viral oncogene homolog) 
family, which comprises the serine/threonine-specific 
kinase  effectors of the MAPK cascade (7,20,21). Briefly, the 
MAPK cascade effects initiate upon RAS activation, which 
recruits BRAF to the plasma membrane initiating its activa-
tion. Once activated, BRAF phosphorylates MEK, which in 
turn provides the signal to activate the tyrosine, ERK, in the 
cytosol and nucleus, leading to cell proliferation, migration and 
survival (22,23) (Fig. 1A). Approximately 95% of all BRAF 
mutations involve a T>A transversion at gene position 1799, 
resulting in valine to glutamate amino acid substitution at posi-
tion 600 of the protein (V600E). Other described alterations 
in the BRAF gene include the A>G transversion at gene posi-
tion 1801 (K601E), fusion with the A-kinase anchor protein 9 
(AKAP9) gene and small in-frame insertions or deletions 
around codon 600 (24-26).

The presence of BRAF mutations in micro-PTC (~40%) 
and benign tumors (9,27,28) suggests a role of this alteration 
in the early stages of PTC development. BRAFV600E is an 
oncogenic protein with markedly elevated kinase activity 
that overactivates the MAPK pathway (34,35). Studies using 
BRAFV600E-transgenic mice have shown the development 
of PTC with similar properties to those observed in human 
BRAF-positive PTCs (29), whereas mice with the constitutive or 
doxycycline-inducible BRAF-mutated gene develop infiltrative 
PTC with a high rate of extrathyroidal structures, vascular inva-
sion and a poorly differentiated aspect (30,31). The induction of 
BRAFV600E mutation has been shown to abolish the expression 
of several thyroid-specific genes, radioiodine uptake and cause 
pronounced hypothyroidism, which may be partially explained 
by the down-regulation of the thyroid hormone activating type 1 
and 2 deiodinases and induction of the thyroid hormone inacti-
vating type 3 deiodinase, as recently described (31,33).

BRAF mutations are typically identified in classical and tall 
cell variant of PTC and are associated with a more aggressive 
tumor behavior (9,34,35). The high growth rates observed in 
BRAFV600E tumors may be explained partially by the MAPK-
induced hyperphosphorylation with consequent inhibition of 
the retinoblastoma (RB) protein, dependent transcription factors 
(E2F) and p27 of cyclin-dependent kinase (CDK) activity (36). 
Moreover, the BRAF oncogene induces the expression of 
matrix metalloproteinases (MMPs), a large group of enzymes 
that regulate cell-matrix composition and are important factors 
of tumor invasiveness (37-39). Previous studies have suggested 
that MMP proteins are modulated according to the intensity 
of MAPK pathway activation and/or signal transducer and 
activator of transcription (STAT) expression, which may 
explain the mechanism of induction of these proteins in BRAF-
mutated PTCs and the increased propensity of these tumors to 
invade surrounding tissues (37,40). The BRAF-mutated protein 
also induces nuclear factor-κB (NF-κB). Thyroid cells (WRO) 
harboring this oncogene display increased levels of activity in 
the NF-κB pathway, which results in the upregulation of anti-
apoptotic factors and the induction of cell invasion (40).

Recently, a novel inhibitory mechanism that may operate 
in BRAFV600E-induced PTC was shown. The presence of 
BRAFV600E mutation abolished the macrophage stimulating 
1/forkhead box O3 (MST1/FOXO3) pathway transactivation 
in a thyroid cell line (FRO), resulting in the suppression of 
p21 and p27 CDK inhibitors and interrupting the apoptotic 
process. Accordingly, the development of BRAFV600E trans-
genic mice with the MST1 knockout leads to abundant foci 
of poorly differentiated thyroid carcinoma and large areas 
without follicular architecture or colloid formation, suggesting 
that the activity of the MST1/FOXO3 pathway determines the 
phenotype of BRAFV600E tumors (41).

RET/PTC rearrangements. The RET proto-oncogene, located 
on chromosome 10q11.2, encodes a tyrosine kinase receptor. 
The RET protein is usually expressed in cells derived from the 
neural crest and gain-of-function mutations are associated with 
MTC (42). In PTC, genomic rearrangements juxtapose the RET 
tyrosine kinase domain to unrelated genes, thereby creating 
dominantly transforming oncogenes, denominated RET/PTC. 
The RET/PTC rearrangements are the 2nd most common 
genetic alteration described in PTC and observed in ~13-43% 
of cases, mostly in pediatric cancers or in individuals exposed 
to ionizing radiation from nuclear accidents (12,43-45). At least 
12 types of RET/PTC rearrangements have been reported, all 
originating from the RET fusion to different partners (44,46). 
RET/PTC1 comprises up to 60% of the rearrangements and 
is derived from an intrachromosomal rearrangement (10q), 
leading to the fusion of the RET tyrosine kinase domain to 
the H4 gene (D10S170). The RET/PTC1 encodes a 585-amino 
acid protein with unknown function (47). RET/PTC3 accounts 
for 20-30% of the rearrangements and is formed by the RET 
gene fusion with the nuclear receptor coactivator 4 (NCOA4) 
gene (also known as ELE1, RFG or ARA70) (44,47).

Papillary tumors harboring the RET/PTC1 rearrangement 
commonly exhibit the classical papillary histology, whereas 
RET/PTC3 tumors normally present the solid variant (48). 
RET/PTC tumors tend to be small, with a favorable outcome 
and usually do not progress to a more aggressive behavior and/
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or undifferentiated thyroid carcinoma (9,49,50). This alteration 
has also been associated with a younger age at diagnosis and 
a higher rate of lymph node metastasis (9,49). The high preva-
lence of RET/PTC in occult (42%) or microscopic PTC (77%) 
as well as in follicular adenoma (45%), may indicate a puta-
tive role of this rearrangement during the early stages of PTC 
development (51,52). Accordingly, studies performed using 
transgenic mice carrying RET/PTC1 and/or RET/PTC3 have 
shown that the PTC tumors which develop in these animals are 
similar to those occurring in humans (53,54).

The RET/PTC-derived mechanisms of tumor induction 
initiate with the fusion of protein partners, resulting in the 
ligand-independent autophosphorylation of the RET protein. 
The RET intracellular domain contains at least 12 autophos-
phorylation sites, and 11 of them are preserved in the RET/
PTC protein (55). The Y1062 and Y1015 RET residues are 
constitutively phosphorylated and are required for cell trans-
formation (56). These residues are essential binding sites 
for several proteins, which in turn, lead to the activation of 
the MAPK and PI3K/AKT signaling pathways and play an 
essential role in RET/PTC signaling with downstream cellular 
effects on migration and proliferation (57-59). 

Another dysfunctional signaling pathway identified in 
65-90% of RET/PTC-positive tumors is β-catenin, which 
is involved in gene transcription and cell adhesion regula-
tion (60,61). The β-catenin pathway can be directly activated by 
several mechanisms: via RET tyrosine residue, cAMP response 
element-binding (CREB), glycogen synthase kinase 3 phos-
phorylation (GSK3-S) or via effectors of the MAPK and PI3K 
pathways (61,62). The increase in the free β-catenin protein 
pool promotes proliferation and invasion, possibly due to the 
interaction with transcriptional factors, such as the T-cell factor/
lymphoid enhancer factor (TCF/LEF), c-Myc (v-myc myelocy-
tomatosis viral oncogene homolog), or cyclin D1 (60,61,63).

