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Superfield covariant analysis of the divergence structure
of noncommutative supersymmetric QED4
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Commutative supersymmetric Yang-Mills is known to be renormalizable forN51,2, while finite forN
54. However, in the noncommutative version of the model (NCSQED4) the UV-IR mechanism gives rise to
infrared divergences which may spoil the perturbative expansion. In this work we pursue the study of the
consistency of NCSQED4 by working systematically within the covariant superfield formulation. In the Landau
gauge, it has already been shown forN51 that the gauge field two-point function is free of harmful UV-IR
infrared singularities, in the one-loop approximation. Here we show that this result holds without restrictions
on the number of allowed supersymmetries and for any arbitrary covariant gauge. We also investigate the
divergence structure of the gauge field three-point function in the one-loop approximation. It is first proved that
the cancellation of the leading UV-IR infrared divergences is a gauge invariant statement. Surprisingly, we
have also found that there exist subleading harmful UV-IR infrared singularities whose cancellation only takes
place in a particular covariant gauge. Thus we conclude that these last mentioned singularities are in the gauge
sector and, therefore, do not jeopardize the perturbative expansion and/or the renormalization of the theory.
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I. INTRODUCTION

During recent years noncommutative~NC! field theories
have been intensively studied. These theories emerged a
low energy limit of the open superstring in the presence of
external magnetic field (B field! @1# although nowadays the
are interesting in their own right~for a review see@2–4#!.

The most striking property of noncommutative field the
ries is undoubtly the UV-IR mechanism, through which t
ultraviolet divergences~UV! are partly converted into infra
red ~IR! ones@5–7#. These infrared divergences@8# may be
so severe that the perturbative expansion of the theory
comes meaningless. Hence, the key point about the co
tency of a noncommutative field theory is whether these
vergences cancel out.

So far, only one four-dimensional noncommutative theo
is known to be renormalizable, the Wess-Zumino mo
@9,10#. In this case supersymmetry plays an essential
because it improves the ultraviolet behavior and, theref
the UV-IR mechanism only generates mild UV-IR infrare
divergences which do not spoil the renormalization progra
In three space-time dimensions we are aware of at least
noncommutative renormalizable models: the supersymme
O(N) nonlinear sigma model@11# and theO(N) supersym-
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metric linear sigma model in the limitN→` @12#.
As for nonsupersymmetric gauge theories, the UV-

mechanism breaks down the perturbative approach@6,7,13–
19#. Nevertheless, we can entertain the hope that noncom
tative supersymmetric gauge theories are free from noni
grable UV-IR infrared singularities and, furthermor
renormalizable. We are aware of the following results co
cerning noncommutative supersymmetric gauge field th
ries:

~1! By working with the formalism of component field
@6,7# it has been shown that the dangerous UV-IR infrar
divergences cancel in the one-loop contributions to the ga
field two- and three-point functions. The two-point functio
turns out to contain quadratic and logarithmic UV dive
gences. Dimensional regularization takes care of the
ones while the last ones must be renormalized. As for
harmful infrared divergences originating through the UV-
mechanism, they are only quadratic and cancel out withi
supersymmetric multiplet. The three-point function is li
early UV divergent by power counting. However, this tim
the leading UV divergences vanish by symmetric integrati
while the IR poles originating from them cancel out amo
themselves.

~2! By using the superfield formalism Bichlet al. @20#
calculated, in the Landau gauge and in the absence of m
(N51), the one-loop contributions to the two-point functio
of the gauge superfield. Only quadratic and logarithmic U
divergences are present and one deals with them as indic
in the previous paragraph. The quadratic infrared poles in
nonplanar part of the amplitude again cancel while the lin
ones do not arise. The superfield formulation represents
improvement with respect to the component field formu
tion because supersymmetry is explicitly preserved at
stages of the calculation.

~3! Zanon and collaborators@21,22# used the background

a-
:

ti-
-

©2004 The American Physical Society08-1



th

es
sh
ar

hi
D
nc
n

n
s
nd
ir
o

e
c

al
y

h
ar

at
e
er
io
ed
he
tic
In
tw
e
to
th
t
ity

op

-

c-
e.

es

FERRARI et al. PHYSICAL REVIEW D 69, 025008 ~2004!
field method to evaluate the one-loop contributions to
field strength two-point functions inN51,2 supersymmetric
Yang-Mills theories, where only logarithmic divergenc
were found. The three-point function was shown to vani
For N54 they demonstrated that, up to one loop, there
no divergences at all.

This paper is dedicated to pursue further the study, wit
the superfield formulation, of the consistency of NCSQE4
in an arbitrary covariant gauge. We analyze the diverge
structure induced by the UV-IR mechanism in the two a
three-point gauge field Green functions.

In Sec. II we establish our definitions and conventions a
present the gauge invariant action describing the dynamic
NCSQED4 in N51 superspace. Next, the gauge fixing a
the Faddeev-Popov terms are found. Finally, we add ch
matter superfields and derive the Feynman rules
NCSQED4 with extended supersymmetry.

We start, in Sec. III, by reviewing the cancellation of th
leading UV-IR infrared divergences in the one-loop corre
tions to the two-point function of the gauge superfield@20#. A
straightforward generalization shows that these results
hold for extended supersymmetry and/or when the theor
formulated in an arbitrary covariant gauge.

In Sec. IV we compute the one-loop corrections to t
three-point functions of the gauge superfield in an arbitr
covariant gauge. This is done forN51,2,4. From power
counting follows that the amplitude is at the most quadr
cally divergent. As far as the planar part is concerned, dim
sional regularization takes care of the quadratic UV div
gences, the linear ones vanish by symmetric integrat
while the logarithmic divergences are to be eliminat
through renormalization. As for the nonplanar part, t
UV-IR mechanism will be seen not to give rise to quadra
IR divergences but only to linear and logarithmic ones.
terestingly enough, the linear IR divergences arise from
different sources:~a! integrals which, by power counting, ar
quadratically UV divergent but whose Moyal phase fac
not only regularizes them but also lowers the degree of
IR divergence;~b! integrals which are linearly UV divergen
by power counting but regularized by the noncommutativ
The softening mechanism mentioned in~a! also contributes
IR logarithmic divergences, which, nevertheless, do not je
ardize the perturbative expansion.

