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Solution of a two-leg spin ladder system
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A model for a spin-1/2 ladder system with two legs is introduced. It is demonstrated that this model is
solvable via the Bethe ansatz method for arbitrary values of the rung couplingJ. This is achieved by a suitable
mapping from the Hubbard model with appropriate twisted boundary conditions. We determine that a phase
transition between gapped and gapless spin excitations occurs at the critical valueJc51/2 of the rung coupling.
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Research in spin ladder systems continues to attract
siderable attention, primarily motivated by the desire to u
derstand the phenomenon of high temperature supercon
tivity observed in doped antiferromagnetic materials.
studying ladder materials, important insights are gained
the transition to two-dimensional systems from the o
dimensional scenario, where there exists a greater un
standing of the physics from the theoretical perspect
Moreover, it is possible to experimentally study ladder m
terials and numerical simulations are easier to treat wh
facilitates a greater interaction between theory and phen
enology. For a review of these aspects we refer to Ref.

In order to gain some results in the theory of spin lad
systems many authors have considered generalized mo
which incorporate biquadratic spin exchange interactions2–4

Doing this has lead to some results in relation to ground s
structures and phases for the excitation spectra. Simu
neously, there has been an effort to apply the mathematic
rich techniques of Bethe ansatz procedures, which have
cessfully been used in the study of one-dimensional quan
systems,5 to obtain further results regarding the behavior
the ladder systems. In order to extend the standard o
dimensional approach of the Bethe ansatz to the case of
ders, a number of methods have thus far been proposed

In the works of Refs. 6,7 a construction was developed
generalized zig-zag ladder systems where the extension
the one-dimensional system to the ladder was obtained b
algebra homomorphism. In this manner, the symmetry a
bra of the ladder system remains the same as the orig
one-dimensional model. Closely related to this approac
that adopted by Muramoto and Takahashi8 who employed
the higher order conservation laws of the Heisenberg ch
to define a two-leg system which generalizes the Majumd
Ghosh model.9

Alternatively, the approach can be considered where
symmetry algebra is extended to describe the ladder mo
This notion was promoted by Wang10 who constructed a
two-leg bipartite ladder system based on the symmetry a
bra su~4! as opposed to the su~2! symmetry of the one-
dimensional Heisenberg chain. Employing this method
lows for the introduction of rung interactions by way of
chemical potential-~or external field! like term. Subse-
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quently, this method was extended and generalized b
number of authors.11–15 All of these examples on bipartite
ladder lattices contain biquadratic spin exchange interac
terms in order to maintain solvability.

Our aim in this work is to obtain a solvable bipartite la
der system with arbitrarily coupled rung interactions and
absence of biquadratic spin exchange interactions.
achieve this end, we begin with the coupled spin formulat
of the Hubbard model as introduced by Shastry,16 on a
closed lattice with twisted boundary conditions. The alg
braic Bethe ansatz solution of this model has been studie
Martins and Ramos.17 By means of carefully chosen trans
formations, we map this model to a spin ladder system w
periodic boundary conditions.~Similar transformations have
recently been discussed in Ref. 18 in a different conte!
Remarkably, the resulting model assumes a simple form w
three basic forms of interaction. The energy expression
terms of a Bethe ansatz solution is also obtained. In this c
the rung interactions are not simply of the chemical poten
type referred to above. Rather, the rung interaction param
appears explicitly in the Bethe ansatz equations, in cont
to all other integrable bipartite ladders that have appeare
the literature. So, it is reasonable to expect the behavio
this model to differ from the class of ladder models wi
chemical potential type rung interaction. We find the critic
value Jc51/2 for the rung interaction parameter indicatin
the transition between gapped and gapless phases.

We will show solvability of the following two-leg ladde
Hamiltonian with an even number of rungs and period
boundary conditions. Explicitly, the global Hamiltonian is
the form

H5 (
i 51

L21

hi ( i 11)1hL1 , ~1!

where the local Hamiltonians read

hi j 5~s i
1s j

21s i
2s j

1!~t i
zt j

z! i 111~t i
1t j

21t i
2t j

1!

3~s i
zs j

z! i1J/2~sW i .tW i1sW j .tW j !. ~2!

