
PHYSICAL REVIEW E AUGUST 2000VOLUME 62, NUMBER 2
Cold-fluid equilibrium for a corkscrewing elliptic beam in a variably focusing channel

Renato Pakter* and Chiping Chen
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 5 November 1999; revised manuscript received 5 April 2000!

It is shown that there exists a new class of cold-fluid corkscrewing elliptic beam equilibria for ultrahigh-
brightness, space-charge-dominated beam propagation through a linear focusing channel consisting of uniform
solenoidal, periodic solenoidal, and/or alternating-gradient quadrupole focusing magnets in an arbitrary ar-
rangement including field tapering. The equilibrium beam density and flow velocity profiles and equilibrium
self-electric and self-magnetic fields are determined by solving generalized beam envelope equations. In proper
limits, such cold-fluid corkscrewing elliptic beam equilibria recover many familiar beam equilibria in beam
physics, including the round rigid-rotor Vlasov beam equilibria in uniform and periodic solenoidal focusing
fields and the Kapchinskij-Vladimirskij beam equilibrium in an alternating-gradient quadrupole focusing field.
For beams with negligibly small emittance, the equilibrium solutions are validated with self-consistent simu-
lations. Examples and applications of the present equilibrium beam theory are discussed. As an important
application of the present equilibrium beam theory, a general technique is developed and demonstrated with an
example to control large-amplitude density and flow velocity fluctuations~such as beam hollowing and halo
formation! often observed in ultrahigh-brightness beams.

PACS number~s!: 29.27.2a, 41.75.2i, 41.85.2p
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I. INTRODUCTION

The equilibrium and stability properties of charge
particle beams have been an important subject of invest
tion in beam physics, plasma physics, and vacuum elect
ics. Indeed, the principles of vacuum electronics@1# are
based on electron beam interactions with radio-freque
structures, and the discovery of strong focusing in the e
1950s@2# has provided the scientific basis for modern p
ticle accelerators such as synchrotrons, linacs, and h
energy colliders.

Recently, there have been vigorous activities in the
search and development of high-intensity vacuum electro
devices and high-intensity accelerators in order to meet
needs in communication, in high-energy and nuclear phy
research, in the development of spallation neutron source
heavy ion fusion applications, and in advanced x-ray radi
raphy, to mention a few examples.

In the design of high-intensity charged-particle beam s
tems, the most challenging task is to properly match hi
intensity beams into focusing systems, so that the beams
in equilibrium or quasiequilibrium states in the combinati
of applied fields and self-fields@3#. A widely used tool for
the determination of matching conditions of high-intens
charged-particle beam systems is based on the rms b
description @4–7#. However, rms beam matching is ina
equate for ultrahigh-brightness beams, because detaile
formation about the beam dynamics, especially the evolu
of the density and flow velocity profiles, is lost by perform
ing phase-space averages in the rms analysis. In general
beam matching does not guarantee well-behaved beam t
port if the beam becomes space-charge dominated. In
without detailed equilibrium flow matching of high-intensi
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beams, many undesirable phenomena can occur, inclu
chaotic particle motion@8# and chaotic beam envelope osc
lations @9#, beam halo formation@10#, beam hollowing@11#,
emittance growth@12#, and multimode excitations, as ob
served in recent high-intensity beam experiments.

In this paper, we present exact steady-state solution
the cold-fluid equations governing the evolution of
ultrahigh-brightness, space-charge-dominated beam pr
gating through a linear focusing channel consisting of u
form solenoidal, periodic solenoidal, and alternating-gradi
quadrupole focusing magnets in an arbitrary arrangemen
cluding field tapering. The equilibrium beam density a
flow velocity profiles and equilibrium self-electric and se
magnetic fields are determined by solving generalized be
envelope equations. For beams with negligibly small em
tance, these steady-state solutions are validated with
consistent simulations using the Green’s function method
general, these steady-state solutions correspond to c
screwing elliptic beam equilibria. They recover many fam
iar beam equilibria in beam physics, such as the cold-fl
round rigid-rotor equilibrium@13,14# and both the periodi-
cally focused rigid-rotor Vlasov equilibrium@15# and
Kapchinskij-Vladimirskij equilibrium @16# in the zero-
emittance limit.