The conclusions are contained in Sec. V.

II. THE ACTION AND FEYNMAN RULES FOR NCSQED 4

A. The action

In N51 superspace NCSQED4 is described by the non
polynomial action@23,24#

SV52
1

2g2E d8z~e2gV* DaegV!* D̄2~e2gV* DaegV!,

~2.1!

whereg is the coupling constant,V is a real vector gauge
superfield,
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and* denotes Moyal product of operators, i.e.,

f1~x!* f2~x!

5f1(x)expS i
2

]

]xm

Q
Qmn ]

]xn

W D f2~x!

5 (
n50

` S i
2D n 1

n! @]m1
]m2

. . . ]mn
f1~x!#

3Qm1n1Qm2n2 . . . Qmnnn@]n1
]n2

. . . ]nn
f2~x!#.

~2.3!

Here,Qmn is the antisymmetric real constant matrix chara
terizing the noncommutativity of the underlying space-tim
The expression

E d4xw1~x!* •••* wn~x!

5E S )
j 51

n
d4kj

~2p!4D ~2p!4dS (
1

n

kj D
3e2 i(

i , j
ki`kjw1~k1!•••wn~kn!, ~2.4!

where

ki`kj5
1

2
ki

mkj
nQmn , ~2.5!

will play a relevant role for determining the Feynman rul
in the theory.

Under the groupU(1) of gauge transformations

U5eigL5 (
n>0

1

n!
~ igL!* n, ~2.6!

with L (L̄5L†) a chiral ~antichiral! superfield,V trans-
forms as follows

egV→e2 igL* egV* eigL̄, ~2.7!

thus leavingS invariant.
In future, we shall be needing the expansion ofS in pow-

ers of g, up to the orderg3. To this end we first recall the
identity @25#
8-2
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e2gV* DaegV5gDaV2
g2

2!
@V,DaV#* 1

g3

3!
@V,@V,DaV#* #*

2
g4

4!
@V,@V,@V,DaV#* #* #*

1
g5

5!
@V,@V,@V,@V,DaV#* #* #* #* 1•••.

~2.8!

Then, after by part integrations and by exploring the prop
ties of the Moyal product@26# one obtains

SV5SV
(0)1gSV

(1)1g2SV
(2)1g3SV

(3)1•••, ~2.9!

where

SV
(0)5

1

2E d8zVDaD̄2DaV, ~2.10!

SV
(1)5

1

2E d8zD̄2DaV* @V,DaV#* , ~2.11!

SV
(2)52E d8zH 1

8
@V,DaV#* * D̄2@V,DaV#*

1
1

6
D̄2DaV* @V,@V,DaV#* #* J , ~2.12!

SV
(3)5

1

12E d8zH 1

2
D̄2DaV* @V,@V,@V,DaV#* #* #*

1@V,@V,DaV#* #* * D̄2@V,DaV#* J . ~2.13!

As usual, gauge fixing is implemented by adding to t
actionSV the covariant term

Sg f52
a

2E d8zV$D2,D̄2%V, ~2.14!

wherea is a real number labeling the gauge. Clearly,

SV
(0)1Sg f5

1

2E d8zV„h1~12a!$D2,D̄2%…V, ~2.15!

as seen from Eqs.~2.10! and ~2.14!.
For the covariant gaugea, the Faddeev-Popov determ

nant reads

D21@V#5E DcDc8Dc̄Dc̄8e2*d8z[c(z)1 c̄(z)]dV(z)uL5c8;L̄5 c̄8 .

~2.16!

Here c,c̄5c†,c8,c̄85c8† are the ghost fields whiledV de-
notes the change inV provoked by an infinitesimal gaug
transformation. One readily obtains from Eq.~2.7! that
02500
r-

e

dV5 iL (g/2)V†2~L1L̄ !1~cothL (g/2)V!@L̄2L#‡,
~2.17!

where

LA@B#[@A,B#* . ~2.18!

After recalling the Laurent expansion of cothx, aroundx
50, one arrives at

dV5 iL (g/2)V@2~L1L̄ !#1 iL (g/2)VFL (g/2)V
21 @L̄2L#

1
1

3
L (g/2)V@L̄2L#1•••G

5 i ~L̄2L!2
ig

2
@V,L1L̄#*

1
ig2

12
@V,@V,L̄2L#* #* 1•••. ~2.19!

Therefore, by going back with Eq.~2.19! into Eq.~2.16! one
finds for the ghost action the following expression

Sgh5Sgh
(0)1gSgh

(1)1g2Sgh
(2)1•••, ~2.20!

where

Sgh
(0)52E d8z~c1 c̄!~ c̄82c8!, ~2.21!

Sgh
(1)5

1

2E d8z~c1 c̄!@V,c81 c̄8#* , ~2.22!

Sgh
(2)52

1

12E d8z~c1 c̄!@V,@V,c̄82c8#* #* .

~2.23!

In addition to the real vector superfield we introduce no
a chiral matter superfieldF in the adjoint representation
This enables us to construct a theory in which theN52
supersymmetry is realized. The generalization toN54 is
straightforward and will be done afterwards. The correspo
ing action describing the free matter superfield as well as
interaction with the gauge superfield reads

Sm5E d8zF̄* e2gV* F* egV, ~2.24!

whose invariance under supergauge transformations foll
from Eq. ~2.7! together with

F→F85eigL̄* F* eigL, F̄→F̄85e2 igL̄* F̄* e2 igL.
~2.25!

