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The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The
corresponding infinitesimal generatorQ turns out to be local, gauge invariant, and metric independent. Fur-
thermore,Q commutes with all the conformal group generators. We also show thatQ is equivalent to the
nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next
consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a
local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be
the same, which implies the quantum equivalence of the two approaches.@S0556-2821~97!06522-3#

PACS number~s!: 11.30.Er, 11.15.Tk

It is nowadays accepted that the known string theories are
different perturbative versions of an underlyingM theory
@1#. This idea was originated by the several duality symme-
tries present in the string theories. It is therefore important to
study in detail duality symmetries in field theory and under-
stand their implications. In this respect the old electric-
magnetic duality present in Maxwell’s equations has again
been the subject of intensive study@2–7#. These studies
show that there is a conflict between electric-magnetic dual-
ity symmetry and manifest Lorentz covariance when we at-
tempt to implement duality at the action level. If manifest
Lorentz covariance is maintained, then the action is either
nonpolynomial@2# or requires an infinite set of fields@3#. If
we give up manifest Lorentz covariance, then duality sym-
metry can be implemented in the Hamiltonian formulation of
Maxwell theory in a nonlocal way@4#. However, a recent
proposal made by Schwarz and Sen implements duality in a
local way at the expenses of introducing one more potential
@5#. Although the Schwarz-Sen formulation is not manifestly
covariant, it is Poincare´ covariant both at the classical@5#
and quantum@7# levels. In this paper we shall investigate
some consequences of such a proposal. In particular, we will
construct the generator of duality transformations and dis-
cuss its meaning and relation with the corresponding nonlo-
cal generator found in the first order Hamiltonian formula-
tion described in@4#. We will also verify that the Schwarz-
Sen proposal can be understood as a formulation where the
nonlocal duality transformation of@4# is turned into a local
one. This is shown in the Batalin-Fradkin-Vilkovisky path
integral formalism. As a consequence, this also implies a
quantum equivalence of the two approaches. Although we
consider only the free field case, our work exemplifies the
use of a method that may be helpful in more general situa-
tions.

The Schwarz-Sen action@5# involves two gauge potentials
Ama (1<a<2 and 0<m<3) and is given by

S52
1

2E d4x~Ba,ieabEb,i1Ba,iBa,i !, ~1!

where

Ea,i52Fa,0i52~]0Aa,i2] iAa,0!, ~2!

Ba,i52
1

2
e i jkF jk

a 52e i jk] jAk
a , ~3!

and e is the Levi-Cività symbol (e1251, e12351) and
1< i , j ,k<3. This action is separately invariant under the
local gauge transformations

Aa,0→Aa,01ca, ~4!

Aa,i→Aa,i2] iLa ~5!

and the global SO~2! rotations

A8ma5Amacosu1eabAmbsinu, ~6!

which reduces to the usual discrete duality transformation for
u5p/2.

The Noether’s charge associated with this SO~2! symme-
try is

Q52
1

2E d3xe j ik~] jAi
a!Ak

a5
1

2E d3xBakAk
a . ~7!

Notice that Q is a SO~2!-invariant Chern-Simons term.
Hence, up to surface terms, it is gauge invariant. It is also
metric independent and so its algebraic form also holds for
curved spaces.

Using the Coulomb gauge equal time commutators@7#

@Aa,i~xW !,Ab, j~yW !#52 i eabe
i jk

]k
x

¹2
d~xW2yW !, ~8!

it is straightforward to verify thatQ indeed generates infini-
tesimal SO~2! rotations:

@Q,Aj
b~y!#52 i ebaAj

a~y!. ~9!

The Fock space of states is constructed through the action
of creation and annihilation operatorsal

† andal introduced
via the Fourier decomposition ofAa,i :
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Aa,i~x!5
1

~2p!3/2E d3p

A2upW u
(
l51

2

@e2 ipxel
aial~p!

1eipxel
aial

†~p!#, ~10!

where px[upW ux02pW •xW and el
a,i(p), l51,2, are unit norm

polarization vectors, orthogonal topW and satisfying

~gi j dabp02eabe i l j p
l !el

b j~p!50. ~11!

This means that„p̂,e1
a(pW …,e2

a(pW )), a51,2, are two orthonor-

mal bases rotated byp/2 in the direction ofp̂. The operators
al andal

† satisfy the usual algebra

@al~pW !,al8
†

~pW 8!#5dll8d~pW 2pW 8!. ~12!

