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Duality symmetry in the Schwarz-Sen model
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The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The
corresponding infinitesimal generatQr turns out to be local, gauge invariant, and metric independent. Fur-
thermore,Q commutes with all the conformal group generators. We also showQhiat equivalent to the
nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next
consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a
local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be
the same, which implies the quantum equivalence of the two approd&t#56-282197)06522-3
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It is nowadays accepted that the known string theories are Eai=—Fal= _(30p%i— 5ip20) )
different perturbative versions of an underlying theory
[1]. This idea was originated by the several duality symme- , 1 . .
tries present in the string theories. It is therefore important to B*'=— EG”kFﬁE —el*g,AL, 3
study in detail duality symmetries in field theory and under-
stand their implications. In this respect the old electric-3nd ¢ is the Levi-Civita symbol (€?=1, €!2=1) and
magnetic duality present in Maxwell's equations has again <j j k<3. This action is separately invariant under the
been the subject of intensive studg-7]. These studies |yqg gauge transformations
show that there is a conflict between electric-magnetic dual-

ity symmetry and manifest Lorentz covariance when we at- A20_, pa0y Yo, (4)
tempt to implement duality at the action level. If manifest
Lorentz covariance is maintained, then the action is either A AT gipa (5)

nonpolynomial[2] or requires an infinite set of field8]. If

we give up manifest Lorentz covariance, then duality sym-and the global S) rotations

metry can be implemented in the Hamiltonian formulation of

Maxwell theory in a nonlocal way4]. However, a recent A’ #3= Ar3cog)+ e2PAHPsing, (6)
proposal made by Schwarz and Sen implements duality in a i _ i

local way at the expenses of introducing one more potentia‘{Vh'Ch reduces to the usual discrete duality transformation for

[5]. Although the Schwarz-Sen formulation is not manifestly = 2. ) . .

covariant, it is Poincareovariant both at the classicg] The Noether’s charge associated with this(3Gymme-
and quantun{7] levels. In this paper we shall investigate Y IS

some consequences of such a proposal. In particular, we will 1 1

construct the _generator of. dual!ty transformaﬂon; and dis- Q=-— _f dsxejik(&,Aia)AE:_f d3xBAZ @)
cuss its meaning and relation with the corresponding nonlo- 2 ! 2

cal generator found in the first order Hamiltonian formula- i . i .

tion described if4]. We will also verify that the Schwarz- Notice thatQ is a S@2)-invariant Chern-Simons term.
Sen proposal can be understood as a formulation where tHd€nce, up to surface terms, it is gauge invariant. It is also
nonlocal duality transformation d#] is turned into a local metric independent and so its algebraic form also holds for
one. This is shown in the Batalin-Fradkin-Vilkovisky path curved spaces. ,

integral formalism. As a consequence, this also implies a USing the Coulomb gauge equal time commutafdis

guantum equivalence of the two approaches. Although we «

consider only the free field case, our work exemplifies the o T, : ik - -
use of a metyhod that may be helpful in more genzral situa- [A*1(x), A% (y)]= —|eabe'1"$5(x—y), (8)
tions.
The Schwarz-Sen actigb] involves two gauge potentials it js straightforward to verify tha® indeed generates infini-

Ak (1<as<2 and O<p<3) and is given by tesimal S@2) rotations:

1 S [Q.AN(Y)]=—i€>AR(y). ©)

S=— EJ’ d4X(Ba"6abEb" + Ba,lBa,l), (1)
The Fock space of states is constructed through the action
of creation and annihilation operataa$ anda, introduced

where via the Fourier decomposition @'
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a,i 1 d3p ° —ipx ai
A (X)= (277)3/2f —=> [ePeay(p)

V2|p[r=t

+eP*eal(p)],

(10

where px=|p|x°—p-x and €>'(p), A=1,2, are unit norm

polarization vectors, orthogonal ﬁDand satisfying
(gijgabpo_fabeiljpl)egj(p)zo- (11

This means thatp, €2(p),3(p)), a=1,2, are two orthonor-

mal bases rotated by/2 in the direction ofp. The operators
a, and a{ satisfy the usual algebra
[a,(P),a).(p")]= 80 8(p—P"). (12

In terms of these operators the chaf@ean be rewritten as

Q=if d*k(ala,—ala,) (13
and becomes diagonal,
o | dkiala ~alan). (14

in the base of circularly polarized operators, defined by

Tt
aj+ia)

ah= 5 (15)
Tt
a;—la

al = 1ﬁ : (16

From Eq.(14) one sees that, in a generic stafecounts the
number of left minus right polarized photons.

