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It is shown that two-dimensional (2D) paramagnon problems exhibit strong algebraic singularities 
I q 2-4K} 1-a, when some relevant momentum q is close to twice the Fermi momentum KF. As ali 

q values from O to 2KF are equally relevant for the magnetic instability in 2D, the above singulari­
ties play a key role. By contrast, they are irrelevant in 3D. It is explicitly shown that standard 
methods to calculate the uniform static susceptibility fail in 2D due to these singular terms. The 
origin of the singularities are multitail ring diagrams, closed fermion loops with "tails" attached to 
them. These diagrams are analyzed in detail by generalizing to d dimensions and dynamic tails, the 
method of Brovman and Kagan, developed in another context. The subsequent effects in the 
Ginzburg-Landau-Wilson Lagrangian describing interacting paramagnons are dramatic and render 
such an expansion questionable. · Moreover, the nature of the magnetic instability (ferromagnetic or 
antiferromagnetic type), which is not well defined in mean-field theory, still remains unsolved in the 
presence of paramagnons since standard methods to renormalize the response functions with fluc­
tuations fail to apply in the 2D problem. Any naive transposition from 3D to 2D of the Landau 
Fermi-liquid theory to compute, for instance, properties of liquid-3He films are suspected to be 
premature-if not erroneous'-at this stage. 

I. INTRODUCTION 

Three-dimensionai (3D) nearly magnetic Fermi liquids, 
with strong spin interactions, have been extensively stud­
ied in the past, 1 both experimentaily and theoreticaily, in 
particular using a somewhat simplified version of the 
Landau theory,2 the paramagnon model.3 This model cor­
responds to a one-parameter theory, depending only on the 
relative ratio r of the strong spin repulsion I among fer­
mions of opposite spins, to the characteristic energy of the 
particles in absence of interaction Ep; parameter r may be 
extracted from experiments, through the measurement of 
the paramagnetic susceptibility X( T), extrapolated at 
T =0 K, and whose ratio to the density of states at the 
Fermi levei gives the Stoner enhancement (1-[) -t. The 
paramagnon model ailowed to calculate, in particular, the 
T dependencé of X( T) and to find that it is strongly 
enhanced by the spin fluctuations (the "paramagnons"), 
while X( T =0) was not, compared to the mean-field (Ston­
er) vaiue. 

This was confirmed later on5 from the 
renormalization-group point of view: Owing to quantum 
effects at T =0, the criticai exponents at T =0, when 
r= 1, of the 3D (d = 3) paramagnon problem, assume 
their mean-field value; thus X( T =0) diverges like 
(I -ll-r with r= 1 as in mean field.6 

The question whether such results still hold for lower 
dimensionalities (d <3), in particular for d =2, was aiso 
considered.7 It appeared that simple conclusions can be 

reached for d=/=2 because the magnetic instability 
1/I =X0(q, CtJ=O) occurs when I increases for a unique 
vaiue of q, for which X0, the noninteracting susceptibility, 
is maximum [q =0 for d > 2, ferromagnetic instability; 
q =2kp (where kp is the Fermi vector) for d < 2, antifer­
romagnetic type of instability]. lnstead, for d = 2, the in­
stability occurs for a continuum of q vaiues, O ~ q ~ 2k F 

due to the particular shape8 of the Lindhard function 
X0(q, CtJ=O) at d =2, which is maximum and remains con­
stant from q =0 to q =2kp. Therefore, compared to 
d=/=2, the d =2 paramagnon problem appeared pathologi­
cal. As was aiready determined in Ref. 7(b), it may turn 
out to be a serious mistake, for 2D itinerant fermions at 
T =0, to approximate by constants the interaction coeffi­
cients in the Ginzburg-Landau-Wilson Lagrangian 
describing interacting paramagnons as is usually done in 
criticai phenomena9 for localized spins at the transition 
temperature when vanishing momenta play the leading 
role. The reason for not doing so is that in paramagnon 
problems these coefficients correspond to interaction ver­
tices given by multitail diagrams: closed fermion loops 
with an arbitrary number n (even in absence of anisotropy) 
of paramagnons tails attached to them, and with n in­
creasing with the order of the corresponding term in the 
Wilson-type series expansion. The multitail diagrams 
were first studied by Brovman and Kagan10 for the d =3 
electron-phonon problem, with the phonons as the tails. 
These authors showed that at d = 3, such diagrams with 
static externai fields are singular for some linear combina­
tion 
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l: ã;ql=4k} 
i 

(the q; 's being the momenta of the externai tails, and the 
ã;'s being numerical coefficients between O and 1); they 
also showed that the degree of singularity increases with 
the number of tails. An analogous analysis for the d = 2 
paramagnon problem was sketched in Refs. 7(b) and 11; 
Ref. ll pointed out more precisely that the singularities in 
d =2 are even stronger than in d =3. For d =3 paramag­
non problems, these singularities are irrelevant as far as 
the magnetic instability is concemed, for which the 
relevant q; values are q; -0; then as in usual criticai phe­
nomena recalled above, it is reasonable to approximate by 
constants the various coefficients in the Wilson Lagrang­
ian. Instead, for d =2, where ali q; values from O to 2kp 
are equally relevant for the instability, the above singulari~ 
ties do play a key role and render the Wilson-type expan­
sion questionable. 

The purpose of the present paper is to analyze these 
singularities in detail and to examine the consequences for 
the criticai behavior, as well as the T dependence of the 
physical properties of 2D itinerant, nearly magnetic fer­
mions. We first show in Sec. 11 that a calculation of X( T) 
from first principies, taking into account paramagnon ef­
fects as was done successfully in 3D in Ref. 4, would be 
inadequate in 2D as it exhibits strong singularities. W e 
then show in Sec. Ill why that is so, by analyzing the mul­
titail diagrams which enter as basic ingredients in the cal­
culation of X( T); we show that these Brovman-Kagan dia­
grams are indeed highly singular. In Sec. IV we conclude 
that formal perturbation methods break down in the 
paramagnon problem in two dimensions. The question 
whether 2D itinerant fermion systems are close to a fer­
romagnetic instability or to an antiferromagnetic one thus 
appears to remain open. Furthermore, blind uses of the 
Landau theory which implicitly emphasize the role of 
small q [through E"(k+<f)-E"(k)=k·q+q 2/2 
-:::=kpq cosO] appears premature at this stage. 

