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A microscopic construction method of lattice defects which can be represented by. dislocation
configurations in simple-cubic lattices and for interaction by central forces is given. In contrast to standard
theories, where dislocations are introduced via topological operations (Burgers circuit), the author starts
from a microscopic ad hoc Hamiltonian which. is suitable only for central-force interacting systems. The
various sectors of this microscopic Hamiltonian are associated with dislocation configurations. A detailed
discussion of the stability and symmetry properties of the microscopic Hamiltonian is given. Possible
extensions of the theory to non-central-force interacting systems are pointed out.

I. INTRODUCTION

The theory of structural defects in crystal lat-
tices has been developed by many workers and the
main theoretical concepts and literature refer-
ences can be found in Refs. 1-4. In the following
work a microscopic formulation of the theory will
be attempted which differs from most of the the-
ories presented in Refs. 1-4 in one basic point
in that we deduce the defects directly from a basic
lattice Hamiltonian of the system. '

The basic lattice Hamiltonian is a-generalized
rotator model. One knows already that the top-
ological defects of the planar rotator model are
vortex loops with discrete current strengths which
interact via the Biot-Savard law with opposite
sign. Accordingly a generalized rotator model
with a conserved vector current can be expected
to model dislocation theory in solids. Such an
analogy with magnetostatics, in particular with
respect to Biot-Savard’s law, was first pointed
out by Kréner.? ,

In the standard theories of dislocations, dis-
locations are introduced into the lattice via top-
ological operations, i.e., the Burgers circuit,
and phenomenological expressions which are based
on continuum elasticity theory. There also exist,
however, examples of calculations of lattice defects
like vacancies and interstitials based on a dis-
crete-lattice computational approach.®® Further-
more KochendSrfer and Seeger® treated the moving
dislocation from a discrete-lattice point of view.
The spirit of the following apprdach differs, how-
ever, from such formalisms and is closer to the
theory of topological defects as it is presently in
vogue in the theory of Ising-like models in sta-
tistical mechanics (see, e.g., Holz” and references
therein). The idea there is to start out from a
lattice Hamiltonian which describes the system
properly in all its possible configurations. The
defect states represent then the various sectors
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of the phase space of that Hamiltonian. This ap-
proach should therefore also allow the description
of the various possible phases of such a “crys-
talline” lattice system, e.g., its liquid phase. We
have to admit, however, that so far we have not
been able to succeed completely in such an am-
bitious enterprise. Nevertheless it is hoped that

“the present approach, when suitably modified will

lead to some progress in this field.

The plan of the paper is the following. In Sec.
II the basic Hamiltonian of the present theory will
be presented and a discussion of its stability and
symmetry conditions will be given. In Sec. III
a derivation of a dislocation theory based on the
present concepts and starting from a simple
intuitive expression for the Hamiltonian will be
given and in Sec. IV a discussion of the isotropic
case will be presented. The computational details
of Secs. III and IV are worked out in the Appendix.
In Sec. V a discussion of the ideas developed in
this work will be given. It should be pointed out
that the methods to be presented apply to dimen-
sions D = 2 but will only be worked out for D =3.

II. BASIC HAMILTONIAN, STABILITY AND SYMMETRY

For a classical lattice without any defects the
lattice potential can be represented as a Taylor
expansion around a periodic equilibrium con-
figuration in the form®

-
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ik

Here for the sake of simplicity we study a simple-
cubic lattice with N lattice constituents at the
equilibrium sites

{Ri}=(Rs, RS, ..., Ro)
and denote deviations from Ripy S% i.e., RY
=R3+S%. 71 is a coupling constant matrix and
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t=1,2, ...,D runs over the D Cartesian coor-
dinates of the lattice constituents. From homo-
geneity we take

T L L @)
and from the cubic symmetry
LIREL Rop ®)

Equation (1) is the harmonic approximation of
lattice theory and the neglected anharmonic terms
will be considered later.

If we introduce the quantity

§i-i=gh _ gt )

then Eq. (1) can be written in the form

2R =8, -3 2 olisiish
o,
ik
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ik
Because of the relation [see Eq. (36.2) in Ref. 8]
2 el,=0, | )
h=0

the third term of Eq. (1’) vanishes. Equation (1')
forms the starting pomt of the following develop-
ments.

Assume now that a defect like a dislocation is
introduced into the lattice. The only simple way
to do that is to produce an internal cut surface
of dimension D — 1 and displace the two sides of
the cut surface. The displacement of the atoms
along the cut surface is done such that the dis-
placement vectors {Bm’“} are multiples of lattice
vectors._Consider next two lattice constituents
at sites Rg and R , respectively. Changing their
relative dlsplacement by

FrA g, g ®)

puts them, because, of the periodicity of the
lattice, into an environment which may exert on
them the same forces as for bﬁ'rrl 0. However,
in order that this is the case other lattice con-

" stituents have also to be moved in order to make
the displacement compatible with the lattice. One
may expect therefore that the Hamiltonian for a
certain defect structure characterized by a set
of vectors { b “’} is in the “harmonic” approxi-
mation of the form

o" (B3}, (B
=Go— 1 D STEEFE_pFH(FF B, (1)
3 :
irk

1t follows from the procedure of constructing the
vectors b™® that

bm,'ﬁ = _bn, m (8)

has to hold.