RAS oncogene. RAS genes (H-RAS, K-RAS, and N-RAS) 
encode highly related G-proteins which play a central role 
in intracellular signal transduction by the activation of the 
MAPK and other signaling pathways, such as PI3K/AKT (see 
below) (15). RAS gene mutations are found in 10-43% of PTCs, 
particularly in the follicular variant (64-66). The RAS point 
mutations generally occur in codons 12, 13, or 61 of H-RAS, 
K-RAS, or N-RAS proteins. RAS-mutated PTC tends to be 
encapsulated and exhibits a low rate of lymph node metastasis 
(9,65). However, previous studies have reported that this muta-
tion may also be associated with a more aggressive phenotype 
and a higher incidence of distant metastasis (66,67). The 
molecular mechanism proposed for RAS-derived tumorigen-
esis is the constitutive activation of distinct pathways involved 
in prolife ration, differentiation and cell survival processes (66).

NTRK1 rearrangements. The neurotrophic tyrosine kinase 
receptor, type 1 (NTRK1) gene, located on chromosome 1, 
encodes the high-affinity nerve growth factor (NGF) receptor 
and is activated through the MAPK pathway (68). NTRK1 
rearrangements are usually found in <10% of PTCs and result 
from the NTRK1 gene fusion with different partners (69,70,71). 
Experimental evidence suggests that the NTRK1 oncogene 
represents an early event in the process of thyroid carcino-
genesis. Transgenic mice carrying NTRK1 oncogene develop 

thyroid hyperplasia and PTC (72). Additionally, crossing 
NTRK1 mice with p27kip1-deficient mice has been shown 
to increase the penetrance of thyroid cancer and shorten the 
tumor latency period (73). NTRK1 rearrangements are asso-
ciated with a younger age at diagnosis and a less favorable 
outcome (69,70).

3. Follicular thyroid carcinoma

The FTC represents 10-15% of thyroid cancers. These tumors 
are generally unifocal and present less lymph node involvement 
(<5%) than PTCs. By contrast, distant metastases, mainly to 
the lungs and bones, are more frequent at disease presentation 
(~20%) (4). Although former studies have indicated that FTCs, 
particularly the invasive form, have a poorer prognosis than 
PTCs (74,75), a recent study that evaluated more than 1,000 
patients did not find differences in tumor-specific survival 
between PTC and FTC, after controlling for age, primary 
tumor size, extrathyroidal invasion or distant metastasis at 
diagnosis (76).

The most common genetic events observed in follicular 
carcinomas are point mutations in RAS genes and the rear-
rangements between the thyroid-specific transcription factor 
gene and the peroxisome proliferator-activated receptor gene 
[paired box gene 8 (PAX8)-peroxisome proliferator-activated 
receptor γ (PPARγ) rearrangements] (80%). Similarly to what 
is described in PTC, their oncogenic effects occur through the 
activation of the MAPK cascade; however, the induction of the 
PI3K pathway is an important event in follicular pathogen-
esis (15). Fig. 1B summarizes the major signaling pathways 
involved in FTC.

RAS oncogene. Activating mutations in the RAS gene are 
observed in 18-52% of follicular carcinomas and are associated 
with tumor dedifferentiation and a less favorable prognosis 
(77,78). A number of studies have suggested that RAS mutations 
are an early event in follicular thyroid tumorigenesis, since 
they are identified in up to 50% of benign follicular tumors 
(77,79,80,82,83). Studies using transgenic mice carrying the 
mutated N-RAS (Gln61Lys) oncogene demonstrated that these 
rodents developed follicular adenomas (11%), invasive follic-
ular carcinomas (~40%) and, in certain cases, tumors with a 
mixed papillary/follicular morphology. Moreover, 25% of these 
carcinomas displayed large, poorly differentiated areas, with 
vascular invasion and with lung, bone or liver metastasis (81).

The RAS-mutated protein mediates its effects on cellular 
proliferation in part by activation of a cascade of kinases: RAF 
(A-RAF B-RAF and C-RAF), dual-specificity mitogen-acti-
vated protein kinases (MEK1/2), extracellular signal-regulated 
kinases (ERK1/2) and p38 mitogen-activated protein kinase. 
RAS also activates the PI3K pathway, via a direct interaction 
with the catalytic subunit of the protein. The PI3K activation 
leads to the accumulation of the 2nd messenger, phosphati-
dylinositol 3,4,5-trisphosphate (PIP3), resulting in pyruvate 
dehydrogenase kinase isozyme 1 (PDK1) and v-akt murine 
thymoma viral oncogene homolog (AKT) activation (85,86) 
(Fig. 1B). Previous studies using mice harboring a phosphatase 
and tensin homolog (PTEN) gene deletion and a KRASG12D 

mutation, have shown that the separate activation of MAPK or 
PI3K pathways, is unable to transform thyroid follicular cells; 
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Figure 1 Schematic presentation of the signaling pathways involved in follicular-derived thyroid carcinoma. (A) In papillary thyroid carcinoma, BRAFV600E 
or RAS point mutations, or RET/PTC rearrangement result in a constitutively phosphorylated protein which leads to a potent activation of downstream effec-
tors of the MAPK pathway. (B) In follicular thyroid carcinoma, RAS-mutated protein can mediate its cellular effects either by the activation of the MAPK 
cascade or the PI3K pathway, while PAX8-PPARγ rearrangement leads to the abrogation of the PTEN inhibitory effect and the PI3K signaling activation. (C) 
In anaplastic thyroid carcinoma, the MAPK cascade is induced by RAS or BRAF mutations, while copy gain or mutations of the PI3K and PTEN mutations are 
associated with the constitutive activation of PI3K/AKT pathway. Additionally, β-catenin mutations activate the β-catenin/E-cadherin pathway, whereas TP53 
gene alterations lead to aberrant cell cycle regulation.
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however, their simultaneous activation is highly oncogenic, 
leading to locally invasive follicular carcinomas and distant 
metastasis (84).

PAX8-PPARγ rearrangements. The thyroid-specific tran-
scription factor (PAX8) gene is a critical regulator of thyroid 
differentiation and growth (87). PPARγ is a ligand-dependent 
nuclear transcription factor highly expressed in adipose tissue, 
where it plays a critical role in adipocyte differentiation and 
fat metabolism regulation (88). The PAX8-PPARγ rearrange-
ment arises through a chromosomal translocation, fusing the 
5' portion of the PAX8 gene with the entire coding sequence of 
the PPARγ gene (chromosomes 3p25 and 2q13). It is detected 
in ~35% of FTCs (10,89,90).

The PAX8-PPARγ rearrangement leads to strong induction 
of the PPARγ protein and the consequent abrogation of the 
normal PPARγ function (95,96). Under normal conditions, 
PPARγ inhibits cell proliferation and induces apoptosis via 
downstream pathways. The loss of these functions results in 
uncontrolled cell growth (14). PPARγ overexpression abol-
ishes the PTEN-inhibitory effect on immunoactive AKT, 
which in turn induces the PI3K signaling pathway (58,97). The 
PAX8-PPARγ rearrangement also activates the MAPK, trans-
forming growth factor β (TGFβ) and Wnt/β-catenin (wingless 
in Drosophila) signaling pathways. The increased expression 
of the C-terminal binding protein (CTBP2) gene has been 
observed in the PAX8-PPARγ-positive-tumors (95). CTBPs 
are co-repressor proteins associated with several transcrip-
tional factors involved in Wnt, TGFβ and MAPK signaling 
activation, thus explaining their major role in follicular tumor 
development (98).

