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Commutative four dimensional supersymmetric Yang-Mills (SYM) theory is known to be renorma-
lizable for N � 1; 2, and finite for N � 4. However, in the noncommutative version of the model the
UV/IR mechanism gives rise to infrared divergences which may spoil the perturbative expansion. In
this work we pursue the study of the consistency of the N � 1; 2; 4 noncommutative supersymmetric
Yang-Mills theory with gauge group U�N� (NCSYM). We employ the covariant superfield framework to
compute the one-loop corrections to the two- and three-point functions of the gauge superfield V. It is
found that the cancellation of the harmful UV/IR infrared divergences only takes place in the
fundamental representation of the gauge group. We argue that this is in agreement with the low energy
limit of the open superstring in the presence of an external magnetic field. As expected, the planar
sector of the two-point function of the V superfield exhibits UV divergences. They are found to cancel,
in the Feynman gauge, for the maximally extended N � 4 supersymmetric theory. This gives support
to the belief that the N � 4 NCSYM theory is UV finite.
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I. INTRODUCTION

The four dimensional maximally extended supersym-
metric Yang-Mills (SYM) theory has recently been under
intense scrutiny particularly due to its connection with
the string/brane theory (see, for example, [1] and refer-
ences therein). By contrast, studies on the renormalization
properties of its noncommutative counterpart are more
scarce. Some indications of its ultraviolet finiteness have
already been given: using the background field formalism
the one-loop four-point function of the field strength has
been computed [2,3] and the finiteness of the model has
been argued on the basis of the vanishing of the relevant
beta function [4]. However, a direct calculation of the
Green functions of the gauge potential V within the
superfield formalism is still lacking. As known, this study
is essential to secure the ultraviolet finiteness of the
higher order contributions to the effective action.
Besides, the possible existence of nonintegrable infrared
singularities, which can jeopardize the perturbative ex-
pansion, is particularly worrisome. Here we will furnish
some further insight into these questions by providing an
explicit calculation of the one-loop corrections to the
two- and three-point vertex functions of the V superfield.
This work is the followup of a recent paper of us dealing
with the divergence structure of noncommutative super-
symmetric QED4 [5]. We shall use again the covariant
superfield formalism to study the analogous problem for
address: alysson, hgirotti, aribeiro@if.ufrgs.br
address: mgomes, petrov, rivelles,

f.usp.br
address: petrov@tspu.edu.ru

04=70(8)=085012(11)$22.50 70 0850
the N � 1; 2; 4 noncommutative supersymmetric Yang-
Mills (NCSYM) theories in four spacetime dimensions
[6]. The reason for choosing U�N� as the gauge group is
based on the fact that it admits a simple noncommutative
extension [7,8].

In Sec. II we present the action and the Feynman rules
deriving from it, for the NCSYM theory. The one-loop
corrections to the two-point function of the gauge super-
field V are computed and discussed in Sec. III. As will be
seen, the fact that the gauge group is enforced to be in the
fundamental representation warrants the cancellation of
the leading UV/IR infrared divergences. We also demon-
strate that, in the case N � 4, the planar sector of the
one-loop corrections to the two-point function of the V
superfield turn out to be free of UV divergences. This
supports the belief that, as in the commutative case, the
N � 4 NCSYM theory is UV finite.

Consistency demands that the cancellation of the non-
integrable UV/IR infrared divergences should also take
place in the fundamental representation for any n-point
vertex function. This is, indeed, verified, in Sec. IV, for
the leading UV/IR infrared divergences in the one-loop
corrections to the three-point vertex function of the V
superfield. The conclusions and some final remarks are
contained in Sec. V.
II. THE ACTION AND FEYNMAN RULES
OF NCSYM

In N � 1 superspace, NCSYM in four spacetime
dimensions is described by the nonpolynomial action
12-1  2004 The American Physical Society



FIG. 1. Free propagators.
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d8zTr�e�gV �D�egV��D2�e�gV �D�egV�;

(2.1)

where g is the coupling constant, V is a real Lie algebra
valued vector superfield,

V�z� � Va�z�Ta; (2.2)

and the Ta; a � 1; � � � ; N2, are the generators of U�N� in
the fundamental representation. They satisfy the algebra

�Ta; Tb� � ifabcTc: (2.3)

Here, the fabc’s are the structure constants of the gauge
group. The generators are normalized according to

T r�TaTb� �
1

2
�ab: (2.4)

Furthermore, D2 � 1=2D�D�, �D2 � 1=2 �D _�
�D _� and the
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where ��� is the antisymmetric real constant matrix
characterizing the noncommutativity of the underlying
spacetime [12].