In order that this expression leads to sensible
results the coupling constant matri;c {@#% ™ has to
fulfill two conditions. First, {+‘I> m} necessarily
has to be positive definite in the space of the dis-
placement variables {Si}. Second, {- -a% 1+ has to
be positive definite for fixed h#0 in the space of
the difference variables {S“} which are defined
by Eq. (4). If the latter condition is not fulfilled
then Eq. (7) may be unstable against defect prod-
uction even if it is gtable with respect to phonon
excitations. I {-&" }h is positive deﬁmte, then
also {-&¥ 1z with rﬁ | = |h| and B’ =D*1 is positive
definite because both are related via a symmetry
operation D*® which will not change the elgenvalues
of {-&b j}h The positive definiteness of {&% % i can
always be imposed by means of the terms &7
which do not influence the elastic properties. The
positive definiteness of each {~ <I>, ;1 matrix im-
plies that the inverse propagator defined in Eq.

(20) is always positive definite and this leads to

a stable phonon spectrum. Although the second
condition is sufficient for stability we are not
certain that it is also necessary. The final results
of the present theory will involve in addition the
coefficients [see Eq. (58.4a) of Ref. 8]

1k,nm='—2 Zq}?, n (9)

which ultimately will determine the stability of
the system. We will return to this problem later.
Let us point out that if the displacement of lattice
constituents along the cut surface could be done
in a completely compatible way then Eq. (7) should
be transformable into Eq. (1’). That this is in fact
the case for closed cut surfaces and infinitely ex-
tended cut surfaces which are closed over the
periodic boundary conditions will be shown later.
For finite and open cut surfaces the displacements
described by {b™ % are not compatible. Accordingly
§1-% -1 & does not represent a solution to Eq. (7)
and internal strain arises in the system. A more
detailed explanation of the use of Eq. (7) will be
given later. Note that Eq. (7) is in a covariant
form, i.e., it preserves its shape when trans-
formed to a primed coordinate system. Although
Eq. (7) is obviously invariant against any trans-
lation it is not necessarily invariant against any
rotation of the lattice constituents. Consider first
a symmetry operation D® which transforms lattice
constituents into equivalent lattice constituents

DsRI=-RY, (10)



If bK ™ is defined with respect to the actual lattice
sites ] R?® then D° also transforms the set of vec-
tors b™# i.e., :

DS pR A=Y : (10"
Invariance of Eq. (7) with respect to D* requires

& ({o"™]) = (b)) (11)
and this leads to

2 %' ¥ D3, D5, =0T E, (12)
)
This set of equations represents the usual sym-
metry properties of the coupling constants [see
Eq. (36.7) Leibfried®]. Consider next a general
infinitesimal rotation £ —1I of the lattice, where
I is the unit matrix. Rotational invariance then
requires that

a({2(RHp =2 (RY) (13)

holds. Applied to the Hamiltonian of a certain
sector of the phase space characterized by the set
{b%%} the above condition reads

a(Q(Rn+ M}, (b y=a (R1+ 5, {B4F), (14)

where it should be noted that the set {b¥ "} is not
subject to the rotation because it is a passive set
of variables and refers only to the sectors of the
phase space.. For an infinitesimal rotation the
left-hand side of Eq. (14) can be expanded in terms
of 2-I. Keeping only up to quadratic terms in the
small quantities $2-I, and §" the condition Eq.

(14) requires

e edR(RE B (B -0,
Q=I

a=1,2. (15)

A necessary condition that Eq. (15) is satisfied
is [see Eq. (36.3) Ref. 8]

Z IR E _2 FIRE . ‘ (16)

This is the usual condition for invariance under
infinitesimal rotations in the harmonic approxi- -
mation and without defects. That Eq. (16) is also
a sufficient condition in the presence of defects

or, say, for the harmonic approximation of the
defect Hamiltonian Eq. (7) cannot be said without
computation of Eq. (15). In Sec. II it will be shown
that the problem defined by Eqs. (7) and (8) can be
transformed into an expression of the form

H=H,+H,(5,Cl, (6%))

where b° and C, represent the Burgers vector and
assocxated contour, respectively, and { b" C,lis
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a set of such pairs which defines the total defect
structure. The first term of Eq. (17) represents
a phonon Hamiltonian and the second term rep-
resents the interaction between the defects. If a
similar equation is derived from the left-hand
side of Eq. (14) one obtains instead of Eq. (17)

H =th+Hdef({-Ba, C,}, Q —I) R y

where third-order terms in the small quantities
§2 -1, and S" have been dropped, and where Eq.
(16) has already been taken into account. The
invariance condition

Hdef({ﬁoy Cu}"Q _I) =Hdef({goy Ca}) (18)

leads then to additional conditions for the coupling
constant matrix besides those given by Eq. (16).
On the other hand, if one works with a given
coupling- constant matrix {2% %}, then Eq. (7) has
to be supplemented by add1t1onal terms in order
that Eq. (18) is satisfied. In particular it is shown
in Sec. III that only for central two-body forces
the displacement fields computed by means of the
present theory agree with those of the standard
theory. Accordingly for noncentral forces Eq. (7)
has to be modified. Such modifications will be
discussed at the end of Sec. III and in Sec. V.

