
l

PHYSICAL REVIEW D 69, 105012 ~2004!
Coupling of fermions to the three-dimensional noncommutative CPNÀ1 model:
Minimal and supersymmetric extensions
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We consider the coupling of fermions to the three-dimensional noncommutative CPN21 model. In the case
of minimal coupling, although the infrared behavior of the gauge sector is improved, there are dangerous
~quadratic! infrared divergences in the corrections to the two-point vertex function of the scalar field. However,
using superfield techniques we prove that the supersymmetric version of this model with ‘‘antisymmetrized’’
coupling of the Lagrange multiplier field is renormalizable up to the first order in 1/N. The auxiliary spinor
gauge field acquires a nontrivial~nonlocal! dynamics with generation of Maxwell and Chern-Simons noncom-
mutative terms in the effective action. Up to 1/N order all divergences are only logarithmic so that the model
is free from nonintegrable infrared singularities.
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I. INTRODUCTION

The renormalization problem is a central issue for
perturbative consistency of noncommutative~NC! field theo-
ries. This is of course true for any field theory, but in t
noncommutative setting renormalization becomes m
stringent due to an unusual mixture of scales. In fact, a c
acteristic phenomenon in such theories is the well-kno
ultraviolet-infrared~UV-IR! mixing, which, being the source
of nonintegrable IR divergences@1# ~for a review, see@2#!,
destroys most of the perturbative schemes. It is there
very important to find renormalizable noncommutative fie
theories free from the mentioned infrared divergences.
have recently proved that, at least up to next to leading o
in 1/N, this requirement is satisfied by th
(211)-dimensional noncommutative version of the CPN21

model if the basic field transforms in accord with the fund
mental representation of the gauge group@3#. For the same
model, we also investigated the situation where the ba
field belongs to the adjoint representation. In contrast w
the fundamental representation, we found that for the adj
representation infrared divergences associated with non
nar graphs are present. These infrared divergences ind
the breakdown of the model at higher orders of 1/N. Our
previous experience with the noncommutative versions
the four-dimensional Wess-Zumino model@4#, as well as
with the (211)-dimensional supersymmetric nonline
sigma model@5#, suggests that the overall behavior of t
theory may be improved if fermions are included. In th
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paper we will investigate such a possibility by coupling fe
mions to the gauge field either minimally or in a supersy
metric fashion. Of course, even in the case of minimal c
pling, the fermionic field and its bosonic counterpart mu
belong to the same representation.

Very interesting results emerge from our analysis. As
shall prove, due to the induction of a Chern-Simons term,
gauge potential becomes much less singular. However, in
case of minimal coupling, in spite of the general smoothn
of the gauge potential, the radiative corrections to the s
energy of the scalar field are still plagued by nonintegra
infrared singularities. To evade this problem we then co
sider a supersymmetric extension of the model. This is d
through the use of powerful superfield techniques@6,7#,
which enable us to demonstrate the absence of the dange
UV-IR mixing up to order 1/N.

Our work is organized as follows. In Sec. II the inclusio
of fermion fields minimally coupled to the gauge field
examined. In Sec. III the superfield formulation is intr
duced, we fix the notation to be employed, and determine
propagators for the relevant fields. In Sec. IV we prove t
the self-energy corrections of the scalar superfield are
from dangerous UV-IR mixing and in Sec. V we give a ge
eral argument for the absence of these singularities in
Green’s functions up to 1/N order. A general overview of ou
results and the conclusions are contained in Sec. VI.

II. MINIMAL COUPLING OF FERMIONS TO THE CP NÀ1

MODEL

Assuming that the fermions have the same mass as
bosonic counterparts, the action associated with the mo
reads~for discussions on the commutative CPN21 model, see
@8–12#!

E d3xL5E d3x@2~Dmw!†* Dmw2m2w†* w

2c̄* gmDmc2mc̄* c1Ll#, ~2.1!

a-
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wherewa andca , a51,...,N, are scalar and two-compone
Dirac fields, respectively. They transform according to eit
the left fundamental or the adjoint representation of
gauge group. To keep uniformity throughout this work, w
shall use the metricg115g2252g0051 and the Dirac ma-
trices to be employed in this section areg05 is3, g15s1,
andg25s2, where thes’s are the Pauli matrices. The cova
riant derivative of the basic fields isDmx5]mx1 iAm* x for
x5w,c in the left fundamental representation, where
Dmx5]mx1 iAm* x2 ix* Am for x5w,c in the adjoint rep-
resentation.Ll is the interaction Lagrangian which enforc
a basic constraint for thewa fields; its possible forms will be
given shortly. In addition, to evade unitarity problem
throughout this work we consider only space-space nonc
mutativity.

A. The bosonic model

We begin by recalling some basic results of the p
CPN21 model, i.e., without fermions@3#.

~1! For the left fundamental representation case, withLl

5l* (w* w†2N/g), the two-point vertex functions of the
gauge andl fields are, respectively,

Fb
mn~p!52

iN

8p
~gmnp22pmpn!E

0

1

dx
~122x!2

M ~x!
~2.2!

and

F~p!5NE d3k

~2p!3

1

~k1p!21m2

1

k21m2

5
iN

8p
E

0

1

dx
1

M ~x!
, ~2.3!

whereM (x)5@m21p2x(12x)#1/2. Furthermore, the mixed
two-point vertex functionFm of theAm andl fields vanishes.

~2! For the adjoint representation there are two cases
have to be distinguished.

~2a! The part of the interaction Lagrangian that conta
l is Ll5l* @w,w†#* . Here also the mixed two-point verte
function Fm vanishes.