 Patients with FTC harboring the PAX8-PPARγ rearrange-
ment are usually diagnosed at a young age, have a small tumor 
size and the majority of tumors are overtly invasive at presen-
tation (10,89). These findings, however, were not reproduced in 
other studies and the impact of PAX8-PPARγ on the biology 
and behavior of FTCs remains controversial (10,92).

Follicular adenomas have been shown to have lower 
frequency rates of PAX8-PPARγ rearrangements, suggesting 
that this chromosomal translocation may be involved in the 
early phases of the neoplastic process of FTC, possibly even 
in premalignant lesions (90,91,93). Transfection studies of 
PAX8-PPARγ in thyroid follicular epithelial cells have demon-
strated accelerated growth rates and a lower number of cells in the  
G0/G1 resting state (14,94).

4. Anaplastic thyroid carcinoma

ATC, also known as undifferentiated thyroid carcinoma, is 
the most aggressive form of thyroid neoplasia. It can originate 
de novo or represent an advanced stage of follicular cell-
derived thyroid tumors (4,99). Anaplastic tumors represent <1% 
of all thyroid tumors and their annual incidence is ~1-2 cases 
per 1,000,000 with a higher overall incidence in endemic goiter 
areas (100,101). The ATC typical presentation is advanced 
disease at diagnosis. Patients with anaplastic carcinoma usually 
have widespread local invasion and distant metastases, most 
frequent in the lung, pleura, bone and brain (100). This tumor 
has poor or no response to conventional therapeutic modalities. 
The median survival time after diagnosis is <1 year (102,103). 

A younger age (<60 years), smaller tumor size (<7 cm) and 
restricted disease have been associated with a lower mortality 
rate on multivariate analysis (104).

ATCs have been described as carrying multiple distinct 
genetic alterations with a high prevalence of mutations in 
MAPK effectors (13,21). Mutations in the TP53 gene, β-catenin 
and PI3K cascade also play a critical role in ATC develop-
ment, promoting the dedifferentiation of a previously well 
differentiated thyroid tumor (11,105,106). Fig. 1C summarizes 
the signaling pathways involved in ATC.

Mutations in gene effectors of the MAPK pathway. MAPK acti-
vating genetic alterations have been described to be involved 
in the development/progression of ATCs. ATC tumors present 
a significant prevalence of RAS (6-55%) and BRAF mutations 
(24-50%) (13,14,107). By contrast, RET/PTC, NTRK and 
PPARγ-PAX8 rearrangements are rarely observed in these 
undifferentiated tumors, supporting the hypothesis that DTCs 
associated with these rearrangements do not usually progress 
to anaplastic form (108,109).

BRAFV600E mutation is typically found in ATC tumors which 
contain areas of well-differentiated PTC, but also in poorly 
differentiated and anaplastic tumor areas. These observations 
suggest that although this mutation may occur early in tumori-
genesis, it is not sufficient to initiate the dedifferentiation process. 
However, it is conceivable that BRAF mutations may predispose 
to additional genetic alterations which in turn activate more 
aggressive pathways and lead to dedifferentiation (15,110,111). Of 
note, BRAFV600E mutation has also been observed in lymph-node 
metastasis of ATCs (111). Of note, patients with ATCs harboring 
BRAF mutations have a higher mortality rate than those patients 
presenting with RAS or with no identified mutation, indicating a 
negative prognosis of these genetic alterations during all stages 
of thyroid cancer progression (13).

RAS mutations are found in a high prevalence in ATCs 
(6-55%) (13,14,77). A previous study suggested that the RAS 
effect may be due to the promotion of chromosomal insta-
bility, since the expression of constitutively activated RAS 
destabilizes the genome of PCCL3 thyroid cells, predisposing 
to large scale genomic abnormalities (112).

Genetic alterations in genes involved in the activation of the 
PI3K pathway
PIK3CA mutations and copy number gains. The PIK3CA gene 
encodes a catalytic subunit of PI3K and has been described 
to be mutated in 12-23% of ATC cases, normally restricted 
to the undifferentiated thyroid components. Previous studies 
have shown a preferential expression of PIK3CA mutations 
during the later stages of thyroid cancer, suggesting that this 
event may be more important in ATCs (12-23%) than in DTCs 
(PTCs, ~2% and FTCs, <10%) (11,106). 

PIK3CA copy number gains are the 2nd most frequent 
event in ATC occurring in ~38-61% of tumors (14,106). Of 
note, this occurs almost exclusively in the undifferentiated 
component of the tumor. The copy number gain induces the 
activation of the PI3K cascade through the enhanced activity 
of AKT, leading to thyroid cancer progression. Of note, the 
PIK3CA mutations and copy number gain may co-exist with 
other somatic mutations in ATC, reinforcing the activation of 
the distinct signaling pathway in these tumors (11).
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PTEN gene alterations. PTEN is a tumor suppressor gene 
that antagonizes signaling through the PI3K pathway. Its 
action occurs by removing a phosphate group from the inositol 
ring of PIP3, which reduces the downstream activity of the 
AKT kinase, thereby inducing cell cycle arrest, apoptosis, or 
both (113). Several genetic alterations in the PTEN suppressor 
gene have been described in ATCs: 12% present a mutated 
form (106,108), 28% gene silencing (114) and 69% the hyper-
methylated PTEN gene (115). These alterations lead to PTEN 
inactivation by different mechanisms, with a prominent role in 
the pathogenesis of follicular epithelium-derived thyroid carci-
nomas, particularly in the most aggressive or undifferentiated 
forms (114,115). Moreover, PI3K activation produced by down-
regulated PTEN has been shown to correlate with regions of 
tumor invasion and metastasis (58,116). Of note, studies using 
transgenic mice with a deletion of PTEN or RAS mutations 
have shown that the presence of both genetic events is required 
to trigger this aggressive form of thyroid cancer (84).

TP53 mutations. The TP53 gene encodes a nuclear protein 
that can induce cell cycle arrest, senescence and apoptosis in 
response to various stimuli. Alterations in the p53 pathway 
may contribute to carcinogenesis, disease progression and 
resistance to therapy (117). In thyroid tumors, TP53 mutations 
are commonly observed in anaplastic carcinomas (~70%) and 
are rarely described in well-differentiated thyroid carcinomas 
(0-9%) (12,105,118). This suggests that TP53 mutations are a 
late event in tumor progression and that this gene may play a 
critical role in the transformation of DTC into the anaplastic 
form (105). The frequent association of p53 inactivation with 
PI3K activation may contribute to genomic instability, leading 
cancer cells to become resistant to apoptosis and to escape 
from any growth restriction. This contributes to a rapidly 
enlarging neck mass as well as to chemotherapy and radio-
therapy resistance commonly observed in these tumors (11).

