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A microscopic construction method of lattice defects which can be represented by dislocation 
configurations in simple-cubic lattices and for interaction by central forces is given. In contrast to standard 
theories, where dislocations are introduced via topological operations (Burgers circuit), the author starts 
from a microscopic ad hoc Hamiltonian which. is suitable only for central-force interacting systems. The 
various sectors of this microscopic Hamiltonian are associated with dislocation configurations. A detailed 
discussion of the stability and symmetry properties of the microscopié Hamiltonian is given. Possible 
extensions of the theory to non-central-force interacting systems are pointed out. 

I. INTRODUCTION 

The theory of structural defects in crystal lat­
tices has been developed by many workers and the 
main theoretical concepts and literature refer­
ences can be found in Refs. 1-4. In the following 
work a microscopic formulation of the theory will 
be attempted which differs from most of the the­
ories presented in Refs. 1-4 in one basic point 
in .that we deduce the defects directly from a basic 
lattice Hamiltonian of the system. 

'i'he basic lattice Hamiltonian is a generalized 
rotator model. One knows already that the top­
ological defects of the planar rotator model are 
vortex loops with discrete current strengths which 
interact via the Biot-Savard law with opposite 
sign. Accordingly a generalized rotator model 
with a conserved vector current can be expected 
to model dislocation theory in solids. Such an 
analogy with magnetostatics, in particular with 
respect to Biot-Savard's law, was first pointed 
out by Kroner. 1 

In the standard theories of dislocations, dis­
locations are introduced into the lattice via top­
ological operations, i.e., the Burgers circuit, 
and phenomenological expressions which are based 
on continuum elasticity theory. There also exist, 
however, examples of calculations of lattice defects 
like vacancies and interstitials based on a dis­
crete-lattice computational approach. 2' 5 Furtb,er­
more Kochendorfer and Seeger6 treated the moving 
dislocation from a discrete-lattice point of view. 
The spirit of the following approach differs, how­
ever, from such formalisms and is closer to the 
theory of topological defects as it is presently in 
vogue in the theory of Ising-like models in sta­
tistical rriechanics (see, e.g., Holz7 and references 
therein). The idea there is to start out from a 
lattice Hamiltonian which describes the system 
properly in all its possible configurations. The 
defect states represent then the various sectors 
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of the phase space of that Hamiltonian. This ap­
proach should therefore also allow the description 
of the various possible phases of such a "crys­
talline" lattice system, e.g., its liquid phase. We 
have to admit, however, that so far we have not 
been able to succeed completely in such an am­
bitimis enterprise. Nevertheless it is hoped that 
the present approach, when suitably modified will 
lead to some progress in this field. 

The plan of the paper is the following. In Sec. 
11 the basic Hamiltonian of the present theorywill 
be presented and a discussion of its stability and 
symmetry conditions will be given. In Sec. III 
a derivation of a dislocation theory based on the 
present concepts and starting from a simple 
intuitive expression for the Hamiltonian will be 
given and in Sec. IV a discussion of the isotropic 
case will be presented. The computational details 
of Secs. III and IV are worked out in the Appendix. 
In Sec. V a discussion of the ideas developed in 
this work will be given. It should be pointed out 
that the methods to be presented apply to dimen­
sions D:;;,. 2 but will only be worked out for D = 3. 

11. BASIC HAMILTONIAN, STABILITY AND SYMMETRY 

For a classical lattice without any defects the 
lattice potential can be represented as a Taylor 
expansion around a periodic equilibrium con­
figurafion in the form8 

cf> ({lP}) = cf>o+:! }: q,f,·kii STS~ + • .. 
~~ m,n 
i.k 

(1) 

He:re for the sake of simplicity we study a simple­
cubic lattice with N lattice constituents at the 
equilibrium sites 

{ -ii}- ( ... 1 -2 ... N) Rg = R;i, R;;, • •. 'R o 

and denote deviations from R~ by sn, i.e., R· 
=Rg.i-sii. q,~! is a coupling constant matrix and 
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i= 1, 2, ... , D runs over the D Cartesian coor­
dinates of the lattice constituents. From homo­
geneity we take 

and from the cubic symmetry 
.._ii ... -ii 
"±"i,k =~k, i. 

(2) 

(3) 

Equation (1) is the harmonic approximation of 
lattice theory and the neglected anharmonic terms 
will be considered later. 

If we introduce the quantity 

s~·n.,sift-s~ 
I I I 

(4) 

then Eq. (1) can be written in the form 

+t :E if!f,;,"fl (sfs~+s~s~). 
m:a 

(1 ') 

i, k 

Because of the relation [see Eq. (36.2) in Ref. 8] 

(5) 

the third term of Eq. (1') vanishes. Equation (1') 
forms the starting point of the following develop­
ments. 