The two-point vertex function of theAm field is

Fb
mn~p!52

iN

4p H ~gmnp22pmpn!E
0

1

dx
~122x!2

M
~1

2e2MAp̃2
!14

p̃mp̃n

p̃2 E
0

1

dxS 1

Ap̃2
1M D e2MAp̃2J ,

~2.4!

in which p̃m5umnpn and umn is the constant antisymmetri
matrix characterizing the noncommutativity of the under
ing space. Notice that the above result is transversal but
sesses an infrared singularity atp̃50.

The two-point vertex function of thel field is modified to
10501
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2F~p!1FNP~p![
iN

4p
f ~p!, ~2.5!

whereF was given in Eq.~2.3! and the nonplanar partFNP is

FNP~p!52
iN

4p E
0

1

dx
e2MAp̃2

M
. ~2.6!

The functionf (p) is explicitly given by

f ~p!5E
0

1

dx
12e2MAp̃2

M
'HAp̃2 for p→0,

p/Ap2 for p2@m2.
~2.7!

For future use it is convenient to identify

f ~p!5216p i E d3k

~2p!3 I ~k,p!, ~2.8!

where

I ~k,p!5
sin2~k∧p!

~k21m2!@~k1p!21m2#
~2.9!

andk∧p51/2k• p̃.
~2b! The interaction LagrangianLl has the same form

as in the case of the left fundamental representation.
two-point vertex functions of theAn and l fields are still
given by Eqs.~2.4! and ~2.3!, but now there exists a nonva
nishing mixed two-point vertex function

Fm~p!5NE d3k

~2p!3

~2k1p!m

~k21m2!@~k1p!21m2#
e2 i2k∧p

5
Np̃m

4pAp̃2
E

0

1

dx e2MAp̃2
[

Ng~p!

4p
p̃m . ~2.10!

B. Including fermions

Because of the inclusion of fermionic fields, the two-po
vertex function of theAm field receives a new contribution

F f
mn~p!52NE d3k

~2p!3 TrS gn
i

2 ik”1m
gm

i

2 i ~k”1p” !1mD
3J~k,p!, ~2.11!

whereJ(k,p) is equal to either 1 or 4 sin2(k∧p) for the left
fundamental or the adjoint representation, respectively.
Eq. ~2.11! the subscriptf was used to designate the fermion
part. After some standard manipulations, we arrive at
2-2
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F f
mn~p!522NE

0

1

dxE d3k

~2p!3 J~k,p!
2kmkn22pmpnx~12x!2gmn@k22p2x~12x!1m2#1 imemnrpr

@k21p2x~12x!1m2#2 . ~2.12!
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For the left fundamental representation this produces
well-known result@13,14#

F f
mn~p!52

Ni

2p
~gmnp22pmpn!E

0

1

dx
x~12x!

M

1
mN

4p
emnrprE

0

1

dx
1

M
. ~2.13!

For the adjoint representation, the use of sin2(k∧p)5@1
2cos(2k∧p)#/2 leads to a planar contribution equal to twi
the above result. The nonplanar contribution@which contains
the factor cos(2k∧p)] gives

FNP f
mn ~p!5

iN

p
~gmnp22pmpn!E

0

1

dx
x~12x!

M
e2MAp̃2

1
iN

p

p̃mp̃n

p̃2 E
0

1

dxS M1
1

Ap̃2D e2MAp̃2

2
mN

2p
emnrprE

0

1

dx
1

M
e2MAp̃2

. ~2.14!

Thus, by adding the contributions from the bosonic a
fermionic loops we get the total two-point vertex function
the gauge field as follows.

~1! For the left fundamental representation@sum of Eqs.
~2.2! and ~2.13!#

Fmn~p!5
2 iN

8p
@~gmnp22pmpn!12imemnrpr#E

0

1 dx

M
.

~2.15!

~2! For the adjoint representation@sum of Eq.~2.4!, twice
Eq. ~2.13!, and Eq.~2.14!#

Fmn~p!5
2 iN

4p
f ~p!@~gmnp22pmpn!12imemnrpr#.

~2.16!

As can be seen,Fmn(p) behaves smoothly asp tends to zero.
Notice the presence of terms proportional toemnr in Eqs.
~2.13! and~2.16!, which in the effective action correspond
the bilinear part of the noncommutative Chern-Simons te
From now on we will restrict our consideration to the adjo
representation.

For the case~2a! the propagator for thel field is D(p)
54p i /N f(p) and the propagator for the gauge field in t
Landau gauge is

Dmn~p!5
24p i

N f~p!~p214m2!
F S gmn2

pmpn

p2 D 2
2im

p2 emnrprG .

~2.17!
10501
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For the case~2b!, due to the nonvanishing mixed two
point vertex function of thel andAm fields, the computation
of the gauge field propagator is much more involved than
the previous case. We find~also in the Landau gauge!

Dmn~p!5A1S gmn2
pmpn

p2 D 1A2p̃mp̃n1A3p̄mp̄n

1A4~ p̃mp̄n2 p̃np̄m!1A5emnrpr

5~A12p2p̃2A3!S gmn2
pmpn

p2 D 1~A21p2A3! p̃mp̃n

1~A51 p̃2A4!emnapa, ~2.18!

wherep̄a[eabgpbp̃g and the coefficientsAi , i 51,...,5, are
functions ofp:

A152 i
4p

N

1

f ~p!

1

p214m2 , A25
4p

N

g2~p!

h~p!