It is easily checked th& commutes with the components
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A?= -V 2yxEL (19
Equation(17) follows from the replacement of Eg&l8) and
(19) into Eq. (7).

Our discussion indicates that the Deser-Teitelboim and
Schwarz-Sen implementations of duality are equivalent and
both formulations have the same physical content. We now
show how this equivalence can be understood in the path
integral framework. To see that let us use the Batalin-
Fradkin-Vilkovisky formalism[8] for constrained systems.
The generating functional for the Maxwell theory is

zZ= f DA, D, DcDPDc DPe'Sef, (20)

with the effective action given by
Sur | (A moh%+ B+ 5P Mo~ (¥,Qe).
(21

As usual,m, is the conjugate momentum 4f,, ¢ andc are

ghosts, andP and P their conjugate momenta. At equal
times they satisfy

{P(X),c(y)}=—8(x—y).
(22)

{P(X),c(y)}=—8(x—y),

The Becchi-Rouet-StordRS) charge and Hamiltonian den-
sities are given by

QBzf d3x(g;m'c—iPmy), (23

1 .
H():_ _(’7T|7Ti+BIBi).

> (24)

It is convenient to choose the gauge-fixing functibnas

6°* of the energy-momentum tensor. Hence, it commutes

with all the generators of the conformal group as should be

expected from an internal symmetry.

W=icy+PA, (25)

Identifying the operators, with the corresponding ones and fix y in such way that the Coulomb condition holds. This
in Maxwell's theory one could work backward and find that can be achieved ify=(1/€);A', we redefine the fields

the chargeQ has the nonlocal expression

1 . L. R
szfd3x(—A-V><A+E-V’2V><E), (17

whereE is the electric field and\ the vector potential in the
Coulomb gauge. As described [id], Eq. (17) arises from a
first order Hamiltonian formulation of the Maxwell action.

The expressiolil7) for the chargeQ can also be arrived

mo— €My, C—€C, and lete go to zero. Notice that this
scaling transformation produces a trivial Jacobian and is
compatible with the BRS transformation,

OgrAI=IiC,  grsi=0, SgrdPo=IP, Jgrsmo=0,
(26)

SereC=0, BprsC=imy, OprdP=—dim, JprdP=0,
(27)

at through formal manipulations using the equations of mo-

tion. In fact, using the gauge freedo@ Schwarz and Sen
have shown that

B2=EL (18

which leaves invariant the generating functiodalAfter tak-
ing the limit e—0 we get

Seff=f d*x( A+ CP— Ho+ Agd; ' + mdi Al +i PP

Thus, taking the curl of this equation and using the Coulomb

gauge condition one has formally

—icVZc). (28)
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It is interesting to observe that already at this level there is eiikvzajckT= -V, (38)
a duality transformation of the fields which leav&snvari- _
ant. The infinitesimal form of the transformation is given by from which ;= — eijkﬁJC$. We can therefore write E¢31)

5Ai: HV_ZEi]-k&j 7Tk, 57Ti: asijkajAk’ (29)

i .. 1 . _

the variations of the remaining fields being zero. Notice that Seﬁzf d*| = mA + =P,C'—=Hy,—icVZ3c|, (39
-~ . . 2 2

the variation ofA; and; is the nonlocal duality transforma-

tion introduced by Deser and Teitelboifi.commutes with where noWHOZ(1/2)[(V><(§)2+(V><5\)2].

the BRS transformation, as can be checked. Up to the ghost term, Eq39) is the Schwarz-Sen action

; : 0
¢ In{t_egratmhg_ IrE]C]-(hZO) 'rl o a?ﬁ AC pr?duges the uspuaﬁf i_n Hamiltonian forr_n. Although our discussion already dem-_
.unc lons w 'C. .C a.lrac er|z.e ? oulomb gauge. FertorManstrates the equivalence of the two approaches, we will
ing also the trivial integrations in the ghosBsand ? we  prove now that the generating functiorabiven by Eq.(30)
finally have is equal to the corresponding functional obtained using the
Batalin-Fradkin-Vilkovisky formalism for the Schwarz-Sen
z:f DA D DcDce'Set5(9, AN (g7, (30)  action. After the introduction of the auxiliary fields; and
P;, Z is obviously equal to

where nowS is the action considered by Deser and Teitel- . _
boim: Z= J DAiDWiDCiDPiDCDC 5(CiT_ V726i1k§' 7Tk) 5(PiT