Assume now that a defect like a dislocation is 
introduced into the lattice. The only simple way 
to do that is to produce an internai cut surface 
of dimension D- 1 and displace the two sides of 
the cut surface. The displacement of the atoms 
along the cut surface is done such that the dis­
placement vectors {6m,?!} are multiples of lattice 
vectors. Consider next two lattice constituents 
at sites Rg and R.f, respectively. Changing their 
relative displacement by 

sn-m_ sn .. m+b~.m 
puts them, because, of the periodicity of the 
lattice, into an environment which may exert on 
them the same forces as for t>•·;;;=O. However, 
in order that this is the case other lattice con-

(6) 

, stituents have also to be moved in order to make 
the displacemeilt compatible with the lattice. One 
may expect therefore that the Hamiltonian for a 
certain defect structure characterized by a set 
o f vectors {bit, ii'i} is in the "harmonic" approxi­
mation of the form 

if!h({~},{t;n.iii}) 

_... 1, ""'.:..iii-a(•sm-il b.n,;,)(·sii'i-n biii,ii) (7) 
-"'o-4.l.J"';,k 1 - i k - k • 

m,n 
l,k 

It follows from the procedure of constructing the 
vectors "biii, ii that · 

(8) 

has to hold. 
In order that this expression leads to sensible 

results the coupling constant matr~ {if!~:f} has to 
fulfill two conditions~ First, {+ if!},J'} necessarily 
has to be positive definHe in the space of the dis­
placement variables {s•}. Se~ond, { -if!~, 1}ii has to 
be positive definite for fixed h* O in the space of 
the difference variables fsii} which are defined 
by Eq. (4). If thê latter condition is not fulfilled 
then Eq. (7) may be unstable against defect prod­
uction even if it is stable with respect to phonon 
excitatio!J-S. If { -if!~ 1}ii is positive defini te, then 
also { -if!r, 1}ii. with lh'l = Ih. I and h' =D9 h is positive 
definite because both are related via a symmetry 
operation ns which will not change the eigenvalues 
·of { -if!L}b. The positive definiteness of {it!},~} can 
always be imposed by means of the terms if! 1 :~ 
which do not influence the elastic properties. The 
positive definiteness of each {-if!Lh matrix im­
plies that the inverse propagator defined in Eq. 
(20) is always positive definite and this leads to 
a stable phonon spectrum. Although the second 
condition is sufficient for stability we are not 
certain that it is also necessary. The final results 
of the present theory will involve in addit1on the 
coefficients [see Eq. (58.4a) of Ref. 8] 

(9) 

which ultimately will determine the stability of 
the system. We will return to this problem later. 

Let us point out that ü the displacement of lattice 
constituents along the cut surface could be done 
in a completely compatible way then Eq. (7) should 
be transformable into Eq. (1 '). That this.is in fact 
the case for closed cut surfaces and infinitely ex­
tended cut surfaces which are closed over the 
periodic boundary conditions will be shown later. 
For finite and open cut surfaces the displacements 
described by {blii•il)- are not compatible. Accordingly 
sil-m = l)a. m does not represent a solution to Eq. (7) , 
and internai strain arises in the system. A more 
detailed explanation of the use of Eq. (7) will be 
given !ater. Note that Eq. (7) is in a covariant 
form, i.e., it preserves its shape when trans­
formed to a primed coordinate system. Although 
Eq. (7) is obviously invariant against any trans­
lation it is not necessarily invariant against any 
rotation of the lattice constituents. Consider first 
a symmetry operation D 8 which transforms lattice 
constituents into equivalent lattice constituents 

D s-Ri\-R-+n, 
o- o • (10) 
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If bit, m is defined with respect to the actual lattice 
sites )~i!}hen D 8 also transforma the set of vec-· 
tors b8•m, i.e., 

(10') 

Invariance of Eq. (7) with respect to D 8 requires 

q, ({bit', m'}) = q, ({bit, ;n}) (ll) 

and this leads to 

(12) 

This set of equations representa the usual sym­
metry properties of the coupling constants [see 
Eq. (36. 7) Leibfried8]. Consider next a general 
infinitesimal rotation O- I of the lattice, where 
I is the unit matrix. Rotational invariance then 
requires that 

(13) 

holds. Applied to the Hamiltonian of a certain 
sector of the phase space characterized by the set 
{bõ,õi} the above condition reads . 

where it should be noted that the set {iíit,m} is not 
subject to the rotation because it is a passive set 
of variables and refers only to the sectors of the 
phase space. For an infinitesimal rotation the 
left-hand side of Eq. (14) can be expanded in terms 
of 0-I. Keeping only up to quadratic terms in the 
small quantities 0-I, and S1 the condition Eq. 
(14) requires 

a~"'"' <I>({o(Rg+s;)},{b1-;,.n}) =0, 
•• ll=l 

a =1, 2. (15) 

A neces~ary condition that Eq. (15) is saÜsfied 
is [see Eq. (36.3) Ref. 8] 

""'h.iii,iiR a _""' h.m,iiR it (16) · 
~ 'k"i,k O, Z- LJ 'J."'i,l O,k • 

il it 

This is the usual condition for invariance under 
infinitesimal rotations in the harmonic approxi­
mation and without defects. That Eq. (16) is also 
a· sufficient condition in the presence of defects 
or, say, for the harll,lonic approximation of the 
defect Hamiltonian Eq. (7) cannot be said without 
computation cif Eq. (15). In Sec. 111 it will be shown 
that the problem defined by Eqs. (7) and (8) can be 
transformed into an expression of the form 

H;,Hph+Hdof({b",C.,}), (17) 

where b" and C., represent thé Burgers V$ctor and 
associated contou r, respectively, and { b", C.,} is 

. a set of such pairs which defines the total defect 
' structure. The first term of Eq. (17) representa 

a phonon Hamiltonian and the second term rep­
resenta the interaction between the defects. If a 
similar equation is derived from the left-hand 
side of Eq. (14) one obtains instead of Eq. (17) 

H =Hph +Hdof({b", C.,}, O -I)+ • • • , 

where third-order terms in the small quantities 
O -I, and sn have been dropped, and where Eq. 
(16) has already been taken into account. The 
invariance condition 

(18) 

leads then to additional conditions for the coupling 
constant matrix besides those given by Eq. (16). 
On the other hand, if one works with a given 
coupling-constant matrix {<I>~;~}, then Eq. (7) has 
to be supplemented by additional terms in arder 
that Eq. (18) is satisfied. In particular it is shown 
in Sec. III that only for central two-body forces 
the displacement fields computed by means of the 
present theory agree with those of the standard 
theory. Accordingly for noncentral forces Eq. (7) 
has to be modified. Such modifications will be 
discussed at the end of Sec. 111 and in Sec. V. 