The gauge fixing is implemented by adding to the
action SV the covariant term

Sgf � �
a
2

Z
d8zTrVfD2; D2gV; (2.6)

where a is a real constant labeling the gauge. The corre-
sponding Faddeev-Popov determinant can be cast as

��1�V� �
Z

DcDc0DcDc0eiSgh�c;c
0; �c; �c0�: (2.7)
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The ghost fields c; c � cy; c0; c0 � c0y also take values in
the Lie algebra, namely, c�z� � ca�z�Ta and so on. The
explicit form for the ghost action is found to be

Sgh� i�c�c�L�g=2�V���c0 �c0���cothL�g=2�V��c0 �c0��;

(2.8)

where

LA�B� � �A;B��: (2.9)

The N � 2; 4 supersymmetric theories can be con-
structed by adding chiral matter superfields �i�z� �
�i
a�z�Ta. The action describing a matter superfield inter-

acting with the gauge superfield reads

Sim �
Z
d8zTr�i � e�gV ��i � egV: (2.10)

We remind the reader that the self-interaction among
the chiral superfields �i; i � 1; 2; 3, entering the maxi-
mally extended N � 4 NCSYM model, may be entirely
disregarded as far as the calculation of the one-loop
corrections to the n-point vertex functions of the V super-
field is concerned. Because of this, the corresponding
term has been omitted from the action.

From the quadratic part of the action SV � Sgf �
Sgh � Sm one obtains the free propagators,
�VaVb�z1 � z2� � �ab
2i
�

�
1� �1� a�

1

�
fD2

1; D
2
1g

�
�8�z1 � z2�; (2.11a)

�cac0b�z1 � z2� � ��ab
2i
�
D2

1D
2
2�

8�z1 � z2�; (2.11b)

�cac0b�z1 � z2� � �ab
2i
�
D2

1D
2
2�

8�z1 � z2�; (2.11c)

��i
a�

j
b
�z1 � z2� � ��ij�ab

2i
�
D2

1D
2
2�

8�z1 � z2�; (2.11d)

corresponding to the gauge, ghosts and matter superfields, respectively. They are depicted in Fig. 1. On the other hand,
the interacting part of the total action enables us to find the elementary vertices needed for our calculations. They are
displayed in Fig. 2. In an obvious notation,
-2
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�D2DVa�Vb�DVc�
�k1; k2; k3� �

ig
2
V 3abc�k1; k2; k3�; (2.12a)

��0�
caVbc0c

�k1; k2; k3� � ��0�
caVbc0c

�k1; k2; k3� �
ig
2
V 3abc�k1; k2; k3�; (2.12b)

��0�
caVbc0c

�k1; k2; k3� � ��0�
caVbc0c

�k1; k2; k3� � �
ig
2
V 3abc�k1; k2; k3�; (2.12c)

��0�

�aVb�c
�k1; k2; k3� � �igV 3abc�k1; k2; k3�; (2.12d)

��0�

�D2DVa�VbVc�DVd�
�k1; k2; k3; k4� � �

ig2

24
V �1�

4abcd
�k1; k2; k3; k4�; (2.12e)

��0�

VaDVbDVc�D
2Vd�

�k1; k2; k3; k4� �
g2

4
V �2�

4abcd
�k1; k2; k3; k4�; (2.12f)

��0�

VaDVbDDVc�DVd�
�k1; k2; k3; k4� � �

g2

4
V �2�

4abcd
�k1; k2; k3; k4�; (2.12g)

��0�
caVbVcc0d

�k1; k2; k3; k4� � ��0�
caVbVcc0d

�k1; k2; k3; k4� � �
ig2

12
V �1�

4abcd
�k1; k2; k3; k4�; (2.12h)

��0�
caVbVcc0d

�k1; k2; k3; k4� � ��0�
caVbVcc0d

�k1; k2; k3; k4� � �
ig2

12
V �1�

4abcd
�k1; k2; k3; k4�; (2.12i)