In terms of these operators the chargeQ can be rewritten as

Q5 i E d3k~a1
†a22a2

†a1! ~13!

and becomes diagonal,

Q5E d3k~aL
†aL2aR

†aR!, ~14!

in the base of circularly polarized operators, defined by

aR
†5

a1
†1 ia2

†

A2
, ~15!

aL
†5

a1
†2 ia2

†

A2
. ~16!

From Eq.~14! one sees that, in a generic state,Q counts the
number of left minus right polarized photons.

It is easily checked thatQ commutes with the components
u0m of the energy-momentum tensor. Hence, it commutes
with all the generators of the conformal group as should be
expected from an internal symmetry.

Identifying the operatorsal with the corresponding ones
in Maxwell’s theory one could work backward and find that
the chargeQ has the nonlocal expression

Q5
1

2E d3x~2AW •¹3AW 1EW •¹22¹3EW !, ~17!

whereEW is the electric field andAW the vector potential in the
Coulomb gauge. As described in@4#, Eq. ~17! arises from a
first order Hamiltonian formulation of the Maxwell action.

The expression~17! for the chargeQ can also be arrived
at through formal manipulations using the equations of mo-
tion. In fact, using the gauge freedom~4! Schwarz and Sen
have shown that

BW 25EW 1. ~18!

Thus, taking the curl of this equation and using the Coulomb
gauge condition one has formally

AW 252¹22¹3EW 1. ~19!

Equation~17! follows from the replacement of Eqs.~18! and
~19! into Eq. ~7!.

Our discussion indicates that the Deser-Teitelboim and
Schwarz-Sen implementations of duality are equivalent and
both formulations have the same physical content. We now
show how this equivalence can be understood in the path
integral framework. To see that let us use the Batalin-
Fradkin-Vilkovisky formalism@8# for constrained systems.
The generating functional for the Maxwell theory is

Z5E DAmDpmDcDP̄D c̄DPeiSeff, ~20!

with the effective action given by

Seff5E d4x~p i Ȧ
i1p0Ȧ01Ṗ c̄ 1 ċP̄2H02$C,QB%!.

~21!

As usual,pm is the conjugate momentum ofAm , c and c̄ are
ghosts, andP and P̄ their conjugate momenta. At equal
times they satisfy

$P̄~xW !,c~yW !%52d~xW2yW !, $P~xW !, c̄ ~yW !%52d~xW2yW !.
~22!

The Becchi-Rouet-Stora~BRS! charge and Hamiltonian den-
sities are given by

QB5E d3x~] ip
ic2 iPp0! , ~23!

H052
1

2
~p ip i1BiBi !. ~24!

It is convenient to choose the gauge-fixing functionC as

C5 i c̄x1P̄A0 ~25!

and fixx in such way that the Coulomb condition holds. This
can be achieved ifx5(1/e)] iA

i , we redefine the fields
p0→ep0, c̄→e c̄ , and let e go to zero. Notice that this
scaling transformation produces a trivial Jacobian and is
compatible with the BRS transformation,

dBRSAi5] ic, dBRSp i50, dBRSA05 iP, dBRSp050,
~26!

dBRSc50, dBRSc̄ 5 ip0 , dBRSP̄52] ip
i , dBRSP50,

~27!

which leaves invariant the generating functionalZ. After tak-
ing the limit e→0 we get

Seff5E d4x~p i Ȧ
i1 ċP̄2H01A0] ip

i1p0] iA
i1 i P̄P

2 i c̄ ¹2c!. ~28!
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It is interesting to observe that already at this level there is
a duality transformation of the fields which leavesZ invari-
ant. The infinitesimal form of the transformation is given by

dAi5u¹22e i jk] jpk, dp i5ue i jk] jAk, ~29!

the variations of the remaining fields being zero. Notice that
the variation ofAi andp i is the nonlocal duality transforma-
tion introduced by Deser and Teitelboim.d commutes with
the BRS transformation, as can be checked.

Integrating Eq.~20! in p0 and A0 produces the usuald
functions which characterize the Coulomb gauge. Perform-
ing also the trivial integrations in the ghostsP̄ and P we
finally have

Z5E DAiDp iDcD c̄ eiSeffd~] iA
i !d~] ip

i !, ~30!

where nowSeff is the action considered by Deser and Teitel-
boim:

Seff5E d4x~p i Ȧ
i2H02 i c̄ ¹2c!. ~31!

This action is, of course, invariant under the Deser-
Teitelboim duality transformation, given by Eqs.~29! and
dc5d c̄ 50.