III. MICROSCOPIC FORMULATION OF
“DISLOCATION” THEORY

In order to find the equilibrium solutions to
Eq. (7) for fixed {b* ™} we perform a Fourier
transformation and diagonalize by means of trans-
lation of variables. Equation (7) will be written
in the form ‘

@({bm’ )= -1 Z q)m—ﬁsm-n sm-ﬁ+ Z (p!-ﬁ,-n b‘:n" BS:\
m, i m, A
ik ik
___Z q,tn-nb!t?lv'ﬁb;n‘l,i (71)
m,n
ik
Introducing the Fourier transforms
EEED N

- Lig R -3 +h
#1- L sy et et
into Eq. (7’) leads to

a(b™H) = @0-222@,2 S;,:1S-3,,(1 —cosq* h)

22 S_. Qm-'ﬂbm-ﬂ - . ﬁo

-1 Z@i;ﬁb;?'“bf"ﬁ, " (19)

m, i
ik
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where q runs over the first Brillouin zone. Also
introducing the notation

&, (@)=-20 8% (1-cos§-h) (20)
h

and diagonalizing Eq. (19) by means of the shift
operation

S4,.=54,6 tPg,n» (21)

where

Ph‘:—

y

one obtains

> - 1 -t o Y. m - -
¢({bm,5})=¢o+% 2.: S%,iéi,k(q) Sia,k - WZ(% (bj,: b?:'ﬁe WK )éj,li' (q)
g i 'm

( E B H pf ToriiFo )-%Z_ e AL @23)
m, 1

Here and in the following Einstein summation convention will be used for subindices. The second term of
Eq. (23) represents the phonon _excitations in the defect state and the following terms represent the defect
interaction Hamiltonian <1>‘“t({b“"‘7}) Further manipulations to transform Eq. (23) are given in the Appen-
dix and lead to ' :

s - 1 ~ -
T S 30 2 LANEY e P
0,0 s

~ Y R it .
x(Ci,s.,B,a. b fc AV € o 4% G €78 >
»

q

q°q 1IE-F7)

~ o’ [ v ydyy

= Cogpg DIV fc fc Ar, A€ gy €qgiys - , (24)
(4 o’

where §°=4/|q| and €, is the Levi-Civita ten-
sor. Note that the Burgers vector b° is defined
with respect to the cut surface Z, and therefore
is conserved along the contour C, bordering 2.

Equation (24) has been derived under the assumption

that the contours C; are well separated from each
~other. Suppose now that » contours C,, o
=1,2,...,n coalesce along the path C’. From

- Eq. (24) it follows that &t is completely sym-
metrical in all C; i.e., itisa bilinear form of
expressions of the type C+ » * b9 [5, dr?, where
the points stand for subindices.: This implies that
for

cn JIc.#9, ' - (25)
o=1

2r,b° enters '™, Because b’ is conserved along
each closed contour, coalescence of contours.
implies that the Burgers vector is conserved at
branch points of the contours and furthermore
that the interaction law envolves always the re-
sulting Burgers vector. Accordingly the present
Burgers vectors follow the same conservation
laws as do the standard Burgers vectors used in
the theory of plasticity and lattice defects. Note
that for the case of infinitely extended cut sur-

faces which are closed over the periodic boundary
condition ®*t vanishes.

Next we determine the Fourier transforms

1,; defined by Eq. (22). Using the same approxi-
mations under which Eq. (A7) of the Appendix is
derived Eq. (22) can be written in the form

7, (D 2

osh

1 -
Py 5 (@3- h)® ;

X bI(ig  h) e~

(26)

Using Eq. (9), allows to write Eq. (20) in the long-
wavelength approximation in the form

Qi,k(a)=éik,ss’ 94y - (27)

Going over to Hook’s tensor by means of the
relation [see Eq. (58.6) of Leibfried®]

Cik,ss' =%(Cis,ks' +Cis',ks) ’ (28)
one obtains
@, (@) =C g e U5y - , @7")

Accordingly @, k(ﬁ) is identical with the inverse
propagator of the usual continuum theory as one
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expects. Introducing the real-space Green’s
function via

Gup(F -1 = (211)3 qu@ (@) e

the Fourier transform of Eq. (26) can be written -
in the form

p,ﬁ):-éEfE @ (C

9 - -
xb‘;a—chk(r—r"). (29)

isyks® +Cis’ ,ks)

Accordingly Eq. (29) goes over into the standard
displacement field produced by dislocations* only
if :

Cis, ks’ =Ciy yBS (30)

holds. Together with the other symmetry con-
ditions which C;; . satisfies this implies that
Hook’s tensor has to be symmetrical in all its
indices. Accordingly the present defect model
goes over into the usual crystalline model only
for lattice constituents interacting via central
forces. It is obvious that if the displacement fields
coincide that also the interaction energies of both
theories have to be same. This follows from the
fact that the energy functionals ® of both theories
must coincide in those terms Which_.are of first
and second order in the variables {S% in order
that the displacement fields {P*} coincide, and this
is the case. There remains therefore only the
possibility that the two energy functionals differ
in a term which is bilinear in the fields {b“' "‘}
Such a term can only involve couplings over the
coupling-constant matrix {(I)“'“‘} but no long-range
couplings which are only mediated over the phonon
propagator and cannot appear in a microscopic
Hamiltonian and also not in a phenomenological
theory. Accordingly the interaction law between

Pas =7 ¥

defects which is of long range has to coincide in
both theories. There may, however, be a dif-
ference in the core energy.