β-catenin genetic alterations. Genetic alterations in the 
β-catenin (CTNNB1) gene are observed in ~65% of thyroid 
anaplastic tumors. Gain-of-function mutations can promote 
β-catenin nuclear translocation which consequently trig-
gers the transcription process (119,120). The expression of 
E-cadherin, a component of the β-catenin pathway, normally 
expressed in thyroid tissue, is usually absent in undifferenti-
ated thyroid carcinomas (121). These changes appear to play a 
pathogenic role in thyroid tumor invasion and regional lymph 
node metastasis, due to a decrease in intercellular adhesion 
and enhancement of cell motility (122). The lack of E-cadherin 
expression is associated with an adverse prognosis for patients 
with thyroid carcinoma (123).

5. Clinical Implications: Potential therapeutic targets

DTCs demonstrate indolent behavior in the majority of 
patients and can be effectively treated by surgery followed 
by radioactive iodine and/or thyroid hormone suppressive 
therapy (124,125). In patients with metastatic disease, radioac-
tive iodine therapy can be effective in some cases, whereas 
suppressive thyroid hormone therapy can help to delay the 
pace of the disease (125,126). Nevertheless, for those patients 
with metastatic DTC that progresses despite radioiodine and 
thyroid hormone therapy, no effective treatments are currently 
available.

Over the last decades, cancer research has been predomi-
nantly focused on the genetic alterations and the advances in 
the understanding of the molecular events involved in differen-
tiated thyroid carcinogenesis have allowed for the development 
of new therapies designed for patients with metastatic disease 
refractory to radioactive iodine treatment. Specific tyrosine 
multikinase inhibitors to target key molecules such as BRAF, 
RET/PTC rearrangements, vascular endothelial growth factor 
receptors (VEGFRs) and platelet-derived growth factor recep-

Table I. Clinical trials and follicular cell-derived thyroid tumors response.

Trade name Compound Target Tumor No. of Partial responsea  Stable diseaseb Refs.
   type patients [% (n)] [% (n)]

Sorafenib BAY 43-9006 BRAF (BRAFV600E) PTC 41 15 (6) 56 (23) (127)
  VEGFR1-3, PDGFR, DTC 31 25 (8) -  (128)
  RET, RET/PTC DTC 30 23 (7) 34 (10) (129)
Axitinib AG-013736 VEGFR1-3, PDGFR, PTC 30 26 (8) 40 (12) (131)
  c-Kit FTC 15 40 (6) 46 (7)
   ATC 2 50 (1) -
Pazopanib W786034 VEGFR1/2, PDGFR DTC 39 49 (18) -  (132)
Motesanib AMG706 VEGFR1-3, RET, c-kit DTC 93 14 (13) 67 (62) (133)
Gefitinib ZD1839 EGFR DTC 25 0  12 (3) (134)
Selumetinib AZD6244 MEK1/2 PTC (IR) 32 3 (1) 54 (21) (135)
PLX4032 RG7204 BRAFV600E PTC 3 33 (1) 66 (2) (130)

DTC, differentiated thyroid carcinoma; PTC, papillary thyroid carcinoma (IR, iodine-131 refractory); FTC, follicular thyroid carcinoma; 
ATC, anaplastic thyroid carcinoma. aPartial response: a decrease of at least 30% in the sum of the largest diameter of target lesions, relative to 
the corresponding sum at baseline. bStable disease: the absence of shrinkage sufficient for a partial response and the absence of enlargement 
sufficient for progressive disease, relative to the corresponding sum at baseline.
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tors (PDGFR) have been evaluated as potential alternatives 
to DTC treatment. Table I summarizes the results obtained 
to date in several clinical trials. Phase II studies using BAY 
43-9006 (sorafenib) have shown partial response (15-25%) and 
stable disease (34-56%) in progressive DTC patients and the 
median progression-free survival was significantly longer in 
patients harboring BRAF mutations (127-129). A recent study 
using PLX4032, an inhibitor of mutant BRAF, in metastatic 
melanoma patients evaluated the effect of this drug in 3 PTC 
patients. The response lasted 8 months in 1 patient (progres-
sion-free lasted for 12 months) and stable disease lasted 11 and 
13 months in each of the other 2 patients (130). Although these 
compounds have demonstrated the most impressive clinical 
responses to date in the treatment of advanced thyroid cancer, 
the low rate of partial response, the rare report of complete 
responses and the emergence of eventual progression, point 
out to the need to develop either more effective single agents 
or to identify rational combinations of therapeutic targets.

6. Conclusion

Thyroid carcinogenesis consists of a complex process with 
a large number of molecular alterations among several 
thyroid neoplasias. The set of genetic alterations observed in 
follicular-cell derived thyroid carcinomas activates specific 
pathways, such as the MAPK, PI3K and β-catenin signaling 
pathways, which have been shown to play an important role 
in thyroid cancer initiation and progression. The screening for 
follicular cell-derived specific mutations in association with 
traditional diagnosis methods has improved the diagnostic 
accuracy, impacting the prognosis of these tumors. Moreover, 
the advances in the knowledge of the effects of thyroid onco-
genes and related mechanisms of action have allowed for the 
development of multikinase inhibitor targets, promoting new 
perspectives on therapy to aggressive thyroid tumors.
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Abstract 

Type 3 deiodinase (DIO3, D3) is reactivated in human neoplasias. Increased levels of D3 in 

papillary thyroid carcinoma (PTC) were associated with tumor size and metastatic 

disease. Objective: To investigate the signaling pathways involved in DIO3 upregulation in 

PTC. Material and Methods: PTC cell lines (K1 and TPC-1 cells) were used to evaluate 

DIO3 regulation. DIO3 mRNA levels were measured by real-time PCR, and D3 activity was 

measured by ion-exchange column chromatography. Protein expression was determined by 

Western blot analysis. DIO3 gene silencing was performed with siRNA transfection. Results: 

DIO3 mRNA levels and activity were readily detected in K1 (BRAF
V660E

) and, at lower levels, 

in TPC-1 (RET/PTC1) cells (~5-fold, P<0.001; 14.9 vs. 8.1 fmol/mg.prot.24hs, P=0.02; 

respectively). Similarly, the levels of DIO3 mRNA were higher in the PTC samples harboring 

the BRAF
V600E

 mutation compared with those with the RET/PTC1 rearrangement or no 

mutation (8 vs. 5.8 vs. 5.4-fold; P<0.001; respectively). Specific inhibition of MEK (U0126; 

10-20 μM) or p38 (SB203580; 10-20μM) was associated with decreases in DIO3 expression in 

both cell lines. Additionally, the blockage of SHH activation by cyclopamine (10 µM) resulted 

in markedly reduced DIO3 levels in K1 and TPC-1 cells. Interestingly, siRNA-mediated DIO3 

gene silencing decreased cyclin-D1 expression, while it increased the proportion of cells in the 

G1 phase of the cell cycle, thereby downregulating cell proliferation. Conclusions: Sustained 

activation of the MAPK and Sonic Hedgehog pathways modulates the levels of DIO3 

expression in PTC. Importantly, DIO3 silencing was associated with decreases in cell 

proliferation, which further suggests a role of the molecule in tumor growth and 

aggressiveness.  
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Introduction  

 

Thyroid hormone influences a wide variety of biological processes, including the 

balance between cell proliferation and differentiation. Thyroid hormone homeostasis is 

critically regulated by the synchronized activity of the iodothyronine deiodinases. Type 1 (D1; 

DIO1) and type 2 deiodinases (D2; DIO2) catalyze the conversion of the pro-hormone T4 

(thyroxine) into the biologically active form T3 (triiodothyronine) via outer-ring deiodination. 