We will now show that the Schwarz-Sen formulation can
be obtained by requiring that the duality transformation be
local. To this end we introduce two auxiliary fieldsCi andPi
so that

dAi5uCiT , dp i5uPiT , ~32!

where the indexT indicates the transversal part of the field,
as required by the Coulomb gauge condition onAi andp i .
These fields are fixed through the equations

¹2CiT51e i jk] jpk, PiT5e i jk] jAk, ~33!

and the transversality conditions] iCi52] i Pi50.
From Eqs.~33! and ~29! we have

¹2dCiT51ue i jkeklm] j] lAm52u¹2Ai . ~34!

Hence, the transversality condition implies thatdCi52uAi .
Furthermore, proceeding in an analogous way one can prove
that dPi52up i .

Comparing these equations with the infinitesimal form of
Eq. ~6! for the Schwarz-Sen approach allows us to identify
their fields as follows:

Ai
~1!5Ai , Ai

~2!5Ci . ~35!

The conjugate momenta to these fields are

p i
~1!5

1

2
p i , p i

~2!5
1

2
Pi . ~36!

To construct the Schwarz-Sen action first notice that

PiĊi52e i jk] jAke i lm¹22] lṗm52Aiṗ i ~37!

and

e i jk¹2] jCkT52¹2p i , ~38!

from whichp i52e i jk] jCT
k . We can therefore write Eq.~31!

as

Seff5E d4xS 1

2
p i Ȧ

i1
1

2
PiĊ

i2H02 i c̄ ¹2cD , ~39!

where nowH05(1/2)@(¹3CW )21(¹3AW )2#.
Up to the ghost term, Eq.~39! is the Schwarz-Sen action

in Hamiltonian form. Although our discussion already dem-
onstrates the equivalence of the two approaches, we will
prove now that the generating functionalZ given by Eq.~30!
is equal to the corresponding functional obtained using the
Batalin-Fradkin-Vilkovisky formalism for the Schwarz-Sen
action. After the introduction of the auxiliary fieldsCi and
Pi , Z is obviously equal to

Z5E DAiDp iDCiDPiDcD c̄d~CiT2¹22e i jk] jpk!d~PiT

2e i jk] jAk!d~] iA
i !d~] ip

i !d~] iC
i !d~] i P

i !eiSeff. ~40!

Now, we can write

d~CiT2¹22e i jk] jpk!5det21~¹22e i jk] j !d~p i1e i jk] jCk!.
~41!

But because of the transversality property guaranteed by the
d functions in Eq.~40!, det21(¹22e i jk] j )5det(e i jk] j ). So

Z5E DAiDp iDCiDPiDcD c̄d~] iA
i !d~] ip

i !

3det~e i jk] j !d~p i1e i jk] jCk!d~PiT

2e i jk] jAk!d~] iC
i !d~] i P

i !eiSeff. ~42!

As shown in@7# the Schwarz-Sen action exhibits both first
and second class constraints. They are, respectively,

V0
a[p0

a'0, Va[] ip i
a'0, ~43!

and

V iT
a [p iT

a 1
1

2
eabe i jk] jAT

b,k'0. ~44!

At equal times, the first class constraints satisfy an Abelian
algebra whereas for the second class constraints we have

$V iT
a ~xW !,V jT

b ~yW !%52eabe i jk]x
kd~xW2yW !. ~45!

Therefore, in the gaugeA0
a5] iAi

a50, the generating func-
tional for the Schwarz-Sen approach is given by

Z̃5E DAi
aDp i

ad~] iAi
a!d~] ip i

a!det~¹2!

3dS pT
ia1

1

2
eabe i jk] jAkT

b Ddet1/2~eabe i jk]k!e
i S̃eff,

~46!

where
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S̃eff5E d4xS p i
aȦa

i 2
1

2
~¹3AW a!2D ~47!

and the trivial sectorA0
a , p0

a has already been integrated out.
We see that the det(¹2) factor in Eq.~46! arises also in Eq.
~42! due to the ghost contribution. Moreover, as

det~eabe i jk]k!5det2~e i jk]k!, ~48!

we see from Eqs.~35! that the two generating functionalsZ
and Z̃ are actually identical.

We have thus shown the quantum equivalence of
Schwarz-Sen and Maxwell theories. This was expected as
both are free field theories that are classically equivalent.
Notice that the field equations were not used. Notice also

that, although the off-shell descriptions look different, the
physical contents of both formulations are the same since
their generating functionals are equal. The important point is
that the Schwarz-Sen approach can be understood as a way
to implement duality as a local symmetry in Maxwell theory.
This is possible thanks to the introduction of the auxiliary
fields Ci and Pi . There are, of course, other possibilities to
turn the duality transformation local and presumably this
may be related to the already known formulations where du-
ality is realized locally. We expect that this method may be
also used for the interacting case since in essence it replaces
nonlocal terms by auxiliary fields in a BRS-invariant way.
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