In order to simplify Eq. (26) further it will now
be transformed onto the orthogonal trihedron
(0, (@), 71, (Q), iy (@), with 0, (§) =¢°. Because
Eq. (26) is written in a covariant way it preserves

. its form when refered to a primed coordinate

system, i.e.,

Dy = H (@2 f: @ e |,

ok
X b2, (i h) e 31,
By

Using Eq. (9) in the primed coordinate system and

.which consists of the trihedron introduced above

and observing (4 h) =gk, allows one to write
Eq. (31) in the form

5w @2 ia f A0y (F)C i, o

X b‘;, et (32)

=

where
W(T) =y (), 15 (), 05 ()

represents the normal vector of the cut surface.
This normal vector can be put into the form

0 (1°) =10, (q° X (T +15 ()5, o, (33)
where
010
I=]-1 00
0 00

has been introduced. Inserting Eq. (33) into Eq.
(32) yields

1
zqu Prony, (F°)Cy p, o b5 Y +—F®'.k(q Z f I, G X 1), Chus byl ¥ (34)
[

Using Stokes’ theorem in the form of Eq. (A17) of the Appendix Eq. (34) can be transformed into

1 o s ~ -1 1 .
P-a.z':'f—_q’!}.k'(q)’zo:_é (@F)34Ch 4,55 0%€7T i°+v_ﬁ*q’1},
o

N

Observing that

C

=C

0,0 —_ 0
iRy 33 i'h'.nmqnqm7 ¢ iR y8'3 T c irvsndn

P @2 f (@7 X Ty Co g s TF (35)
o o

holds, Eq. (35) can be expressed in the original coordinate system. This yields

| - .
p_a"=-m¢,}k(q)z; Lu @7 - QCry,nmblasa’ € it #0

+_¢-'k(q)z: f (d-f” xq ) ki.annbo -iﬂ ¥ . (36)



2526 A. HOLZ 20

A different derivation of this formula using pure
vector algebra leads naturally to the same result.
The first term of Eq. (36) involves surface inte-
grals which lead to discontinuities of P(¥) over
the cut surfaces, whereas the second part of Eq.
(36) represents the physically relevant displace-
ment field which is continuous.

It has been shown in this section that only for
central forces where Eq. (30) holds the micro-
scopic defect model defined by Egs. (7) and (8)
leads to the standard dislocation theory based on
phenomenological elasticity theory. Suppose now
that standard dislocation theory satisfies Eq. (18)
(which it necessarily must do if it is correct) just
by way of its construction. In the case of non-
central forces Eq. (7) has then to be modified in
order to exhibit rotational invariance. There are
a number of possibilities to do that, but so far we
have found no systematic way to do it successfully.
Because noncentral forces are usually generated
by couplings to the electron system it may be
necessary that in that case Eq. (7) has to be re-
placed by an electron lattice Hamiltonian. Eli-
mination of the degrees of freedom of the electron
system might then lead to the correct invariance

properties of the renormalized lattice Hamiltonian.

This has not been done so far.

IV. ISOTROPIC MEDIUM

In this section we evaluate the interaction energy
and displacement field in the presence of dis-
locations in the isotropic case.

It has been pointed out by Huang® that in an in-
finite lattice two independent conditions have to be
fulfilled by the coupling-constant matrices besides
the conditions imposed by symmetry in order that
a stable elastic medium results. First, linear
terms in the Taylor expansion of the interaction
energy have to vanish in order that each lattice
point is in equilibrium. Second, all stresses have
to vanish which imposes an independent (not)

el (F0-#9")

ait(pe, C b= —"2%;,'20:. <J;: f

Cqr q°

{(3B%(C +D) - B)[dT  (b° x

symmetry (implied) condition on the tensor C ikonm
defined in Eq. (9), namely [see Eq. (58.7) of Ref.
8], \

Comn=C

ikymn

mn, ik * (37)

This condition is, however, always satisfied in
cubic lattices [see Eq. (37.10) of Ref. 8] once the
coupling-constant matrices satisfy the symmetry
conditions. For isotropic media one gets ac-
cording to Leibfried®

Cinmm= C13030mn + Caa(0 1 0pn + 0 11O (38)

ikymn — 127 ik “mn

and
611:612*‘2&44' : (39)

The constants appearing in Eqs. (38) and (39) are
related to Voigt’s elastic constants in a cubic
medium by the equations

cu:éu’ C’lzzzé‘m"cla, 6442612- (40)

It is clear that the stability criteria mentioned
above imply only that the phonon spectrum of our
Hamiltonian Eq. (7) is positive definite but not that
Eq. (7) is stable against defect generation. A more
detailed discussion of the stability properties of
Eq. (7) will be postponed to the end of this section.