Examples and applications of the present equilibriu
beam theory are discussed. As a simple example, a c
screwing elliptic beam equilibrium in a uniform solenoid
magnetic field is obtained. As an important application of t
present equilibrium beam theory, a general technique is
veloped and demonstrated with an example to control lar
amplitude density and flow velocity fluctuations~such as
beam hollowing and halo formation! often observed in
ultrahigh-brightness beams. For comparison, we investig
numerically the beam transport for distributions that subst
tially deviate from the equilibrium solutions. In this case, t
occurrence of beam hollowing and halo formation is foun
As a final example, we consider an ultrahigh-brightne
beam equilibrium in a periodic focusing channel consist
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2790 PRE 62RENATO PAKTER AND CHIPING CHEN
of overlapping solenoidal and quadrupole focusing fields
illustrate a wide range of applicability of the present equil
rium beam theory in manipulating ultrahigh-brightne
beams.

The paper is organized as follows. In Sec. II, steady-s
cold-fluid equations are presented for transverse electros
and magnetostatic interactions in a high-intensity charg
particle beam propagating through a linear focusing chan
with general magnetic focusing field profile. In Sec. III, a
equilibrium solution to the steady-state cold-fluid equatio
presented in Sec. II is obtained and generalized beam e
lope equations for equilibrium flow are derived. In Sec. IV
is shown that the steady-state cold-fluid solutions found
Sec. III recover familiar beam equilibria in proper limits.
Sec. V, examples and applications of the present equilibr
beam theory are discussed. Conclusions are given in Sec

II. THEORETICAL MODEL AND ASSUMPTIONS

We consider a thin, continuous, ultrahigh-brightne
space-charge-dominated beam propagating with cons
axial velocitybbcêz through a linear focusing channel wit
multiple periodic solenoidal and alternating-gradient quad
pole focusing sections. The focusing fields can be tape
and the quadrupoles are allowed to be at various angle
the transverse direction. The focusing magnetic field is
proximated by

B0~x!5Bz~s!êz2
1

2
Bz8~s!~xêx1yêy!

1~]Bx̄
q/] ȳ!0~ ȳêx̄1 x̄êȳ!, ~1!

whereBz8(s)5(]Bz /]s)0 , s5z is the axial coordinate,x̄, ȳ,
êx̄ , and êȳ are coordinates and unit vectors of a frame
reference that is rotated by an angle ofwq with respect to the
x axis in the laboratory frame, (]Bx̄

q/] ȳ)05(]Bȳ
q/] x̄)0 , and

the subscript ‘‘zero’’ denotes (x,y)505( x̄,ȳ).
In the present analysis, we consider the transverse e

trostatic and magnetostatic interactions in the beam.
make the usual paraxial approximation, assuming that~a! the
Budker parameter is small compared withgb , i.e.,
q2Nb /gbmc2!1, ~b! the beam is thin compared with th
characteristic length scale over which the beam envel
varies, and~c! the kinetic energy associated with the tran
verse particle motion is small compared with that associa
with the axial particle motion.

For an ultrahigh-brightness beam, kinetic~emittance! ef-
fects are negligibly small, and the beam can be adequa
described by cold-fluid equations. In the paraxial approxim
tion, the steady-state cold-fluid equations for time-station
flow (]/]t50) are

bbc
]

]s
nb1“' •~nbV'!50, ~2!

¹'
2 fs5bb

21¹'
2 Az

s524pqnb , ~3!
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nbS bbc
]

]s
1V' •

]

]x'
DV'5

qnb

gbm F2
1

gb
2 “'fs1bbêz3B0'

1
V'

c
3Bz~s!êzG , ~4!

wherex'5xêx1yêy , gb5(12bb
2)21/2, and the self-electric

and self-magnetic fieldsEs andBs are determined from the
scalar and vector potentialsfs and Az

sêz , i.e., Es52“'fs

and Bs5“3Az
sêz . In Sec. III, it will be shown that the

steady-state cold-fluid equations~2!–~4! support a class of
solutions that, in general, describe corkscrewing ellip
beam equilibria in the magnetic focusing field defined in E
~1!.

III. CORKSCREWING BEAM EQUILIBRIUM

In this section, we show that there exists a class of so
tions to the steady-state cold-fluid equations~2!–~4! which,
in general, describe corkscrewing elliptic beam equilibria
ultrahigh-brightness, space-charge-dominated beam prop
tion in the linear focusing channel defined in Eq.~1!.