111. MICROSCOPIC FORMULATION OF 
"DISLOCATION" THEORY 

In order to find the equilibrium solutions to 
Eq. (7) for fixed {bil-ili} we perform a Fourier 
transformation and diagonalize by means of trans­
lation of variables. Equation (7) will be written 
in the form 

<I>({bm·n)=<I> _.! "'11>~-ilsm-tsm-il+""' q,õi-ii bi!'·üsm J o 4 ~ l,k i k ~ i,k ' k -.. --m,n m,n 
i,k i,k 

.! ""' q,õi-ii bn;· a b;n, a 
-4 LJ i,k l k • 

~­m,n 
I, k 

Introducing the Fourier transforma 

sõi- _1_~ S- e-it·:ilW 
k -· ..JFr 1l: q,k ' 

sif-t= )r ~sq, 1 e-it·llW(l_e-t·ii) 

into Eq. (7') leads to 

(7') 

<I>({biil'iiJ) =<l>0 -i ~ ~<I>Lsa, 1 S_if,k(1- cosq· h) 
l,k 

. (19) 
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where q runs over the first Brillouin zone. Also 
introducing the notation 

(20) 

and diagonalizing Eq. (19) by means of the shift 
operation 

S-a,k=Sá,k+Pi!,k, 

where 

one obtains 

(21) 

(22) 

Here and in the following Einstein summation convention will be used for subindices. The second term of 
Eq. (23) represents the phonon excitations in the defect state and the following terms represent the defect 
interaction Hamiltonian i1> 1n1 ({biii•it_}-). Thrther manipulations to transform Eq. (23) are given in the Appen­
dix and lead to 

q,int({btt•iii})---1-L L [é baJ ara t: (qoqoeiil•ra)il>-l (-q) - 2N .. , Js,f36: s 01 otf3'Y 'Y 6 J, 1• 
q a,a ca 

where q 0 =q/Jiil and € 0181 is the Levl-Civitaten-
sor. Note that the Burgers vector ba is defined 
with respect to the cut surface ~a and therefore 
is conserved along the contour Ca bordering ~a• 
Equation (24) has been derived under the assumption 
that the contours Ca are well separated from each 

. other. Suppose now that n contours c a, (J 

= 1, 2, .•. , n coalesce along the path C'. From 
Eq. (24) it follows that q,int is completely sym­
metrical in all C a; i. e., it is a bilinear form of 
expressions of the type C • • • b~fcadr~, where 
the points stand for subindices. • This .implies that 
for 

n 

C' n IIcat ~, (25) 
a=l 

·~:1 ba enters q,int. Because b" is conserved along 
each closed contour, coalescence of contours. 
implies that the Burgers vector is conserved at 
branch points of the contours and furthermore 
that the interaction law envolves always the re­
sulting Burgers vector. Accordingly the present 
Burgers vectors follow the same conservation 
laws as do the standard Burgers vectors used in 
the theory of plasticity and lattice defects. Note 
that for the case of infinitely extended cut sur-

(24) 

faces which are closed over the periodic boundary 
condition q,tnt vanishes. 

Next we determine the Fourier transforms 
PQ..J defined by Eq. (22). Using the same approxi­
mations under which Eq. (A7') of the Appendix is 
derived Eq. (22) can be written in the form 

P-Q..J =- ~ il>j~k<iiH ~ J, (d2?· h)<I>L 
u1 h l:.a 

(26) 

Using Eq. (9), allows to write Eq. (20) in the long­
wavelength approximation in the form 

il>;,k(q)=Cik,ss' qsqs' • 

Going over to Hook's tensor by means of the 
relation [see Eq. (58.6) of Leibfried8] 

- 1 
Clk,ss' =2(C;s,ks' +C;.s',ks) • 

one obtains 

(27) 

(28) 

il>;,k(q)=Cts,ks' qsqs, • (27') 

Accordingly i1>1,k(ii) is identical with the inverse 
propagator of the usual continuum theory as one 
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expects. Introducing the real-space Green's 
function via 

G ("r - ?') = _1_ Jdsq ~ -1 (q) e iit. <i'--i!<') 
i, k (21T )3 i, k ' 

the Fourier transform of Eq. (26) can be written 
in the form 

pJ(r)=-tLf d2r~(Cis,ks'+C;s',ks) 
a I:., 

a a (.. ~) x b 1 ~ G 1,,. r- r . 
s' 

(29) 

Accordingly Eq. (29) goes over into the standard 
displacement field produced by dislocations4 only 
if 

holds. Together with the other symmetry con­
ditions which C iJ,nm satisfies this implies that 
Hook's tensor has to be symmetrical in all its 
indices. Accordingly the present defect model 
goes over into the usual crystalline model only 