Above, the couplingJ can take arbitrary values.
65 ©2000 The American Physical Society
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The ladder system is depicted graphically in Fig. 1 abo
Across the rungs there is the usual HeisenbergXXX interac-
tion while along the legs the interactions alternate betw
pure and correlatedXX exchanges. Clearly the correlate
exchange is a four body interaction depending on the s
of the opposing leg. In theJ50 limit the correlated ex-
changes have no real physical significance since for this
the model may be mapped back to two decoupledXX ~or
free fermion! chains with twisted boundary conditions. Th
is in some contrast to the case of Ref. 10 where in the
sence of rung interactions the model maintains nontrival
quadratic spin exchange interactions between the legs. In
thermodynamic limit, the boundary conditions become irr
evant and we conclude that this region is gapless. On
other hand for largeJ the system approximates that of th
two-leg Heisenberg ladder. In this limit the ground state c
sists of a product of rung singlets and the excitations
gapped.1 Hence we expect there to exist a finite critical val
of J defining the phase transition.

A more detailed analysis of the model can be made us
the fact that there exists an exact solution. The energy le
of this model take the form

E54JN23JL1(
j 51

N

2 coskj , ~3!

where the variableskj are solutions of the following Bethe
ansatz equations:

2~21!Nexp~ iLk j !5)
l 51

M
sinkj2ul1 iJ

sinkj2ul2 iJ
,

~4!

)
j 51

N
sinkj2ul1 iJ

sinkj2ul2 iJ
52)

k51

M
ul2uk22iJ

ul2uk12iJ

with j 51,2, . . . ,N and l 51,2, . . . ,M . The states associate
with solutions of the above equations are eigenstates of
total spin operator

1

2 (
i 51

~s i
z1t i

z! ~5!

with eigenvaluesN22M .
The existence of the critical point is evident from th

Bethe ansatz equations. Exact diagonalization of the two-
Hamiltonian shows that there is a unique ground state w

FIG. 1. The two-leg ladder lattice.
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energy26J for J.1/2 which is given by the product of th
two rung singlets. ForJ51/2 the ground state turns out to b
threefold degenerate@two previous excitation states with en
ergy 22(11J) ‘‘collapse’’ into the ground state# while for
J,1/2 no singlet rung exists in the ground state configu
tion. ForL sites it then follows that whenJ.1/2 the ground
state is still the product of rung singlets with energyE5
23JL. This is in fact the reference state used in the Be
ansatz calculation and corresponds to the caseM5N50 for
the Bethe ansatz equations. To describe an elementary
tation to a spin 1 state we takeN51, M50 in Eq.~4! which
yields real solutions for the variablek, viz.

k5
2pr

L
, r 50,1,2, . . . ,L21.

It is then apparent from the energy expression~3! that for
J.1/2 these elementary excitations are gapped. The ch
r 5L/2 ~recalling thatL is assumed even! shows that for all
J.1/2 there is a gap

D54J22.

We therefore deduce thatJc51/2 gives the critical point be-
tween the gapped and gapless phases of the elementary
excitations alluded to earlier. It is clear that the gapD is
independent of the system sizeL and this result extends to
the thermodynamic limit.

The model also exhibits elementary bound state exc
tions which we illustrate in the two-site case. ForL52, N
52, M51 there is a solution of the Bethe ansatz equatio
given by

u50, k152k25arccos~2J!

which describes an excited state of energyE522J. From
the eigenvalue expression for Eq.~5! we see that this state
has zero spin. Such a state has the interpretation of the e
tation of two bound quasiparticles of opposite spin.

In order to obtain the solution of this model, we beg
with the coupled spin version of the Hubbard model as
troduced by Shastry16 with the imposition of twisted bound
ary conditions. The local Hamiltonian has the form

hi ( i 11)52s i
1s ( i 11)

2 2s ( i 11)
1 s i

22t i
1t ( i 11)

2 2t ( i 11)
1 t i

2

2
U

8
@~s i

z1I !~t i
z1I !1~s ( i 11)

z 1I !~t ( i 11)
z 1I !#

1
U

4
,

where $s i
6 ,s i

z% and $t i
6 ,t i

z% are two commuting sets o
Pauli matrices acting on the sitei. For our convenience an
additional applied magnetic field term has been added an
overall factor of21 included. For the twisted boundary ter
we take

hL152e2 if1sL
1s1

22eif1s1
1sL

22e2 if2tL
1t1

22eif2t1
1tL

2

2
U

8
@~sL

z1I !~tL
z1I !1~s1

z1I !~t1
z1I !#1

U

4
.
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The first step is to apply a nonlocal transformation giv
by

u~s i
6!5s i

6)
k51

i 21

tk
z ,

u~s i
z!5s i

z ,

u~t i
6!5t i

6 )
k5 i 11

L

sk
z ,

u~t i
z!5t i

z .