1

p214m2 ,

~2.19!

A35
4p

N

4m2g2~p!

h~p!~p2!2

1

p214m2 ,

A45 i
4p

N

2mg2~p!

h~p!p2

1

p214m2 , ~2.20!

and

A552
4p

N

2m

f ~p!

1

p2~p214m2!
, ~2.21!

where

h~p!52 i f ~p!@ p̃2g2~p!1 f 2~p!~p214m2!#. ~2.22!

For large momenta this propagator coincides with tha
Eq. ~2.17!, since g(p) exponentially decreases or strong
oscillates in that limit.

Notice that in both situations the gauge propagator
much less singular than in the pure CPN21 model. This
smoothness of the infrared behavior comes as a direct e
of the generation of the Chern-Simons term which provid
the displacement from the origin of the usual (p250) singu-
larity.

For reference, we also quote the expressions for thel and
mixed (l,An) propagators:
2-3
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D~p!5
4p

N

f 2~p!

h~p!
~p214m2!,

Dn~p!52
4p

N

f ~p!g~p!

h~p!
S i p̃n1

2mp̄n

p2 D . ~2.23!

Although we have improved the infrared behavior of t
Am propagator, we still have trouble with the radiative co
rections to the propagator for thew field. In fact, whereas
Fig. 1~b! is finite ~in the Landau gauge!, a direct calculation
shows that the nonplanar parts of the graphs of Figs. 1~a! and
1~c! are infrared quadratically divergent. Up to 1/N order
they are the only infrared divergent diagrams contributing
the self-energy ofw field. The sum of their nonplanar par
does not vanish and therefore, at higher orders, leads
breakdown of the 1/N expansion@3#. To overcome this prob-
lem a further extension of the model is needed. This will
the subject of the following sections, where we discus
supersymmetric extension of the noncommutative CPN21

model.

III. THE NONCOMMUTATIVE SUPERSYMMETRIC
CPNÀ1 MODEL

In the adjoint representation the noncommutative sup
field generalization of the CPN21 model is described by~see
also @15,16# for supersymmetric extensions of its commu
tive counterpart!

S52E d5zF1

2
~Daf̄a1 i @f̄a ,Aa#* !* ~Dafa2 i @Aa ,fa#* !

1mf̄afa1h* ~a@f̄a ,fa#* 1b$f̄a ,fa%* !2h
Nb

g G ,
~3.1!

wherefa with a51,...,N is a set of scalar~super!fields, f̄a
are their complex conjugated ones,Aa is a two-component
spinor gauge field, andh is a Lagrange multiplier superfiel
which implements the constraint$f̄a ,fa%* [f̄a* fa

1fa* f̄a5N/g; a andb are parameters that control the tw
possible orderings of the trilinear term containing theh, f,
and f̄ fields. Hereafter, we employ the same notation a
definitions as in@7# ~see also a description of the thre
dimensional superfield approach in@17#!. Concisely, l2

[1/2lala51/2Cablbla for any spinor la ~and D2

51/2DaDa), with Cab52Cab an antisymmetric matrix
normalized asC1252 i , ca5cbCba , and ca5Cabcb .

FIG. 1. Order 1/N contributions to the two-point vertex functio
of the w field. Continuous, dashed, and wavy lines represent
propagators for thew, l, andAm fields, respectively.
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The Dirac matrices with both spinor indices as superscr
aregm5(1,s3,2s1) and satisfy$gm,gn%52gmn1.

The above action is invariant under the infinitesimal s
pergauge transformation

df5 i @K,f#* , dh5 i @K,h#* ,

dAa5DaK1 i @K,Aa#* , ~3.2!

where K is the scalar superfield gauge parameter. We w
consider two cases, namely, thecommutatorcase whena
51 andb50 and theanticommutatorcase whena50 and
b51. Notice that dynamical generation of mass occurs o
in the anticommutator case~the analysis is entirely similar to
the one in@5#!. In the following we will be explicitly analyz-
ing the commutator case but we will also comment on
other possibility.

As is well known, charge conjugation~and parity! are in
general broken for noncommutative field theories@18#. No-
tice, however, that for the commutator case the above ac
is invariant under the ‘‘charge conjugation’’ transformatio
f↔f̄, Aa→Aa , and h→2h and, as a consequence, th
‘‘mixed propagator’’ ^hAa& vanishes. This last conclusio
depends crucially on the way in which theh andf fields are
coupled. Had we used an anticommutator in the term mu
plying theh field, thenh would be even under charge con
jugation and the mixed propagator would not vanish. For
commutator case, an equivalent and useful form for
above action is

S5E d5zF f̄a~D22m!fa2
i

2
~@f̄a ,Aa#* * Dafa

2Daf̄a* @Aa ,fa#* !2
1

2
@f̄a ,Aa#* * @Aa ,fa#*

2h* @f̄a ,fa#* G . ~3.3!

As in the pure CPN21 model, at the classical level onl
the scalar fields are dynamical but quantum corrections m
provide effective dynamics for the other fields~compare also
with @5#!. All fields belong to the adjoint representation
the gauge group, which explains the commutators in
terms involving the gauge field; these commutators ca
sine factors in the corresponding vertices of the Feynm
graphs. Using the relations (D2)25!, and (D21m)(2D2

1m)52!1m2, we obtain the free propagator for the sc
lar fields

^Tf̄a~z1!fb~z2!&5 idab

D21m

!2m2 d5~z12z2!, ~3.4!

which in momentum space reads

^Tf̄a~k1 ,u1!fb~k2 ,u2!&

5~2p!3d3~k11k2!^f̄a~k1 ,u1!fb~2k1 ,u2!&, ~3.5!

where

e

2-4
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^f̄a~k,u1!fb~2k,u2!&52 idab

D21m

k21m2 d12, ~3.6!

with d12[d2(u12u2).
Let us now obtain the effective propagators for theh and

Aa fields. First we turn to theh field. The effective propa-
gator is generated by the supergraph of Fig. 2. The contr
tion of this graph to the effective actionS2
5*@d3p/(2p)3#S2(p) is

iS2~p!52NE d2u1d2u2E d3k

~2p!3 I ~k,p!~D21m!