The first four terms of the expansion ofSm as a power
series ofg,

Sm5Sm
(0)1gSm

(1)1g2Sm
(2)1g3Sm

(3)1•••, ~2.26!

are found to be
8-3
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Sm
(0)5E d8zF̄F, ~2.27!

Sm
(1)52E d8zF̄* @V,F#* , ~2.28!

Sm
(2)5

1

2E d8zF̄* @V,@V,F#* #* , ~2.29!

Sm
(3)52

1

6E d8zF̄* @V,@V,@V,F#* #* #* .

~2.30!

B. Feynman rules

From the quadratic part of the actionSV
(0)1Sg f1Sgh

(0)

1Sm
(0) one obtains, through standard manipulations, the

propagators

DVV~z12z2!5
i

h
F11~12a!

1

h
$D1

2 ,D̄1
2%Gd8~z12z2!,

~2.31a!

D c̄c8~z12z2!52
i

h
D1

2D̄2
2d8~z12z2!, ~2.31b!

Dcc̄8~z12z2!5
i

h
D̄1

2D2
2d8~z12z2!, ~2.31c!

DFF̄~z12z2!52
i

h
D̄1

2D2
2d8~z12z2!, ~2.31d!

corresponding to the gauge, ghosts and matter superfi
respectively. They are depicted in Fig. 1.

On the other hand, the interacting part of the total act
together with Eq.~2.4! enable us to find the elementary ve
tices G (0) in the theory. They are displayed in Fig. 2. In a
obvious notation

G (D̄2DV)(DV)V
(0)

~k1 ,k2 ,k3!5gV3~k1 ,k2 ,k3!, ~2.32!

G (D̄2DV)(DV)VV
(0)

~k1 ,k2 ,k3 ,k4!52
ig2

12
V 4

(1)~k1 ,k2 ,k3 ,k4!,

~2.33a!

GV(DV)(D̄V)(D̄DV)
(0)

~k1 ,k2 ,k3 ,k4!5 ig2V 4
(2)~k1 ,k2 ,k3 ,k4!,

~2.33b!

FIG. 1. Free propagators. The arrow indicates the flux of gh
charge.
02500
e

ds,

n

GV(DV)(D̄2V)(DV)
(0)

~k1 ,k2 ,k3 ,k4!5 ig2V 4
(2)~k1 ,k2 ,k3 ,k4!,

~2.33c!

G (D̄2DV)(DV)VVV
(0)

~k1 ,k2 ,k3 ,k4 ,k5!

52
g3

36
V 5

(1)~k1 ,k2 ,k3 ,k4 ,k5!, ~2.34a!

GVV(DV)(D̄DV)(D̄V)
(0)

~k1 ,k2 ,k3 ,k4 ,k5!

52
2g3

3
V 5

(2)~k1 ,k2 ,k3 ,k4 ,k5!, ~2.34b!

GVV(DV)(D̄2V)(DV)
(0)

~k1 ,k2 ,k3 ,k4 ,k5!

5
ig3

12
V 5

(3)~k1 ,k2 ,k3 ,k4 ,k5!, ~2.34c!

G c̄8Vc
(0)

~k1 ,k2 ,k3!5gV3~k1 ,k2 ,k3!, ~2.35a!

Gc8Vc̄
(0)

~k1 ,k2 ,k3!5gV3~k1 ,k2 ,k3!, ~2.35b!

Gc8Vc
(0)

~k1 ,k2 ,k3!52gV3~k1 ,k2 ,k3!, ~2.35c!

G c̄8Vc̄
(0)

~k1 ,k2 ,k3!52gV3~k1 ,k2 ,k3!, ~2.35d!

G c̄8VVc
(0)

~k1 ,k2 ,k3 ,k4!52
ig2

6
V 4

(1)~k1 ,k2 ,k3 ,k4!,

~2.36a!

Gc8VVc̄
(0)

~k1 ,k2 ,k3 ,k4!5
ig2

6
V 4

(1)~k1 ,k2 ,k3 ,k4!, ~2.36b!

Gc8VVc
(0)

~k1 ,k2 ,k3 ,k4!5
ig2

6
V 4

(1)~k1 ,k2 ,k3 ,k4!, ~2.36c!

G c̄8VVc̄
(0)

~k1 ,k2 ,k3 ,k4!52
ig2

6
V 4

(1)~k1 ,k2 ,k3 ,k4!,

~2.36d!

G
F̄VF

(0)
~k1 ,k2 ,k3!52gV3~k1 ,k2 ,k3!, ~2.37a!

G
F̄VVF

(0)
~k1 ,k2 ,k3 ,k4!5 ig2V4

~1!~k1 ,k2 ,k3 ,k4!, ~2.37b!

G
F̄VVVF

(0)
~k1 ,k2 ,k3 ,k4 ,k5!52

g3

9
V5

~1!~k1 ,k2 ,k3 ,k4 ,k5!.

~2.37c!

Here,

st
8-4
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V3~k1 ,k2 ,k3!5sin~k1`k2!, ~2.38a!

V 4
(1)~k1 ,k2 ,k3 ,k4!5cos~k2`k3!cos~k1`k4!

2cos~k1`k22k3`k4!,

~2.38b!

V 4
(2)~k1 ,k2 ,k3 ,k4!5

1

2
@sin~k1`k2!sin~k3`k4!

2sin~k1`k4!sin~k2`k3!#,

~2.38c!

V 5
(1)~k1 ,k2 ,k3 ,k4 ,k5!

5@2 cos~k4`k5!cos~k3`k41k3`k5!

1cos~2k3`k41k4`k51k3`k5!#sin~k1`k2!

13@cos~2k2`k31k2`k51k3`k5!sin~k1`k4!

1cos~2k2`k41k4`k51k2`k5!sin~k1`k3!

1cos~2k2`k42k3`k41k2`k3!sin~k1`k5!#,

~2.38d!

V 5
(2)~k1 ,k2 ,k3 ,k4 ,k5!

52 sin~p1`p3!sin~p2`p3!cos~p1`p2!