��0�

�aVbVc�d
�k1; k2; k3; k4� �

ig2

2
V �1�

4abcd
�k1; k2; k3; k4�; (2.12j)

��0�

D2DVaVbVcVdDVe
�k; p1; p2; p3;�k� � �

ig3

24
V 5abcde�k; p1; p2; p3;�k�; (2.12k)

��0�

�aVbVcVd�e
�k; p1; p2; p3;�k� � �

ig3

6
V 5abcde�k; p1; p2; p3;�k�: (2.12l)

Here,

V 3abc�k1; k2; k3� � e�ik2^k3Aabc � e
ik2^k3Aacb; (2.13a)

V �1�
4abcd

�k1; k2; k3; k4� � e�i�k1^k2�k3^k4�Aabcd � 2e�i�k1^k2�k4^k3�Aabdc � e�i�k1^k4�k2^k3�Aadbc; (2.13b)

V �2�
4abcd

�k1; k2; k3; k4� � sin�k1 ^ k2��e�ik3^k4Aabcd � eik3^k4Aadcb�: (2.13c)
As for V 5abcde we shall only be needing V 5 with two
contracted indices, namely,

V 5abc�k;p1;p2;p3;�k��Adabcde
�ip2^p3

�Adabdce�ip2^p3

�3�Adabdce
�ip2^p3e2ik^p3

�Adadbce
�ip2^p3e�2ik^p1�;

(2.14)

where V 5abc �V 5dabcd . The momenta are taken positive
when entering the vertex and momentum conservation
holds in all vertices. We have also introduced the defini-
tion

Aa1���an � Tr�Ta1 � � �Tan�: (2.15)

III. ONE-LOOP CORRECTIONS TO THE
TWO-POINT VERTEX FUNCTION OF THE

GAUGE SUPERFIELD

We turn now into computing the one-loop corrections
to the two-point vertex function of the V superfield, to be
denoted by ��1�

VV .
085012
In Fig. 3 we draw the contributions containing a
quartic V-vertex, omitting those which vanish because
of the D-algebra alone. According to the Feynman’s rules
given in Sec. II, the amplitude associated with the graph
A1 is found to read

�A1 �
�
�
ig2

24

�Z d4k

�2$�4
d4%�FA1�abcd

�
��ad

2i

k2

�
DA1
%

��sym�; (3.1)

where FA1 is the phase factor originating from the Moyal
product, D% is the %-dependent part of the Feynman
integrand and (sym) means symmetrization over external
legs which, in this case, implies adding the diagram with
p! �p and b$ c.

The calculation of DA1
% is elementary and yields

D A1
% � �2Vb�p�Vc��p�: (3.2)

The phase factor can be computed by using Eqs. (2.12e)
and (2.13b). Then, one ends up with
-3
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FIG. 2. Elementary vertices.
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�A1 �
�
g2

3

�Z d4k

�2$�4
d4%

1

k2
�FT�bcVb�p�Vc��p�; (3.3)

where

�FT�bc � �Aaabc � Aaacb� � 2 cos�2k ^ p�Aabac: (3.4)

Notice that �A1 appears to be, by power counting, quad-
ratically UV divergent.

It will prove convenient to introduce the definition

Q0 � �g2
Z d4k

�2$�4
d4%

1

k2
�FT�bcVb�p�Vc��p�; (3.5)

which allows us to write
A1 A2 A3 A4

D D̄D

D

k k k k

D̄

D̄

D
D̄2D

D D̄D
D̄2D

p p p p p p p p

FIG. 3. Graphs involving a quartic V vertex.
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�A1 � �
1

3
Q0: (3.6)

According to Eq. (3.4), FT splits into planar (P) and
nonplanar (NP) parts. Correspondingly, Q0 �
QP0 �QNP0 . The planar part QP0 is indeed UV quadrati-
cally divergent, whereas QNP0 develops a quadratic infra-
red pole through the UV=IR mechanism [13].