3d12~D21m!d12h~2p,u1!h~p,u2!. ~3.7!

PerformingD-algebra transformations in a way analogous
the derivation of the effective propagator for theS field in
@5#, we get

S2~p!5
N

8p
f ~p!E d2uh~2p,u!~D212m!h~p,u!,

~3.8!

where f (p) was defined in Eq.~2.7!. From this expression
we can obtain the propagator for theh field:

^h~p,u1!h~2p,u2!&52
4p i

N

D222m

f ~p!~p214m2!
d12.

~3.9!

This propagator is linearly divergent for smallp, since in
this limit f (p)'Ap̃2. However, this divergence does n
bring difficulties since, for zero momentum, the radiati
corrections to the two-point vertex function of theh field
will also vanish~as a consequence of the sine factors at
vertices!. On the other hand, for high momenta the nonpla
contribution in Eq.~3.9! rapidly decreases. Therefore, whe
analyzing the ultraviolet behavior of Feynman amplitudes
can take just the asymptotic behavior of the planar p
which furnishes

^h~p,u1!h~2p,u2!&'2
4i

N

D222m

Ap2
d12. ~3.10!

Next, we turn to the effective propagator of the spin
field Aa . It is formed by the two contributions shown in Fig
3. The first graph, depicted in Fig. 3~a!, gives the following
contribution:

FIG. 2. Lowest order contribution to the propagator of the a
iliary h field. Here the dashed line is for theh field and the con-

tinuous line for thefa ,f̄a fields.
10501
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iS3a~p!52E d2u1d2u2E d3k

~2p!3

3Aa~2p,u1!Ab~p,u2!sin2~k∧p!

3$Da1^fa~2k,u1!f̄b~k,u2!&

3@^f̄a~k1p,u1!fb~2k2p,u2!&DQ b2#

2@Da1^fa~2k,u1!f̄b~k,u2!&DQ b2#

3^f̄a~k1p,u1!fb~2k2p,u2!&%, ~3.11!

where the notationDg i was used to indicate that the supe
covariant derivative is applied to the field whose Grassm
nian argument isu i . Taking into account the explicit form o
the propagators, we have

iS3a~p!5NE d2u1d2u2E d3k

~2p!3 Aa~2p,u1!

3Ab~p,u2!sin2~k∧p!

3FDa1~D1
21m!

k21m2 d12

~D1
21m!Db2

~k1p!21m2 d12

2
Da1~D1

21m!Db2

k21m2 d12

D1
21m

~k1p!21m2 d12G .

~3.12!

Integrating by parts some of the spinor derivatives and us
the identityDb2(k,u2)d1252Db1(2k,u1)d12, we arrive at

iS3a~p!5NE d2u1d2u2E d3k

~2p!3 I ~k,p!

3@2~D1
21m!d12Da1~D1

21m!Db1

3d12A
a~2p,u1!Ab~p,u2!

1~D1
21m!d12~D1

21m!Db1

3d12~DaAa!~2p,u1!Ab~p,u2!#. ~3.13!

It is convenient to separateS3a into two parts,S3a5S3a
(1)

1S3a
(2) , where iS3a

(1) and iS3a
(2) are associated with the tw

terms in the square brackets of Eq.~3.13!. Consider first
iS3a

(1) which, after transportingD2 from one of the propaga
tors to the other factors, becomes

-

FIG. 3. Lowest order contributions to the propagator of the a
iliary Aa field.
2-5
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iS3a
~1!~p!5NE d2u1d2u2E d3k

~2p!3 I ~k,p!

3$2md12Da1~D1
21m!Db1

3d12A
a~2p,u1!Ab~p,u2!

12d12D1
2@Da1~D1

21m!Db1d12A
a~2p,u1!#

3Ab~p,u2!%. ~3.14!

Now we employ the identity$Da1 ,D1
2%50 @7#, which leads

to

iS3a
~1!~p!5NE d2u1d2u2E d3k

~2p!3 I ~k,p!

3$2d12~k21m2!Da1Db1d12A
a~2p,u1!A

b~p,u2!

12d12~2D1
21m!Da1Db1

3d12@D2Aa~2p,u1!#Ab~p,u2!%. ~3.15!

The use of the relationship

Da~2k,u1!Db~2k,u1!5kab2CabD2~2k,u1! ~3.16!

now provides

iS3a
~1!~p!52NE d2u1d2u2E d3k

~2p!3 I ~k,p!

3$d12~k21m2!~kab2CabD2!

3d12A
a~2p,u1!Ab~p,u2!

1d12~2D21m!~kab2CabD2!

3d12@D2Aa~2p,u1!#Ab~p,u2!%. ~3.17!

The only terms giving nonzero contributions are tho
containing just oneD2 sinced12D

2d125d12. Indeed, by em-
ploying this identity and after integrating overu2 with the
help of the delta function, we obtain

iS3a
~1!~p!522NE d2uE d3k

~2p!3 I ~k,p!