1sin~p1`p2!@sin~p2`p32p1`p3!#, ~2.38e!

V 5
(3)~k1 ,k2 ,k3 ,k4 ,k5!

52i sin~p1`p2!cos~p2`p4!cos~p3`p5!

1exp~2 ip1`p2!cos~p3`p41p3`p51p4`p5!

1exp~2 ip1`p4!cos~p3`p21p3`p51p2`p5!

2exp~2 ip1`p3!cos~p2`p51p2`p42p4`p5!

2exp~2 ip1`p5!cos~p2`p31p2`p42p3`p4!,

~2.38f!

the momenta are taken positive when entering the vertex
momentum conservation holds in all vertices.

We close this section by pointing out that the superfic
degree of divergence of a generic Feynman graphG is given
by @23#

d@G#522Ec , ~2.39!

whereEc is the number of external chiral lines. As known,
a noncommutative quantum field theory, a generic Feynm
graphG will decompose into planar and nonplanar parts. T
superficial degree of UV divergence of the planar part
measured byd@G#. The nonplanar part is free of UV diver
gences but afflicted by IR singularities generated through
02500
nd
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n
e
s

e

UV-IR mechanism@5,8#, in this last connectiond@G# also
gives the highest possible degree of the IR divergences.

III. ONE LOOP CONTRIBUTIONS TO THE VECTOR
GAUGE SUPERFIELD TWO-POINT FUNCTION GVV

„1…

The cancellation of the harmful UV-IR infrared dive
gences inGVV

(1) was already proved in@20# for N51 and by
working in the Landau gauge. Here, the proof is generali
by showing that the just mentioned cancellation takes pl
for an arbitrary covariant gauge and extended supersym
try.

Let us first concentrate on the graphs involving either aV
tadpole or aV loop ~see Fig. 3!. Since there are no externa
chiral lines, d@G#52. Now, only those graphs with allD
factors in the internal lines may exhibit quadratic UV dive
gences. Diagrams with a factorD and/or aD̄ on the external
lines can at the most be linearly divergent. Any other co
bination of D ’s on the external lines corresponds to cont
butions which are logarithmically divergent or finite. The
follows from theD-algebra alone@23#. However, one is to
take into account also the noncommutativity, which giv
origin to a trigonometric factor that modifies the Feynm
integrands. The combination of these two ingredients ru
out, for the diagrams under analysis, the UV and UV-
infrared linearly divergent terms. Hence, in this case, o
quadratic divergences may jeopardize the consistency of
theory. They are contained in graphs~a!, ~b! and~c! in Fig. 3.

From the Feynman rules derived in Sec. II, we found t
the contributionGVV;3a

(1) arising from theV tadpole diagram is
given by

GVV;3a
(1) ~p!52

g2

6 E d4k

~2p!4
d4u1d4u2V 4

(1)~2k,p,2p,k!

3
d12

k2
~D̄1

2D1
aD2ad12!V~p,u1!V~2p,u2!. ~3.1!

Here, a factor 2 coming from the permutation of the exter
legs has already been taken into account. Moreover, we
that the term proportional to (12a) in the right-hand side of
Eq. ~2.31a! does not contribute.

From Eq.~2.38b! one finds that

V4
~1!~2k,p,2p,k!52 sin2~k`p!. ~3.2!

After D-algebra manipulations, one ends up with

GVV;3a
(1) ~p!5

2

3
g2A, ~3.3!

where
8-5
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FIG. 2. Elementary vertices.
s,

red

A[E d4k

~2p!4
d4u

sin2~k`p!

k2
V~p,u!V~2p,u!. ~3.4!

The planar part ofA only contains quadratic UV divergence
02500
while the nonplanar one only develops quadratic IR infra
singularities.

The amplitudes associated with diagrams~b! and ~c! of
Fig. 3 are, respectively,
8-6
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GVV;3b
(1) ~p!523

1

2
g2E d4k

~2p!4
d4u1d4u2V3~k2p,p,2k!V3~k,2p,2k1p!F2

1

k2~k1p!2G
3D1

aD̄2
2D2

bd12D2bD̄1
2D1ad12V~p,u1!V~2p,u2!, ~3.5!

GVV;3c
(1) ~p!523

1

2
g2E d4k

~2p!4
d4u1d4u2V3~k2p,p,2k!V3~2k1p,2p,k!F2

1

k2~k1p!2G
3D1

aD2
bd12D̄2

2D2bD̄1
2D1ad12V~p,u1!V~2p,u2!, ~3.6!

where the 1/2 comes from the second order of the perturbative expansion. After standard rearrangements one gets

GVV;3b
(1) ~p!5g2E d4k

~2p!4
d4uV3~k2p,p,2k!V3~k,2p,2k1p!F2

1

k2~k1p!2G
3@22V~p,u!~k21k”aȧD̄ ȧDa!V~2p,u!#1LDT, ~3.7!

GVV;3c
(1) ~p!5g2E d4k

~2p!4
d4uV3~k2p,p,2k!V3~2k1p,2p,k!F2

1

k2~k1p!2G
3@22k2V~p,u!V~2p,u!#. ~3.8!

Here,LDT is short for all terms which are at the most logarithmically divergent. Furthermore, from Eq.~2.38a!

FIG. 3. Diagrams contributing toGVV
(1) .
025008-7
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V3~k2p,p,2k!V3~k,2p,2k1p!

52V3~k2p,p,2k!V3~2k1p,2p,k!52sin2~k`p!.

~3.9!