Next on the line is the graph A2. It is not difficult to
convince oneself that

D A2
% � �

2

k2
�1� a�D2DVa�p�DVd��p�; (3.7)

and

�FA2�abcd�
bc � �Accda � Accad� � 2e�2ik^pAacdc; (3.8)

lead to

�A2 � �1� a�
�
g2

6

�Z d4k

�2$�4
d4%��FA2�abcd�

bc�



1

�k2�2
D2DVa�p�DVd��p� � �sym�: (3.9)

Hence, �A2 is gauge dependent and contains, at most,
logarithmic divergences. To implement the symmetriza-
tion with respect to the external legs we first invoke the
relation
-4
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D�D2D�V�p� � ��p6 DD� 2D2D2�V�p�

� ��p6 DD� 2D2D2�V�p�; (3.10)

where p6 D �D � p6 � _�D� �D _�. Therefore, after realizing that
�FA2�abcd�

bc � �sym� � 2�FT�ad one arrives at

�A2 � �

�
g2

3

�
�1� a�

Z d4k

�2$�4
d4%�FT�ad

1

�k2�2
Vd��p�


��p6 DD� 2D2D2�Va�p�: (3.11)

However, this expression does not yet appear as being
symmetric under the exchange p! �p and a$ d. In
order to explicitly exhibit such symmetry, we start by
writing

Z
d4%Vd��p���p6 DD� 2D2D2�Va�p�

�
1

2

Z
d4%Vd��p���p6 DD� 2D2D2�Va�p�

�
1

2

Z
d4%Va�p���p6 DD� 2D2D2�Vd��p�; (3.12)

which, after integration by parts in the second term of the
right-hand side,

Z
d4%Vd��p���p6 DD� 2D2D2�Va�p�

�
1

2

Z
d4%Vd��p���p6 fD;Dg � 2fD2; D2g�Va�p�;

(3.13)

and since fD�; �D _�gV�p� � p6 � _�V�p� and p6 � _�p6
_�� � 2p2,

becomes

Z
d4%Vd��p���p6 DD� 2D2D2�Va�p�

�
Z
d4%Vd��p���p2 � fD2; D2g�Va�p�: (3.14)

Thus, �A2 can be cast

�A2 �
�
g2

3

�
�1� a�

Z d4k

�2$�4
d4%�FT�ad

1

�k2�2
Vd��p�


�p2 � fD2; D2g�Va�p�; (3.15)

which is obviously symmetric under the exchange p!
�p and a$ d.

For future purposes, we introduce the definition

L0 � g2
Z d4k

�2$�4
d4%�FT�ad

1

�k2�2
Vd��p��p2

� fD2; D2g�Va�p�; (3.16)

in terms of which

�A2 �
1

3
�1� a�L0: (3.17)
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As far as the graphs A3 and A4 are concerned, the
D-algebra yields an integrand odd in k, in fact, propor-
tional to k6 =k4. On the other hand, the phase factor is, for
both graphs, an even function of k. Hence, the symmetric
k-integration leads to

�A3 � �A4 � 0: (3.18)

We next turn into the more complicated task of evalu-
ating the diagrams involving two trilinear V vertices,
depicted in Fig. 4. There are many graphs to consider,
differing among themselves in the distribution of the
D-factors in each vertex. For reasons of space, we only
present here the details of the calculation of the diagram
B1. For the remaining ones, we shall merely quote the
final results for the corresponding amplitudes.

With the momentum flow indicated in Fig. 5, the
Feynman rules applied to B1 lead to

�B1 � �

�
g2

2

�Z d4k

�2$�4
d4%1d

4%2�F
B1�abcdef�

af�cd




�
�i�2

k2�k� p�2

�
DB1
% � �sym�: (3.19)

As before, (sym) means symmetrization over the external
legs, i.e., adding the expression with p! �p and b$ e.
By feeding the momenta in Fig. 5 into Eq. (2.13a) one
obtains

�FB1�abcdef�
af�cd � 2�FL�be; (3.20)

where
-5



p p
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FIG. 5. Momentum flow for the V-loop.
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�FL�be � AabcAcea � cos�2k ^ p�AabcAaec: (3.21)

The phase factor �FL�be, common to all diagrams in this
topology, is symmetric in both momenta k and p as well
as in color indices.