11. FAILURE OF THE THERMODYNAMIC 
DERIV ATION FOR X( T) IN d =2 

In order to directly compare the d =2 case to the d =3, 
we first calculate X( T) from first-principles thermo-

dynamics as was done in Ref. 4. We follow the same pro­
cedure which proved to be successful in d =3. We write 
down the free energy with the same notations (we suppose 
the number of atoms per unit volume to .be equal to 1 to 
simplify, and without any consequence for the main re­
sult, i.e., the existence of singular terms), 

(1) 

; is the difference of spins up and down, B is a field 
"dressed" by the interactions, 

Go=-+XPauliB 2 , 

XPauli=2Xo(q =Ü,w=0)=2N(Ep), 

N(Ep) is the density of states per spin direction at the 
Fermi levei, X0(q,w) is the dynamic spin correlation func­
tion in absence of interaction, and t::.F is the contribution 
of the fluctuations. As in Ref. 4, B is determined by 
<aF!aB>T,,=O. This gives -2XoB+at::.F;aB-;=o. 
On the other hand, aB ;a{; is derived from 
<a;a;HaF ;aB)=O, i.e., 

aB [ a2àF I ~ -2X0+ aB 2 =1. 

Moreover, the static susceptibility in zero field is defined 
as 

where JLm is the magnetic moment and 

a2F I aB 
a{;2 =- 2 ~ · 

With ali these ingredients put together one gets 

(2) 

When the fluctuation contribution proves at low T to be a 
perturbation, as is the case in 3D but not in 2D, one is 
able to expand further in the limit of strong Stoner 
enhancement, (1-[)-l >> 1, to get 

X(T, H =0)-:::= 2Xo_ 1--1 ___ 1_ [ a2t::.F I =X<T=O, H =O> [1-fTp~ [ a2à:' I I· 
1-/ 2x0 1-f aB 2 B=O 1-/ aB B=O 

(3) 

This last form was given as such in Ref. 4 for d =3. In order to calculate a2M /aB 2 we use the same closed diagrams 
as in Ref. 4 to write 

t::.F=L 1: [In(l-I 2xt+xo-)+I2xt+xo- +lnO-Ixt->+Ixt- +lnO-IXo+>+Ixo+J. 
2-+ q,(() 

(4) 

We are confined, as in Ref. 4, to the most divergent terms in 1/( l-li since we are interested in the direct neighborhood 
of the instability i -+1; we also are confined to the lowest-order T dependence; we then only need 
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(5) 

where JL=k},/2 (in a.u.), the chernical potential at T =0; its T dependence will not appear in the calculation to the lowest 
order in T, as proven in Ref. 4. ReXgtr is the real part of xgtJ. 

We recall also from Ref. 4 that 

1~-fl!.. xgtJ=-~ k k+Ci 
k w+S1c--s~+q+i1fsgn(s~+q-S1c-) • 

(6) 

with f:/=sr+(a,{3)B, a,{3= ± 1, sr=k2 /2-JL, and Xo=(xgtJ)B=O· 
So far, everything is unchanged compared to Ref. 4. We now use the fact that d =2. The calculation of the xgtJ can 

be done rigorously and gives with a bit of tedious but straightforward algebra, 

ReXgP(q,w,B)= N (~F) [9((0-e9 )2-q2kj.a) sgn{{l-e9 ){ [{{l-e9 )2-q2k}.a] 112-[(0-e9 )2] 112! 
q 

(7a) 

(7b) 

where N(EF)=(21T)- 1 for d =2, e9 =q 2!2, fi=w+(a-{3)B, k}(a,{3)=k}-2(a,{3)B, 9(x)=l for x >0 and 9(x)=0 
for x <O, and sgnx = + 1 for x >O and sgnx = -1 for x <O. In further ca}culations we use 

[ aReXt+ aReX·õ-] _ 
aB + aB B=O -O' 

___ o_ o _ 2 o 
[ 

a2 ReX++ a2ReX--l a2ReX 

aB2 + aB2 B=O- aJL2 ' 
(8) 

Wealsouse 

o -4N(E ) F [ 1 a2 ReX l 9(q 2-4k2) 

4 _a_'JL_2-. 111=0- F q4< t-4k}/q2>3/2 , (9) 

with 8(x)=a9(x)/ax. 
Then putting (9) back into (5) shows clearly that strong singu1arities will arise for q =2kF and survive even after in­

tegrations. A few comments take place here. 
(1) As already announced, the fluctuation contribution to the calculation of the susceptibility cannot be considered as a 

perturbation as in the 3D case of Ref. 4. 
(2) Aside from the expected divergences in 1/(1-i) (when I-+ 1) common to the 30 and 2D cases and characteristic 

of strong spin fluctuations, extra divergences arise in 20; the strongest originates in a2X0/aJL2 as shown above, and is 
linked to th~ very structure of the four-tail diagram. Indeed one of the lowest paramagnon corrections to Xo (X0 itself 
being a two-tail diagram, Fig. 1), involves one paramagnon insertion (Fig. 2) which brings in two extra vertices in that 
first-order correction shown on Fig. 3; therefore, such first-order correction to Xo involves a four-tail diagram (Fig. 4) 
with two of the tails attached to one another to form the inserted paramagnon (Fig. 5). On the other hand, as will be 
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nJWv = --0--0--- + --0--0--0--0- +····· 

FIG. 2. One of the possible paramagnon propagators: the 
geometric series of even numbers of bare bubbles linked by in-

FIO. 1. Bare-bubble diagram fór the noninteracting suscepti- teractions (dotted }ines), entering as a vertex correction in Figs. 3 
bility X0• and 5. 

shown later, the nth derivative of the two-tail diagram (n =2 in a2X0/ap.2) has the same singularities that the (n +2)-tail 
diagram, i.e., the four-tail one here. 