As a result, the terms proportional tok2, in the second brack
ets in the right-hand sides of Eqs.~3.7! and~3.8!, drop out in
the sumGVV;3b

(1) (p)1GVV;3c
(1) (p). On the other hand, the term

proportional tok”aȧ in Eq. ~3.7! survives. From power count
ing follows that such term might give rise to~dangerous!
linear divergences. To see whether this really happens,
start by expanding

2
1

k2~k1p!2
, ~3.10!

aroundp50. It is then obvious that the would be linear
divergent integral

E d4k

~2p!4
k”aȧ

1

k4
sin2~k`p!, ~3.11!

vanishes by symmetric integration. As stated above, the e
parity of the trigonometric factor in Eq.~3.4! eliminates the
linear UV divergences and also the linear UV-IR infrar
divergences. To summarize:

GVV;3b
(1) ~p!1GVV;3c

(1) ~p!5LDT. ~3.12!

We turn next into computing the ghost contributions
GVV

(1) . A direct consequence of theD algebra is that graph
containing any of the verticesGc8Vc

(0) , G c̄8Vc̄
(0) , Gc8VVc

(0) , or

G c̄8VVc̄
(0) , depicted in Fig. 2, only contributeLDT. We shall

therefore concentrate on the diagrams which might prov
quadratic and/or linear divergent contributions toGVV

(1) .
These are the graphs~d! and ~e! of Fig. 3.

The calculation of the tadpole contributions@graphs~d!
and ~e! in Fig. 3# GVV;3d

(1) (p) is straightforward and yields

GVV;3d
(1) ~p!51

g2

3 E d4k

~2p!4
d4u

V4
~1!~k,p,2p,2k!

k2

3V~p,u!V~2p,u!. ~3.13!

The same expression arises forGVV;3e
(1) (p). Then, after using

Eq. ~3.2!, one obtains

GVV;3d
(1) ~p!1GVV;3e

(1) ~p!5
4

3
g2A. ~3.14!

The evaluation of the ghost loop contributions@graphs~f!
and ~g! in Fig. 3# is a little bit more involved. By applying
the Feynman rules we obtain
02500
e

en

e

GVV;3f
(1) ~p!5~21!323

1

2!
3g2E d4k

~2p!4
d4u1d4u2

3V3~k,p,2p2k!V3~p1k,2p,2k!V~p,u1!

3V~2p,u2!F i ~D̄2D2!
d12

~k1p!2GF i ~D2D̄2!
d12

k2 G ,

~3.15!

where the21 arises from the ghost loop and

V3~k,p,2p2k!V3~p1k,2p,2k!52sin2~k`p!.
~3.16!

It turns out thatGVV;3f
(1) 5GVV;3g

(1) . Therefore,

GVV;3f
(1) ~p!1GVV;3g

(1) ~p!522g2A1LDT. ~3.17!

We stress, once again, that the would be linear divergence
Eqs. ~3.13! and ~3.17! are wiped out by symmetric integra
tion.

From Eqs.~3.3!, ~3.12!, ~3.14!, and~3.17! follows that the
quadratic UV and the UV-IR infrared divergences do n
show up forN51, in any arbitrary covariant gauge.

We shall next investigate the consequences of adding
matter superfield to get theN52 theory. The amplitudes
associated with the graphs~h! and ~i! in Fig. 3 are

GVV;3h
(1) ~p!52~ ig2!E d4k

~2p!4
d4uV4~k,p,2p,2k!

3F i ~D̄2D2!
d11

k2 GV~2p,u!V~p,u! ~3.18!

and

GVV;3i
(1) ~p!5~22g!2E d4k

~2p!4
d4u1d4u2V3~2p2k,p,k!

3V3~2k,2p,p1k!F i ~D̄2D2!
d12

~k1p!2G
3F i ~D2D̄2!

d12

k2 GV~p,u1!V~2p,u2!. ~3.19!

By taking into account Eqs.~3.2! and ~3.16! one obtains

GVV;3h
(1) ~p!524g2A, ~3.20!

and

GVV;3i
(1) ~p!54g2A1LDT. ~3.21!

Therefore, up to LDT,GVV;3h
(1) 1GVV;3i

(1) 50 implying in the
absence of quadratic UV and UV-IR infrared divergences
the matter sector and, therefore, in the fullN
52 NCSQED4. The validity of this conclusion forN54 is
8-8



ls

o
he
o

al

in
l
n

in
-
th
q

na
e
o

rt
h
a
IR
ic

te
e
V

he
nd

o
n

fir

dia-

nd
On

ear
ft-

ok
to

oft-

ul

tion
e

n-

iv-
a-

in

SUPERFIELD COVARIANT ANALYSIS OF THE . . . PHYSICAL REVIEW D69, 025008 ~2004!
clear. Furthermore the UV logarithmic divergences are a
absent inN54 in agreement with@21,22#.

IV. ONE LOOP CONTRIBUTIONS TO THE VECTOR
GAUGE SUPERFIELD THREE-POINT FUNCTION

GVVV
„1…

We present in this section the computation of the one-lo
corrections to the V gauge field three-point function in t
covariant superfield formalism. The divergence structure
the superfield formulation is, as we shall see, substanti
different of that encountered by Matusiset al. @6# in the com-
ponent formulation. As for the background field three-po
function computed in@21,22# our results play an essentia
role when considering insertions in higher order correctio
such as the one indicated in Fig. 4.

The one-loop diagrams contributing to the three-po
gauge field functionGVVV

(1) contain, generally speaking, a pla
nar and a nonplanar part. The planar parts will exhibit, at
most, quadratic UV divergences, in agreement with E
~2.39!. These divergences will be eliminated by dimensio
regularization. The linear UV divergences are always wip
out by symmetric integration. Renormalization takes care
the logarithmic UV divergences. As for the nonplanar pa
the situation will be seen to be more involved. Due to t
peculiar structure of the Moyal trigonometric factors, qu
dratic UV divergences do not translate into quadratic UV-
infrared singularities, but rather into linear and logarithm
ones. Hereafter, we shall refer to this effect as to the sof
ing mechanism of divergences. There are, of course, lin
infrared divergences arising from the would be linear U
divergences through the UV-IR mechanism. Finally, t
logarithmic UV-IR infrared singularities are harmless a
shall be left out of consideration.

