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This paper is dedicated to present model independent results for noncommutative quantum mechanics.
We determine sufficient conditions for the convergence of the Born series and, in the sequel, unitarity is
proved in full generality.
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I. INTRODUCTION

In this work we shall be concerned with quantum sys-
tems whose dynamics is described by a self-adjoint
HamiltonianH�Q;P�made up of the Cartesian coordinates
Ql, l � 1; . . . ; N, and their canonically conjugate momenta
Pj, j � 1; . . . ; N. However, unlike the usual case, coordi-
nates and momenta are supposed to obey the noncanonical
equal-time commutation rules

 

�Ql;Qj� � �2i@�lj; (1.1a)

�Ql; Pj� � i@�lj; (1.1b)

�Pl; Pj� � 0: (1.1c)

The distinctive feature is, of course, that the coordinate
operators do not commute among themselves. The lack of
noncommutativity of the coordinates is parameterized by
the real antisymmetric N � N constant matrix k � k [1]. In
Refs. [2–6] one will find specific examples of noncommu-
tative systems whose quantization has been carried out [7].
While Ref. [2] is concerned with the distortion provoked
by the noncommutativity on the spectrum of the hydrogen
atom, Refs. [3–5] deal with the noncommutative two-
dimensional harmonic oscillator, an exactly solvable
model. In Ref. [6] the authors elaborate about the effects
of the noncommutativity in the case of a multiparticle
system: the electron gas.

However, model independent developments concerned
with the backbones of quantum mechanics are still lacking.
Our purpose in this work is to contribute to fill up this gap.

In Sec. II we briefly quote, for future purposes, the main
steps leading to the formulation of the quantum dynamics
of noncommutative systems in the Schrödinger picture.

Sections III and IV contain the original results in this
work. In Sec. III we determine sufficient conditions for the
existence of the Born series, while in Sec. IV we prove that
perturbative unitarity holds.

The conclusions are contained in Sec. V.

II. QUANTUM DYNAMICS OF
NONCOMMUTATIVE SYSTEMS IN THE

SCHRÖDINGER PICTURE

A representation of the algebra in Eq. (1) can be ob-
tained by writing
 

Ql � Xl 	 �ljKj; (2.1a)

Pl � Kl; (2.1b)

where the X’s and K’s obey the canonical commutation
relations
 

�Xl; Xj� � 0; (2.2a)

�Xl; Kj� � i@�lj; (2.2b)

�Kl; Kj� � 0: (2.2c)

Clearly, the common X eigenvectors (j ~xi �
jx1; . . . ; xl; . . . ; xNi) provide a basis in the space of states
for representing the algebra (1). Thus, for a Hamiltonian

 H�Q;P� �
PlPl
2M
	 V�Q� (2.3)

and, therefore,

 H�Xl 	 �ljKj; Kl� �
KlKl
2M

	 V�Xl 	 �lkKk�; (2.4)

it has been shown elsewhere [3–5] that the time evolution
of the system, in the Schrödinger picture, is described by
the wave equation

 �
@

2

2M
r2
x��x; t� 	 V�x� ?��x; t� � i@

@��x; t�
@t

; (2.5)

where r2
x designates the Nth-dimensional Laplacian, M is

a constant with dimensions of mass while ? denotes the
Grönewold-Moyal product [8–10], namely,
 

V�x� ?��x; t� � V�x�
�

exp
�
�i@

@
 

@xl
�lj

~@
@xj

��
��x; t�

� V
�
xj � i@�jl

@
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References [2–5] illustrate the solving of Eq. (2.5) for
some specific models.

III. THE BORN SERIES IN NONCOMMUTATIVE
QUANTUM MECHANICS

Let us return, for a while, to commutative quantum
mechanics and consider a system whose dynamics are
described by the self-adjoint Hamiltonian operator

 H � H0 	 V�X�; (3.1)

where H0 � KlKl=2M will be referred to as the free
Hamiltonian. Notice that H � Hy enforces V � Vy since
the kinetic energy part H0 is, by definition, self-adjoint. By
construction H0 does not possess bound states and its
continuum energy spectrum is characterized by E> 0.
By assumption, the same applies for the continuum spec-
trum of H although this operator may also possess bound
states. Furthermore, we shall set from now on @ � 1.