In contrast, type 3 iodothyronine deiodinase (D3; DIO3) catalyzes the inactivation of T4 and 

T3 via inner ring deiodination (1). Extensive data indicate an association between the 

thyroidal status and tumor pathogenesis. However, the role of deiodinases in thyroid cancer 

and other human neoplasias has not yet been established. Several studies have reported 

changes in the expression of deiodinases in benign and malignant tumors (2-4).   

DIO3 reactivation in neoplastic tissues occurs at the transcriptional level, and it might 

to be driven by disruption in the activation of several signaling pathways (5-8). Interestingly, 

D3, a known fetal protein, was demonstrated to be reactivated in human neoplasias and 

associated with tumor behavior. Induced levels of D3 were demonstrated in proliferating 

keratinocytes as well as in mouse and human malignant basal cell carcinoma (BCC). The 

authors also demonstrated that the DIO3 induction caused by sonic hedgehog (SHH)/GLI 

activation, led to reduction of intracellular active thyroid hormone levels, thus resulting in 

increased cyclin D1 and keratinocyte proliferation. Accordingly, D3 knockdown promoted a 

significant reduction in the growth of BCC xenografts in nude mice (5). Moreover, higher 

DIO3 expression was demonstrated in human intestinal adenomas and carcinomas as 

compared with healthy intestinal tissue. D3 seems to be a direct transcriptional target of the β-

catenin/TCF complex once that experimental attenuation of β-catenin reduced D3 levels and 

induced type 2 deiodinase. Additionally, under D3 inhibition, excess of T3 reduced cell 

proliferation and promoted differentiation in cultured cells and in xenograft mouse models 

(6). 

Papillary thyroid cancer (PTC) is the most common malignant thyroid tumor, 

occurring in 85-90% of cases of malignant thyroid tumor (9, 10). Aberrant activation of 

mitogen-activated protein kinase (MAPK) signaling pathway is a hallmark in PTC and is 

generally caused by point mutations and/or gene rearrangements. The BRAF
V600E

 point 

mutation is the most common genetic event, observed in ~50% of PTC cases, while RET/PTC 

rearrangement occurs in ~20% and RAS mutations in 10-15% of cases (11-14). We have 

recently demonstrated that there is an upregulation of DIO3 in PTC samples. Interestingly, the 
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presence of BRAF
V600E

 mutation was associated with the highest levels of DIO3 mRNA and 

activity. Remarkable, increased D3 levels were associated with a larger tumor size and the 

presence of local and/or distant metastasis at diagnosis. Conversely, decreased levels DIO2 

were observed. Augmented D3 expression was also shown in follicular thyroid carcinoma but 

not in medullary or anaplastic thyroid carcinoma samples (8). 

In the present study, we sought to determine the signaling pathways involved in DIO3 

upregulation in the PTC as well as to elucidate whether DIO3 induction could interfere with 

cell proliferation.   

 

Material and Methods    

 

Cell Culture 

Studies evaluating DIO3 gene regulation were performed in two human PTC-derived 

cell lines, which endogenously express the DIO3 gene; these were the K1 cell line, which 

carries the BRAF
V600E

 mutation, and TPC-1 cells harboring the RET/PTC1 rearrangement. K1 

cells were grown in DMEM: Ham’s F12:MCDB 105 (2:1:1; Invitrogen) plus 2 mM glutamine 

and 10% fetal bovine serum (FBS). TPC-1 cells were grown in DMEM containing 5-10% 

fetal bovine serum. Additionally, we used a medullary thyroid carcinoma cell line, TT cells, 

to determine the effect of SHH on DIO3 reactivation. TT cells were grown in RPMI 

(Invitrogen, Carlsbad, CA, USA) medium supplemented with 10% FBS. All cells were 

maintained at 37ºC in a humidified atmosphere of 5% CO2 and 95% air, and the culture 

medium was changed three times a week.  

 

Human PTC samples 

To the present study we selected PTC patients from the sample used in our previous 

study (Romitti, 2012). Neoplastic and surrounding normal human thyroid tissues were 

collected from fourteen unselect patients diagnosed with PTC at the Endocrine or Head and 

Neck Surgery Divisions at Hospital de Clínicas de Porto Alegre, Brazil. The attending 

physicians independently performed the surgery. Tumors were histologically classified 

according to WHO recommendations (15). The study was approved by the Ethical Committee 

of the Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. 
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BRAF
V600E

 mutation and RET/PTC rearrangement analysis 

Fourteen PTC samples and surrounding thyroid tissues were available for analysis. 

The BRAF
V600E

 analysis was performed by direct sequencing according previously described 

(Romitti, 2014). 

For RET/PTC1 detection, total RNA was extracted from PTC samples using the Trizol 

Reagent and cDNA was generated using the Super Script III First-Strand Synthesis System 

(Invitrogen). Detection of RET/PTC rearrangement was performed by RT-PCR. Here, we 

used the forward primer for H4 gene and the reverse primer for the TK domain of RET 

(forward 5′-AGCGCCAGCGAGAGCGACACG-3′, reverse 5′-

TACCCTGCTCTGCCTTTCAGATGG-3′; Nested: forward 5′-

GTCGGGGGGCATTGTCATCT-3′, reverse 5′-AGTTCTTCCGAGGGAATTCC-3′). PCR 

conditions were performed according to a previously described protocol (16). Afterwards, ten 

microliters of the PCR product were analyzed by electrophoresis in a 1.5% agarose gel. TPC-

1 cells were used as a positive control. Positive samples were subjected to direct sequencing 

to confirm the presence of RET/PTC rearrangement. 

 

Real-time PCR  

Total RNA was extracted from K1 and TPC-1 cells using the RNeasy minikit (Qiagen) 

while to PTC samples and surrounding thyroid tissues were used Trizol Reagent and 1 μg of 

RNA was reverse transcribed into cDNA using using the SuperScript III First-Strand 

Synthesis System for RT-PCR (Invitrogen Life Technologies), following the manufacturer's 

protocol for the oligo (dT) method. RT-qPCR experiments were performed in a 7500 Fast 

Real-Time PCR System Thermal Cycler with 7500 FAST System Sequence Detection 1.4 

Software (Life Technologies - Applied Biosystems). Experiments were performed by real-

time monitoring of the increase in fluorescence of SYBR Green dye. The oligonucleotides 

used were as follows: DIO3, 5′-TCCAGAGCCAGCACATCCT-3′ and 5′-

ACGTCGCGCTGGTACTTAGTG-3′; GAPDH, 5´-ACCCACTCCTCCACCTTTG-3´ and 5´-

CTCTTGTGCTCTTGCTGGG-3´; cyclophilin A (reference gene), 5′-

GTCAACCCCACCGTGTTCTTC- 3′ and 5′-ACTTGCCACCAGTGCCATTATG-3′. Each 

sample was assayed in triplicate and a negative control was included in each experiment. 

