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It is shown that the phase-space Schwinger equations can only be appropriately formulated in terms of a specific
discrete procedure. Nevertheless, the solutions to Schwinger equations turn out to be independent of the discrete

procedure. We stress the point that a multiplicity of representations for the quantum-mechanical amplitudes is not a

peculiar eA'ect of the time-slicing definition of the path integral, but rather a necessity of the functional approach.

I. INTRODUCTION II. DEPENDENCE OF SCHWINGER'S EQUATIONS ON

DISCRETE PROCEDURE

The fact that the quantum-mechanical propaga-
tor corresponding to a physical system fully spec-
ified by a Hamiltonian operator H does not possess
a unique representation in terms of canonical path
integrals has already been recognized. ' " In fact,
for defining the phase-space path integral through
the time-slicing method"'" one is required to
choose a particular discrete procedure. Since
there is a continuous infinity of discrete methods
at our disposal, ' a nonunique path-integral rep-
resentation for the matrix elements of the quan-
tum theory naturally emerges.

Of course, the path integral must, on evaluation,
be independent of the discrete procedure, since
it is derived from a fixed quantum-mechanical
Hamiltonian. That this is so has been repeatedly
checked in the literature"""; nevertheless, the
time-slicing definition of the phase-space path
integral has been considered as ambiguous because
it gives rise to a multiplicity of representations
for the quantum-mechanical amplitudes. ""

Our main purpose in this work is to show that
alternative definitions for the canonical path inte-
gral also lead to a nonunique representation for
the propagator. This is a consequence of the fact
that, as we shall demonstrate, the functional dif-
ferential scheme of Schwinger"'" can only be ap-
propriately formulated after specifying a discrete
method. Since Feynman's canonical path inte-
gral"" can be seen as the functional Fourier
transform solving Schwinger's differential equa-
tions"'" its structural dependence upon the dis-
crete method follows from general theoretical
considerations, What appears to be linked with
the particular definition adopted for the path inte-
gral is the operational level at which the terms
dependent on the discrete procedure cancel out.
This is our Sec. II.

The relevant points are discussed throughout
the paper and in Sec. III, where some final re-
marks are made.

H~" =-J Q-E P, (2.l)
where 4 and E are c-number external sources
for position (Q) and momentum (P), respectively.
Sometimes, and for abbreviation purposes, we
shall designate these sources, generically, by
s. The number of degrees of freedom of the sys-
tern is ¹ Therefore,

N

Z Q = Q J,Q„K P =f tCP„
g~1 y=l

The equal-time commutation relations are the
usual canonical ones, i.e. ,

I
I

[Q„(t),Q, (t)] = [P„(t),P, (t)] =o,

[Q„(t),P„(t)]=@5„q, r, k =1, ..., N.
(2.2)

From now on we set 5=1.
We shall be working in a picture where the time

evolution of observables (L) is governed by H
while the sources-system interaction is carried
out by the state vector (~ g)). This is the fictitious
sources picture whose defining equations are'""

It has been a common belief that a multiplicity
of representations for the quantum-mechanical
amplitudes only arises in connection with the time-
slicing definition of the path integral. ""This
is not true. In this section we show, on general
grounds, that a discrete prescription is always
required for an appropriate settlement of the func-
tional formulation of quantum dynamics.

As a first step into this goal we shall demon-
strate that, in the more general case, Schwinger's
functional differential equations must be formu-
lated in terms of a specific discrete procedure.

To proceed towards the derivation of Schwinger 's
equations we start by considering a physical sys-
tern, described by the Hamiltonian operator H, in
the presence of external sources. The sources-
system interaction in chosen to be
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„, =i[a, L], (2.3)
Heisenberg picture.