More generally the singularities characteristic of 2D have their sources in the structure of the nth-tail diagram formed 
by a closed fermion loop with n vertices where the n externai tails are attached, 

J(nl(ql>·· .,q11 ;roh····•ro11 )=-T~ [Go(p,e)Go(p+qi>E+ro,)· · · Go(P+Cit+ · · · +Cin-ioE+rot+ · · · +ron-tl 
p,E 

xô [.f q; ]a[~ ro; ]] , 
1=1 1=1 

(10) 

where G0(p,e) is the fermion Green's function. Whatever the tails are made of (paramagnons, phonons, extra fields, 
etc.) the above closed loop with n vertices, which itself may be regarded as one interaction vertex among the n tails, is 
the crucial singular quantity in 2D. In the next section we analyze in detail the four-tail ring diagram. 

III. SINGULARITIES OF THE MULTITAIL RING DIAGRAM 

In this section we examine the singular behavior of multitail ring diagrams by generalizing the method of Brovman 
and Kagan 10 to d dimensions and to dynamic legs in the four-tail diagram. Although the calculation here is performed 
at T =0 K, the results of Sec. 11 show that the singularities persist at finite T. Because of momentum and energy con­
servation the m-tail ring diagram involves m -1 externai momenta q 1,q2, ... ,Cim-l and the corresponding energies 
rol>ro2•· · .,rom -I· 

The method of Ref. 10 allows us to tell if a singu1arity may occur for some values of the externai momenta and ener­
gies, and to evaluate the asymptotic behavior close to the singular point. In Sec. Ill A we examine the four-tail diagram 
with dynamic externai tai1s of Fig. 4, for arbitrary dimensionality d. In Sec. Ill B we 1ook for the static 2n-tai1 diagram 
with arbitrary momenta which is the analogous in 2D to what Brovman and Kagan studied in 3D. 

A. Four-tail diagram with finite q;'s and two dynamic legs 

Our purpose here is to ana1yze more precisely the behavior of one of the lowest-order diagrams entering in the calcula­
tion of the susceptibility, i.e., the diagram disp1ayed in Fig. 3 and related to the four-tail diagramas indicated in Fig. 5. 
We first present a general calculation for arbitrary dimensionality d then we will app1y it for d =2. 

I. Calculationfor arbitrary dimensionality d 

We recall that the bare fermion propagator is, at T =0 K and for real continuous energies, 

Go(p,e)= 1 , 
e-s-p+i7Jsgn( 1 p 1-pp) e-s-p+i7Jsgn(e) 

(11) 

with the notation of Sec. 11. The diagram of Fig. 3 is then expressed in d dimensions as 

f f dq2dq3dro2dro3 , ..... ..... ..... 
X ,Cêft,ro,) = 2d +2 11( Ci2,ro2)J 4(q ,,q2,q3;ro~oro2,ro3)ô( Q3- q 1-Q2)ô(ro3 -ro, -ro2) , 

(2v) · 
(12) 

where J4 is the dynamic four-tai1 ring diagram of Fig. 4, 

(13) 

while U((f2,ro2) is the appropriate fluctuation or paramagnon propagator, 
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FIG. 3. One of the lowest-order correction to the bare bubble 
of Fig. l, with the paramagnon insertion of Fig. 2 exchanged be­
tween the two bare fermion lines of the bare bubble. 

FIG. 4. Four-tail Brovman-Kagan-type diagram: one closed 
fermion loop with four fluctuations attached to it; such a dia­
gram represents, as well; the lowest-order interaction potential 
(i.e., the closed loop) among two fluctuations. 

ll(..... )- 13X~(ê,h,(t)z) 
qz,(t)z - 2 2 ..... 

I -1 X o< q2,(t)z) 
(14) 

To analyze the singularities of 14 in Eq. (13) we generalize the rilethod of Brovman and Kagan10 to arbitrary dimen­
sionality d and to dynamic tails. We are restricted, however, for simplicity, to the static case for X h 

{I) I =0. 

andto 

f dc[Jd{t)3 ..... ..... ..... 
J4(q h <h;(t)z)= (2TT)d +I J4(qt>qz,q3;0,(t)z,(t)3)ô( Q3- q t- Q2)Ô({t)3-{1)2) , 

which will enter in 

f f dq2d(t)z ..... - ..... ..... 
Xt(Qt>O)= (2TT)d+lll{qz,{t}2)J4(qbqzi(t)2) · 

We use the Feynman parametrization, 

f/ da1da2da39(1-a1-az-a3) 

aoa1a2a3 3! o [ [1- ~a; )ao+~ a;at 14 
1=1 1=1 

in order to write J 4 ( q 1o q 2;{1)2) with the change of variable, 
3 

.-... -+ ~ -+ 
P~P-: .w a1q1 • 

1=1 

J 4<<ito<i2;{1)2)= Kd d !, 1 da1da2da3e [t-i a1 )L(a;,q;,(t)z), 
2(211') o i=l 

where Kd=2~12[r(d/2)]- 1 is the surface ofthe unit sphere and 

-+, _ tJ, 00 d-2 2 J+ao d€ 1 
L(a;,q;,{t)2)-3. o p d(p ) -ao 2iTT {Gõ 1Cp,E)+/12+i7J(a2+a3)[sgn(E+{t)2)-sgn(E)]} 4 ' 

with 

f=f(al>qi;(t)z)= [-ta;q; r- -ta;q?+2(a2+a3){1)2. 