The D-algebra for the graph �B1 is identical to that
encountered for the corresponding diagram in the U�1�
case [5]. Hence, we write at once

D B1
% � �2�12Ve2 ��p��k

2 � k6 DD�D2D2�Vb1 �p�:

(3.22)

By putting all the ingredients together we arrive at

�B1 � �2g2
Z d4k

�2$�4
d4%�FL�be




�
k2
�
Vb�p�Ve��p�

k2�k� p�2
�
Ve��p�Vb�p�

k2�k� p�2

�

�k6
�
DDVb�p�Ve��p�

k2�k� p�2
�
DDVe��p�Vb�p�

k2�k� p�2

�

�

�
D2D2Vb�p�Ve��p�

k2�k� p�2
�
D2D2Ve��p�Vb�p�

k2�k� p�2

��
;

(3.23)

where the symmetrization has already been performed.
To isolate different powers of k in the integrand of

Eq. (3.23), we expand �k� p��2 around p � 0, i.e.,

1

�k� p�2
�

1

k2
� 2

k � p

�k2�2
�

4�k � p�2 � k2p2

�k2�3
� � � � :

(3.24)

Then, after some manipulations involving the % integrals
one finds

�B1 � �2g2
Z d4k

�2$�4
d4%�FL�beV

e��p�




�
2

k2
�

4�k � p�2 � k2p2

�k2�3
� 4

�k � p�2

�k2�3

�
1

�k2�2
fD2; D2g

�
Vb�p� � FT; (3.25)

where ‘‘FT’’ is short for ‘‘finite terms’’. To further sim-
085012
plify this expression we first write

�B1 � 2Q1 � L1 � FT; (3.26)

where

Q1 � �2g2
Z d4k

�2$�4
d4%

1

k2
�FL�beVb�p�Ve��p� (3.27)

and

L1 � 2g2
Z d4k

�2$�4
d4%�FL�be

1

�k2�2
Ve��p�




�
4�k � p�2 � k2p2

�k2�
� 4

�k � p�2

�k2�

� fD2; D2g

�
Vb�p�: (3.28)

From observation follows that Q1 and L1 are, respec-
tively, quadratically and logarithmically divergent by
power counting. Furthermore, for the planar part of L1

one can take advantage of

Z
d4kk�k�f�k

2� �
1

4
g��

Z
d4kk2f�k2� (3.29)

to write

LP1 � �2g2
Z d4k

�2$�4
d4%

1

�k2�2
�FPL�beV

e��p��p2

� fD2; D2g�Vb�p�: (3.30)

The nonplanar part LNP1 develops a logarithmic UV/IR
infrared pole which, for being harmless, can be lumped
into FT. To summarize, we may cast �B1 in the following
final form

�B1 � 2Q1 � LP1 � FT: (3.31)

The planar part of Q1 is quadratically UV divergent,
while the nonplanar one develops a quadratic UV/IR
infrared pole. As can be seen from (3.30), LP1 is logarith-
mically UV divergent.

For the remaining diagrams in Fig. 4 we found

�B2 � �2Q1; �B3 � LP2 � 2LP1 � FT; �B4 � 0;

�B5 � 2LP1 � FT; �B6 � �2LP1 � FT;

�B7 � LP1 � FT; �B8 � �2�1� a�LP1 ;

�B9 � �2aLP1 � FT; �B10 � �2aLP1 � FT;

�B11 � FT; �B12 � FT; (3.32)

where

LP2 � �2g2
Z d4k

�2$�4
d4%

p2

�k2�2
�FPL�beV

e��p�Vb�p�:

(3.33)
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FIG. 7. Diagrams involving a ghost loop.
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By adding up Eqs. (3.6), (3.17), (3.18), (3.31), and
(3.32), one arrives at

�A � �B � �
1

3
Q0 �

1

3
�1� a�L0 � 2�2� a�LP1

�LP2 � FT: (3.34)

Ghost loop contributions to ��1�
VV involving a quartic

vertex arise from the graphs depicted in Fig. 6. A straight-
forward application of the Feynman rules yields

�G1 � ��1�
�
ig2

12

�Z d4k

�2$�4
d4%�FG1�abcd




�
�ad

2i

k2

�
DG1
% � �sym�; (3.35)

and

�G2 � ��1�
�
�
ig2

12

�Z d4k

�2$�4
d4%�FG2�abcd




�
��ad

2i

k2

�
DG2
% � �sym�: (3.36)

In view of FG1 � FG2 and DG1
% � DG2

% one concludes that
�G1 � �G2 and, hence,

�G1 � �G2 � �
2

3
Q0: (3.37)

The diagrams containing a ghost loop with two tri-
linear vertices are indicated in Fig. 7. Both �G3 and �G4
are very similar to �B1. Indeed, �G3 � �G4 and �G3 �
�G4 � �B1. Therefore, according to Eq. (3.31),