For the quantum system under consideration all observ-
ables can be obtained from the operator T�W� defined by
the integral equation

 T�W� � V 	 VG�	�0 �W�T�W�; (3.2)

where G�	�0 �W� � �W �H0 	 i"��1 is the free Green
function for outgoing boundary conditions. By iterating
the right-hand side of Eq. (3.2) one obtains T as a series,
 

T�W� � V	VG�	�0 �W�V	VG
�	�
0 �W�VG

�	�
0 �W�V	

 
 ;

(3.3)

known as the Born series.
The problem of determining the necessary and sufficient

conditions for the Born series to converge was solved by
Weinberg [11] long ago. He considers the eigenvalue prob-
lem

 G�	�0 �W�Vj ��W�i � ���W�j ��W�i: (3.4)

Since the operator G�	�0 �W�V is not Hermitean, the eigen-
values ��W� may be complex. As for the eigenstates,
j ��W�i, they are assumed to be of finite norm. W is
kept negative or complex and is allowed to approach the
positive real axis from above. From Eqs. (3.3) and (3.4) one
obtains

 T�W�j ��W�i �
�X1
n�0

�n��W�
�
Vj ��W�i: (3.5)

It was demonstrated by Weinberg [11] that

 j���W�j< 1; 8 �; (3.6)

is a necessary and sufficient condition for the Born series to
converge.

We now want to solve the analogous problem for non-
commutative quantum mechanics, the essential difference
from the above being that instead of V � V�X� we have

V � V�Xl 	 �ljKj�. As point of departure, we start by
invoking (3.4) to cast Eq. (3.6) as
 

jh ~kjG�	�0 �W�Vj ��W�ij

jh ~kj ��W�ij
�

1

jW � ~k2

2M	 i"j

jh ~kjVj ��W�ij

jh ~kj ��W�ij

�
1

jW � ~k2

2M	 i"j

1

jh ~kj ��W�ij

�

��������
Z
dNk0h ~kjVj ~k0ih ~k0j ��W�i

��������
< 1; 8 �: (3.7)

Let us concentrate on the linear momentum integral in the
right-hand side of Eq. (3.7). Since

 

��������
Z
dNk0h ~kjVj ~k0ih ~k0j ��W�i

��������
�
Z
dNk0jh ~kjVj ~k0ih ~k0j ��W�ij; (3.8)

one concludes that
 

1

jW � ~k2

2M	 i"j

1

jh ~kj ��W�ij

Z
dNk0jh ~kjVj ~k0ijjh ~k0j ��W�ij

< 1 8 � (3.9)

is a sufficient although not necessary condition for the
convergence of the Born series. In other words, (3.9)
selects a subset of potentials for which the Born series
certainly converge.

To proceed further on we shall be needing jh ~kjVj ~k0ij.
Then, we start by looking for
 

h ~kjV�Xl	�ljKj�j ~k
0
i �

Z
dNx�?

~k
� ~x�V

�
xl� i�lj

@

@xj

�
�~k0 � ~x�

�
Z
dNx�?

~k
� ~x��V� ~x�?�~k0 � ~x��

�
Z
dNx�?

~k
� ~x�?V� ~x�?�~k0 � ~x�

�
Z
dNxV� ~x���~k0 � ~x�?�

?
~k
� ~x��; (3.10)

where

 �~k� ~x� �
1

�2��N=2
eikjx

j
(3.11)

is the eigenfunction of the linear momentum ~K, corre-
sponding to the eigenvalue ~k. From Eq. (2.6) one, then,
finds
 

�~k0 � ~x� ? �
?
~k
� ~x� � �~k0 � ~x�

�
exp

�
�i

@
 

@xl
�lj

~@
@xj

��
�?
~k
� ~x�

� e�i ~k
0^ ~k� ~k0 � ~x��

?
~k
� ~x�; (3.12)

where
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~k 0 ^ ~k �
1

@
k0l�

ljkj: (3.13)

Clearly, Eqs. (3.10) and (3.12) amount to

 h ~kjV�Xl 	 �ljKj�j ~k
0
i � e�i ~k

0^ ~kh ~kjV�Xl�j ~k0i (3.14)

and, as consequence,

 jh ~kjV�Xl 	 �ljKj�j ~k
0
ij � jh ~kjV�Xl�j ~k0ij: (3.15)

This result connects the commutative with the noncom-
mutative regimes. Therefore, if V�X� verifies Eq. (3.9) so
does V�Xl 	 �ljKj� or, what amounts to the same thing, for
the restricted subclass of potentials verifying Eq. (3.9) the
convergence of the Born series holds for both, the commu-
tative and the noncommutative versions of the model.