From (2.1) and (2.5) one finds that

I (t (t)& = U[s I t, t, J I Q(t, )&, (2.4)

t
U[s

~
t, t, ]=I -. i dt'If")(t') U[s I t', t, ].

tq

In the limit of vanishing external sources (s = 0)
the fictitious sources picture coincides with the

(2.5)

and the unitary operator U[s I t, t, ]i.s to be deter-
mined from

6(+mU[s It t ]
6J', (t,)' ' ~ 6J' (t,)6K, (t,') ~ ~ ~ 6IC„(t )

=«„T(Q,, (t,) "'Q, , (t,)P„,(t,')" P„.(t'.)},t, },
(2.6)

(i)-( t+m)

where the chronologically ordered T product is
defined as follows:

U[s I t&, t]Q„(t)U[s I t, t']P„(t')U[s I t', t, ], if t &. t'

U[s it&, t'JP„(t')U[s It', t]Q, (t)U[s I t, t, ], if t'&t. (2.V)

=U[ It/, t]A„(Q(t),P(t))U[ It, t;]
dI;i

—X„(t)U[s I tt, t;], (2.8a)

* =U[s Ii, t]a,(Q(t), P(t))U[s It, t, ]
dt i 6K„ t

+Z„(t)U[s I tt, t, ], (2.8b)

All subscripts in (2.6) run from 1 to N
Schwinger's equations are the equations of mo-

tion for the functional derivatives of U with re-
spect to the external sources. One can verify
that

l

U[s It&, t]x ' ' x U[s It, t, ]A,(Q (t),P(t))

!
1 6 1 6

6J(t)' 6A(t)
& x U[s I tt, t, l ~ (2.11)

6J(t) ' i M(t)

This is, of course, a consequence of (2.2). How-
ever, if A„and/or B„cnot ian products of noncom-
muting operators one can no longer use (2.11). As
we shall see next, the problem can only be solved
by choosing a discrete procedure. By this we
mean that the operators A„and B„are rewritten
as follows:

where

(2.9a)

(2.12a)

(2.12b)

&„(Q(t),P(t)) =[A„(Q(t),P(t)}]„
fl,(Q(t), P(t)) = [II,(Q(t), P(t))J,

The right-hand sides of Eqs. (2.12a) and (2.12b)
are defined by the sequence of mappings'

, (Q(,) P(,)) ff(Q(), ())
sQ (t)

(2.9b)
L(Q, P) l (q, P) = L, (Q, P), (2.13)

For arriving to (2.8) we have explicitly used the
equal-time canonical commutation relations (2.2).
Moreover, the ordering of noncommuting factors
is to be maintained during the differentiation pro-
cess indicated in (2.9).

To complete the derivation of Schwinger's equa-
tions we must recast the right-hand side of (2.8)
in terms of functional derivatives of U. Here is,
precisely, where the trouble begins. %e shall
next analyze the situation in detail.

IfA„and B„are of the form

where

((g,P) —f dv exp(i), u)

x (q —( —o')v IL(Q, P) Iq+( +&)v&,

(2.14)

(2.15)

&(q,P;c() =(2v)" dudv exp(iau v)
~OO

L (Q, P) =(2n')" dq dpi(q, p)4(q, p;n),
~00

and

P(Q(t)}+G(P(t)}, (2.10)
x exp{i[(q —Q) u+(p -P) v]}.

where E and 6 are arbitrary functions of Q(t) and

P(t), respectively, one can always write
(2.16)

Here, L(Q, P) and l(q, P) are arbitrary functions.
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1 1- 2 ~( g ~& + 2 . (2.1V)

We shall refer to the set of mappings defined in
Eqs. (2.14) and (2.15) as to the generalized Weyl
transform with index c[ (GWT ). One can easily
verify that the correspondence rules (2.14) and
(2.15) follow from those of Agarwal and Wolf' by

We denote operators by capital letters and c-nume«

ber functions by lower case letters. All integrals
in Eqs. (2.14)-(2.16) must be understood in R„.
The parameter n is real and such that

establishing in Cohen's'~ general ordering scheme

f(u, v) =exp(tc(u v) . (2.18)

The properties of the GWT were studied in Ref.
8. Here, we only quote that

L, .(Q, P) =I
0, 0(Q, P) =~(Q, P) (2 19)

It is through this property [see Eqs. (2.12)] that the
discretization prescription comes into the game.