Standard curves representing 5-point serial dilution of cDNA were analyzed and used as 

calibrators of the relative quantification of product generated in the exponential phase of the 

amplification curve. The r
2
 was greater than 0.99, while the amplification efficiency was 

higher than 98%. Quantification of DIO3 and GAPDH cDNA were performed by relative 
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quantification using the comparative ΔΔCT method and expressed relative to the reference 

gene (cyclophilin A). Changes in gene expression were expressed as relative fold difference 

(n-fold change) or as arbitrary units (AU).  

 

Inhibition of MAPK and SHH signaling 

 To evaluate the effect of MAPK signaling activation on DIO3 induction in K1 and 

TPC-1 cell lines, we performed studies using specific inhibitors to the signaling effectors 

MEK (U0126: 10-20 µM; Sigma-Aldrich), p38 (SB203580: 10-20 µM; Sigma-Aldrich) and 

BRAF-mutated (PLX4032: 3 µM; Selleck Chemicals). Additionally, to assess the role of the 

Sonic Hedgehog pathway on DIO3 regulation, we used the specific inhibitor of the 

Smoothened (a SHH signaling effector), cyclopamine (10 µM, Sigma-Aldrich). The 

recombinant Shh (1 µg/ml) was used to induce SHH activation in TT cells. Controls were 

incubated with medium + vehicle (1% DMSO). Cells were incubated during 24 hours and 

then were harvested and processed for total RNA or total protein extraction. All analyses were 

performed in triplicate in at least two independent experiments. 

 

D3 activity assay 

D3 activity was determined in PTC cells by ion-exchange column chromatography 

(17). After concluding the experiments, 300 μl of medium was collected, and the reaction was 

stopped with 200 μl of horse serum and 100 μl 50% TCA, which was followed by 

centrifugation at 12,000 g for 2 minutes to precipitate the nonmetabolized [125I]T3. The 

supernatant was used to determine the [125I]T2 and [125I]T1 levels. The Sephadex LH-20 

column was equilibrated with 0.1 M HCl, and an equal volume of 0.1 M HCl was added to 

500 μl samples and then mixed. Stepwise elution was performed by successive application of 

2x 1 ml of 0.1 M HCl (for 125I– release), 6x 1 ml of 0.1 M NaOH-ethanol (8:1 v/v [125I] for 

T1 release), and 4x 1 ml of 50% ethanol in 0.1 M NaOH (1:1 v/v [125I] for T2 release). The 

1-ml fractions were collected and counted for radioactivity. The D3 activity was calculated by 

multiplying the fractional conversion by the T3 concentration in the media and expressed as 

T3 inactivation (fmol/mg protein per 24 hours).  

 

Western Blot Analysis 

Cultured cells were lysed and prepared for Western blot analysis as previously 

described (18). Afterwards, 30-50 μg of each sample was fractionated by 8-12% SDS-PAGE 

and blotted onto an Immobilon PVDF membrane (Millipore, Billerica, MA, USA). 
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Nonspecific binding sites were blocked by incubation with 5% nonfat dry milk in Tris-

buffered saline-0.1% Tween-20. The following primary antibodies were used: anti-DIO3 

(1:400; Novus Biologicals), anti-ERK1/2 (1:400; Santa Cruz Technologies), anti-phospho-

ERK1/2 (1:400; Santa Cruz Technologies); anti-P38 (1:500; Cell Signaling); anti-phospho-

P38 (1:200; Santa Cruz Technologies); anti-cyclin D1 (1:400; Santa Cruz Technologies); 

anti-Gli1 (1:400; Cell Signaling); anti-α-tubulin B7 (1:500; Santa Cruz Technologies); and 

anti-β-actin (1:10,000; Sigma). The antigen-antibody complexes were visualized using 

horseradish peroxidase–conjugated secondary antibody and an enhanced chemiluminescence 

system (GE Healthcare). Expression was quantified using image densitometry with Image J 

Analysis Software. 

 

Small interfering RNA transfection 

 Small interfering RNA (siRNA) studies were performed to evaluate the specific 

effects of DIO3 inhibition on cell proliferation. The shorter-duplexes siRNAs were as 

follows: Silencer® Select GAPDH siRNA (#4390849, Ambion Inc, Life Technologies), used 

as positive control for inhibition experiments; Silencer® Select Negative Control (#4390843, 

Ambion Inc, Life Technologies) and Silencer® Pre-designed DIO3 siRNA (#7631324, 

Ambion Inc, Life Technologies). Transfection studies were performed using Lipofectamine 

RNAiMAX reagent according to the manufacturers’ instructions (Invitrogen by Life 

Technologies). A total of 15.10
4
 cells/well (K1 and TPC-1) were plated in six-well plates and 

transfected with 40 pmol of GAPDH siRNA, 100 pmol of silencer negative and 100 pmol of 

DIO3 siRNA. All analyses were performed in triplicate and in at least two independent 

experiments. 

 

Cell proliferation assays 

Absolute cell number count and flow cytometry were performed to evaluate cell 

proliferation. Initially, 15.10
4 

cells/well (K1 and TPC-1) were plated in six-well plates, 

transfected with 100 pmol of DIO3 siRNA and incubated for 48 hours. After 48 hs of 

treatment, the cells were trypsinized, and the absolute number of cells was counted using the 

Neubauer chamber. To evaluate the effect of DIO3 expression on the cell cycle status, K1 

cells were incubated with DIO3 siRNA. After 48 hs, the cells were washed with PBS and then 

resuspended in 50 μg/mL propidium iodide and 0.1% Triton X-100 in sodium citrate solution. 

Cells were incubated on ice for at least 15 min. Marked cells were analyzed using a flow 
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cytometer Attune® Acousting Focusing Cytometer. The data generated were analyzed using 

the FlowJo software. All experiments were performed in triplicate. 

 

Statistical analysis  

DIO3 mRNA was expressed as arbitrary unit or fold, while D3 activity as the 

median ± SD. The number of cells in each cell cycle stage is shown as the frequency. To 

compare the D3 levels among the groups, we used t-Test or one-way ANOVA while Chi-

Square test was performed to compare the differences in the proportion of cells in the 

different stages of the cell cycle. The Statistical Package for the Social Sciences 18.0 and 

Prism 5.0 software were used for all analyses, and P<0.05 was considered statistically 

significant. 

 

Results 

 

MAPK activation induces DIO3 levels in PTC cell lines 

 

To estimate the role of MAPK activation in DIO3 regulation, experimental studies 

were performed in two distinct human PTC cell lines, K1 cells carrying the BRAF
V600E

 

mutation and TPC-1 cells harboring the RET/PTC1 rearrangement. We observed that the 

levels of DIO3 mRNA and activity were readily detected in both cell lines and were 

significantly higher in K1 cells compared to TPC-1 (~5-fold, p<0.001; 14.9 vs.8.1 

fmol/mg.prot.24 hs, p=0.02; respectively; Figures 1A-B).  

Next, we evaluated the oncogenic effects of BRAF
V600E 

mutation on DIO3 

reactivation. The treatment of K1 cells with the specific BRAF-mutated inhibitor, PLX4032 (3 

µM), caused reduction in ERK phosphorylation and DIO3 levels (~2.5-fold; P<0.001, Figures 

2A-B). The incubation of K1 cells with MEK inhibitor (10-20 µM) for 24hs, resulted in a 

substantial reduction in ERK phosphorylation (Figure 3A) and in a significant dose-dependent 

decrease of DIO3 expression (5-10-fold P<0.001; Figures 3B). Likewise, we performed 

experiments using the p38 inhibitor (10-20 µM) and, as expected, p38 phosphorylation was 

substantially inhibited (Figure 3C), while slight reduction in DIO3 transcripts was identified 

(~2-fold; P<0.001; Figure 3D). Similar results were obtained in TPC-1 cells under inhibition 

of MEK and p38 (1.5-6 and 2-3-fold; P<0.001; respectively, Figures 3E-G).  