3$~k21m2!CabAa~2p,u!Ab~p,u!

1~kab1mCab!@D2Aa~2p,u!#Ab~p,u!%.

~3.18!

The second term of Eq.~3.13! is

iS3a
~2!~p!5NE d2u1d2u2E d3k

~2p!3 I ~k,p!

3@~D1
21m!d12~D1

21m!Db1

3d12~DaAa!~2p,u1!Ab~p,u2!#. ~3.19!
10501
e

In this expression we must keep only the term proportio
to D1

2d12(D1
21m)Db1d12 ~the remaining part is a trace of a

odd number of derivatives and therefore vanishes!. Thus, af-
ter manipulations similar to those done forS3a

(1) , we find

iS3a
~2!~p!52NE d2uE d3k

~2p!3 I ~k,p!

3@DgDaAa~2p,u!~kgb1mCgb!Ab~p,u!#.

~3.20!

By adding Eqs.~3.18! and~3.20! we can write the total con-
tribution from Fig. 3~a! as

iS3a~p!522NE d2uE d3k

~2p!3 I ~k,p!

3H ~k21m2!CabAa~2p,u!Ab~p,u!

1~kab1mCab!@D2Aa~2p,u!#Ab~p,u!

1
1

2
DgDaAa~2p,u!~kgb1mCgb!Ab~p,u!J .

~3.21!

The algebraic manipulations for the graph 3~b! are consider-
ably simpler and yield

iS3b~p!52NE d3k

~2p!3

sin2~k∧p!

~k1p!21m2 Cab

3Aa~2p,u!Ab~p,u!. ~3.22!

The complete two-point vertex function for theAa field is
the sum of Eqs.~3.21! and ~3.22! and therefore reads

iS3~p!522NE d2uE d3k

~2p!3 I ~k,p!~kgb1mCgb!

3H @D2Ag~2p,u!#Ab~p,u!

1
1

2
DgDaAa~2p,u!Ab~p,u!J . ~3.23!

Observe that the dangerous linear divergences~as well as the
logarithmic ones! present inS3a and S3b were canceled in
the above result~compare with@19#!. As a consequence th
free two-point vertex function of the gauge field does n
present UV-IR mixing. Furthermore, notice that the graphs
Figs. 2 and 3 cannot occur as subgraphs of more complic
diagrams, i.e., they are ‘‘illegal’’ subgraphs, since they ha
already been taken into account to construct the propaga
for the Aa andh fields.

The two-point vertex function~3.23! allows us to find the
effective propagator. By recalling Eq.~2.8! and using that

E d3k

~2p!3 I ~k,p!kab52
pab

2
E d3k

~2p!3 I ~k,p!,

~3.24!
2-6
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we obtain

S3~p!5
N

16p E d2u f ~p!@2pgb12mCgb#

3Ab~p,u!Wg~2p,u!, ~3.25!

whereWg is the linear part of the field strength, i.e.,

Wg5
1

2
DaDgAa5

1

2
DgDaAa1D2Ag. ~3.26!

After some straightforward manipulations Eq.~3.25! can
be rewritten as

S3~p!5
N

16p E d2u f ~p!Ab~p,u!@D212m#Wb~2p,u!

5
N

16p E d2u f ~p!@WaWa12mWaAa#, ~3.27!

which is, of course, invariant under the linearized gau
transformationdAa5DaK. The two terms in the last equa
ity in Eq. ~3.27! are nonlocal versions of the Maxwell an
Chern-Simons actions. In the commutative situation the
fective action also contains nonlocal Maxwell and Che
Simons terms but in contrast with the above result in t
case the leading smallp terms are local.

For quantization the above gauge freedom must be el
nated. This is done by adding to Eq.~3.25! the following
gauge fixing action:

SGF~p!5
N

32pj E d2u f ~p!DbAb~p,u!D2DaAa~2p,u!.

~3.28!

Hence the pure gauge total quadratic action is

SAa~p!52
N

32p E d3p

~2p!3 d2u f ~p!Aa~2p,u!

3FDbDa~D212m!1
1

j
DaDbD2GAb~p,u!.

~3.29!

This leads to the following effective propagator:

^Aa~p,u1!Ab~2p,u2!&

5
4p i

N f~p!
F ~D222m!DbDa

p2~p214m2!
1j

D2DaDb

~p2!2 Gd12,

~3.30!

which can also be written as
10501
e

f-
-
t

i-

^Aa~p,u1!Ab~2p,u2!&

5
4p i

N f~p!
F2

2mpab

p2~p214m2!
1S 1

p214m22
j

p2DCab

1
1

p2 S 1

p214m2 1
j

p2D pabD2

1
2mCab

p2~p214m2!
D2Gd12. ~3.31!

As for low momentaf (p).Ap̃2 then the effective propaga
tor ~3.31! behaves as 1/p3. Nevertheless, as in the nonsupe
symmetric model, due to the sine factors in the vertices
infrared divergence should arise from such behavior.

Aiming at a detailed investigation of the renormalizatio
properties of the model, we now examine the UV limit of th
above propagator. For high momenta we need to cons
only the planar contributions as the nonplanar ones de
very rapidly. In this situationf (p).p/Ap2, so that

^Aa~p,u1!Ab~2p,u2!&

.
4i

N
F 12j

~p2!1/2Cab1
11j

~p2!3/2 pabD2Gd12.

~3.32!

For j521 this expression assumes the simpler form

^Aa~p,u1!Ab~2p,u2!&5
8i

N

Cab

~p2!1/2d12. ~3.33!