Next we evaluate the interaction energy ®'** and
displacement B(T) for the isotropic case. Abbre-
viating the inverse propagator Eq. (27’) in the
form

®;,,(@ =440, + B, (41a)
one obtains

&7, = (1/g2)(C6 4+ Dg%Y) (41b)
where

A=C,, B=2C,,, (42a)

C=1/A, D=—-(B/A)/(A +B) (42p)

has been introduced. It is now straightforward but
tedious to evaluate Eq. (24). One obtains

O)ar - (5 x )]

+ (@ XT) @F X PP BCE ) ) -AF° '5"')]}) . (43)

[

Evaluating the coefficients in Eq. (43) and going over to a real-space representation yields

@int({ba C }) - 12 ( T-8p

£t \4(1-v) 2(1-2v) 87
1

fc j a8+ 3 x Vg4 - (B x Fgo)] [ - 2|

+fmmf f (@7 X Vgo) - (A X T ) - Vo) (57 V) | T2 = 7

e S0 f [ @@ xF)- @ x Vg0 | - m) (43)

Cg’
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Similarly one obtains for Eq. (36)

- 1 1 > f 1 B 1
:___2 :ACb"z A2 ) 0
p‘ﬂ qz '\/N ] Eg( ’ q)e W 2

q N

(Cfc (AP X))@ - 50)e- ™

LD [ (@R ) B ). @4)
CG .

In real-space representation one obtains from Eq. (44) using BC=1/(1 = 2v) and B(C +D)=1/[2(1 - v)] and

© 73
_'1—3 'qu'eﬁ'?:_L*‘ 12 s
8/, ¢ 87 27%¢

where € <1 is a cutoff in § space

sy - L S poqem L L 1 (f (@ x%°)
p(r)—4ﬂ02bﬂ(r)+16”‘§:[1_2v -

AP x (" = T) (Y"’—F)'5°>

[F-7F [F-t

1 ‘.LOMWx(?_?n-F]’

o1

201~ u)vf

where as usual the space angle

(o= [ 7D

[F-T°
o

has been introduced.

Comparison of ®*({%°, C,}) and H(F) with the
corresponding expressions given, e.g., in Ref. 3
under Eq. (2.28) reveals thatthe interaction laws
between the “dislocations” defined in our model
and the displacements produced by them do not
agree with the standard expressions obtained by
means of the phenomenological dislocation theory.
Although in both cases interaction between various
parts of the dislocation loops is mediated by a
direction-dependent Coulomb law, there are two
main differences. First, the Poisson coefficient
enters in a different way leading to a divergence
of ®'*t for v—~% and p#0. Second the direction
dependence of the interaction law is different. With
respect to the first point we have emphasized at
the beginning of Sec. II that the save stability
range of the present model Hamiltonian is C,,>0
and C,, >0, where in addition Eq. (48) has to be
satisfied. This implies as will be shown below
that v< § has to hold. Accordingly instability of
the model Hamiltonian Eq. (7) when used in the
interval 1< v< ; is possible. Concerning the
difference in direction dependence of the inter-
action law the reason is that Eq. (7) only for the
case of central-force interaction exhibits all the
proper symmetry and stability conditions required
in order that it describes defects of dislocation
type as occuring in solids. For the isotropic .
model this implies v=4% and p arbitrary as will be
shown presently.

In the presence of dislocations internal stresses
in the medium are generated and we have pointed

(44’)

—

out in Sec. II that in order that the medium is
stable against the production of defects a suffi-
cient condition is that all 3 X 3 matrices {-3%%
shall be positive definite, whereas positive de-
finiteness of the phonon spectrum requires C,>0
and C,,>0. Although the 3 X 3 matrices {-®2%},
can always be made positive definite by means of
their diagonal elements and this implies via Eq.
(20) that also the phonon spectrum can be made
positive definite it is not clear if the extra condi-
tion Eq. (38) can be fulfilled simultaneously. The
point here is that the isotropic case of a cubic
lattice as defined by Egs. (38) and (39) is much
more restrictive for the present theory than for
the anisotropic cubic lattice. For the latter case
the potential described by Eq. (7) may have the
required stability properties only for certain
parts of the coupling-constant space. The re-
quirement of positive definiteness on each matrix
{-—@ik}ﬁ in the presence of nth-order neighbor
coupling is, of course, rather strong. The reason
for this is that over the cut surface many lattice
sites are coupled and that therefore only the ten-
sor C, »n determines the stability of the system
against the generation of topological objects., This
holds at least in the long-wavelength approximation
used in this paper. Checking, however, the sta-
bility of the system only via the C,,,,,, tensor or
equivalently the Voigt elastic constants {C ,,} re-
quires the analysis of the interaction energy of all
defect configurations in order to confirm that
"t >0 holds true always. In the following a
simpler method will be applied by considering a
model which involves only first-, second- and
third-order neighbors.