Before facing the problem of selecting the diagrams
interest, we found appropriate to exemplify how the softe
ing mechanism of divergences works. To this end, let us
consider the integral

I m~p1 ,p2 ,p3![2
1

4E d4k

~2p!4
@sin~2k`p1!1sin~2k`p2!

1sin~2k`p3!#
km

k4
. ~4.1!

FIG. 4. An example of higher order correction to the three-po
W function including the one-loop three-pointV function.
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A straightforward computation yields

I m~p1 ,p2 ,p3!
p1 ,p2 ,p3→0
→

i

2p2
QmnS p1n

p1+p1
1

p2n

p2+p2
1

p3n

p3+p3
D ,

~4.2!

where

p+p[pm~Q2!mnpn. ~4.3!

From observation follows thatI m(p1 ,p2 ,p3) exhibits a lin-
ear infrared divergence. However, a nonplanar Feynman
gram whose corresponding amplitude is proportional to

sin~p1`p2!I m~p1 ,p2 ,p3!, ~4.4!

will be finite if only one of the momenta goes to zero a
vanishing if one lets all momenta to zero simultaneously.
the other hand, an amplitude proportional to

cos~p1`p2!I m~p1 ,p2 ,p3!, ~4.5!

will certainly have a linear divergence atpi→0. Needless to
say, the conversion of quadratic UV divergences into lin
UV-IR infrared divergences is also possible through this so
ening mechanism of divergences.

We turn back into our main line of development and lo
for the diagrams which can make IR harmful contributions
GVVV

(1) . To this end, one is to take into consideration theD
algebra, the parity of the Feynman integrands, and the s
ening mechanism described above.

In this way we have found that the potentially harmf
one-loop diagrams contributing toGVVV

(1) are those depicted in
Figs. 5, 6, 7, 8, 9, 10, and 11. To systematize our presenta
as well as to facilitate the verification of our calculations, w
shall write all the three-point amplitudesGVVV

(1) as follows:

GVVV
(1) 5F 1

n! G3@ t#3@v#3E F d4k

~2p!4
duG3@FT#3@P#3Du

1permutations. ~4.6!

Here, 1/n! comes from the order of the perturbative expa
sion, t is the topological factor,v is the numerical factor
associated with the vertices,du is the fermionic measure,FT
is the trigonometric factor provided by the noncommutat
ity, P is the product ofu-independent factors in the propag

t

FIG. 5. Tadpole contribution toGVVV
(1) .
8-9
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FIG. 6. Contributions toGVVV
(1) involving the vertexG (D̄2DV)(DV)VV

(0) .
i
m

he

of

e of
the

the
tors,Du is theu-dependent part of the integrand, and one
to sum over the appropriate permutations of the external
menta.

For the tadpole graph in Fig. 5 one has thatn5t51, v
52g3/36,

FT;55V 5
(1)~k,2k,p1 ,p2 ,p3!

53 cos@p1`~p32k!1p3`k#sin~k`p2!

13 cos@p2`~p32k!1p3`k#sin~k`p1!

13 cos@p2`~p12k!1p1`k#sin~k`p3!, ~4.7!

as can be seen from Eq.~2.38d!, P52 i /k2, and

Du5d12F D̄1
2D1

aD2aS 12~12a!
1

k2
$D1

2 ,D̄1
2% D d12G

3V~p1 ,u1!V~p2 ,u1!V~p3 ,u1!

5d12@D̄1
2D1

aD2ad12#V~p1 ,u1!V~p2 ,u1!V~p3 ,u1!.

~4.8!

As in the case of the two-point function the term in t
propagator proportional to (12a) drops out. By putting all
these together one ends up with

GVVV;5
(1) ~p1 ,p2 ,p3!52

ig3

18E d4k

~2p!4
d4u

FT;5

k2
V~p1 ,u!

3V~p2 ,u!V~p3 ,u!1AP, ~4.9!
02500
s
o-
whereAP means that one is to sum over all permutations
the external momenta. By power counting Eq.~4.9! is qua-
dratically UV divergent but, on the other hand, Eq.~4.7! tell
us that the planar part vanishes, implying in the absenc
UV divergences. Hence, what we have to investigate are
consequences of the UV-IR mechanism fully contained in
nonplanar part. A direct calculation shows that

GVVV;5
(1) ~p1 ,p2 ,p3!

52
i

8p2 H sin~p1`p3!F 1

p3+p3
2

1

p1+p1
G

1sin~p2`p3!F 1

p3+p3
2

1

p2+p2
G

1sin~p2`p1!F 1

p1+p1
2

1

p2+p2
G J B1AP.

~4.10!

For arriving at Eq.~4.10! we have used

E d4k

~2p!4

sin~2k`p!

k2
50, ~4.11a!

E d4k

~2p!4

cos~2k`p!

k2
5

1

4p2p+p
,

~4.11b!

and
8-10
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FIG. 7. Contributions toGVVV
(1) involving the vertexGV(DV)(D̄V)(D̄DV)

(0) .
a
to
e

r
rm

in

on
B[g3E d4uV~p1 ,u!V~p2 ,u!V~p3 ,u!. ~4.12!

It is easy to verify that momentum conservation enforces

GVVV;5
(1) ~p1 ,p2 ,p3!50, ~4.13!

implying in the absence of UV-IR infrared divergences
well. One can convince oneself that the trigonometric fac
corresponding to the tadpoles involving the vertic
G (D̄2V)(DV)(DV)V

(0) andG (D̄DV)(D̄V)(DV)V
(0)

~see Fig. 2! are propor-
tional to sin(p1`p2) and, therefore, the would be linea
UV-IR infrared divergence is softened and becomes ha
less.

The diagrams in Fig. 6 have in common the four-po
vertex G (D̄2DV)(DV)VV

(0) . We focus first on diagram~a!. We
have thatn52, t54, v52 ig3/12, and

FIG. 8. Contributions to GVVV
(1) involving the vertex

GV(DV)(D̄2V)(DV)
(0) .
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P5
~2 i !2

k2~k2p3!2
. ~4.14!