The action of the Faddeev-Popov ghosts is

SFP52
N

32p E d3p d2u f ~p!~c8D2c2 ic8Da@Aa ,c#* !,

~3.34!

yielding the ghost propagator

^c8~p,u1!c~2p,u2!&52 i
32p

N

D2

p2f ~p!
d12. ~3.35!

A direct consideration of the supergraphs involving gh
loops shows that they will begin to contribute only in th
1/N2 order.

In the anticommutator case we notice that the two-po
vertex functions off,Aa and the planar part of theh fields
are the same as we calculated before but the nonplanar
of the two-point vertex function of theh field changes sign.
In addition to that, the additional effective action

SAh52
N

8p
E

0

1

dx
e2MAp̃2

Ap̃2
p̃bgAg~2p,u!Dbh~p,u!

~3.36!
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coming from the graph in Fig. 4 is induced, leading to
nonvanishing mixed propagator^Aah&. From the above ex-
pression one sees that any graph containing the mixed pr
gator is superficially convergent; thus, to analyze the
behavior of the Green’s functions we can discard such gra
and use the same propagators as in the commutator cas

IV. RADIATIVE CORRECTIONS TO THE TWO-POINT
VERTEX FUNCTION OF THE SCALAR FIELD

At the next to leading order in 1/N, the divergent contri-
butions to the two-point vertex function of thef field are
given by the graphs shown in Fig. 1, where continuo
wavy, and dashed lines now represent the propagators fo
f, Aa , andh superfields. Using the propagator in Eq.~3.9!

FIG. 4. A potential contribution to the two-point vertex functio
of the h andAa fields.
r,
-

nt
.

10501
a-

hs
.

,
he

for the h field, the amplitude for the graph in Fig. 1~a! is

iS1a~p!5
16p

N
E d3k

~2p!3 E d2u1d2u2fa~2p,u1!f̄a~p,u2!

3
sin2~k∧p!

@~k1p!21m2# f ~k!~k214m2!

3~D222m!d12~D21m!d12. ~4.1!

By doing the usualD-algebra transformations~cf. @5#! and
replacingf (k) by its asymptotic formf (k)'p/Ak2, we get

iS1a~p!5
16

N
E d3k

~2p!3 E d2u fa~2p,u!~D22m!

3f̄a~p,u!
Ak2 sin2~k∧p!

@~k1p!21m2#~k214m2!
, ~4.2!

which, by power counting, is only logarithmically divergen
The graph shown in Fig. 1~b! contributes
iS1b~p!5
4p

N
E d3k

~2p!3 E d2u1d2u2

sin2~k∧p!

f ~p2k!

1

k21m2 F 2m~p2k!ab

~p2k!2@~p2k!214m2#
1S 1

~p2k!214m22
j

~p2k!2DCab

2
1

~p2k!2 S 1

~p2k!214m2 1
j

~p2k!2D ~p2k!abD21
2mCab

~p2k!2@~p2k!214m2#
D2Gd12

3@~D21m!Db2d12Dafa~p,u1!f̄a~2p,u2!2Da1~D21m!d12fa~p,u1!Dbf̄a~2p,u2!

1~D21m!d12Dafa~p,u1!Db2f̄a~2p,u2!1Da1~D21m!Db2d12fa~p,u1!f̄a~2p,u2!#. ~4.3!
Superficially S1b contains linear divergences. Howeve
the UV leading term ofS1b, after theD-algebra transforma
tions, turns out to be proportional to

E d3k

~2p!3 E d2u
kba sin2~k∧p!

~k2!3/2 Cabfa~2p,u!f̄a~p,u!,

~4.4!

which vanishes sinceCabkba50. ThereforeiS1b in Eq. ~4.3!
is only logarithmically divergent. To obtain this diverge
part we delete the 4m2 terms in the denominators of Eq
~4.3! and replacef (p2k) by its asymptotic form. We then
have the sum of three contributions.

~a! The term proportional to 2m. After the commutation
of Db2 with D2 and the use ofDb2d1252Db1d12 it contrib-
utes with
iS1b
~1!5

8m

N
E d3k

~2p!3 E d2u1d2u2 sin2~k∧p!
1

k21m2

3F ~p2k!ab1CabD2

@~p2k!2#3/2 Gd12Da1Db1~D22m!d12

3fa~p,u1!f̄a~2p,u2!. ~4.5!

We now apply the identityDa1Db15kab2CabD2 which
implies

iS1b
~1!5

8m

N
E d3k

~2p!3 E d2u1d2u2 sin2~k∧p!
1

k21m2

3F ~p2k!ab1CabD2

@~p2k!2#3/2 Gd12@kabD21Cabk22mkab

1mCabD2#d12fa~p,u1!f̄a ~2p,u2!. ~4.6!
2-8
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After contracting the loop into a point we arrive at the fo
lowing divergent correction:

iS1b
~1!5

8m

N
E d3k

~2p!3 E d2u1d2u2 sin2~k∧p!
1

k21m2

3F2kabkab1CabCabk2

@~p2k!2#3/2 Gd12fa~p,u1!f̄a~2p,u2!.

~4.7!

Since 2kabkab1CabCabk252k222k250 the term pro-
portional to 2m gives zero contribution.

~b! The term proportional to (j11) contributes

iS1b
~2!~p!52

8

N
fa~2p,u!~3D22m!f̄a~p,u!~11j!

3E d3k

~2p!3

sin2~k∧p!

~k21m2!@~p2k!2#1/2. ~4.8!