According to Table 9 of Ref. 8 the coupling-
constant matrices for that case can be represented
in the form
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(@ 0 0
{efot=10 8 o,
0 0 8

(8" v 0
{efot=ly 0|,
Lo 0 o

C 1

”n "
o Y/

Yy
a” y" (45)

B

Bs (L11)]
{‘I’ ik =

7/”
L)lll n
and all others can be obtained by means of sym-
metry operations D*. In a cubic medium the seven
coupling constants appearing in Eq. (45) determine
via three equations the Voigt elastic constants and
no further condition is imposed by Eq. (37) on the
range of variability of the coupling constants. For

the isotropic case of a cubic lattice one uses Eqgs.
(27), (38), (39), (40), and (45) to obtain

Co=-4y" =8y"+(B+2a’ + 28" +4a"), (46a)
C==-(B+20'+28" +4a"), (46b)
o =B+2a’ - 28" +4y +8y”. (46¢c)

Here Eq. (46c) implies the isotropy of the medium.
In order that the 3 X 3 matrices {-®%}; are positive
definite ’

<0, B<0, a’<0, g'<0, |v'|<|8']|, (472)

arr<0’ a//<,y//<_%a// (476)
is required. This implies that C,,>0 is satisfied
automatically., Furthermore

4y’ - 8y" +28'> |B+20' +4a”| (417c)
is required for C ,>0 implying together with Eq.
(4b), v’ <0. Equations (47a) and (47c) imply that
Eq. (46c¢) can also be satisfied. It follows from
this that for the present model Eq. (7) represents
a stable potential except for the pathological cases
like

ﬂ:aI:BI:a”:O
which implies via Eqs. (47a) and (47b)

,yl = yll = 0
and therefore C;,=C,,=0. The maximal value of

C,, for given C,, is realized for y'=8’, and y”
=a”. Inserting these values into Eq. (46a) yields

max(C,,)=C,, +2B+4a’
and consequently
C,sC,. » (48)

If one introduces the shear modulus p and the
Poisson coefficient v then

C,=2uv/(1=2v), C,=p (49)

holds and Eq. (48) reads v <$. Within the present
framework, i.e., taking coupling constants up to
third-order neighbors into account and imposing
the strong stability condition of positive definite-
ness on all three {-cb?,." k}h-coupling—constant ma-
trices the limiting case u =0 but C,,#0 can not be
approached properly. It follows from the present
analysis that at least for the range of coupling
constants indicated by Eqs. (47a)-(47c) the po-
tential Eq. (7) is stable with respect to phonon
excitations and defect generation.

V. DISCUSSION AND CONCLUSION

In the present paper we have tried to develop a
defect theory for a simple-cubic crystal. The
method has been based on an ad hoc ansatz for
the microscopic crystal potential. This potential
is referred to a specific symmetry-broken state of
the system and its metastable states can be as-
sociated with “dislocation” loops. These dis-
locations are characterized by a Burgers vector
which obeys the same conservation laws as those
obeyed by the usual dislocations. The dislocations
interact via a Biot-Savard like interaction.
Furthermore all interaction can be expressed in
the long-wavelength approximation in terms of the
macroscopic elastic constants. Despite that the
present dislocations differ from the usual ones
because the elastic constants and the directional
dependence of the interaction law enters in a
different way in the presence of noncentral two-
particle interaction. The origin of that disagree-
ment originates from the lack of rotational in-
variance of the Hamiltonian Eq. (7) for noncentral
interaction. Although the propagator and there-
fore the phonon dispersions in the dislocated state
have the correct symmetry a uniform rotation of
the crystal does not drag along the defects in a
proper way in the general case. Unfortunately
we have not been able to get rid of that deficiency.
It is proposed, however, either to add symmetry
restoring terms to Eq. (7) or to refer the crystal
Hamiltonian to a local coordinate system defined
by the displacements {B(R¥)*} [obtained from Eq.
(36) modulo the first term of this expression]
which originate from the lattice defects. The
problem of noncentral forces can be treated in a
formal way as follows. Leibfried in Ref. 8 (see
footnote 1, Sect. 58) points out that only the lattice
energy density

@(ﬂ =% ; [éik, mn +émk,in - 6mi,nk] si, m(f)sk,n(f)
oM

R,n

(50)
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has the correct rotational symmetry. For dis-
placement fields vanishing at infinity the second
and third terms of Eq. (50), which is a divergence
vanish, however, and Eq. (50) is the continuum
limit of the density corresponding to Eq. (1).

the presence of dislocations the second and third
terms in Eq. (50) do not vanish. The lattice po-
tential corresponding to Eq. (50) may be written
in the form

m, e m-fom-i
,’ksi Sk ~

@({ﬁﬂ)h;f&ﬁ &}

ik
_,Z {@g;h " Z” } siisii  (51)

where h =R3‘ —Rg. Next one makes the replacement
Eq. (6). Then the second term of Eq. (51) gives
the non-central-force contribution to the disloca-
tion theory. The displacement field p"(¥) due to
this contribution is easily calculated using the
methods outlined in the Appendix. One obtains