Taking into account that for {1)2 >O, 

{
2 if -{1)2<€<0 

sgn(E+(t)z)-sgn(E)= O otherwise , 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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the frequency integral in Eq. (21) is performed by splitting the region of integration in - oo < € < - m2, - m2 < € <O, and 
O < € < oo with the result, 

L(a1,q1 ;m2)=~ J:oo pd-2d(p 2) [e<f-a2-a3)1m 2 
1 . 3 

1T o (p-p 12+! 12+lTf) 

I 1 I +e<a2+a3-T)Im , 
(p-p 2 12+ f 12-m2+i71 )3 

(24) 

where for Tf infinitesimal we replaced (2a2+2a3-1 )Tf by Tf sgn(a2+a3- f>. We use the formal identity, 

1 1 a2 1 1r a2 
Im --lm ---S(p+x) 

(p+x +iTf)3 2 ap2 (p+x +iTf) 2 a,_,2 • 
(25) 

to perform the integral in Eq. (24). lt is clear that what we obtain by this method is only Rel4(qbq2;m2) that reads, 
from Eq. (20), 

Rel4(q,,q2;m2)=- (::)d a~2 [~a<<f~o<f2;m2)+~b(q"q2;m2)], 
with 

~a,b(q., <fz;mz)=[ ~a,b(q;,m2)]-q 3= -q 1+ -q 2 • 

and 
1 

~a(q;,m2>= fo [I'lda; ]e [1-~a; Je<f-a2-a3)8(J.t+f/2)(p+f/2)<d-ll/2, 

1 
~b(Q;,co2)= fo [I'lda; )e p-~a; J8<-f+a2+a3)8(p+f/2-co2)(p+f/2-co2)<d-2l12 • 

To analyze the asymptotic singular behavior of ~a,b<<i~o<f2;co2) in Eq. (27) we first change variables 

a1=ã1+{31 withi=l,2,3 

(26) 

(27) 

(28a) 

(28b) 

(29) 

in Eqs. (28) in order to eliminate the linear terms10 in f({3;,q1;m2) of Eq. (22). 
equations 

It turns out that the ã1 should satisfy the 

3 
-> ~--- 12 
Q1 • ~ aiqi=Tqt , 

}=1 

3 
(30) 

-> ~--> I 2 i! • 23 q; · ~ a1q1=Tq; -m2 10r z = , , 
J=l 

and one obtains by introducing Eqs. (29) and (30) into Eq. (22), 

f=~f3tf3J<it ·qi-A(m2)-2p, (31) 
i,} 

A(mz>=f ~ã;ql-<ã2+ã3)coz-k}. (32) 
I 

Satisfying the system of Eqs. (30) is sufficient for the existence of a singularity, as was shown in Ref. 10. Moreover, the 
externai momenta q 1 and the frequency co2 must be such that the solutions ã1 fali within the range of integration: ã 1 >O, 
1-~~ ã1 >O. When the externai momenta are not independent, the Gram determinant I q1 • q1 I =0, and Eqs. (30) 
have a solution only when some restrictive condition among the q 1 is satisfied. In particular, we find for q3 = q 1 + q 2 

that Eqs. (30) are consistent only if q 1 • q2 =0. In this case they reduce to two equations for ã 1 +ã3, ã 2 +ã3, with so1u­
tions 

FIO. 5. How the four-tail diagram generates one of the 
lowest-order vertex corrections to X o displayed in Fig. 3. 

FIO. 6. How the four-tail diagram generates another lowest­
order correction (self-energy correction) to X0• 
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<it·<iz=O, 

where we made explicit the dependence of the solutions on @2. lt follows from Eqs. (27), (28), (31), and (33) that 

1/Ja<<ii>q2,@2)=21-d12 J [Il d/318(ã1((()zl+/31) ]e [1-~ã;(w2)- ~/3;] 

where 

X1 =(f3t+f33)ql • 

x2=(/3z+/33)q2, 

xe [ =~ -/3z-/33]e<xr+x~-à(@z»[xr+x~-à(@z>l(d-z);2 , 

à(@z)= f[qi +q~(l-2@2/q~ )2 -'-4k~]=à( -(()2)-2@2 . 

In order to evaluate lfJb(qbq2,w2) in Eq. (28b) we first change to integration variables y1 defined by 

ãt(Wz)+/3t =ã3( -@2)+Y3 , 

ã3(@z)+/33=ãt< -(()2>+r1 , 

/3z+/33= -< rz+r3> , 

from where it follows, using Eqs. (33), 
3 3 

ãz(w2)+/3z= 1-~ ã;( -wz)-~ Y; , 
i=l i=l 

3 3 

ãz(-(()z)+rz=l-~ ã;(wz)-~ /3;, 
i=l i=l 

f3t +/33=Y1 +Y3 ·. 

By introducing Eqs. (37) and (38), together with the last equality in (36), into Eq. (28b), one obtains the result, 

with x1ox2 as in Eq. (35) with y1 in place of /31• By comparing Eq. (39) with Eq. (34) one obtains 

lfJb(qb <izi@z)=l/Ja(qbqz; -@z)=:l/J(qbq2; -w2) , 

and from Eq. (26), 

2573 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

Rel4(qi>qzi@z)=- (::)d a~2 [1/J(qbq2;(()z)+l/J(qbq2;-(()z)], (41) 

where 1/!=1/la in Eq. (34). 
While Rel4(qbq2;(()2) in Eq. (41) is an even function of the frequency, the imaginary part Iml4(qbq2;w2) is an odd 

function which is obtained by analytic continuation into the complex w plane. 
If we define the complex function, 

t;i(qi>qzjWz)=-f-- J+oo d@' , 1 . [1/J(qbq2;(()')+1/J(qbq2;-(()')], (42) 
l1T -oo (() -Wz-lTJ 
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then 

J- (.... .... ) Kd a2 :;;,(- - ) 4 qtoqz;Wz =- (21T)d ap,2 'f' qhqz;Wz ' (43) 

and the imaginary partis given by the Kramers-Kronig relation, 

ImJ4(QtoQz;Wz)=-..!.P J+oo , 1 Rel4(Qt>Qz;w')dw'. 
1T - oo w -w2 

(44) 

We discuss now the asymptotic behavior of t/J(qt>q2;w2) in Eq. (34) close to its singular point à(w2)=0. It was pointed 
out in Ref. 10 that the singular contribution of this integral, if any, comes only from the lower integration limit and, in 
general, it would be of thetype I à(wz) I a or I à(w2) I Pln I à(w2 ) I· This may introduce divergences in l 4(qt>q2;wz) in 
Eq. (43) because a;ap,= -a/aà from Eq. (36). 