~c! The term proportional to (j21) contributes

iS1b
~3!~p!52

8

N
fa~2p,u!~D21m!f̄a~p,u!~12j!

3E d3k

~2p!3

sin2~k∧p!

~k21m2!@~p2k!2#1/2. ~4.9!

By adding the UV leading~logarithmically divergent!
parts ofiS1b

(2) ,iS1b
(3) the total divergent contribution toiS1b is

equal to

iS1b~p!52
16

N
E d3p

~2p!3 E d2u@~21j!fa~2p,u!D2

3f̄a~p,u!2mjfa~2p,u!f̄a~p,u!#

3E d3k

~2p!3

sin2~k∧p!

@~k1p!21m2#Ak2
. ~4.10!

The linearly divergent part of the graph given in Fig. 1~c!
in any gauge after theD-algebra transformations is propo
tional to

E d3k

~2p!3 E d2u
kba sin2~k∧p!

~2k2!3/2 Cabfa~2p,u!f̄a~p,u!,

~4.11!

which vanishes, being proportional toCabkba50. However,
there are logarithmically divergent contributions given by

iS1c~p!5
32

N
mE d3p

~2p!3 E d2u fa~2p,u!f̄a~p,u!

3E d3k

~2p!3

sin2~k∧p!

@~k1p!21m2#Ak2
, ~4.12!
10501
coming from the graph in Fig. 1~c!.
We conclude that the contribution to the effective acti

arising from the sum of Eqs.~4.2!, ~4.10!, and~4.12! is also
free of dangerous UV-IR mixing and has the form

iSff̄~p!52
16

N
~11j!E d3p

~2p!3

3E d2u fa~2p,u!~D22m!f̄a~p,u!

3E d3k

~2p!3

sin2~k∧p!

@~k1p!21m2#Ak2
1fin,

~4.13!

where fin denotes the remaining terms, which are UV fin
and possess at most a logarithmic UV-IR infrared diverge
~actually, because of the sine factor, no infrared diverge
appears!. We see that the quadratic UV-IR infrared dive
gence that occurred in the nonsupersymmetric version of
model, discussed in Sec. II, has disappeared under
present supersymmetrization. After integration of the pla
part,Sff̄ becomes

Sff̄~p!52
4~11j!

Np2e
E d3p

~2p!3 E d2u fa~2p,u!

3~D22m!f̄a~p,u!1fin. ~4.14!

This divergence can be canceled with the help of an app
priate counterterm, which implies the following wav
function renormalization constant for the kinetic ter
fa(D22m)f̄a :

Z511
4~11j!

p2Ne
, ~4.15!

so that in the gaugej521 the correction is finite.

V. THE GENERAL STRUCTURE OF DIVERGENCES
AND THE ABSENCE OF DANGEROUS UV-IR MIXING

We have explicitly verified that the two-point vertex fun
tions of thef field up to first order in 1/N do not produce
nonintegrable divergences. To further clarify the issue
renormalizability up to order 1/N, we start by calculating the
superficial degree of divergencev of an arbitrary graphg. To
that end, let us denote the number of vertic
iAa* (Dafa* f̄a2Daf̄a* fa) by V1 , of Aa* Aa* fa* f̄a by
V2 , of h* f̄a* fa by V3 , and off (p)c8* Da@Aa ,c#* by Vc .
Furthermore, letPf ,PA ,Ph ,Pc be the number of propaga

tors ^faf̄b&, ^AaAb&;D2/k2, ^hh&, ^cc8&;D2/Ak2, re-
spectively. Each loop contributes tov with 2 ~3 for the inte-
gral overd3k, 21 because the contraction of a loop into
point decreases the number ofD2 factors which could be
converted to momenta by 1!. Eachfa or Aa propagator con-
tributes with21 while each vertexV1 brings 1

2 since it con-
tains one spinor derivative, and each vertexVc brings 21

2

due to the factorf (p). Therefore,v is
2-9
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v52L2Pf2PA1
1

2
V12

1

2
Vc , ~5.1!

whereL designates the number of loops ing. By using the
well-known topological identityL1V2P51, this becomes

v521PA1Pf12~Ph1Pc!2
3

2
V12

5

2
Vc

22~V21V3!2PA2Pf . ~5.2!

The number of propagators may be expressed in term
the number of external linesEf ,EA ,Eh ,Ec and of the total
number of fieldsNf ,NA ,Nh ,Nc used to constructg as

Pf5
1

2
~Nf2Ef!, PA5

1

2
~NA2EA!,

Ph5
1

2
~V32Eh!, Pc5

1

2
~Nc2Ec!. ~5.3!

It is then easy to verify that

Nf52~V11V21V3!, NA5V112V21Vc ,

Nh5V3 ; Nc52Vc . ~5.4!

By replacing Eqs.~5.4! and~5.3! into Eq. ~5.2!, and after
taking into account thatv decreases byND/2 whenND su-
percovariant derivatives are moved to the external lines,
arrives at

v522
1

2
~Ef1EA!2Eh2Ec2

1

2
ND . ~5.5!

We immediately see thatv in the theory cannot be large
than 1~it would be 2 only for vacuum supergraphs but the
contributions vanish due to the properties of the integral o
Grassmann coordinates@7#!. We also note thatEf must be
even in order to have an~iso!scalar contribution. For the
same reason,EA must either be even or if not it must b
accompanied by an odd number of spinor supercovariant
rivatives.