�G3 � �G4 � 2Q1 � L
P
1 � FT: (3.38)

It remains to compute the graph G5. Since

D G5
% � D2D2�12D2D2�12Vb�p�Ve��p�

� �12D
2D2Vb�p�Ve��p�; (3.39)

it can at most be logarithmically divergent. The topologi-
cal weight for this diagram is 2. Then,
p

G2

k

p
p

G1

k

p

c̄ cc′ c̄′

FIG. 6. Ghost tadpole contributions.
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�G5 � LP3 � FT; (3.40)

where

LP3 � 2g2
Z d4k

�2$�4
d4%

1

�k2�
�FPL�beV

e��p�fD2; D2gVb�p�:

(3.41)

The total contribution of ghost loops to ��1�
VV is obtained

from Eqs. (3.37), (3.38), and (3.40), and amounts to

�G � �
2

3
Q1 � L

P
1 � LP3 � FT: (3.42)

One should notice that Eqs. (3.30), (3.33), and (3.41)
imply that

LP1 � LP2 � LP3 : (3.43)

We address now the calculation of the matter contribu-
tions to the two-point vertex function of the V superfield.
The relevant diagrams for each matter superfield are
depicted in Fig. 8. Up to numerical factors, their evalu-
ation is just as for the corresponding ghost graphs, since
c; c0 (c; c0) and �i (�i) are both chiral (antichiral) super-
fields. Thus, for diagram M1 one finds

�M1 � 2Q0: (3.44)

As for M2, one has �M2 � �4�G3 � �2�B1, i.e.,

�M2 � �4Q1 � 2LP1 � FT (3.45)

and, therefore,

�M1 � �M2 � 2�Q0 � 2Q1 � LP1 � � FT (3.46)

is the one-loop correction to �VV contributed by each
chiral matter superfield. In particular, for the maximally
extended (N � 4) NCSYM theory,

�M � 3
 ��M1 � �M2�: (3.47)

Now we are able to discuss the structure of divergences
of ��1�

VV . Let us first focus on its planar part, which con-
tains all the UV divergences. Quadratic UV divergences
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are washed out by dimensional regularization, while
linear ones are killed by symmetric integration. All that
is left are logarithmic UV divergences and UV finite
terms. For N � 1; 2, these divergences must be renor-
malized. As for N � 4, it turns out that

���1�
VV�logarithmic UV � 2�1� a�LP1 �

1

3
�1� a�L0; (3.48)

as seen from Eqs. (3.34), (3.42), (3.47), and (3.43). As in
the commutative case [14,15], the maximally extended
supersymmetric theory turns out to be free of ultraviolet
divergences in the Feynman gauge (a � 1).

We concentrate next on studying the nonplanar part of
��1�
VV , which due to the noncommutativity is UV finite but

develops infrared poles through the UV/IR mechanism.
As for the U�1� model [5], the phase factor originated
from the noncommutativity is always an even function of
k and, hence, there can be no linear UV/IR infrared
divergences. Then, the only harmful UV/IR poles are
the quadratic ones, contained in Q1 and Q0. For the
pure gauge sector one finds [see Eqs. (3.34) and (3.42)]

��NPA � �NPB � �NPG �quadratic UV=IR � �QNP0 � 2QNP1 ;

(3.49)

while, for each chiral matter superfield [see Eq. (3.46)],

��NPM1 � �NPM2�quadratic UV=IR � 2QNP0 � 4QNP1 : (3.50)

Therefore, the quadratic UV/IR infrared divergences can-
cel both for the N � 1 as well as for the extended
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supersymmetric NCSYM if

1

2
QNP0 � QNP1 ; (3.51)

which, in view of the definitions in Eqs. (3.5) and (3.27),
demands that

Z d4k

�2$�4
�FNPT �be

Z
d4%Vb�p�Ve��p�

� 4
Z d4k

�2$�4
�FNPL �be

Z
d4%Vb�p�Ve��p�: (3.52)

According to Eqs. (3.4) and (3.21), a sufficient condition
for Eq. (3.52) to hold is

T r�TaTbTaTe� � 2Tr�TaTbTc��TaTeTc�: (3.53)

For the fundamental representation of U�N�, the set of
generators is complete and, therefore [16],