(30) 

for lattice constituents interacting via central 
forces. It is obvious that if the displacement fields 
coincide that also the interaction energies of both 
theories have to be same. This follows from the 
fact that the energy functionals ~ of both theoriE!s 
must coincide in those terms which are of first 
and second order in the variables {s "} in order 
that the displacement fields {P'&J- coincide, and this 
is the case. There remains therefore only the 
possibllity that the two energy functionals differ 
in a term which is bilinear in the fields {bif, iD}. 
Such a term can only involve couplings over the 
coupling-constant matrix {~~:f} but no long-range 
couplings which are only mediated over the phonon 
propagator and cannot appear in a microscopic 
Hamiltonian and also not in a phenomenological 
theory. Accordingly the interaction law between 

defects which is of long range has to coincide in 
both theories. There may, however, be a dif­
ference in the core energy. 

In order to simplify Eq. (26) further it will now 
be transformed onto the orthogonal trihedron 
\n1• (q), n2• (q), n3• (q)), with n3• (q) =ifl. Because ·. 
Eq. (26) ís written in a covariant way it preserves 

. its form when refered to a primed coordinate 
system, i.e., 

1 -T--1 (+)1'"" f (d2-ra • .. h)"'~'~·· P--a.J· =- m "'J',II q 2~ r:., ..,R 

(31) 

Using Eq. (9) in the primed coordinate system and 
which consists of the trihedron introduced above 
and observing \q • h) =qha' allows one to write 
Eq. (31) in the form 

P-o.,r = ~ ~}~,,.. \q) ~ iq Ir:., d 2r" ns' Cf")Cu ,s' a• 

x b~. e-;a ·1", (32) 

where 

ii(?') = (n1• <f"), n2' (?'), n 3. ("?')) 

represents the normal vector of the cut surface. 
This normal vector can be put into the form 

ns' (?) =ls'k'(q0 X ii("r"))k. +na• Cr")õs .• ':! ' (33) 

.where 

has been introduced. Inserting Eq. (33) into Eq. 
(32) yields 

P 1 -'J.-1 f+)- '"" r d2.A (C!!U·)C- b" -la·f" 1· -T.-1 ( .. )'"" r I (" .. X ->2~) c- b" -iil-F 
"il.i' =IN "'J'Io' ,q zq LJ }_ ., na, r 11.'1',3'3' ;.e + ,., "'i',k' q LJ )_ •·P· zq u 1 p• k'i'•••s• ;•e • 

N a r:., vN a r:., · 
{34) 

Using Stokes' theorem in the form of Eq. (A17) of the Appendix Eq. (34) can be transformed into 

1 -T--1 ( .. ) -'"" 1 (d2:'!1J) C-· b" -il· f" 1 _._-1 ( .. )'"" f (d:!'!lr X ~) é b" - iil·f" P-a.J·= ,[N"'i',k' q ZL..J r· 3'q k'i'o3'3' i'e + m"'J•,,.. q LJ c r- q a• lt'i',S'3' j•e • 
a ~a a u 

(35) 

Observing that 

holds, Eq. (35) can be expressed in the original coordinate system. This yields 

1 ~-1 ( .. )''"" l (d2? 1né b" o o -iil·F 1 ~-1 ( .. )'""f (d? X :eu) é oba -la· f" (36) P-~t.J = {N 1,,. q z LJ . q, u,nm Bnqme + VFr J,k q LJ q • u,s,qn ;e • 
., r:., N a c" 
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A different derivation of this formula using pure 
vector algebra lEÍads naturally to the same result. 
The first term of Eq. (36) involves surface inte­
grais which lead to discontinuities of p("f) over 
the cut surfaces, whereas the second part of Eq. 
(36) representa the physically relevant displace­
ment field which is continuous. 

It has been shown in this section that only for 
central forces where Eq. (30) holds the micro­
scopic defect model defined by Eqs. (7) and (8) 
leads to the standard dislocation theory based on 
phenomenological elasticity theory. Suppose now 
that standard dislocation theory satisfies Eq. (18) 
(which it necessarily must do if it is correct) just 
by way of its construction. In the case of non­
central forces Eq. (7) has then to be modified in 
order to exhibit rotational invariance. There' are 
a number of possibilities to do that, but so far we 
have found no systematic way to do it successfully. 
Because noncentral forces are usually generated 
by couplings to the electron system it may be 
necessary that in that case Eq. (7) has to be re­
placed by an electron lattice Hamiltonian. Eli­
mination of the degrees of freedom of the electron 
system might then lead to the correct invariance 
properties of the renormalized lattice Hamiltonian. 
This has not been done so far. 

IV. ISOTROPIC MEDIUM 

In this section we evaluate the interaction energy 
and displacement field in the presence of dis­
locations in the isotropic case. 