The casev51 corresponds toEf52, or EA52, or Eh
51, or EA5ND51 ~with the number of all other externa
lines in each case being zero!. However, we have alread
proved that the graphs withEf52 ~depicted in Fig. 1! are at
most logarithmically divergent and that the sum of t
graphs withEA52 ~which are depicted in Fig. 3! is finite
and contributes only to the effective propagator of the ga
field. In addition, the graph withEh51 is a tadpole graph
which automatically vanishes in the commutator ca
whereas in the anticommutator case its effect is only to fixm
as being the mass of thef superfield~compare with@5#!. As
for the graph corresponding toEA5ND51, which is for-
mally linearly divergent, its contribution is proportional t
*d5z DaAa , which is of course zero.

From this discussion, we see that, up to the leading o
of the 1/N expansion, all divergences in the theory are o
logarithmic. This means that the quantum corrections in
10501
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e
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theory are, up to this order, free from nonintegrable infra
UV-IR singularities. We hope that a similar situation occu
at higher orders in the 1/N expansion.

There are more possibilities ifv50, namely,EA54, or
Ef54, or EA5Ef52, or Eh51, Ef52, or Eh51, EA52,
or Eh52, or EA51, Ef52, ED51, or EA53, ED51. The
cases with eitherEf54 or EA54 or EA53 or Eh51, EA
52 are particularly dangerous because they are potent
logarithmically divergent but there is no available count
term to absorb these divergences. However, one can ex
itly verify that in all these cases the integrands associa
with the divergent parts are odd in the loop momentum a
therefore vanish under symmetric integration. Thus, up
leading order of the 1/N expansion, only the casesEh51,
Ef52, or Ef52, EA52, or EA51, Ef52, ED51 imply
divergences.

This means that we can construct effective interact
terms for an effective Lagrangian of the gauge fieldAa

which are finite and proportional to*d5z(1/A!)(DA)2A2

and*d5z(DA)A2, which are needed to complete the induc
noncommutative Maxwell and Chern-Simons Lagrangia
The graph with two externalh fields of orderN is given by
Fig. 2, and we already showed that it is finite. As for t
subleading graphs with two externalh fields, they could
modify only the effective propagator of theh field at higher
orders of the 1/N expansion.

In the commutator case, due to the invariance
the action~3.1! under charge conjugation, the contributio
proportional tohAaAa vanish in any finite order of the
expansion. In particular, at the first order in 1/N this
result can be seen directly, as it turns out to be prop
tional to *d2u d3p1d3p2Aa(p1 ,u)Aa(p2 ,u)h(2p12p2 ,u)
sin(p1∧p2), which evidently vanishes.

To sum up, in the leading order of 1/N the only logarith-
mic divergences in the theory are those proportional
faf̄a , which give origin to the wave function renormaliza
tion of thef field, those proportional tohfaf̄a , which, by
a method similar to that employed in@5#, can be shown to
have the same Moyal structure as the corresponding verte
the classical action~both in the commutator and anticommu
tator cases!, and those that are proportional tofaf̄aAaAa

and toAa(Dafa)f̄a ,Aafa(Daf̄a).
It is easy to verify that the Moyal structure of the quantu

corrections proportional toAa(Dafa)f̄a ,Aafa(Daf̄a) is
preserved. For example, in the commutator case each su
graph in such quantum corrections contains an odd num
of triple vertices, and therefore they will furnish a product
an odd number of sine factors; thus, as in@5#, we find that the
planar contribution can have only the form sin(p1∧p2) where
p1 and p2 are two of the three incoming momenta. Th
phase factor also reproduces the corresponding Moyal st
ture in the classical action. However, an analogous proo
the same fact for the quartic correctionfaf̄aAaAa is much
more complicated. This problem will be considered els
where.

VI. SUMMARY

In this paper we studied the minimal and supersymme
inclusion of fermions in the pure noncommutative CPN21
2-10
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model. Although for both situations a great improvement
the long distance behavior of the gauge two-point ver
function was achieved, the case of minimal coupling s
presented an infrared nonintegrable singularity in the s
energy of the basic scalar field. To evade this problem
supersymmetric extension was also considered and
proved that, at least to 1/N order, the supersymmetric mod
is free from a dangerous UV-IR mixing. This is a stron
indication that this supersymmetric model has a consis
perturbative expansion. The theory exhibits very nontriv
properties as the generation of a dynamics for the sp
connection superfield, with both the Maxwell and the Che
Simons terms being generated by the quantum contributi
The ghost superfields which are generated also possess
trivial dynamics; however, they contribute to the quantu
corrections only at 1/N2 and higher orders.

The analysis of the ultraviolet behavior unveiled som
interesting aspects of the renormalization program for
two versions of the model. In both cases considered,
model turns out to be renormalizable since the use of a c
mutator or an anticommutator does not change the pla
part of the amplitudes. All ultraviolet divergences are log
rithmic and can be eliminated by adequate counterterms~the
Moyal structure of thef̄afaAaAa vertex still needs further
n
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analysis!. Similarly to the noncommutative nonlinear sigm
model, nontrivial wave function renormalizations for th
auxiliary h andAa fields are expected@5#.

The wave function renormalization constant for the sca
superfield was shown to be gauge dependent whereas, d
charge conjugation invariance, the mixed two-point ver
function of theAa andh fields vanishes in the commutato
case.

A further development of the model could consist in
more detailed investigation of the higher orders of the 1N
expansion. Also, it could be interesting to develop the
tended supersymmetric generalization of this model by a
ogy with the N52 super-Yang-Mills theory containing
gauge and matter multiplets in theN51 description.
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