The right-hand sides of Eqs. (2.12) can now be
explicitly evaluated, and one obtains

I

&„(Q(t),P(t))
~I

r 7 ~

~

~

I2~
I~

~~
p

r~ t

~

~

I ~
21

s, (x, y)

=(pv) *"J rr )r)V pupxex exp[i(-,' —u)u v(exp[i[x-:ip(r)I u)exp[i[V -p(r)I v),
&„(Q(t),P(t)) b„(x,y)

(2.20)

where, a„and b„are the GWT of A„and B„, respectively. Therefore, the GWT reduces any arbitrarily
complicated ordering problem to that of a product of a function of Q times a function of P. This is the
crucial role played by the discrete procedure. Since

(2.21)F(Q(t))G(P(t)) = limT(E(Q(t))G(P(t'))],
t "t

where t =t —5, 6)0, the replacement of (2.20) into (2.8) lead us, in view of (2.6), into the following final
form for Schwinger's equations:

=(2m)" lim dxdy[a„( yx))&z(x, y; c()]U,-[s It»t;] -&„(t)UO[s It&, t;],

=(2))) "lim dxdy[b (x, y)a (x, y; -n)]U, [sit»t ]+J (t)U, [s lt&, t;],

(2.22a)

(2.22b)

where

pV 1
(x V; —u)=(pv) v

])I d ur(ve pe[i(-,
' —u)u v]exp i x ——. , u exp i p ——. ,

) I,s5Z t) zest t'
«OO

(2.23)

and

U, [8 I tt, t, ] = (&0 ]
U[& I tt, t( ] [ &0) ~ (2.24)

Obviously, we are assuming that the operator H

is bounded from below; in order to define a phys-
ically sensiMe problem. In (2.24) we have denoted

by I E,) the ground state of H. In the literature,
U, is known as the Green's function generating
functional.

Thus, we have demonstrated that the phase-space
functional differential formalism can only be set-
tled, in the more general case, in terms of a dis-
crete procedure Since the r.eplacements (2.12a)
and (2.12b) do not introduce an effective n depen-
dence into Schwinger's equations, their correspon-
dent solutions ui/l not depend upon n. Neverthe-
less, one must alu)ays choose some a discrete
procedure for expressing the problem as a sys-
tem of functional differential equations. This

situation somehow resembles that found in gauge
field theories; to solve the problem one must
choose a gauge, but the physically meaningful
results are gauge independent.

We shall next carry out the integration of Eqs.
(2.22). In functional sense, the set of equations
(2.22) is linear. Its solution can, then, be written
in the form of a functional Fourier transform, i.e. ,

Uo[s I t&, t&] =X JI dq&dq, .c *(q&)4 (q,).
«00

x [Dq][DP]U, [s I t&, t,].
~t~

xexpi dt Jt qt +Et pt
i

(2.25)
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where q(t) and P(t), generically denoted by s, are
the Fourier transformed variables of J(t) 'and X(t),
respectively, U, is the functional Fourier trans-
form of U„gt is a normalization constant and
C, (q) =(q I E,). No statement is made about the
definition adopted for the continuous functional
integral in (2.25). After replacing (2.25) into
(2.22) one arrives at

H(Q, P) =QP'Q,

whose GWT is found to be

@.(q, p) =q'P'-4ic[qp+(2 -2c').

(2.33)

(2.34)

Therefore, all coefficient functions in (2.26) are
e independent and, as a consequence, so is U, .

Our second, and last, example is slightly more
complicated. This time we take

os tt, ) d
— „q, —

()
- fl ' (q(t) P(t)) =

(2.26a)

Then,

a (Q, g) =2[I)'$ —4ing,

& (4, f)=- 24$'-4 iAh.