We call now tPsiniCit>q2;w2) the singular part of the integral in Eq. (34) when the upper limit is replaced by an arbi-
trary cutoff A. We distinguish three cases. · 

(a) q1 >0, q2 >0, and q1 • q2=0. For I à(w2) I <wilqi we introduce polar coordinates with -r=<xr +xi>112 and x1,2 

as defined in Eq. (35) to obtain 

(45) 

with the result, 

•1,. ("it ~t ·w >~ [I à(wz) I d/2 if à(w2kO 
'l'smg 'i" 'i2• z O ·r A( ) 

1 LlWz >0. 
(46) 

In particular, for d =2 there is no singularity. 
(b) q1 =0, q2 >0, and q1 • q2=0. This case corresponds to a contribution to the uniform static susceptibility. From 

Eqs. (34) and (35) we get 

tPsini<i~tciz;wz)~-1 JA dy9(y2-à)(y2-à)d/Z-t, 
qz -x2 

wherex2 =q2/2[1-(2w2/qi)] from Eq. (33). 
Now we obtain for d = 2, 

.t •. c-q ~t ..... , ) [[à(wz)]112 if à(w2)>0 
'f'smg b 'i2•"'2 ~ 

O if à(w2k O • 

For 2 < d < 3 we use the identity, 

(47) 

(48) 

<a _ 0 I dy<y2-à>d/2-'=y(y2-à>(d/2-l)_<a _ 2>.:1 I dy(y2-à>d'2-2. (49) 

in Eq. (47). The first term in the right-hand side of Eq. (49) is not singular, for either sign of Â(w2). In the second term 
one can let the upper and lower integration limits go to ± oo because the integral is convergent with the result for 
2<d <3, 

where Bis the beta function.tz From (48), (50), and (41) 
one will get a nonintegrable singularity in the integrand of 
(17). 

(c) q1 >O, q2 =0, and q 1 • q2=0. This case corresponds 
to a contribution to the nonuniform static susceptibility. 
We will obtain singularities analogous to the one of (b) but 
with (q1,w1=0) replacing (q2,w2) in particular in formulas 
(48) and (50). Putting together this result with that of (a) 

(50) 

above, in Eq. (17), we see that the resulting singularity in 
(qy-4k])-312 will occur only over an infinitesimally 
small region of integration over the variable q2• 

2. Applicaiion ofthe case d =2 

We are interested in this paper in the singular behavior 
of l 4(q1,q2;w2) for d =2. 1t is readily obtained from Eqs. 
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(46), (48), and (41). 
(a) q 1 >0, q2 >0 q 1 · q 2=0 d =2: 

ReJ4singCql>q2;ro2):::::0 · (51) 

(b) q 1 =0, q2 >0, q 1 · <i2=0 d =2: 

ReJ4sing(O,qz;ro2)~9(Q~ -4k}.)(Q~ -4kj)-312 

+9(Q:_ -4k})(Q:_ -4kj)-312 ' 

(52) 

where from Eq. (36) 

Q±=q2 [1± ~2~' (53) 

[A(ro2)]q1 =o= +(Q:_ -4k~) . (54) 

The result in Eq. (52) deserves further comment. The 
dynamic susceptibility in absence of interactions, X0(q,ro) 

at d = 2, was calculated in Ref. 7 and its real part is 

ReXo(q,ro)=X0(0,0)[<1>(ro)+<l>( -ro)] , 

where 

1 
ct>(ro)= -Q+9(2kp-Q+) 

2q 

+9(Q+ -2kp)-1 [Q+ -(Q~ -4k})112] ' 
2q 

(55) 

(56) 

with Q± as given in Eq. (53) which amounts to setting 
B =0 in (7a). 

By comparing Eq. (56) with Eq. (52), 

ReJ;ing(O, q2;ro2)::::: a2
2 ReXo( q2,ro2l , 

a !L 
(57) 

and this is the strongest singularity that occurs in the con­
tribution of Fig. 3 to the calculation of the static and uni­
form susceptibility X(q =O,co =0) at T =0 K, as was 
shown in Sec. li, Eq. (9). In particular the results of Sec. 
li show that these singularities are not canceled by other 
diagrams. 

Aside from the divergence in (qi -4k}. )-312 occurring 
in a vanishingly small region of integration over q 2 and 
ro2 to obtain the nonuniform static susceptibility 
(q 1=1:0,ro1=0), we see from (a), (b), and (c) that the contri­
bution of a diagram like that in Fig. 3 to X(q 1=1:0,ro1 =0) 
will be free of nonintegrable singularities (in q 2,ro2), whíle 
these singularities will build up for the uniform suscepti­
bility X(q 1 =0,ro1 =0). The asymptotic character of the 
calculation does not allow us to analyze the crossover be­
tween these two behaviors. 

3. Remarks 

Another diagram entering into the lowest-order 
paramagnon contribution to the susceptibility is displayed 
in Fig. 6. It corresponds to a self-energy correctíon of one 
of the fermion lines while the contribution of Fig. 5 corre­
sponds to a vertex correction. Of course there are two 
such diagrams (of the type of Fig. 6) corresponding to 

self-energy correction of each one of the two fermion 
lines. An analysis of the diagram of Fig. 6 would yield 
conclusions analogous to the ones obtained above concern­
ing the diagram of Fig. 5 as is detailed in the Appendix. 