We seek solutions to Eqs.~2!–~4! of the form

nb~x' ,s!5
Nb

pa~s!b~s!
QF12

x̃2

a2~s!
2

ỹ2

b2~s!G , ~5!

V'~x' ,s!5@mx~s!x̃2ax~s!ỹ#bbcêx̃1@my~s!ỹ

1ay~s!x̃#bbcêỹ . ~6!

In Eqs. ~5! and ~6!, x'5 x̃êx̃1 ỹêỹ is a transverse displace
ment in a rotating frame illustrated in Fig. 1,u(s) is the
angle of rotation of the ellipse with respect to the laborato
frame,Q(x)51 if x.0 andQ(x)50 if x,0, and the func-
tions a(s), b(s), mx(s), my(s), ax(s), ay(s), andu(s) are
to be determined self-consistently.

Substituting Eqs.~5! and ~6! into Eq. ~2! and expressing
the result in terms of the tilded variables, we find

S mx1my2
a8

a
2

b8

b DQF12
x̃2

a22
ỹ2

b2G12F S a8

a
2mxD x̃2

a2

1S b8

b
2myD ỹ2

b2 1S 2
bu8

a
1

au8

b
1

bax

a
2

aay

b D x̃ỹ

abG
3dF12

x̃2

a22
ỹ2

b2G50, ~7!

FIG. 1. Laboratory and rotating coordinate systems.
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where the prime denotes derivative with respect tos, d(x)
[dQ(x)/dx, and use has been made of the identit
] x̃/]s5u8ỹ, ] ỹ/]s52u8x̃, and “•F5]Fx̃ /] x̃1]Fỹ /] ỹ
for any vector fieldF. Since Eq.~7! must be satisfied for al
x̃ andỹ, the coefficients of the terms proportional toQ, x̃2d,
ỹ2d, and x̃ỹd, must vanish independently. This leads to t
following equations:

mx5
1

a

da

ds
, my5

1

b

db

ds
, ~8!

du

ds
5

a2ay2b2ax

a22b2 , ~9!

where the functionsa(s), b(s), ax(s), and ay(s) still re-
main to be determined.

Solving for the scalar and vector potentials from Eq.~3!,
we obtain

fs5bb
21Az

s52
2qNb

a1b S x̃2

a
1

ỹ2

b D ~10!

in the beam interior withx̃2/a21 ỹ2/b2,1. In deriving Eq.
~10!, use has been made of¹'

2 5]2/] x̃21]2/] ỹ2.
To solve the force equation~4!, we substitute Eqs.~5!,

~6!, and~8!–~10! into Eq. ~4!, express the results in terms o
the tilded variables, and use the relations] x̃/]s5u8ỹ,
] ỹ/]s52u8x̃, ]êx̃ /]s5u8êỹ , and]êỹ /]s52u8êx̃ . We ob-
tain

$ f x1kq cos@2~u2wq!#%x̃2$gy1kq sin@2~u2wq!#% ỹ50,
~11a!

$gx2kq sin@2~u2wq!#%x̃1$ f y2kq cos@2~u2wq!#% ỹ50
~11b!

in the x̃ and ỹ directions, respectively. In Eq.~11!,

f x5
1

a

d2a

ds22
b2~ax

222axay!1a2ay
2

a22b2 22ayAkz2
2K

a~a1b!
,

~12a!

f y5
1

b

d2b

ds2 1
a2~ay

222axay!1b2ax
2

a22b2 22axAkz2
2K

b~a1b!
,

~12b!

gy5
1

b2 H d

ds
@b2~ax1Akz!#2

a3b~ax2ay!

a22b2

d

ds S b

aD J ,

~12c!

gx5
1

a2 H d

ds
@a2~ay1Akz!#2

ab3~ax2ay!

a22b2

d

ds S a

bD J .

~12d!

Since Eqs.~11a! and~11b! must be satisfied for allx̃ and ỹ,
we obtain the generalized beam envelope equations

f x1kq cos@2~u2wq!#50, ~13a!

f y2kq cos@2~u2wq!#50, ~13b!

gy1kq sin@2~u2wq!#50, ~13c!
s
gx2kq sin@2~u2wq!#50. ~13d!