IV. UNITARITY IN NONCOMMUTATIVE
QUANTUM MECHANICS

The scattering amplitude f� ~k0; ~k� is given in terms of the
T matrix by

 f� ~k0; ~k� � �4�2MT� ~k0; ~k�; (4.1)

where T� ~k0; ~k� is short for h ~k0jTj ~ki. Unitarity demands that

 =f� ~k; ~k� �
k

4�

Z
d� ~k0 jf�

~k0; ~k�j2; (4.2)

where k � j ~kj and d� ~k0 is the element of solid angle

centered around ~k0.
Our purpose here is to check (4.2) by taking advantage

of the Born series representation for T. It will be assumed
that the potential V contains a dimensionless coupling
constant (g) that enables one to write V � gU. Then, the
Born series in Eq. (3.3) becomes a power series in g.
Correspondingly, Eq. (4.2) translates into

 

4�
k
=f�n�� ~k; ~k� �

Z
d� ~k0

Xn
i�1

f�i�
?
� ~k0; ~k�f�n�i�� ~k0; ~k�; (4.3)

where n is a positive integer,

 f�n�� ~k0; ~k� � �4�2MT�n�� ~k0; ~k�; (4.4)

and

 T�n�� ~k; ~k0� � h ~kjVG�	�0 �E�V 
 
 
VG
�	�
0 �E�V

z�����������������������}|�����������������������{nfactorsV;�n�1�factorsG�	�0 �E�

j ~k0i: (4.5)

Let us first analyze the contributions to the scattering
amplitude for n � 1. Since the right-hand side in (4.3) does
not contain terms of order g1 no term of such order should
arise in =f�1�� ~k; ~k�. We know that this is the case in the
commutative version of the theory, since the Hermiticity of
V secures =h ~kjV�Xl�j ~ki � 0. As for the noncommutative
case, we observe that for ~k0 � ~k (forward direction) the

exponent in the right hand side of (3.14) vanishes and,
therefore, =h ~kjV�Xl 	 �ljKj�j ~ki � =h ~kjV�Xl�j ~ki � 0, as
required.

To verify Eq. (4.3) for arbitrary n we start by claiming
that

 =
Z
dNk0

T�m�
?
� ~k0; ~k�T�p�� ~k0; ~k�
k2

2M�
k02
2M	 i"

� =
Z
dNk0

T�m	1�?� ~k0; ~k�T�p�1�� ~k0; ~k�
k2

2M�
k02
2M	 i"

�Mk�
Z
d� ~k0 �T

�m�?� ~k0; ~k�T�p�� ~k0; ~k�

	 T�p�
?
� ~k0; ~k�T�m�� ~k0; ~k��; (4.6)

whose proof is straightforward but will be omitted for
reasons of space. Then, consider
 

=T�n�� ~k; ~k� � =
Z
dNk0

T�1�
?
� ~k0; ~k�T�n�1�� ~k0; ~k�
k2

2M�
k02
2M	 i"

� =
Z
dNk0

T�2�
?
� ~k0; ~k�T�n�2�� ~k0; ~k�
k2

2M�
k02
2M	 i"

�Mk�
Z
d� ~k0 �T

�1�?� ~k0; ~k�T�n�1�� ~k0; ~k�

	 T�n�1�?� ~k0; ~k�T�1�� ~k0; ~k��; (4.7)

where in going from the second to the third term of the
equality we have used (4.6) for m � 1 and p � n� 1. It is
not difficult to see that by applying this procedure (n� 2)
times one ends up with
 

=T�n�� ~k; ~k� � =T�n�
?
� ~k; ~k�

� 2Mk�
Z
d� ~k0 �T

�1�?� ~k0; ~k�T�n�1�� ~k0; ~k�

	 
 
 
 	 T�n�1�?� ~k0; ~k�T�1�� ~k0; ~k��; (4.8)

which, after recalling that =T�n�
?
� ~k; ~k� � �=T�n�� ~k; ~k�,

goes into

 =T�n�� ~k; ~k� � �Mk�
Z
d� ~k0

Xn
i�1

T�i�
?
� ~k0; ~k�T�n�i�� ~k0; ~k�:

(4.9)

This last equation reproduces Eq. (4.3) in terms of
T-matrix elements and, hence, concludes the purported
proof of unitarity. It applies equally well for the commu-
tative and the noncommutative cases.

V. CONCLUSIONS

This work was dedicated to demonstrate that some of the
essential ingredients of the commutative version of quan-
tum mechanics remain valid in the noncommutative
counterpart.
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Our first concern was about the existence of the Born
series, since it provides the most powerful tool for calcu-
lating the T matrix. We made explicit the condition to be
fulfilled by the potential to that end.

The fact that the noncommutativity does not destroy the
Born series greatly facilitated the proof of unitarity, which
is an essential requirement for a quantum theory to make
sense.

We believe that the results presented in this paper con-
tribute to support noncommutative quantum mechanics as
a sound quantum theory.
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