Under the transformationu we yield a new Hamiltonian of
the form ~2! where the bulk two-site operators now read

hi ( i 11)52s i
1s ( i 11)

2 t i
z2s ( i 11)

1 s i
2t i

z2t i
1t ( i 11)

2 s ( i 11)
z

2t ( i 11)
1 t i

2s ( i 11)
z 2

U

8
@~s i

z1I !~t i
z1I !

1~s ( i 11)
z 1I !~t ( i 11)

z 1I !#1
U

4
~6!

and the boundary term is given by

hL152e2 if1sL
1s1

2tL
z )

k51

L

tk
z2eif1s1

1sL
2tL

z )
k51

L

tk
z

2e2 if2tL
1t1

2s1
z)

k51

L

sk
z2eif2t1

1tL
2s1

z)
k51

L

sk
z

2
U

8
@~sL

z1I !~tL
z1I !1~s1

z1I !~t1
z1I !#1

U

4
. ~7!

An important observation to make is that the bound
term above has nonlocal terms. To accommodate for t
note that we may write

)
k51

L

sk
z5~21!M,

)
k51

L

tk
z5~21!N2M,

whereM5( i 21
L mi ,N5( i 51

L ni , and

m5
1

2
~ I 2sz!,

n5I 2
1

2
~sz1tz!.

Since the global operatorsM, N are conserved quantities
we can treat the twisted boundary conditions in Eq.~7! in a
sector dependent manner. LettingM andN denote the eigen
values ofM, N, respectively, we now choose

eif15~21!(N2M ), eif25~21!M. ~8!

The validity of making this choice without destroying th
solvability stems from the fact that states with differing va
y
s,

ues ofM andN are orthogonalindependentof the values of
f1 andf2. Hence we may choose different values off1 and
f2 for each of the subspaces corresponding to a fixedM and
N.

The next step is to now employ a local transformation
the Pauli matrices which has the form

F~s6!5
1

A2
~s61t6sz!,

F~sz!52s1t22s2t11
1

2
~sz1tz!,

F~t6!5
1

A2
~t62s6tz!,

F~tz!52s1t22s2t12
1

2
~sz1tz!.

It is worth noting that the above transformation can be
pressed

F~x!5TxT21,

where

T5S 1

2
1

1

2A2
D tx2 i S 1

2
2

1

2A2
D szty2

i

2A2
sy2

1

2A2
sxtz

is a unitary operator. Applying this transformation to th
local Hamiltonians~6!,~7! gives us the local ladder Hamilto
nians

hi ( i 11)5t i
1s i 11

2 1t i
2s i 11

1 1~s i
1t i 11

2 1s i
2t i 11

1 !t i
zs i 11

z

1
U

8
~sW i .tW i1sW i 11 .tW i 11! ~9!

and the global Hamiltonian has regular periodic bound
conditions.

The final step in obtaining Eq.~2! is to setJ5U/4 and
perform the transformation

s i5s i11/2@12~21! i #~t i2s i !,

t i5t i11/2@12~21! i #~s i2t i !,

which has the effect of interchanging the leg spaces on
odd rungs while leaving the even numbered rungs
changed.

The energy expression for the Shastry model with twis
boundary conditions can be obtained through the Bethe
satz. The result is

E5
U~4N23L !

4
1(

j 51

N

2coskj

such that thekj satisfy the Bethe ansatz equations

~21!M1Ne2 if2exp~ iLk j !52)
l 51

M
sinkj2ul1 iU /4

sinkj2ul2 iU /4
,
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)
j 51

N
sinkj2ul1 iU /4

sinkj2ul2 iU /4
52~21!Ne2 i (f12f2)

3)
k51

M
ul2uk2 iU /2

ul2uk1 iU /2
.

An important point here is that the numbersM and N
above have precisely the same meaning as the interpret
presented earlier, i.e., they are the eigenvalues of the
served operatorsM and N. Consequently, we need onl
substitute the values of Eq.~8! into the above energy expres
ion
n-

sion and Bethe ansatz equations which gives us Eqs.~3!,~4!
with the parametrizationJ5U/4.
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