It has been pointed out by Huang9 that in an in-' 
finite lattice two independent conditions have to be 
fulfilled by the coupling-constant matrices besides 
the conditions imposed by symmetry in order that 
a stable elastic medium results. First, linear 
terms in the Taylor expansion of the interaction 
energy have to vanish in order that each lattice 
point is in equilibrium. Second, all stresses have 
to vanish which imposes an independent (not) 

symmetry (implied) condition on the tensor é 1k,nm 

defined in Eq. (9), namely [see Eq. (58. 7) of Ref. 
8], ' 

(37) 

This condition is, however, always satisfied in 
cubic lattices [see Eq. (37.10) of Ref. 8] once the 
coupling-constant matrices satisfy the symmetry 
conditions. For isotropic media one gets ac­
cording to Leibfried8 

élk,mn= é12Õikõmn+é44(õimÕkn+Õinõkm) (38) 

and 

(39) 

The constants appearing in Eqs. (38) and (39) are 
related to Voigt' s elas ti c constants in a cubic 
medium by the equations 

Cu=Cw c,2=2é44-C12> é44=é12' (40) 

It is clear that the stability criteria mentioned 
above imply only that the phonon spectrum of our 
Hamiltonian Eq. (7) is positive definite but not that 
Eq. (7) is stable against defect generation. A more 
detailed discussion of the · stability properties of 
Eq. (7) will be postponed to the end of this section. 

Next we evaluate the interaction energy c:J>IDt and 
displacement p(f) for the isotropic case. Abbre­
viating the inverse propagator Eq. (27') in the 
form 

c:~> ,,k(q) =q2(Aõ,k +BqM), 

one obtains 

c:l>j:k= (1/q2)(Cõik+Dq';q2), 

where 

A="C 12, B=2C44 , 

C=1/A, D=-(B/A)/(A+B) 

(41a) 

(41b) 

(42a) 

(42b) 

has been introduced. It is now straightforward but 
tedious to evaluate Eq. (24). One obtains 

Evaluating the coefficients in Eq. (43) and. going over to a real-space representation yields 

c:J>I•t({b",C.,})=--21L (4(: ) 2~1-8; )81 f l (d?'·(Õ"xV..,)](d?'·(Õ"'xvi'<'.)JiP-?'1 
"•"' -V - V 7r Ca c.,. . 

+~ (1-12 v)2 12 ~ Bn~a L ... (d? X v..,). (d?' X vF.)(b". Vi'cr)(it''. VF,) I?- ?'13 

+ iJ. ;'Ir <fi"· fi"') f f <a? x vi'<')· <a?· x "i'<'· li?- F 1). (43') 
Ga Ca' 
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Similarly one obtains for Eq .. (36) 

P-cr=~ - 1-:EACb"i f (d2? ·<ne- 1if·r" +~!!. _ _!_L (c f (d? xif')(Cf' · b")e-111-i'" 
q ..fN a I:a q 2 m a c., 

+(C +D) f (d?' X if') · b"if'e- lif·ra) • (44) 
c., 

In real-space representation one obtains from Eq. (44) using BC= 1/(1- 2v) and B(C +D) = 1/[2(1- v)] and 

1 J"" d3q fil r 1 
81T3 • 7 e . r= - 81T + 21T2E: ' 

where E:« 1 is a cutoff in q space 

·m=_!_:Eb"n"n _1 :E(-1-(J (a?xb") f a?x(?-r) (?-r)·&) 
p r 41T a r +161T a 1-211 c., I?'- ri - Ca l?'-rl 2 1?-rl 

1 v f [arv x (?- r)J ·i:i"] 
-2(1-v) r c., 1?'-rl ' (44') 

where as usual the space angle 

has been introduced. 
Comparison of q,lnt({b", C.,}) and p(r) with the 

corresponding expressions given, e.g., in Ref. 3 
under Eq. (2.28) reveals that the interacti.on laws 
between the "dislocations" defined in our model 
and the displacements produced by them do not 
agree with the standard expressions obtained by 
means of the phenomenological dislocation theory. 
Although in both cases interaction between various 
parts of the dislocation loops is mediated by a 
direction-dependent Coulomb law, there are two 
main differences. First, the Poisson coefficient 
enters in a different way leading to a divergence 
of q,iat for v-~ and 1J. *O. Second the direction 
dependence of the interaction law is different. With 
respect to the first point we have emphasized at 
the beginning of Sec. II that the save ~tability 
range of the present model' Hamiltonian is C12 >O 
and C44 >0, where in addition Eq. (48) has to be 
satisfied. This implies as will be shown below 
that v~ t has to hold. Accordingly instability of 
the model Hamiltonian Eq. (7) when used in the 
interval t~ v~~ is possible. Concerning the 
difference in direction dependence of the inter­
action law the reason is that Eq. (7) only for the 
case of central-force interaction exhibits all the 
proper symmetry and stability conditions required 
in arder that it describes defects of dislocation 
type as occuring in solids. For the isotropic 
model this implies v= t and 1J. arbitrary as will be 
shown presently. 

In the presence of dislocations internal stresses 
in the medium are generated and we have pointed 

out in Sec. II that in arder that the medium is 
stable against the production of defects a suffi­
cient condition is that all 3 x 3 matrices {-<I>t'~h 
shall be positive definite, whereas positive de­
finiteness of the phonon spectrum requires cl2 >o 
and c44>0. Although the 3 X 3 matrices {-<I>~.~0}1i, 
can always be made positive definite by means of 
their diagonal elements and this implies via Eq. 
(20) that also the phonon spectrum can be made 
positive definite it is not clear if the extra condi­
tion Eq. (38) can be fulfilled simultaneously. The 
point here is that the isotropic case of a cubic 
lattice as defined by Eqs. (38) and (39) is much 
more restrictive for the pres.ent theory than for 
the anisotropic cubic lattice. For the latter case 
the potential described by Eq. (7) may have the 
required stability properties only for certain 
parts of the coupling-constant space. The re­
quirement of positive definiteness on each matrix 
{-<I>~.Js in the presence of nth-order neighbor 
coupling is, of course, rather strong. The reason 
for this is that over the cut surface many lattice 
sites are coupled and that therefore only the ten­
sor C u.,mn determines the stability of the system 
against the generation of topological objects. This 
holds at least in the long-wavelength approximation 
used in this paper. Checking, however, the sta­
bility of the system only via the é 1•,mn tensor o r 
equivalently the Voigt elastic constants {c IJ} re­
quires the analysis of the interaction energy of all 
defect configurations in arder to confirm that 
q,lnt >O holds true always. In the following a 
simpler method will be applied by considering a 
model which involves only first-, second- and 
third-order neighbors. 