For the trigonometric factors an straightforward calculati
yields

FT;6a522 cos~p1`p2!FT
odd12 sin~p1`p2!FT;6a

even ,
~4.15!

where

FT
odd52

1

4
@sin~2k`p1!1sin~2k`p2!1sin~2k`p3!#,

~4.16a!

FT;6a
even52

1

4
@cos~2k`p1!2cos~2k`p2!#.

~4.16b!

As for theu dependent factors, we obtain

Du;6a522@~k2p3!2V~p3 ,u2!

1~k”2p” 3!aȧ„D̄
ȧDaV~p3 ,u2!…1•••#

3d12V~p1 ,u1!V~p2 ,u1!, ~4.17!
8-11
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FIG. 9. Contributions toGVVV
(1) involving the trilinear vertex only.
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where we omitted all terms leading to contributions whi
are at the most logarithmically divergent. Observe that
term proportional to (12a) in the V propagator does no
contribute again.

Power counting says that the diagram~a! is UV quadrati-
cally divergent although, as before, the corresponding tri
nometric factor does not contain a planar part. The amplit
is, then, UV finite and we concentrate on studying the o
comes of the UV-IR mechanism. After expanding Eq.~4.14!
aroundp350, the expression for the amplitude associa
with the graph~a! can be cast

GVVV;6a
(1) 5

ig3

6 E d4k

~2p!4
duFT;6aF 1

~k2!2
12p3

m km

~k2!3
1•••G

3@~k2p3!2V~p3 ,u!

1~k”2p” 3!aȧ„D̄
ȧDaV~p3 ,u!…

1•••#V~p1 ,u!V~p2 ,u!1CP, ~4.18!
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whereCP means sum over cyclic permutations of the ext
nal momenta. By collecting terms of equal power ink, we
write

GVVV;6a
(1) [g6a

[2]1g6a
[1]1LDT, ~4.19!

where

g6a
[2]5S ig3

6 D2 sin~p1`p2!E d4k

~2p!4
duFT;6a

even1

k2

3V~p1 ,u!V~p2 ,u!V~p3 ,u!1CP, ~4.20!

g6a
[1]52S ig3

6 D2 cos~p1`p2!E d4k

~2p!4
duFT

odd 1

~k2!2
k”aȧ

3„D̄ ȧDaV~p3 ,u!…V~p1 ,u!V~p2 ,u!1CP, ~4.21!

and the superscript makes reference to the power ofk.
A word of caution is here in order. Two terms of the for
8-12
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p3
mcos~p1`p2!E d4k

~2p!4
FT

odd km

~k2!2
B, ~4.22!

occur in the right hand side of Eq.~4.21!. Expressions of this
type arise as a result of expanding the factorP @see Eq.~4.6!#
around zero external momenta. In the present case they
cel out between themselves, giving no contribution to lin
UV-IR infrared divergences. However, we would like to r
mark that individually they also vanish, since after perfor
ing the sum over the permutations of the external mome
one finds

~p11p21p3!mcos~p1`p2!E d4k

~2p!4
FT

odd km

~k2!2
B,

~4.23!

which is set to zero by momentum conservation.

FIG. 10. Ghost contributions toGVVV
(1) .
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By carrying out the momentum integrals in Eqs.~4.20!
and ~4.21! and afterD-algebra rearrangements, one obtai
respectively,

g6a
[2]52S i

12D sin~p1`p2!
1

4p2 S 1

p1+p1
2

1

p2+p2
DB1CP

~4.24!

and

g6a
[1]54S i

6D cos~p1`p2!I m~p1 ,p2 ,p3!Nm~p1 ,p2 ,p3!.

~4.25!

Here,

Nm~p1 ,p2 ,p3![g3~sm!aȧE du„DaV~p1 ,u!D̄ ȧV~p3 ,u!

3V~p2 ,u!1AP…, ~4.26!

while I m was already defined in Eq.~4.1!.
After recalling momentum conservation one conclud

that

g6a
[2]50. ~4.27!

Thus we are left with a harmful linear UV-IR infrared dive
gence inGVVV;6a

(1) given at Eq.~4.25!.
The diagrams~b!, ~c!, and~d! in Fig. 6 have in common

that the terms proportional to (12a) drop out, as in the case
of diagram~a!. SinceFT;6b52FT;6a, graph~b! also has no
planar part. As for graphs~c! and ~d! they have a logarith-
mically divergent planar part which demands UV renorm
ization. For all of them, the nonplanar contributiong [2] is
absent. We found that

(
j 56b

6d

g j
[1]53S i

6D cos~p1`p2!I m~p1 ,p2 ,p3!Nm~p1 ,p2 ,p3!.

~4.28!

On the other hand, the graphs~e!, ~f! and ~g! turn out to
be proportional to (12a). While ~e! has no planar part,~f!
and ~g! exhibit a logarithmic UV divergence. Again,g [2]

50. We end up with
FIG. 11. Matter contributions
to GVVV

(1) .
8-13
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(
j 56e

6g

g j
[1]5~12a!S ig3

6 D cos~p1`p2!I m~p1 ,p2 ,p3!

3Nm~p1 ,p2 ,p3!. ~4.29!

Therefore,

(
j 56a

6g

GVVV; j
(1) 5~82a!S i

6D cos~p1`p2!I m~p1 ,p2 ,p3!

3Nm~p1 ,p2 ,p3!1LDT, ~4.30!

where the linear UV-IR infrared divergence, arising from t
diagrams in Fig. 6, is explicitly given.

We move next into computing the diagrams in Fig.
Unlike those in Fig. 6 they involve the four-point verte
GV(DV)(D̄V)(D̄DV)

(0)
@see Eq.~2.33b!#. An analysis quite similar

to that already presented enables one to conclude tha
planar part has, at the most, a logarithmic UV divergence
linear UV-IR infrared divergence is present in each gra
but, nevertheless, cancels. That is

(
j 57a

7p

GVVV; j
(1) 5LDT. ~4.31!