Other diagrams13 also enter into the calculation of the 
lowest-order paramagnon contribution to the susceptibili­
ty. In any case the calculation we give in Sec. 11 which a 
priori takes into account all these diagrams ensures that 
the singularities persist when they are all summed up. 

B. 2n-tail diagram with static externai tails 

To end this section, we discuss the singularities of the 
2n-tail ring diagram with static externai tails in d =2 
(n =2 in Fig. 4). These diagrams occur as static interac­
tion potentials U2n(q1,co1 =0) of the <fo( 2nl term in the ef­
fective Landau-Ginzburg-Wilson Lagrangian for interact­
ing paramagnons.5•7 A static 2n-tail diagram is given by 
J2n(q1) as in Eq. (13), with 2n fermion propagators carry­
ing the same frequency € and with externai momenta q 1, 
q 2, and q 2n _ 1 for the tails and the corresponding frequen­
cies equal to zero. Following the same steps that led to 
Eq. (26) one shows that 

- - 1 a2(n-1) -
lzn(q;)=- 2tr a/L2(n-l) t{l(q;)' (58) 

where t{l(q1) is obtained by adding Eqs. (28a) and (28b) for 
ro2=0, and the static J 2nCq1) is real. For d =2, this gives 

t{l(q;l= fo (I} da; ]e [1- .f a; Je<!L+f /2), (59) 

where now the integral is over 2n -1 Feynman parame­
ters ai> .. . ,a2n-1> and j(q1) is as given in Eq. (22) with 
ro2=0. After the change of variables in Eq. (29) with the 
ã; satisfying equations analogous to (30), 

- ~----> 1 2 . 1 2 1 q1 ·..._aiqi=-zq1 , z= , ... , n- (60) 

one obtains 

t{l(q1)= f_ã; · · · J d/31 • • • d/3zn-le [1-~ã;- ~/3; I 
xe [~/3;/3j<ii · <ii-A I , (61) 

I,J 

(62) 

from Eq. (32). 
The quadratic form that occurs in the integral of Eq. 

(61) has coeffícients that form a Gram determinant 
I q; · qi I, then it is positive defini te and it has s nonzero 

eigenvalues Â;, where s is the rank of the 
(2n -1 )X (2n -1) matrix ll<i1 • qi li· Moreover s equals 
the number of linearly independent vectors q 1 in the set 
<i~>· .. ,q2n-l• hence in our case we can on1y have a max­
imum value of s =2 since only two vectors are linearly in­
dependent in 2D. After changing variables in Eq. (61) to 
diagonalize the quadratic form, and going afterwards to 
polar coordinates, one obtains for the singular part of 
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1/J(q1) close to â=O, 

1/lsing(Q;)~ (ÂIÂ2. :. Âs)l/2 foA drrs-'e(r2-â)' (63) 

with the result for J! 2n)((f1) from Eq. (58), 
(a) for s =2, 

J2n sing(Q; )=0 · 

(b) for s = 1, 

[o if â<O 
J2n singCqt)~ â[l-4(n-0]/2 if â>O. 

(64) 

(65) 

Equations (64) and (65) are the generalization to 2n tails 
of Eqs. (51) and (52). For s =I, ali momenta q1 will be 
parallel, then we may write 

Qj=aiql, j=2, .. . ,(2n -1) 

and to satisfy Eqs. (60) implies that 
2n-1 
~ - 1 2 1 
~a1a1 =T,a1 =a1 ,a 1 =, 
}=1 

and from Eq. (62), 

A 1 2 k2 u=-;rq,- F. 

(66) 

(67) 

(68) 

lt has been pointed out in Ref. 7 that paramagnon fluc­
tuations are criticai for Os;,q s;,2kp at d =2; then the in­
teraction potentials U2n(q1)=J2n(q1 ) in a Landau­
Ginzburg-Wilson effective Lagrangian for interacting 
paramagnons cannot be approximated by their value at 
q1 =0. If one considers the whoie interval Os;, q1 s;, 2k1 

Eqs. (65) together with Eq. (68) show that J2n(q1 ) is high­
ly singular when q1 = q2= · · · = Cim, m > 2, q1 =2kp, 
and Cim + 1 · · · Ci2n -I =0, and writing ao effective La­
grangian turns out to be questionable. Note, on the other 
hand, that when ali momenta are equal to zero, J2n=O for 
n ~ 2 since J2n is given by the (2n -2)th derivative with 
respect to energy of the density of states at the Fermi levei 
N(Ep) with N(Ep)= 1/21T in 2D, i.e., is independent of 
the energy so that ali its derivatives vanish identically.14 
In such a case the quartic and higher-order terms in the 
Wilson Lagrangian will identically vanish and one is Ieft 
with a free theory. 

IV. CONCLUSIONS 

A. Discussion 

In this paper we have generalized the Brovman-Kagan 
study of the 2n-multitail diagram to arbitrary dimen­
sionality d and to include the dynamics of the externai 
taiis. For a given dimension, as found by Brovman and 
Kagan, the degree of singuiarity of such diagrams in­
creases with the number of externai tails, i.e., for increas­
ing order in the Ginzburg-Landau-Wilson series expan­
sion. On the other hand, for a given number of externai 
tails, e.g., the four-tail diagram which we have studied in 
great detail here, the degree of the singularity of such a di-

agram increases with decreasing dimensionality; more­
over, it depends crucially on the externai momenta q1, 

i=l,2,3, through the rank ofthe 3X3 matrix llq1 ·q111· 
Concerning the four-tail diagram in 2D with first, free­
static externai legs, the results can be summarized as fol­
lows. 