P =122 f: (@7 . B)[@E b3, ~2E (B D7)
| —abet)

9
8’}"

Using Eq. (9) and [see Ref. 8, Eq. (58.9)]

—G (T -7°). (52)

Cks’, is =Clai, ss’ +Cs‘i,ks - Cs’k,si
and adding Eq. (52) to Eq. (29) where Eq. (28) is
observed leads to the standard displacement field
produced by dislocations for non-central-force
interactions. The evaluation of the interaction
energy is more cumbersome and so far has not
been done.
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APPENDIX: DERIVATION OF THE INTERACTION LAW

In order to simplify Eq. (23) we first study the
term

1,22, o ipiig Rl (A1)
m,n

Assume first that there is one cut surface Z, as
illustrated in Fig. 1 and that the two sides of the
cut surface are displaced by a vector b" * It then
follows that the displacement vectors b“’" for
Rg‘ and R(‘} pointing versus opposite sides of the
cut surface fulfill

b8 =5 (A22)
and otherwise
pi =0, : (A2b)

Evaluation of Eq. (Al) is now done in such a way
that for a given point ﬁo, of the dual lattice
through which runs the cut surface =, Eq. (Al)
is evaluated for all pairs for which Ry, is situated
on the connecting line of the constituents of the
pair. In Fig. 1 the dual lattice points are repre-
sented by crosses. Eq. (Al) can then be written
in the form

159 =2, aFde (1 — e @F-RD) | (a3)
m>n

where RP is taken from above T, and R? from be-
low Zge Next we sum over all pairs for which
h= =RP - RE is fixed. This yields

1(5) = 2 28k poeithu i ha _ piieh)
RyE€Lq

K< hI/2 .
x gmi®ion , (A4)
W>=1h1/2

which E'. indicates that only i’s pojnting into the
half space above Z, are taken and h° =h/|h]|.

M o .
o

FIG. 1. Two-d1mensiona1 cut through cut surface Z;
with normal vector nfO Dual lattice points Ro are
represented by crosses, ordinary lattice points Rom
are represented as points. % connects ordinary lattice
points and points into top half plane.
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Fig. 1 a set of pairs for which h is fixed is indi-
cated by brackets and they produce the final
multiplicative term of Eq. (A4). It is clear that

q. (A4) can lead to a qual1tat1ve sensible result
only if the interaction matrix {&B o} is not so
long-ranged that pairs connected over the cut
surface Z, in Eq. (Al) connect in fact over addi-
tional cut surfaces. In that case Eq. (A2a) has to
be modified. This case will, however, not be
considered in the following. Eq. (A4) can now be
put into the form

I(2) =-4i 3, 3'%% brett o sin -1h)
Ry€Lg 1
#<lhi/z2 N
x D, cos(@-hw). (A5)
=0

In the following we are only interested in long-
wavelength phenomena. Accordingly we can make
the approximations

w<IBl/ 2

cos(d h°h’)~‘|n§, h| (A6a)
W=
sin@-10)~1@ 1), (A6b)

¢int({sfﬁ,i})~ _8-17\1— 4 (Ef (a2t - h)d’l H@- h)eid-#

where ﬁﬁb is the normal vector of the cut surface.
Using the Eqs. (A6a) and (A6b) in Eq. (A5) and
substituting discrete summation by integration
yields

@)=~z [ @ el pretran. G

Here use has_’been made of the fact that d?¢° - h
>0 holds for h pointing into the half space above
Z,. The presence of an additional h in Eq. (A6b)
allows then to write Eq. (A7) as an even function
of h and dropping the prime on the summation
sign., In the presence of a set of cut surfaces
{Z,} one obtains instead of Eq. (17)

LEh~ -5 f @ e} b1 et (A1)

Let us point out here that the defect sectors of
the model Hamiltonian are now characterized by
a set of cut surfaces {Z }, where with each cut
surface Z, a vector b° is associated. By obvious
reasons this vector will be called the Burgers
vector b’ of the cut surface.
Equation (A7’) will now be inserted into Eq.

(23) of Sec. III. This yields

o Lg
e e iw ) _ LY piedpm iy
xat @ 2 [ @ Bt 0@ Mot ) L T oiiobape. (a8)
i,0 Yy , i

Next we introduce an orthogonal trihedron for fixed §, (#,(q), 1,(@), f,(@)), with 8,(¢)=q°

this coordinate system one obtains

. With reference to

LAz =-5 . Z f {1/9)@F),@* 0)2®} be¥% +[(@2F°),h, + ([@7F) h,)@0 b9(G- Ye'Tio}, (A9)

Using Eq. (20) in the form
1 - >
‘I:'i,k(‘zl.) ~ —EZ q’?,k(Q' h)?,
i

one obtains for Eq. (A9)

} d2ye - i > e
Lz} ”Z, f,; (—;)%j.,s(a)bge'u'” _zihZ fE [(@2F) b + (@2F) o, )08 59 R)e®F (A9")