(2.35a)

(2.35b)

iU, [s I t„t,] — ' +ll'„"(q(t),p(t)) =dp, (t) (,) 6U, [s l t„t; ]
6q„ t

After carrying out the replacements indicated in

(2.28) one arrives at

(2.26b) tl'"(q(t), p (t)) = 2q'(t)P(t) —2iq(t),

fl'"(q(t), p (t)) = —2q(t)P'(t) +»P(t) .
(2.36a)

(2.36b)

where

0, (q(t) p(t))

tl,'"(q(t),p (t))

(2.27a)

(&(t) 'p(t)
h ( )

tq(t) 'P(t)

(2.27b)

Once again, we verify that Eqs. (2.26) do not con-
tain n dependent coefficient functions.

The n independence of U, [s] guarantees, through
(2.25), that the generating functional U, [s] does
not depend upon the discrete procedure as it must.

We close this section by noticing that any ex-
plicit solution of Schwinger's equations, in spite
of being n independent, will always involve a spe-
cific discrete process. For example, Eqs. (2.26)
acquire a rather simple form for a =+—,

' (standard)
ordering) whose integration yields

)) [s It+, tl=exp{) f dt[,))lt) gr[tl
t;

(2 +)
(t)

(2.28a) -&,g,(e(&),) (0))I.

1 9
g[,

= —i(—, —o')
sq, (t)

' (2.28b)

One can easily convince oneself that 0„"' and
0'," are, in fact, n independent. To illustrate
this point we shall work out two explicit examples.
First, we take

H(Q, P) =~P +[)) Q +~co(QP+PQ), (2.29)

h~(q, p) =2p'+&@'q'+[))qp —ia[)),

Then,

a ([P ~) =&[t) +4

&.(0, &) =-»'0
After using (2.28) one finds that

tl ' (q(t), p(t)) =~q(t) +P(t),
o

0["(q(t),p (t)) = —2(o'q (t) (up (t), —

(2.30)

(2.31a)

(2.31b)

(2.32a)

(2.32b)

whose corresponding GWT„ is found to be [see Eq.
(2.14)]

(2.37)
Here, U, is given in terms of h, i, which is a spe-
cific GWT of H. Any other n can be brought into
(2.37) by using

9 9
ft (q, p) =exp -ia ——h, (q, p).

&P
(2.38)

This last expression follows directly from Eqs.
(2.14)-(2.16) and it is a generalization of a similar
relation found by Mizrahi for Weyl's ' ordering
(n =0).

Thus, we conclude that the existence of a multi-
plicity of representations for the quantum-mechan-
ical propagator is not a peculiarity of the time-
slicing definition of the path integral but rather
a necessity of the functional approach.

What does depend upon the path-integral defini-
tion is the operational level at which the n depen-
dence is canceled out. Indeed, for the continuous
functional formulation presented in this paper the
integrand in (2.30), i.e., U„ is already indepen-
dent of cy. On the other hand, when the time-slic-
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ing method is used the cancellation of z-dependent
terms only occurs after performing the functional
integrqtions. This behavior originates in the un-
avoidable sequence of approximations one must
undergo for deriving the path-integral representa-
tion of the propagator via the time-slicing proce-
dure. These approximations become exact in the
continuous limit and it is there that the n depen-
dence disappears.

out of the scope of this work. Schwinger's equa-
tions for constrained systems have been formally
derived by Fradkin et al."but the rules of corre-
spondence for this case were not found by these
authors. As a consequence, the severe problem
of ordering, characteristic of constrained vari-
ables, ' was left out of consideration in Ref. 22.
We hope to discuss these questions in a future
publication.

III. FINAL REMARKS

In this paper we have been concerned with the
functional formulation of quantum dynamics for
a system involving only true canonical variables.
The problem posed by constrained variables is
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