(1) If the momenta of the externallegs are ali vanishing, 
then the four-tail diagram and more generaliy the 2n-tail 
diagram with n ;::: 2 identicaliy vanish. 

(2) If the momenta of the externai legs are not ali van­
ishing, the strongest singularity occurs when the nonvan­
ishing momenta are ali equai to 2kp. 

Concerning the four-tail diagram with two free, externai 
legs, and the other two linked to each other, in ali possible 
ways, as for instance, in the lowest-order paramagnon 
contribution to the spin susceptibility of the system (either 
as a vertex or a self-energy correction), the main resuits 
are the following. 

(1) If the free externai legs have a finite momentum Q 
then the diagram may be singular as I 2k F- Q I - 312 but 
only for zero momentum of the paramagnon insertion. 
Therefore, in the remaining integral over the inserted 
paramagnon momentum, the singularity will be confined 
to a vanishingly small volume. 

(2) If the free externai legs have zero momentum then 
the diagram is highl y singular as I 2k F - Q' I - 312 w here 
Q' is the momentum of the paramagnon insertion. There­
fore, in the remaining integral over Q' one gets a nonin­
tegrable singularity. 

Ao important point is that, whereas we have been able to 
extract and study in detail the singular part of the four­
tail diagram thanks to the Brovman-Kagan method, we 
have been unable to calculate it in the most general case 
for any values of the externai Iegs momenta, even for stat­
ic legs, and neither did Brovman and Kagan. This has the 
foliowing important consequences. 

(1) We point out that the 2D static uniform spin suscep­
tibility X(q =O,w=O,T) cannot be computed from first­
principies thermodynamics (in contrast to the 3D case) be­
cause strong singularities arise naturaliy in such a compu­
tation as singularities in the four-tail, and more generally, 
the 2n-tail diagram. 

(2) We cannot compute the static, nonuniform suscepti­
bility X(q~O,w=O,T) for arbitrary values of the momen­
tum q; in particular, we are unable to conclude, even at 
T=O, whether X(q,w=O,T=O), including paramagnon 
corrections, is maximum for a unique or a finite number 
of values of q, or if it still remains maximum for a whole 
continuum of values of q as is the case in absence of 
paramagnons for the pure mean-field susceptibility 

X0(q,w=0) 

as weli as for X0(q,w=0) itself. This last result is most 
frustrating since we are left with the same puzzling ques­
tion we started with: What is the nature of the magnetic 
transition in 20? Is the system close to a ferromagnetic 
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FIG. 7. Self-energy correction to the paramagnon propaga­
tor; wiggly lines are paramagnons, two closed Ioops are fermion 
lines. 

instability (q =0 at criticality) or to some kind of antifer­
romagnetic one (q::;;bO at criticality)? 

In particular, we have not been able to calculate the 
self-energy correction to the paramagnon propagator, for 
instance the diagram displayed in Fig. 7, where three (in­
stead of one in Fig. 5) fluctuation lines have to be integrat­
ed over their momenta and frequencies; such a calculation 
would be extremely difficult in the general case as one 
does not know what the criticai momentà are around 
which an expansion could be used to render the calcula­
tion tractable. However, the calculation of such a dia­
gram (Fig. 7) would be crucial as one of the contributioils 
t? the renormàlizatian of the paramagnon propagator; 
st?ce such a calculation cannot be performed here, one is 
still left with à frustrating problem: What is the renor­
malized paramagnon propagator in 20? 

In any case, we showed that the singularities arising in 
20 prevent the use of ordinary perturbation expansion to 
account for fluctuation (paramagnon) effects on the sus­
ceptibility (static or dynamic one), or on any property of 
the 20 interacting fermion system as well. In particular, 
we confirmed what was questioned in Ref. 7(b), i.e., one 
cannot assimilate to constants the various coefficients of 
the quartic and higher-order terms in a Ginzburg­
Landau-Wilson expansion describing interactions among 
fluctuations, and that expansion itself is most likely mean­
ingless in the light of our study. To our knowledge there 
has been another study by Tanàka 15 of a 30 case where 
the coefficient of the quartic term in a Ginzburg-Landau­
Wilson expansion was momentum dependent and yielded 
a new type of fixed point for this problem. However, the 
case studied by Tanàka15 was easier to handle since he 
chose a priori a well-defined momentum dependence for 
the four-fluctuation interaction, i.e., for the coefficient of 

the quartic term in the Wilson Lagrangian. Instead, as we 
remarked above, we cannot provide an analytical formula 
for that two-fluctuation interaction but we can only study 
its singularities; note, in contrast, that Tanàka's interac­
tion is perfectly well defined and not singular. Neverthe­
less, the point to be kept in mind is that such a 
momentum-dependent coefficient in the quartic term of 
the Wilson's expansion possibly brings in a new type of 
fixed point which thus may change a great deal of the 
criticai behavior of the problem. 

B. Link with experiments 

As was shown above, it is not possibie at present to 
compute, with the usual means, the spin susceptibility in 
the presence of fluctuations in 2D, nor to conciude what is 
(or what are) the criticai vaiues of q or what is the nature 
of the magnetic instability. We aiso showed that ali these 
problems arise in 20, from the fact that X0(q,w=0) is 
constant from q =0 to q =2kF. It can be argued that in 
practice and due to band structure effects, such a flatness 
of X ois unlikely to occur in metais. However, such a situ­
ation is perfectly relevant for 2D films of liquid 3He in the 
degenerate regime. Severa! authors16 in the past have 
studied 20 Fermi liquids and have provided analytical 
formulas for their properties. However, ali these papers 
ignored the flatness of X0(q,w=0) between q =0 and 
q =2kF, i.e., they all treated the probiem of 20 Fermi 
liquid, implicitly assuming that, as in 30, only vanishing 
q matter <s r+ f[-s r~ VFq in the Landau kinetic equa­
tion). 