Seﬁ:f d4x(m A~ Ho— i CV2C). 31) — €A (A 8(9;m') 8(9;,C) (9P e'Ser.  (40)

. . . . ) Now, we can write
This action is, of course, invariant under the Deser-

Teitelboim duality transformation, given by Eq®9) and  8(Cir—V 2ejd 7*)=det (V" 2€; @) 8(m; + €k 7' C").

sc=5c=0. (41)
We will now show that the Schwarz-Sen formulation cang

be obtained by requiring that the duality transformation be5

local. To this end we introduce two auxiliary fiel@s andP;

so that

ut because of the transversality property guaranteed by the
functions in Eq.(40), det (V™ 2€;; @) = det(e;jkd'). So

z:J DA D7DC;DP;DcDc 8(3;A)) 8(d;7')
5Ai = HCiT y 5'7Ti = HPiT y (32)

_ -
where the indexT indicates the transversal part of the field, X deteijcd!) o i+ €ijid C) o(Pir
as required by the Coulomb gauge conditionArand ;. — €k I'A¥) 8(5,C') 8(9;P')e'Set, (42
These fields are fixed through the equations
As shown in[7] the Schwarz-Sen action exhibits both first

VZCir=+epd 7, Pir=e€d A, (33)  and second class constraints. They are, respectively,

and the transversality conditio@C;= —d'P;=0. 03=m8~0, Q3=d'n?~0, (43)
From Egs.(33) and(29) we have
2 kim 4j 2 and
\Y 5CiT:+06ijk€ &'&|Am=—0V Ai . (34)
1 .

Hence, the transversality condition implies ti#gt = — 6A, . O3=n3+ EfabGijkﬂjA?k%O- (44)
Furthermore, proceeding in an analogous way one can prove
that 5P| = — 6’7Ti .

At equal times, the first class constraints satisfy an Abelian

Comparing these equations with the infinitesimal form of 5,003 whereas for the second class constraints we have

Eq. (6) for the Schwarz-Sen approach allows us to identify
their fields as follows: {Q?I'(;)'QFT({/))}: _ fabfijk5§5(;—)7)- (45)
(D_ A, (2)_ . .
AT=AL AT=GL (35 Therefore, in the gaugad=d'A?=0, the generating func-

The conjugate momenta to these fields are tional for the Schwarz-Sen approach is given by

A=tm, mp=le, @ 27| PATadAna e
1 . iy =
To construct the Schwarz-Sen action first notice that X8| mF+ €Pelk gAY | det’d 3Pellk 5, ) €' Ser,
PiCi:_EijkﬁjAk€i|mV72&|7'Tm:_Ai’;Ti (37) (46)

and where
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- o1 R that, although the off-shell descriptions look different, the
Seff:f d4X(W?A'a— §(V><Aa)2 (47)  physical contents of both formulations are the same since
their generating functionals are equal. The important point is
and the trivial sectoA3, 75 has already been integrated out. that the Schwarz-Sen approach can be understood as a way
We see that the de¥) factor in Eq.(46) arises also in Eq. to implement duality as a local symmetry in Maxwell theory.

(42) due to the ghost contribution. Moreover, as This is possible thanks to the introduction of the auxiliary
v " fields C; andP;. There are, of course, other possibilities to
det eapeijcd ):d‘alz(fijko7 ), 48 turn the duality transformation local and presumably this

may be related to the already known formulations where du-
47 llv identical ality is realized locally. We expect that this method may be
andZ are actually identical. ﬁlso used for the interacting case since in essence it replaces

We have thus shown the quantum equivalence o " ' , . .
Schwarz-Sen and Maxwell theories. This was expected asonlocal terms by auxiliary fields in a BRS-invariant way.

both are free field theories that are classically equivalent. This work was supported in part by Conselho Nacional de
Notice that the field equations were not used. Notice als®esenvolvimento Cierfico e Tecnolgico (CNPQ.

we see from Eqg35) that the two generating functionafs
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