 Next, we investigated the effect of MAPK genetic alterations on the DIO3 levels in 

PTC samples and surrounding tissue collected from 14 patients. The mean age was 42.8 ± 
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14.5 years, and 78.6% were women. The median size tumor was 2.3 cm (0.8–10); 10 patients 

(71.4%) had lymph node metastasis, while 6 (42.9%) had distant metastasis at diagnosis. 

Seven (50%) out of the 14 PTC samples were positive for the BRAF
V600E

 mutation, two 

(10%) carried RET/PTC1 rearrangement and 5 (40%) did not have any of these genetic 

alterations. DIO3 mRNA was significantly increased in PTC samples compared with the 

surrounding thyroid normal tissue (p<0.001). Samples harboring BRAF
V600E

 mutation had 

higher levels of DIO3 expression compared with samples with RET/PTC1 rearrangement or 

those without any mutation (8 vs. 5.8 vs. 5.4AU, respectively; P<0.001; Figure 4).  

 

Cooperation between MAPK and Sonic Hedgehog pathways drives the DIO3 upregulation 

in PTC 

  

 Previous studies have demonstrated in BCC samples that the activation of the SHH 

pathway would be driving the DIO3 overexpression (5). To verify the requirement of GLI1, a 

downstream effector of SHH signaling, activation in D3 regulation, we blocked the SHH 

signaling using incubation with a chemical inhibitor, cyclopamine (10 µM). After 24 hs of 

treatment, we observed a reduction in the GLI1 protein (Figures 5A and C), which was 

followed by a marked decrease in the DIO3 levels in K1 as well as in TPC-1 cells (12 and 

2.5-fold; P<0.001; Figures 5B and D; respectively).  

We also investigated whether the MAPK and SHH cascades could work in 

cooperation, promoting D3 induction in PTC. The levels of the SHH downstream effector, 

GLI1, were evaluated after the MEK and p38 proteins were inhibited. Interestingly, we 

observed a reduction in the GLI1 levels in K1 and TPC-1 cells after MAPK blockage, 

suggesting there is crosstalk between the signaling pathways (Figure 5E-H).  

Next, we investigated whether the DIO3 induction depends of SHH reactivation. TT 

cells, a MTC cell line known for presenting with low endogenous DIO3 levels, were treated 

for 24 h with recombinant SHH (1 µg/ml). Interestingly, the SHH induction significantly 

increased the DIO3 mRNA expression in MTC cells (2.5-fold; P<0.0001; Figure 5I) while 

reduced the DIO2 levels in similar intensity (2.6-fold; P<0.001, Figure 5J). 

 

 DIO3 attenuation is associated with reduction in cell proliferation of PTC cells 

  

 To demonstrate the specific proliferative cell effect of DIO3 upregulation, we silenced 

the DIO3 gene in both cell lines, using DIO3 specific siRNA (100 pmol). GAPDH siRNA (40 
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pmol) was used as a positive control. K1 and TPC-1 cells were transfected with the siRNAs 

and maintained for 48hs. The efficiency of silencing was established by reducing levels the 

positive control GAPDH (inhibition of 95% in K1 and ~90% in TPC-1 cells, p<0.001, data 

not shown). DIO3 gene knockdown resulted in a ~90% blockage of DIO3 transcripts and D3 

protein in both PTC cell lines (p<0,001; Figures 6A and C). Interestingly, the DIO3 inhibition 

was associated with significant reduction in the absolute cell number compared with control 

(~30%; p<0.01; Figures 6B and D). Further experiments evaluating the DIO3 effect on cell 

proliferation were performed in K1 cells and showed that the reduction in the DIO3 levels 

was also associated with diminished levels of cyclin D1 protein (Figure 6E).  

The evaluation of the cell cycle showed that the proportion of cells in G1 phase of cell 

the cycle was significantly augmented when DIO3 was silenced, while the percentage of cells 

in S and G2 phases of cell cycle was reduced in the same proportion (~30%; P<0.005; Figure 

6F).  

 

Discussion 

  

In the present study, we have demonstrated that genetic alterations in the MAPK 

pathway effectors, such as BRAF
V600E

 mutation and RET/PTC1 rearrangement, increase D3 

levels in papillary thyroid tumors. The SHH pathway also seems to be involved in DIO3 

upregulation once the signaling inhibition significantly reduces the DIO3 expression. 

Interestingly, siRNA-mediated DIO3 gene silencing decreased cyclin-D1 levels while 

increasing the proportion of cells in the G1 phase of the cell cycle, downregulating the 

proliferation of malignant thyroid cells. 

The profile of DIO3 gene expression shows that higher D3 activity is present in the 

developing organs while in mature tissues, it is predominantly expressed in the brain and skin 

(19, 20). A previously unrecognized role of D3 has been documented in both health and 

disease (17, 21, 22). Moreover, a potential role of D3 in tumorigenesis has been postulated 

because DIO3 upregulation has been observed in several benign and malignant tumors (2, 3, 

5-8, 23). DIO3 regulation occurs at the transcriptional level, and it is likely that it is driven by 

activation of the MAPK pathway (24-26). Papillary thyroid carcinomas are known for 

carrying genetic alterations that lead to distinct an aberrant and constitutive activation of 

MAPK pathway (14). BRAF
V600E

 is an oncogenic protein with markedly elevated kinase 

activity that over-activates the MAPK pathway, especially ERK signaling transduction (27, 

28). Accordingly, we observed that BRAF
V600E

 mutation was associated with the highest 
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levels of DIO3 expression, which was mainly mediated by ERK phosphorylation. In 

RET/PTC rearrangements manifestation, the DIO3 levels seems to be mainly regulated 

according the p38 phosphorylation status. Compared to BRAF-oncogene, RET/PTC 

rearrangement stimulates DIO3 at a lower intensity, which is in part explained due a less 

potent MAPK induction after activation of other pathways such as the PI3K/AKT cascade 

(29, 30).   

SHH signaling is critically important for embryogenesis and other cellular processes, 

such as proliferation and differentiation (31). Disruption in SHH signaling results in various 

human diseases and seems to contribute to neoplastic process promotion. The SHH 

reactivation occurs in up to 25% of human tumors and is associated with D3 induction (5, 7). 

Previously, Dentice et al demonstrated that the SHH pathway directly modulates DIO3 

upregulation in human and mouse BCC (5). Similarly, we observed that the DIO3 levels were 

markedly inhibited by the SHH inhibitor, cyclopamine, indicating a direct effect of Shh/GLI1 

signaling on gene regulation also in PTC cells. This effect of SHH on DIO3 modulation was 

reinforced after that the induction of SHH activation in MTC cells resulted in a significant 

increase in the DIO3 levels. Interestingly, our results suggest that there is cooperation 

between the MAPK and SHH pathways, once the MAPK blockage, by MEK and P38 

inhibition, resulted in reduction in the total GLI1 levels. These data indicate that DIO3 

regulation in PTC might be driven by MAPK/SHH cooperation. This cross-regulation has 

been previously demonstrated in other pathological conditions (32, 33). In pancreatic cancer 

cells, the oncogenic effects of the oncogene KRAS were demonstrated to be mediated by 

SHH/GLI1 activation, and suppression of GLI activity led to selective attenuation of the 

oncogenic transformation activity in mutant KRAS-expressing cells (32). This data set 

reinforces the hypothesis that the D3 induction caused by MAPK and SHH activation leads to 

TH inactivation and can contribute to promoting a hypothyroid state at a cellular level.  