Under such an assumption, Ref. 16, for instance, com­
puted that the inverse spin-diffusion coefficient D - 1 

varies at low T like T 2InT in 2D, while it varies Iike T 2 in 
30. Such a T 2InT resuit follows straightforwardly from 
an integration over q in 20, instead of 30, but with the 
same form for the dynamical response function that the 
one used in 30 which implies q ---+0 as the key value of q. 
For instance consider formula (13) of Ref. 17 for v- 1 and 
let us see what happens for d = 3 and 2 if we choose to 
tàke the same form for 

ImX(q,w,T)- 1 w 
0-1 +lq2 /12k})2 VFq 

Then at low T and setting w = Tx, one finds in 3D, 

~hich i~ perfectly well behaved and recovers the well-known result D - 1 a: T 2 in 30 with a coefficient enhanced by the 
mteracttons; Oil the other hand, in 20 with the same lmX as that in 3D, but with one less power of q in integration over 
q, 
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1 1 1 r 2kF !!!L [ 1 L] r tXl 1 T 3 
D-'=----D - J, k 1--4 2 J, 2 2 2 2 V x 2n(x)[l+n(x)]2dx 

1-J o T o F kp o (1-l+lq /12kp) pq 

2 2kp dqO-tq 2!k]) 
o: T f. . 

· qo q0-l+lq2!12k])2 

Here due to the divergence arising at the lower limit if 
q0 =0, one has to impose a lower cutoff in the q integra­
tion; the natural one at very low T is q0 = VT and thus, 
one gets immediately the term D -! o: T 21nT found in Ref. 
16 or earlier. We insist that such a calculation is based on 
the assumption that altogether ReX0(q,w=0) is maximum 
at q =0, like in 30, and thus lrnX is proportional to 
w/Vpq, like lrnX0 itself, although such a form ought to be 
revised in 20. Indeed, according to Eq. (7b) (for B =0), 
IrnX0 may be written as 

IrnX (l) I! k 
oo::. kpq(l-q2/4k])ll2 iOT W< pq 

and w<k]O-q2!4k})112 together with q <2kp which is 
already different from the 3D lmX0 o::.w/kpq; moreover, 
when q =2kp strictly, Eq. (7b) shows that lrnX0 is again 
different and approximately sgnwVJã>T, instead of w. 
However, as is clear from the examination of ReX0, the 
whole range O~ q ~ 2kp is a priori criticai and therefore 
the use of ImX0 o::.w/kpq in 20 is erroneous, and the con­
clusions of Ref. 16 look, to say the least, premature. 
Reference 16 mentions on a footnote that Ref. 7(b) of the 
present paper questioned the use of the Landau theory in 
20. This is not quite correct: As is well known, the Lan­
dau theory gives correct answers in criticai phenomena 
above 40; we recalled earlier, as proved in Ref. 5, that due 
to quantum effects for T -0, the Landau or the mean­
field theory gives also the correct criticai exponents for 
30 nearly magnetic itinerant fermions; however, as it was 
recalled at the beginning of the present paper and ex­
plained in Ref. 7, the structure of X 0 in 20 prevents any 
possible derivation of a Ginzburg criterion for the applica­
bility of mean field. Therefore, the Landau theory may or 
may not hold in 20 paramagnon problem: in the light of 
the present study we show that the question is still open. 
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APPENDIX: LOWEST-ORDER SELF-ENERGY 
CONTRIBUTION TO THE SUSCEPTIBILITY 

One of the lowest-order paramagnon contributions to 
the susceptibility is given by the self-energy correction to 
one of the fermion lines of the bare bubble, as shown in 
Fig. 6. Here we study the singular behavior of this self­
energy correction as was done hí Sec. 111 A for the vertex 
correction of Fig. 5. Note that the paramagnon propaga­
toe entering the self-energy correction of Fig. 6 has a dif­
ferent structure (i.e., odd number of bubbles or ladder) 
from the one shown in Fig. 2 (even number of bubbles) 
contributing to the vertex correction of Fig. 5. 

The self-energy correction to the static susceptibility 
then reads from Fig. 6, 

Xj(q"O)= f f ~2!3)::~ I1'(q3-qhw3)]4(q,,q3;w3), 

(Al) 

where 11'(q1,w) is the above-mentioned paramagnon prop­
agator andas in Eq. (16), 

J4(q,,q3iW3)=(J4(q"q2,q3;w"w2,w3)]-.q ---q , .. _,_, _0 . z- I• ~~-~z-

(A2) 

Equation (Al) is the analog for Fig. 6 of Eq. (17) for 
Fig. 5. Following the same steps that lead to Eq. (41) we 
obtain 

Rel4(q" q3;w3) 

=- (::)d a~2 (1/l(qhq3;w3)+1/l(qhq3;-w3)], (A3) 

where as in Eq. (35) for d =2, 

(A6) 
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Equations (A5) and (A6) are the analogs of Eqs. (32) 
and (30), respectively, for q 1 = ch Note that in the 
present case, compatibility of the equations does not im­
pose an extra condition equivalent to q 1 • q 2 =0 in Eq. 
(33), which implied that the strongest singularity occurred 
for either q1 or q2 equal to zero. 

Analogously to the case discussed in Sec. III B for static 
tails [Eq. (63)], a singularity will occur only when the rank 
s of the 2X2 matrix IICii · qi 11, i,j = 1,3 is equal to unity, 
implying colinearity of the momenta. We then set 

q,=a,q3, 

and we find two solutions for the set of Eq. (A6). 
(i) a 1 =0, ã3= + -w3/q~, and from Eq. (A5), 

1 2 [ 2w3]
2 

2 á<w3l=4q3 1- q~ -kp. 

From Eqs. (65), (A3), and (A4), 

- __. ![à(m3)]-312 if à>O 
Rel4 sing(O; q3,m3)R: 

Oifà<O, 

(A7) 

(A8) 

(A9) 
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