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We derive the stability equation for a static-localized solution of the two-dimensional massive Thirring model.
The corresponding eigenvalue spectrum is determined and compared with the eigenvalue spectrum of the
stability equation for the soliton solution of the sine-Gordon theory.

Stationary-localized solutions for the two-dimen-
sional massive Thirring model® have been found by
Lee el al.” and, independently, by Chang et al.?

By definition, the just-mentioned solutions are of
the form

D(t,x)=e B (x). (1)

Here, E is the frequency of oscillation of the sta-
tionary wave (a real number) and ®(x) is a two-
component spinor which satisfies the boundary
conditions
X %>

as required by confinement.

It has been shown®?® that only for those values of
E in the interval

0 E<mn

the solutions (1) are localized and yield a positive
energy density for all points in space. Therefore,
setting E=0 in Eq. (1) we obtain a physically mean-
ingful static-localized solution for the two-dimen-
sional massive Thirring model. It is precisely
the eigenvalue spectrum of the stability equation
associated with this static solution that we attempt
to discuss in this work.

Our starting point is the Lagrangian density"

L(x) =3P (x)y [0, 0(x)] - [0, T(x) )y (x)}
—m () (x) + £, @) (3)

where £, contains the Fermi interaction of vector-
type,

Lr=32Wy )@y, 0).

Since we are working in a two-dimensional space-
time, ¥(x) is a two-component spinor [ (x)
=9%(x)y,], m is the fermion mass, and g is a posi-
tive coupling constant. As usual, repeated Greek
indices imply summation. Our metric is g,,=-£;
=+1, £5,=41,=0.

We would like to point out that we interpret all
classical fermion fields as commuting ¢-number
functions and not as the classical limit of quantum
field operators. In this connection it is interesting

16

to see the discussion in Appendix B of Ref. 3.

The covariant relativistic notation of Eq. (3) will
not be used again in this paper and it will be re-
placed by x°=¢, x'=x, as we already did when
writing Eqs. (1) and (2).

We complete the specification of the model (3)
assuming, throughout, the y-matrices representa-
tion

<1 0> .(0 1>
Yo= y Y1=-1 .
0 -1 10

Using Euler-Lagrange equations one can derive
from (3) the equations of motion for ¥ and ¢ from
which one is immediately led to the time-indepen-
dent equations to be satisfied by ® and . By ex-
ploiting this last set of equations and the boundary
conditions (2) the authors of Ref. 5 have shown that
one does not lose generality by assuming that ¢ is
a real spinor, and we shall do so from now on.

It is easy to verify that if & (x) is a static-local-
ized solution for the two-dimensional massive
Thirring model, its two real components

Uy (x)
4)
@ =
o(x) I:Uo(x):l
are to be determined by solving the two-equation

system

dv,
0 2 2 =
o HMto -8l +v,u,=0,

(5)
“o 4 mv +gu+v,5)v,=0
dx -0 0 0 0
together with the boundary conditions
o) = vy (£) = 0. (6)

The static-localized solution in whose analysis
we are interested is easily obtained from Ref. 2 and
reads

u, = (2m/g)/ 2e™(e*™ + 1)(e*™* + 1) | (72)
v, = (2m /)t 2em*(e?™ — 1)(e™¥ + 1)t. (Tb)
Let us now consider a real two-component time-

independent spinor & (x)
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u(x)
®(x)= [ :| . (8)

v(x)

The spinor & (x) is not supposed to be a solution of

the equations of motion (5), although it is supposed
to vanish fast enough as x —+* in order to make the
total energy integral H

H=H(u,v)
_ ” dv du 2 oy 800 22}
= f dx [ua—vazwn(u -0 )——2(u +07%)

-0

9)

finite.® One can see that the functions u(x) and v(x)
which make of H an extremum are necessarily

solutions of Egs. (5). Therefore,
SH(u,v) 0H(u,v)
— 7 = —_—2 =0. 1
ou u=ug v u=ug 0 (10)
v=17g v=vg

We now make a functional Taylor expansion of
H(u,v) around the solution u,,v,. We shall call A
the sum of all terms involving second-order partial
functional derivatives in the just-mentioned expan-
sion. After some algebra we arrive at the follow-
ing expression for A:

A=Y wmc,|?, ()

where the w™’s are to be found by solving the lin-
ear eigenvalue problem

Hpx(x)=wx(x). (12)

Here, H, is the Hermitian operator
. d
HD:zafla—x—+ﬁm+V (13)

which acts in a two-dimensional space. x is the
two-component eigenfunction corresponding to the
eigenvalue w. The 2 X 2 matrices &, and B are giv-
en by

=YY, B=Y- (14)

Finally, the elements of the 2 X 2 Hermitian matrix
v,

Vi, Vi
(0. as)
turn out to be

Vi1 =-2m(2 cosh2mx +1) cosh"22mx ,

V.=V, =—2m sinh2mx cosh™2mx , (16)

V,yo==2m(2 cosh2mx — 1) cosh™*2mx .

It is perhaps obvious to remark that Eq. (12) is
the stability equation associated with the solution

(7). Our main purpose in this note is to determine
and discuss its eigenvalue spectrum.

From Egs. (13)-(16) it clearly follows that the
eigenvalue problem (12) is mathematically equiva-
lent to the eigenvalue problem for the one-dimen-
sional Dirac equation when the external potential
is, precisely, V. Then, there will be nonvanishing
eigenfunctions which are solutions of (12) for nega-
tive values of w and, as a consequence, the clas-
sical confined solution (7) is not stable against
small disturbances. This lack of stability can also
be seen from the fact that the energy (9) associated
with the static solution is not bounded from below,
and consequently, it can not be absolutely stable.