According to Table 9 of Ref. 8 the coupling­
constant matrices for that case can be represented 
in the forro 
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[

{3' y' 

{ii>h•(llO l} = y' {3' 
l,k 

o o 
:]. 
a' 

[
a" y" y"J 

{ii>~;~ullr= y" a" y" 

y" y" a" 

(45) 

and all others can be obtained by means of sym­
metry operations D". In a cubic medium the seven 
coupling constants appearing in Eq. (45) determine 
via three equations the Voigt elastic constants and 
noJurther condition is imposed by Eq. (37) on the 
range of variability of the coupling constants. For 
the isotropic case of a cubic lattice one uses Eqs. 
(27), (38), (39), (40), and (45) to obtain 

C12 = -4y'- By" + ({3 + 2a' + 2{3' + 4a"), (46a) 

c44=-({3+2a'+2f3'+4a"), (46b) 

a =f3+2a'-2f3'+4Y'+8y". (46c) 

Here Eq. (46c) implies the isotropy of the medium. 
In order that the 3 x 3 matrices {-ii>~~ are positive 
defini te 

a<O, {3<0, a'<O, {3'<0, lr'l<lf3'J, (47a) 

a"'<O, a"<r"<-~a" (476) 

is required. This implies that C 44 >O is satisfied 
automatically. Furthermore 

-4r'-sr"+2f3'> l13+2a'+4a"l (47c) 

is required for C 12 >O implying together with Eq. 
(47b), y' <0. Equations (47a) and (47c) imply that 
Eq. (46c) can also be satisfied. It follows from 
this that for the present model Eq. (7) representa 
a stable potential except for the pathological cases 
like 

{3= a' ={31 =a" =0 

which implies via Eqs. (47a) and (47b) 

y'=y"= o 
and therefore C12 = C44 =O. The maximal value of 
cl2 for given c44 is realized for y' = {3'' and y" 
=a". Inserting these values into Eq. (46a) yields 

max(C12) = C44 + 2{3 + 4(}'' 

and consequently 

(48) 

If one introduces the shear modulus 11. and the 
Poisson coefficient v then 

(49) 

holds and Eq. (48) reads v~ i. Within the present 
framework, i.e., taking coupling constants up to 
third-order neighbors into account and imposing 
the strong stability condition of positive definite­
ness on all three {-<T>lkh,-coupling-constant ma­
trices the limi ting case 11. =O but C12 * O can not be 
approached properly. It follows from the present 
analysis that at least for the range of coupling 
constants indicated by Eqs. (47a)-(47c) the po­
tential Eq. (7) is stable with respect to phonon 
excitations and defect generation. 

V. DISCUSSION AND CONCLUSION 

In the present paper we have tried to develop a 
defect theory for a simple-cubic crystal. The 
method has been based on án ad hoc ansatz for 
the'microscopic crystal potential. This potential 
is referred to a specific symmetry-broken stateof 
the system and its m~tastable states can be as.,. 
sociated with "dislocation" loops. These dis­
locations are characterized by a Burgers vector 
which obeys the same conservation laws as those 
obeyed by the usual dislocations. The dislocations 
interact via a Biot-Savard like intéraction. 
Furthermore all interaction can be expressed in 
the long-wavelength approximation in terms of the 
macroscopic elastic constants. Despite that the 
present dislocations differ from the usual ones 
because the elastic constants and the directional 
dependence of the interaction law enters in a 
different way in the presence of noncentral two­
particle interaction. The origin of that disagree­
ment originates from the lack of rotational in­
variance of the Hamiltonian Eq. (7) for noncentral 
interaction. Although the propagator and there­
fore the phonon dispersions in the dislocated state 
have the correct symmetry a uniform rotation of 
the crystal does not drag along the defects in a 
proper way in the general case. Unfortunately 
we have not been able to get rid of that deficiency. 
It is proposed, however, either to add symmetry 
restoring terms to Eq. (7) or to refer the crystal 
Hamiltonian to a local coordinate system defined 
by the displacements {p(R1)*} [obtained from Eq. 
(36) modulo the first term of this expression] 
which originate from the lattice defects. The 
problem of noncentral forces can be treated in a 
formal way as follows. Leibfried in Ref. 8 (see 
footnote 1, Sect. 58) points out that only the lattice 
energy density 

<T>(r) =!L: [ cik, mn +cmk,in- cmt,nkl sl,m(r)sk,n(r) 
I, m (50) 
k,n 
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has the correct rotationà.l symmetry. For dis­
placement fields vanishing at infinity the second 
and third terms of Eq. (50), which is a divergence 
vanish, however, and Eq. (50) is the continuum 
limit of the density corresponding to Eq. (1). In 
the presence of dislocations the second and third 
terms in Eq. (50) do not vanish. The lattice po­
tential corresponding to Eq. (50) may be written 
in the form 

_l:~ {.pni,ii~~.pni.~hk}s\ii-iisni-ii (51) 
4 - - s,k h s,. h • k ' 

m,n s s 
i,k 

where h =R~ -Rg. Next one makes the replacement 
Eq. (6). Then the second term of Eq. (51) gives 
the non-central-force contribution to the disloca­
tion theory. The displacement field i)"(r) dueto 
this contribution is easily calculated using the 
methods outlined in the Appendix. One obtains 

Pj(r) =~~~f_ (tf!r". h}[<P:. ;b1hk -<P~,k(ii · b")] 
a h t:., 

x _!_,c Jk(r- ra). 
ars. 