�Ta�ij�Ta�kl �
1

2
�il�jk; (3.54)

which guarantees that Eq. (3.53) is, in fact, verified.
We close this section with a few comments concerning

the commutative situation. In this case, the so called
nonplanar diagrams do not give rise to UV/IR infrared
divergences but rather to quadratic UV divergences,
whose cancellation demands that Eq. (3.52) holds in the
limit ��� ! 0. This is authomatically secured by dimen-
sional regularization. On the other hand, if any other
gauge invariant regularization method is used, the trace
relation in Eq. (3.53) must be fulfilled.
IV. LEADING UV/IR INFRARED DIVERGENCES
IN THE ONE-LOOP CORRECTIONS TO THE

THREE-POINT VERTEX FUNCTION

In connection with higher-point vertex functions, it is
natural to expect that the cancellation of the nonintegr-
able UV/IR infrared singularities will require further
conditions involving the traces of the group generators,
like in Eq. (3.53). The natural question is whether these
conditions will be verified by the generators in the fun-
damental representation of the gauge group U�N�. A
thorough investigation to provide a full answer to this
question is clearly impracticable but we may, neverthe-
less, start to clarify the situation by looking at the one-
loop corrections to the three-point vertex function of the
gauge superfield V, hereafter to be denoted by ��1�

VVV . For
reasons of simplicity, we shall restrict here to study the
leading (quadratic by power counting) divergences.

The diagrams contributing to ��1�
VVV and involving a

vector loop are generically depicted in Fig. 9. We shall
first address the supergraph V1 involving the quintic
vertex of the gauge superfield. The corresponding ampli-
tude is found to read
-8



FIG. 10. Antisymmetric property of the triple vertex
�D2DVaVbDVc.

FIG. 9. Vector loop contributions to ��1�
VVV .
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�V1 �
�
�
ig3

24

�Z d4k

�2$�4
d4%�FV1�abcde




�
��ae

2i

k2

�
DV1
% � �sym�: (4.1)

The phase factor FV1 can be calculated from Eq. (2.14).
Since the objects of interest are the leading UV/IR infra-
red singularities, we single out the nonplanar part of FV1
which is proportional to

e�ip2^p3�Adabdce2ik^p3 � Adadbce�2ik^p1�: (4.2)

With the help of

Z d4k

�2$�4
e2ik^p

k2
�

1

4$2p � p
(4.3)

and after total symmetrization with respect to the exter-
nal momenta and color indices, one concludes that �V1
does not contain quadratic UV/IR infrared divergences.

Leading UV/IR infrared divergences arising from the
remaining diagrams in Fig. 9 also vanish as consequence
of a simple property involving the triple vertex
�D2DVaVbDVc: the exchange of two legs contracted

with the field derivative factors contained in the just
mentioned vertex, implies in an overall change of sign
in the corresponding amplitude. To understand why this
happens, let us consider some (sub)supergraph G with two
legs Vd�p1� and Ve�p2� to be contracted with the
�D2DVaVbDVc vertex (see Fig. 10). The amplitude asso-

ciated with G will schematically be given by

�. . .�deVd�p1�Ve�p2�: (4.4)

We observe that only the terms involving derivates in the
triple V vertex are to be contracted with Vd�p1� and
Ve�p2�. Indeed, if doing otherwise we would not be look-
ing at a diagram containing leading divergences. As in-
dicated in Fig. 10, there are two ways to perform such
contraction:
085012
(i) Vd is contracted with Va and Ve with Vc. The
resulting amplitude reads

�. . .�de�da�ec�eip1^p2Aabc � e�ip1^p2Aacb�

� �. . .�de�e
ip1^p2Adbe � e

�ip1^p2Adeb�: (4.5)

(ii) Vd is contracted with Vc and Ve with Va. In this
case the amplitude turns out to be

�. . .�de�dc�ea�eip2^p1Aabc � e�ip2^p1Aacb�

� ��. . .�de�e
ip1^p2Adbe � e

�ip1^p2Adeb�: (4.6)

Clearly, the sign difference between Eqs. (4.5) and (4.6) is
at the root of the mechanism of cancellation for the
leading divergent contributions arising from diagrams
V2 and V3 in Fig. 9.