Nevertheless, we shall not at this stage discard
(7) as a solution around which the theory can be

quantized because we think that any consistent fer-
mion-field quantization scheme one could design

to work in the one-soliton sector should solve the
inconsistency of having negative-energy states,
much as it is solved in the vacuum-sector quanti-
zation; i.e., all negative-energy states are elimi-
nated from the theory through an appropriate
mechanism contained in the quantization rules. If
this is so, it is still a physically meaningful task
to find the eigenvalues corresponding to the bound
states of (12).

It is obvious that for bound states we must have

X(x)—=0. (17)

By using Egs. (12)
XT(@)a x(x) =x(x)yx(x)=0. (18)

This last condition only holds for bound states. In
fact, for scattering states it must be replaced by
X¥.X = constant # 0.

From Eqgs. (12) and (18) it follows that all bound-
state eigenfunctions are real. Then we can write

cosa(x)>

sina (x)

and (17) we arrive at

x(x) =p(x) ( (19)
where p(x) and a(x) are real functions of the vari-
able x.
Since the soliton solution (7) is also real it can be
written as?
uy,=R(x)cosb(x), (20)
vo=R(x) sinb(x) ,

where R(x) and 6(x) are real functions of the vari-
able x.

By going back with (19) and (20) into (12), we can
recast the eigenvalue problem for the bound states
to read

:1—::— 11 coS2¢ = w + 211 cos26 | (21a)
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1

5 %: m sin2¢ , (21b)
where

p=a-26. (22)

In the language of Eq. (19) the boundary condition
(17) translates into

X =10
Furthermore, from the structure of the linear op-
erator H,, given in Eq. (13), and what is known
about the Dirac equation it follows that all bound-
state eigenvalues (w) must satisfy

|wl<m. (24)

Also note that the variable p decouples entirely
from the differential equation determining ¢.
It can be easily checked that the spinor

dty

X(x;w=0)= dx (25)

dvy
dx

is the solution of the two-equation system (21) for
w=0. It is obvious from Eq. (7) that x(x) given in
(25) verifies the boundary condition x(+~)=0, as it
is required for the bound states. One arrives at
(25) either by solving Eqs. (21) explicitly or by
realizing that, after d/dx is taken in both sides of
Eqgs. (5), one reproduces Eq. (12) with x given by
(25) and w =0,

Thus, the zero-frequency mode required by spa-
tial translation invariance is present.

When w # 0 our analysis goes as follows. From
Eq. (21b) we obtain

p()=pla)exp [m [ sin20(y) dy] : (26)

a

On the other hand, from Egs. (7) and (20) we find
that

cos20 =cosh™2mx ~ 2e-2mixl

X =+t

Therefore, in the asymptotic region (|x| - =) Eq.
(21a) can be approximated by

dé -
E—mcos&p—w s

whose solution is well known to be?
¢ (x; w) =tan"{a tanh[B,(x+ C)]}. 27

Here,

m+w \ V2 2 2)1/2
amr (ZE2)T gy - w2,

and C is an arbitrary constant. We now choose

both limits of the integral

| sin20()dy
a

to be in the asymptotic region. This allows us to
find the asymptotic behavior of p(x). By inserting
(27) into (26) we obtain

— cosh?[(m? — w?)2(x+ C)]

Ixl = -

plx) ~ Cl{ 2m
m

1/2
—m—w} R (28)

where C, is a constant. From this last expression
it follows that

p(x) —= . (29)

Ixl=o

Then, we conclude that there are no bound states
with w # 0 or, what amounts to the same thing, that
the soliton (7) does not exhibit excited states.

Note that when w =0 the term cos26 in (21a) can-
not be neglected, not even in the asymptotic re-
gion. In this case a bound-state solution of (21)
exists and it is given in (25).

It has been shown by Coleman’ that the massive
Thirring model is equivalent to the sine-Gordon
(SG) theory in the charge-zero sector. Also, the
authors of Ref. 3 have noted that the relative phase
6 between the upper and lower components of the
spinor ¢, obeys the SG equation. Then, it seems
to us interesting to close this note with some con-
clusions arising after comparing the eigenvalue
spectrum obtained by us with the eigenvalue spec-
trum of the stability equation corresponding to the
soliton solution of the SG theory.?

If one admits that the negative-energy states of
our Eq. (12) can be eliminated through a set of
adequate quantization rules, one concludes that
both spectra are qualitatively equal; i.e., in both
cases one observes a bound state at w=0 and a con-
tinuum of positive-energy scattering states. Fur-
thermore, for w=0 the solution to Egs. (21) is, as
we already said, the spinor (25). When this spinor
is written as indicated in Eq. (19) and the static-
confined solution (7) is written as in (20) it turns
out that a =36 +7/2, which in turns implies that
[see Eq. (22)] for w=0

o(x)=6(x)+m/2. (30)
On the other hand, from Egs. (21a) and (21.6) one
easily arrives at the following differential equation
for p?:

2
<—;7+u2+2u2 cos2¢ cos29> p2=0, (31)

where u=2m. After taking into account Eq. (30)
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and the fact that the static-confined solution for the
massive Thirring model (7) can, as far as the phase
6(x) is concerned, also be written®

6(x) =tan"*(tanhmx) ,

we can recast Eq. (31) to read

(32)

o, 2p? > 2
(‘w*“ ~costx )P Y

Thus, we conclude that for w =0 the differential
equation satisfied by p* is equivalent to the stability
equation for the soliton solution of the SG theory,®
also for w=0. This tells us that the presence of a
zero-frequency mode in our eigenvalue problem
(12) could have been predicted from the presence
of a similar mode in the SG stability equation. We
have not pursued the investigation of this equi-
valence further.
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