The diagrams in Fig. 8 involve the last four point vert
GV(DV)(D̄2V)(DV)

(0) quoted in Eq.~2.33c!. In the planar sector
the situation is as in the case of the diagrams in Fig. 7, o
logarithmic UV divergences show up. In the nonplanar sec
the linear UV-IR infrared divergences do not cancel and
final form for the corresponding amplitude is

(
j 58a

8b

GVVV; j
(1) 526aS i

6D cos~p1`p2!I m~p1 ,p2 ,p3!

3Nm~p1 ,p2 ,p3!1LDT. ~4.32!

We turn next into evaluating the graphs in Fig. 9. All
them have in common, up to an overall sign, the trigonom
ric factor

FT;95cos~p1`p2!FT
odd1sin~p1`p2!FT;9

even , ~4.33!

whereFT
odd was defined in Eq.~4.16a! and

FT;9
even52

1

4
@12cos~2k`p1!1cos~2k`p2!

2cos~2k`p3!#. ~4.34!

Hence, the planar part does not vanish. From theD algebra
follows that quadratic UV divergences only arise in grap
~a! to ~d! and are taken care by dimensional regularizati
For all graphs in Fig. 9, linear UV divergences are killed
symmetric integration, while the logarithmic ones are a
sorbed through renormalization.

In principle there is nothing that could prevent the appe
ance of quadratic UV-IR infrared divergences, from grap
~a! to ~d!, in view of FT;9

evenÞ0. Nevertheless, the presence
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sin(p1`p2) in Eq. ~4.33! lowers the degree of this divergenc
at least to linear. The softening mechanism, mentioned at
beginning of this section, is again at work. For each gra
one can verify that the UV-IR linear infrared divergenc
arising through this mechanism are of the form

sin~p1`p2!S 1

p1+p1
2

1

p2+p2
1

1

p3+p3
D , ~4.35!

and therefore cancel after symmetrizing in the external m
menta.

On the other hand, for all the graphs, there are lin
infrared divergences which are the UV-IR counterparts of
would be linear UV divergences. These divergences can
when summing up over all graphs in Fig. 9.

For the ghost graphs~a! and~b! in Fig. 10 the trigonomet-
ric factors are found to read

FT;10a5FT;10b522 cos~p1`p2!FT
odd12 sin~p1`p2!FT;6a

even

5FT;6a, ~4.36!

whereas for the others diagrams in Fig. 10 one has

FT;10852cos~p1`p2!FT
odd2sin~p1`p2!FT;9

even

52FT;9 . ~4.37!

The D algebra signalizes again the presence of quadra
linear and logarithmic UV divergences in graphs~c! to ~f! in
Fig. 10, since their trigonometric factor possesses a nonv
ishing planar part. As it already happens in connection w
the graphs in Fig. 9, the linear UV-IR infrared divergenc
arising from the softening mechanism vanish for each gra
The remaining linear divergences do not cancel and we
tain

(
j 510a

10f

GVVV; j
(1) 524S i

6D cos~p1`p2!I m~p1 ,p2 ,p3!

3Nm~p1 ,p2 ,p3!1LDT. ~4.38!

To summarize, in NCSQED4 and forN51, the one-loop
corrections to the three-point gauge superfield function
afflicted by linear UV-IR infrared singularities. By collectin
the calculations presented in this section, Eqs.~4.13!, ~4.30!,
~4.31!, ~4.32!, and~4.38!, we conclude that the amplitude ca
be cast in the following form

GVVV
(1) 5~427a!S i

6D cos~p1`p2!I m~p1 ,p2 ,p3!

3Nm~p1 ,p2 ,p3!1LDT. ~4.39!

As can be seen, for the gaugea54/7 the three-pointV func-
tion is free of linear UV-IR infrared divergences. To phrase
differently, these divergences are localized in the gauge
tor and are a gauge artifact.

This result is not altered by the addition of one chir
matter superfield~see Fig. 11!. In fact, the contribution of the
tadpole graph~a! is proportional to that of theV tadpole in
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Eq. ~4.13!. Furthermore, the amplitudes corresponding to
graphs~b! and ~c! are proportional, respectively, to those
the graphs~a! and ~c! of Fig. 10. The linear UV-IR infrared
divergences resulting from the quadratic UV divergences,
the softening mechanism, cancel out for each graph. As
the remaining linear UV-IR infrared divergences, in di
grams~b! and ~c!, the numerical coefficients are such as
secure their cancellation. The generalization of these res
to N54 is straightforward.

V. CONCLUSIONS

This work was dedicated to establish the consistency
NCSQED4 within the covariant superfield formalism. As
first step, we generalized the analysis of the two-point ga
field function presented in@20# by extending their results to
an arbitrary covariant gauge and for any matter content.

Our main contribution consists of a detailed study of t
divergence structure of the one-loop three-point function
the gauge superfield. The superfield formulation in an a
trary covariant gauge represents a significative improvem
with respect to the component field calculation presente
@6,7# for the same problem. At the very least, here supers
metry is kept operational at all stages of the calculation. U
like in the component formulation, we have found a nonv
.
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nishing result for the linear UV-IR infrared divergence
which are, nevertheless, a gauge artifact. The situation
sembles that encountered in QED4 where the infrared diver-
gences disappear from the full two-point fermion Gre
function in a particular covariant gauge~Yennie’s gauge
@27#!.

The present work also plays a relevant role within t
background field formalism. Indeed, the computation
higher loop corrections to the results encountered in@21,22#
will necessarily demand the insertion of the three-pointV
function calculated in the superfield covariant formalism~see
Fig. 4!. Our conclusion that the linear UV-IR infrared singu
larities are placed in the gauge sector implies that hig
order loop corrections to the background field strength fu
tion will not be afflicted by harmful UV-IR infrared singu
larities.
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