Studies have suggested that alterations in the TH status might interfere with tumor 

pathogenesis. Clinical hypothyroidism seems to be a risk factor for several neoplasias, such as 

liver cancer, thyroid malignancies, high grade glioblastomas and human breast cancer (34-

37). Alterations in the balance between TH inactivating (D3) and activating (D2) deiodinases 

and the consequent intracellular hypothyroidism seem to be critical for modulating the 

balance between cell proliferation and differentiation. Experimental studies in BCC and in 

colon tumor cells have shown that the increase in the D3 levels is associated with the 

induction of cell proliferation; Dio3 knockdown caused a 5-fold reduction in the growth of 

xenograft tumor, while the T3 addition promoted differentiation (5, 6). Additionally, studies 
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in renal cancer have revealed that the loss of DIO1 expression, mediated by miR-224 

induction, resulted in diminishing intra-tumoral T3 concentration while increasing cell 

proliferation and apoptosis (38). Here, we also demonstrated that the siRNA-mediated DIO3 

gene attenuation caused a reduction in the total cell number as well as in the cyclin D1 levels. 

Additionally, DIO3 seems to contribute to cell cycle progression, since its repression caused a 

partial stop in cell cycle progression in G1 phase. This set of results supports the hypothesis 

that the local hypothyroidism caused by DIO3 overexpression could play an important role in 

tumor growth (5-7).  

In conclusion, we have demonstrated that DIO3 expression is modulated by specific 

MAPK genetic alterations in PTC. The BRAF
V600E

 mutation seems to be a more potent 

inducer of DIO3 than the RET/PTC rearrangement, and this is most likely because of a more 

potent induction of ERK phosphorylation. Moreover, SHH activation might also be involved 

in DIO3 upregulation in PTC, which is most likely due to cooperation with the MAPK 

pathway. Finally, the reduction in the cell proliferation of D3-depleted PTC cells supports the 

hypothesis that the intracellular decreases in the thyroid hormone levels might be associated 

with the induction of tumor growth and might interfere with tumor aggressiveness. 
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Figure 1 

 

 

Figure 1 The DIO3 mRNA levels (A) and activity (B) were readily detected in both PTC cell 

lines, K1 and TPC-1, and were significantly higher in K1 cells compared to TPC-1 (~5-fold, 

p<0.001; 14.9 vs.8.1 fmol/mg.prot.24 hs, p=0.02; respectively). 
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Figure 2 

 

 
Figure 2 The treatment with the BRAF-mutated specific inhibitor for 24h, PLX4032 (3μM), 

led to a reduction in the ERK phosphorylation (~30%; A) and was associated with reduction 

in DIO3 mRNA (~2.5-fold, p<0.001; B). 
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Figure 3 

  

Figure 3 The MEK1 inhibition in K1 and TPC-1 cells, with U0126 incubation (10-20μM), 

caused a significant block in the phosphorylation of the ERK pathway (A and C) as well as a 

dose-dependent reduction in the DIO3 levels (5-10 and 1.5-6-fold; P<0.001; respectively; B 

and D). The inhibition of p38 protein, by SB203580 (10-20μM), inhibited p38 

phosphorylation (E and G) while also reduced the DIO3 transcripts (~2 and 2-3-fold; P<0.01; 

F and H).  
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Figure 4 

 

Figure 4 DIO3 mRNA was significantly increased in PTC samples compared with the 

surrounding thyroid normal tissue (p<0.001). Samples harboring BRAF
V600E

 mutation had 

higher levels of DIO3 expression compared with samples presenting RET/PTC1 

rearrangement or those without any mutation (8 vs. 5.8 vs. 5.4AU, respectively; P<0.001; 

Figure 4).  
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Figure 5 

 

  

Figure 5 Inhibition of MAPK proteins, MEK and p38, reduced the levels of GLI1 protein in 

K1 and TPC-1 cells (A-D). Incubation of K1 and TPC-1 cells with a chemical inhibitor, 

cyclopamine (10 µM) diminished GLI1 protein (E and G) and considerably decreased the D3 

levels in both cells (~12 and 2.5-fold; P<0.001; F and H; respectively). Next, TT cells (MTC 

cell line) was treated for 24h with 1 µg/ml of recombinant SHH which resulted in induction of 

DIO3 mRNA (2.5-fold; P<0.0001; I) while reduced the DIO2 levels in similar intensity (2.6-

fold; P<0.001; J). 
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Figure 6 

 

 

Figure 6 DIO3 gene knockdown resulted in a 90% blockage of DIO3 transcripts in K1 and 

TPC-1 cells (A and C). Moreover, the reduction in DIO3 levels was also associated with a 

significant reduction in the absolute cell number compared with K1 and TPC-1 controls 

(~30%; B and D). Studies in K1 cells demonstrated that the DIO3 silencing was associated 

with a reduction in cyclin D1 protein (E) while increased the proportion of cells in G1 phase 

of cell cycle (F).  
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CONCLUSÃO 

 

No presente estudo demonstramos que alterações genéticas específicas na via de 

sinalização MAPK, modulam a expressão da D3 no CPT. A mutação BRAF
V600E

 apresenta o 

efeito mais potente na indução da D3, quando comparado aos rearranjos RET/PTC ou 

ausência de alteração conhecida. A diferença na intensidade da indução, ocorre 

provavelmente devido aos diferentes níveis de indução da fosforilação da proteína ERK. 

Adicionalmente, a via de sinalização Sonic Hedgehog também desempenha papel 

determinante na regulação dos níveis da D3 no CPT, uma vez que a inibição da proteína 

GLI1, um dos principais efetores na sinalização desta via, foi capaz de reduzir 

substancialmente os níveis da D3. Além disso, demonstramos que a cooperação entre a via 

MAPK e SHH pode ser determinante na regulação da D3 no CPT. De forma interessante, 

observamos que o silenciamento do gene DIO3 foi capaz de reduzir significativamente a 

proliferação celular das células malignas tireoidianas, através da redução dos níveis do 

regulador do ciclo celular, ciclina D1 e devido a uma parada de ciclo celular na fase G1.  

Estes dados em conjunto sugerem que a D3 pode exercer um papel importante na 

proliferação celular, possivelmente devido ao hipotireoidismo intracelular gerado, o que 

poderia contribuir para o crescimento e agressividade tumoral. Além disso, esses resultados 

ampliam os conhecimentos sobre os eventos fisiopatológicos envolvidos na tumorigênese em 

humanos, com possibilidade de avanço em novas estratégias terapêuticas. 
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Anexo A 

 

Fluxogram de avaliação das amostras de CPT para análise das alterações genéticas, 

BRAF
V600E 

e rearranjo RET/PTC1. 

 

 