(52) 

Using Eq. (9) and [see Ref. 8, Eq. (58.9)] 

cks' is=ékl ss•+êJ,· ks-ês'k sl . . ., , . ' 
and adding Eq~ (52) to Eq. (29) where Eq. (28) is 
observed leads to the standard displacement field 
produced by dislocations for non-'central-force 
interactions. The evaluation of the interaction 
energy is more cumbersome and so far has not 
been done. 
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APPENDIX: DERIVATIONOFTHEINTERACTION LAW 

In order to simplify Eq. (23) we first study the 
term 

(A1) 

Assume first that there is one cut surface E., as 
illustrated in Fig. 1 and tfui.t the two sides of the 
cut surface are displaced by a vector b"; It then 
follows that the displacement vectors bm,it for 
R~ and ~ pointing versus opposite sides of the 
cut surface fulfill 

and otherwise 

bm,i!=o. 

(A2a) 

(A2b) 

Evaluation of Eq. (Al) is now done in such a way 
that for a given point Ro· of the dual lattice 
through which runs the cut surface E.,, Eq. (A1) 
is evaluated for all pairs for which RO' is situated 
on the connecting line of the constituents of the 
pair. In Fig. 1 the duallattice points are repre­
sented by cresses. Eq. (A1) can then be written 
in the form 

I (E ) ="' .pni-iib"éi-il.~(1 - el'i·dt~-it~) (A3) 
J a ~ J,s s ' 

m>n 

where R~ is taken from above E., and R~ from be­
low E.,. Next we sum over all pairs for which 
h=~- Rg is fixed. This yields 

IiE.,) = ~ ~'.p~,sb~eta-i.i0.e·lii•'hl2(1-éi·'h) 
RO'Et:a ii 

lfl:hl /2 
· -;a·ii0 h' x e , 

1(>-lhl/2 
(A4) 

which ~ indicates that only h's pojnti~g ~to the 
half space above E., are taken and h0 =h/j hj. In 

·Rm· 
-,0. 

I 
\ 
\• 
\ . ) . 

. \~ 
I 

.• top 

t<ltro- • • • \. \. • • R"'\ 
+--+- +-"i:!.+--+--+--+-\- 4-+--+--+--+--o+ L 

• • • ·\ ~ • • (J 

... ~\·~~ . 
. \ . 

:, • • bottom 
\ 
\ . ' 

FIG. 1. Two-dimensional cut through cut surface 1:0 

with. normal vector ii:,a. Duallattice points RWl are 
represented by crosses, ordinary lattice points Bom 
are represented as points. h connects ordinary lattice 
points and points into top half plane. 
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Fig. 1 a set of pairs for which h is fixed is indi­
cated by brackets and they producé the final 
multiplicative term of Eq. (A4). It is clear that 
Eq. (A4) can lead to a qualitative sensible result 
only if the interaction matrix {<~>f.,,} is not so 
long-ranged that pairs connected over the cut 
surface ~"in Eq. (Al) connect in fact over addi­
tional cut surfaces. In that case Eq. (A2a) has to 
be modified. This case will, however, not be 
considered in the following. Eq. (A4) can now be 
put into the form 

Ii~a) = -4i L:'L:'<~>~,sb~eiq•itiY sin(q •!h) 
R0,ECa ii 

lf<lhl/2 

x L cos(q · h0h'). (A5) 
lf=O 

In the following we are only interested in long­
wavelength phenomena. Accordingly we can make 
the appi'oximations 

(A6a) 

(A6b) 

where iiit!l is the normal ved:or of the cut surface. 
Using the Eqs. (A6a) and (A6b) in Eq. (A5) and 
substituting discrete summation by integration 
yields 

li(~")""- f '2;, f (tflr" · h)<~>7,sb~ e'H"(q, h). (A7) 
h l::a 

Here use has been made of the fact that a-ara· h 
>O holds for h pointing in to the haÍf space above 
~a· The presence of an additional h in Eq. (A6b) 
allows then to write Eq. (A7) as an even function 
of h and dropping the prime on the summation 
sign. In the presence of a set of cut surfaces 
{~"} one obtains instead of Eq. (17) 

Ii({~"})-- fi; f (tflra. ii><~>Lb~(Q:. ii)eiii·"". (A7') 
a,h I:a 

Let us point out here that the defect sectors of 
the model Hamiltonian are now characterized by 
a set of cut surfaces {~11}, where with each cut 
surface ~"a vector b" is associated. By obvious 
reasons this vector will be called the Burgers 
vector b" of the cut surface. 