Equation (A9’) can be used to write Eq. (A8) in the following form:

S G IR ) [—22 fE L), @0 D f: %:[(dzw)lhl+(d2?)2hz]¢ﬁ,s 0§ R
q o o 3 o

X‘I’}.lt'(-q')<zﬁ' . (dz-fu):ih:,iq)'fil:,s'bg,(a"h')e'i'ﬁ'?V)
o, o

+ Zﬁ fn (@), + (@%F), 1, )00 b2 E)e-ia'?"] - i—Z piApRapha (A10)
3 o
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This expression can be evaluated and yields

@int({ﬁva})____s—;]—z:(E’f [@%F°),h, + (dT°), 1)
§ \o,h”LC, ’

xef, 1@ e et @2 [ L@ s @), )G B0, 05 )
o’y h* ot

i

(S @, Z [ @ g )
1 Ly o, B Cye

o

() ez | (@)1 @), o 5205 G et 07+
i\ o 7, o', & "oy

S e R . i
ah Fo

Here we have éxpressed the last term of Eq. (A10) in integral form which is derived under the same ap-
proximation as Eq. (A7). In order to simplify Eq. (A11) further some formulae from vector algebra will

be used. It is rather simple to obtain

(d%), 1} + (%) 1y = (@70 XGP)+ (B X ¢°) . (A12)
Using
(@°) iy = (@ + 1) - (@5 x§) @ % ¢,
we get '
(@7, (d2F), 12 = (@720 W EF 1Y) = (B X @[ [@F° X P)ETF" - 1Y) + (@2 x ) @5 x )]
+ (@7 XF) - @ - PEF <G - (B x§°). (A13)

Use of Eq. (A13) yields
(d2F°), k! (d2T°) 1) + ([d55°), )
= (@F X" (' *x )
X[(@F + b') - @F x )+ @ x ). (A14)
If Eq. (A13) is introduced into the second term of
Eq. (A11), the sum over g of the first term re-

sulting from Eq. (A13) can immediately be per-
formed yielding the & function, i.e.,

o 1SS sgegogeny 1 f 3. ,ig(F9-30")
Nzae @) dqe

=6(F -7). (A15)

This term then cancels the last term of Eq. (A11)
as can be seen as follows. In order to apply the

usual rules for integration over the three-dimen-
sional & function the differential of the surface in-

I
tegrals will be written in the form
(@% - W) 1)
=(d%°+ h) sgn(fy* h) a”
602, 1)
where the integral is performed over the volume
element

o0, 1) = [ dr [fg |

and where sgn(x) indicates the signum function.
Using

[ @@ -y, ) =),
69 (F9°, 5
the result claimed above follows.

After a trivial algebraic step Eq. (A11) can now
be written in the form

w5 = (2 [ ) Gxgel pi6 Pe)
o,h "Ly

x®31,@) Z; fD @ xg) - @ xa°)<1>§:,s.bg:(q.ﬁ')e"“°')
) o’

LTV T [ @ X @ xP@ <@ @ <Pe ek v, (A16)
4N i ¢ Eoo','f( Ly !
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v

This expression is now in a form which allows the application of Stokes’ theorem

[

EU
where C, is the contour bounding the surface £,. Using Eq. (Al7) in Eq. (A16) yields

(5 = D [ are )@ e 0085 @

q 0,0’

A2 X ‘V’e-ia-?" =f AT0 it ,
CU

XZ" fc ar® ¢ (ﬁ' X q'o)(q"oo ﬁ)¢§‘5,s.bgieiﬁ° (@9-30")
. Co!
1 2 :2 z V4 o -y, (T -0 ot (1 0 ei'ﬁ. (F9-29%)
NG T Qs’s'bgbs'f dr e (k Xq)f dar”’e (b’ Xq°) ————.
G o050’ b e, o ,

Using the quantities defined under Eq. (9) in Sec. II and writing

-
aXxXb=¢;;4a;b,,

(A17)

(A18)

where €,;, is the Levi-Civita tensor allows us to put Eq. (A18) into the final form given under Eq. (24) in

Sec. IIL

*Permanent address: Institut fiir Theoretische Physik, 3. P. Hirth and J. Lothe, Theory of Dislocations
Universitit des Saarlandes, 66 Saarbriicken, W. Ger- (McGraw-Hill, New York, 1968).
many. SB. K. D. Gairola, Phys. Status Solidi B 85, 577 (1978).

IE. Kroener, Kontinuum Theovie der Vevsetzungen ®A. KochendSrfer and A. Seeger, Z. Phys. 127, 533
(Springer, Berlin, 1958). (1950).

%A. Seeger, in Encyclopedia of Physics, edited by "A. Holz, J. Phys. Lett. 19, L-331 (1978).

S. Flugge (Springer, Berlin, 1955), p. 383; Phys. Status 8G. Leibfried, in Encyclopedia of Physics, edited by

Solidi 1, 669 (1961). S. Fliigge (Springer, Berlin, 1955), p. 104.
3J. Friedel, Dislocations (Pergamon, Oxford, 1964). %K. Huang, Proc. R. Soc. A 203, 178 (1950).