As for the ghost loop contributions, depicted in Fig. 11,
the cancellation of the leading UV/IR infrared singular-
ities is a direct consequence of the Feynman rules given
in Sec. II.

We finally turn into considering the matter loop con-
tributions to ��1�

VVV , shown in Fig. 12. The amplitude
associated withM1 is proportional to the one correspond-
ing to diagram V1 in Fig. 9 and, hence, its nonplanar part
vanishes.

The phase factor corresponding to the supergraph M2,
involving one triple and one quartic matter vertex, is
given by
-9
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FIG. 11. Ghost loops contributions to ��1�
VVV .
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�FM2�eabdecd � e�i�2k^p3�p1^p2�AeabdAecd
� e�i��2k^p3�p1^p2�AdabeAdce
� 2e�i��2k^p1�p1^p2�AeadbAecd
� 2e�i�2k^p2�p1^p2�AeadbAdce: (4.7)

The sum of the first two terms turns out to be an odd
function of the integration momentum k and, therefore,
does not contribute to the leading divergences. Hence, the
nonplanar piece of the amplitude containing the leading
UV/IR infrared divergences is proportional to

Z d4k

�2$�4
1

k2
�e�i�2k^p1�p1^p2�AeadbAecd

� e�i�2k^p2�p1^p2�AeadbAdce� � �sym�

�
1

4$2 e
ip1^p2

�
AeadbAecd
p1 � p1

�
AeadbAdce
p2 � p2

�
� �sym�;

(4.8)
M1

M2

M3

FIG. 12. Matter loops contributions to ��1�
VVV .
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which can be cast

i

2$2 sin�p1 ^ p2�
�

1

p1 � p1
�AeadbAecd � AeadcAebd�

�
1

p2 � p2
�AebdcAead � AebdaAecd�

�
1

p3 � p3
�AecdaAebd � AecdbAead�

�
: (4.9)

It is easy to see that this last expression vanishes if and
only if

T r�TdTaTeTb��TdTcTe� � Tr�TdTaTeTc��TdTbTe�:

(4.10)

Again, Eq. (3.54) suffices to secure that (4.10) holds.
Finally, the supergraph M3, involving three matter

vertices, does not yield leading UV/IR infrared singular-
ities due to a mechanism similar to the one described in
connection with diagram V2 in Fig. 9.

We then conclude that the restriction to the fundamen-
tal group representation protects the quantum corrections
to the vertex functions of the V superfield from the
appearance of nonintegrable UV/IR infrared divergences.
We emphasize that the same condition is required for the
U�N� to become an operational gauge group at the clas-
sical level [7].

V. SUMMARY

In this work we studied the structure of the divergences
of the two- and three-point vertex functions of the V
gauge superfield in the NCSYM theory in four spacetime
dimensions with the aim of establishing the consistency
of the model.

In the planar sector, we found logarithmic UV diver-
gences which cancel in the N � 4 extended supersym-
metric theory in the Feynman gauge. We confirm the
belief that N � 4 NCSYM theory is finite [4].

As for the nonplanar sector, the restriction of the group
generators to be in the fundamental representation turned
out to be essential to guarantee the cancellation of the
leading UV/IR infrared divergences in the two- and
three-point vertex functions of V. Therefore, one may
hope that the UV/IR mechanism will not jeopardize the
perturbative expansion at higher-loop orders.

We close this paper by pointing out that the results in
this work are in agreement with the understanding of
noncommutative supersymmetric field theories as the
low energy limit of open superstrings in the presence of
an external magnetic field [17]. We first recall that the
matrices of the gauge groups associated with the open
type I superstring (SST I) are restricted to the fundamen-
tal representations of U�N�, SO�N� and USp�N� [18]. The
low energy limit of SST I is N � 1 SYM, in ten space-
time dimensions, and reduces to N � 4 SYM when six
-10



TOWARDS A CONSISTENT NONCOMMUTATIVE. . . PHYSICAL REVIEW D 70 085012
dimensions are compactified. As known, these field theo-
ries are insensitive to the dimension of the gauge group
matrices. On the other hand, when a background magnetic
field is turned on, the low energy limit of the SST I is a
noncommutative supersymmetric gauge field theory
which only exists in the fundamental representation of
the gauge group matrices. In fact, the above restriction
turns out to be essential for the quantum corrections to be
free of the harmful UV/IR infrared singularities.
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