Equation (A 7') will now be inserted into Eq. 
(23) of Sec. III. This yields 

(AB) 

Next we introduce an orthogonal trihedron for fixed q, (ii1 \q), ii2 (q), ii3(q)), with ii3 (q) = qo. With reference to 
this coordinate system one obtains 

IA~"})=-f?: f {(1/q)(d2?)g(q• h)2<I>~ .• b~eiq•ra + [ (d2?)1hl + (d2?)~2)<I>~ •• b:(q • h)eiHa}. 
h ,a 1:0 . 

Using Eq. (20) in the form 

w,.~@- __ 21 L wL<ii· ii>2, 
ii 

one obtains for Eq. (A9) 

I({~ })=iLJ (d2?) • .P. (q)b"e1a·r" _iL:J [(d2?') h +(d2?')~ )<I>ii b"{ii· h)e1'1t·r". 
i a a l:a q i,s s 2 .ii,a l:a 1 1 2 },s s 

Equation (A9') can be used to write Eq. (AB) in the following form: 

.plnt({bii•iii})=-_!_L [-2LJ !.(d2?') .P (q)b"eiil-?" +Ll. L[(d2?') h + (d2?) h ]tl>ii b"\q· h)e 1H" 8N q a r:; a q 3 J, s s a I: a h 1 1 2 2 J ,s s 

(A9) 

(A9') 

(AlO) 
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This expression can be evaluated and yields 

q,int({~•iii}) =-~í;(~f [(d2?)1h1 + (d2?)2 h2] 

q a, h ta 

xq,ii ba~q• h)ei\!•i'aq,-1 ~q L J [(d~r·) h'+ 1d~') h'](q-· h')<I>~ ba' e-l'a•i'<'') J,s ,s.\U J.t•\QI . .. . 1 1 \1 2 2 '',s' s' 
a',h' !:a' 

+_!_L(L ( (d2?)3 ~f (do/)jz~<I>!:.b~b~h~el\!•áa-ra'>) 
4N q a Jr;a a',h' r;a' 

+~L(Li (d2?')3 l; f [(d2?\h~ +(dZ?'\h;]<~>::.b!b:=fcr• h')e 1q•(r0'-ra'>) 
\1 a · Da a',lí' r;a' 

- !_ ". f (d2:?' • h)ffi. • hO)q,b baba • (All) 4~ ra !,k i k 
a,i Ea 

Here we have expressed the last term of Eq. (AlO) in integral form which is derived under the same ap­
proximation as Eq. (A7). In order to Simplify Eq •. (All) further some formulae from vector algebra will 
be used. It is rather s~mple to obtain 

(dZ?')1h~ + (dZ?') 2 h;= (d2? Xjfl) • (h' X q0). (Al2) 

Using 

(d2r")ah~ = (dZ?'' h')- (dZ?' X jfl) • (h' X q0 ), 

we get 

(dZ?')3 (d2?')3 h~2 = (d2?'' h')(d2?'' • h')- (h' X jfl)( (d2ra X jfl)(d2?'' • h')+ (d2 ra' X q0}(d7 X h')] 

+ (d2?' x q0 ) • (h' · q0 )(dara• x q0 ) • (h' x q0). (Al3) 

Use of Eq. (Al3) yields 

(d2t") 3 h~ (dZ?')1h~ + (dZ?') 2 h;] 

= (d7 xqo) • (h' x jfl) 

X( (d7 • h')- (d2?' X qo)' (h' X qo)]. (Al4) 

lf Eq. (A13) is introduced into the second term of 
Eq. (All), the sum over q of the first term re­
sulting from Eq. (A13) can immediately be per­
formed yielding the õ function, i.e., 

\ _!_r:eiil·<l'a-;ta'>- _l_J daqel\!•<ra-ra'> 
N a ~-r 

= õcra- ?'). <At5) 

This term then cancela the last term of Eq. (All) 
as can be seen as follóws. In order to apply the 
usual rules for integration over the three-dimen­
sional õ. function the düferential of the surface in-

tegrals will be written in the form 

(dara • h')(d2?'' ·h') 

= (dara: ii) sgn~a' • h0 ') J . d3r"', 
1Hl(i"'0,h') 

where the integral is performed over the volume 
element 

and where sgn(x) indicates the signum function. 
Using 

f . d3ra'õ(?'- ?)fera',?') =1\ra,ra), 
60 (i~O'·, '&) 

the result claimed above follows. 
After .a trivial algebraic step Eq. (All) can now 

be written in the form 
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This expression is now in a form which allows the application of Stokes' theorem 

i d2? X Ve-lt•i'" =f d? e-iH"' (A17) 
I:u Ca 

where C" is the contour bounding the surface ~". Using Eq. (A17) in Eq. (A16) yields 

q;int({bn~iii}) = -~ LL :E f d? • (h x(j<')(q<'• h)<R~,sb~wj: 1.(q) 
Ci. a,a' h Ca 

xl;: J d?'• (h' xqo)(qo· h)<PK 8,b~:ei1Hi'"-fcr'> 
f! . c.,.. 
1 ~~"" f f e~'4·1l"-i'"'> --LJLJ·~ W~8,b~b:, d?• (ii' xqo) d?'• (h' Xq0) 2 

4N t uia' h' C0 c.,.. q 
(A18) 

Using the quantities defined under Eq. (9) in Sec. Il and writing 

ãXb=~likaibk, 

where ~iik is the Levi-Civita tensor allows us to put Eq. (A18) into the final form given under Eq. (24) in 
Sec. III. 
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