Making use of Eq.~12!, we can express the generalized bea
envelope equations as@17#

d2a

ds2 1H kq~s!cos@2~u2wq!#2
b2~ax

222axay!1a2ay
2

a22b2

22ayAkzJ a2
2K

~a1b!
50, ~14a!

d2b

ds2 1H 2kq~s!cos@2~u2wq!#1
a2~ay

222axay!1b2ax
2

a22b2

22axAkzJ b2
2K

~a1b!
50, ~14b!

d

ds
@b2~ax1Akz!#2

a3b~ax2ay!

a22b2

d

ds S b

aD
1kq~s!b2 sin@2~u2wq!#50, ~14c!

d

ds
@a2~ay1Akz!#2

ab3~ax2ay!

a22b2

d

ds S a

bD
2kq~s!a2 sin@2~u2wq!#50, ~14d!

du

ds
2

a2ay2b2ax

a22b2 50, ~14e!

mx5
1

a

da

ds
, ~14f!

my5
1

b

db

ds
. ~14g!

Equations~8! and~9! are added here as Eqs.~14e!–~14g! for
completeness. Equations~14a!–~14g!, together with the den-
sity and velocity profiles defined in Eqs.~5! and~6!, describe
cold-fluid equilibrium states for variably focused ultrahig
brightness beams.

IV. LIMITING CASES

A wide variety of cold-fluid beam equilibria can be con
structed with Eqs.~5!, ~6!, and ~14! for proper choices of
magnetic focusing field profiles. While cold-fluid beam equ
libria are elliptic and corkscrewing in general, they do r
cover familiar beam equilibria in proper limits. In this se
tion, we discuss some of these limiting cases.

First, let us consider the case of an axisymmetric beam
a periodic solenoidal focusing field withkz(s)5kz(s1S)
Þ0, kq(s)50, anda(s)5a(s1S)5b(s). In this limit, Eqs.
~14c!–~14e! imply that

du

ds
5ax5ay5

«d

a2~s!
2Akz~s!, ~15!

where «d5const is an unnormalized emittance associa
with beam rotation relative to the Larmor frequencyAkz(s).
Equation~15! indicates that the beam rotates at a rate tha
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2792 PRE 62RENATO PAKTER AND CHIPING CHEN
a periodic function of the axial propagation distances. Sub-
stituting Eq. ~15! into Eqs. ~14a! and ~14b!, setting ax
5ay , and taking the limita5b, it is readily shown that the
beam envelope equations reduce to

d2a

ds2 1kz~s!a2
K

a
2

«d
2

a3 50. ~16!

The equilibrium described by Eqs.~5!, ~6!, ~15!, and~16! is
identical to the familiar round rigid-rotor Vlasov beam equ
librium @15# in the zero-emittance limit.

Second, in a uniform magnetic focusing field withkz(s)
5kz05const,kq(s)50, anda(s)5b(s), a special solution
to the beam envelope equation~16! is

a5FK1~K214kz0«d
2!1/2

2kz0
G1/2

5const, ~17!

and the equilibrium recovers the familiar cold-fluid roun
rigid-rotor beam equilibrium@13,14#. A general class of
corkscrewing elliptical beam equilibria with constant ra
aÞb in a uniform solenoidal focusing field is discussed
detail in Sec. IV A.

As a third limiting case, we consider a nonrotating elli
tical beam in an alternating-gradient quadrupole focus
field with kz(s)50, kq(s)5kq(s1S), u(s)50, a(s)5a(s
1S), b(s)5b(s1S), and ax(s)5ay(s)50. In this case,
Eqs.~14c!–~14e! are automatically satisfied and the envelo
equations reduce to

d2a

ds2 1kq~s!a2
2K

a1b
50, ~18a!

d2b

ds22kq~s!b2
2K

a1b
50. ~18b!

Note that the internal flow must satisfyax(s)5ay(s)50 in
order to prevent the beam from rotating with a finitedu/ds.
The equilibrium described by Eqs.~5!, ~6!, and ~18! corre-
spond to the familiar Kapchinskij-Vladimirskij beam equilib
rium @16# in alternating-gradient quadrupole magnetic focu
ing field in the zero-emittance limit.

V. EXAMPLES AND APPLICATIONS

In this section, we discuss three examples of cold-fl
corkscrewing elliptic beam equilibria predicted by the eq
librium beam theory presented in Sec. IV. These examp
are ~a! cold-fluid corkscrewing elliptic beam equilibria in
uniform magnetic field~Sec. V A!, ~b! matching and trans
port of an ultrahigh-brightness round beam generated by
axisymmetric particle source into an alternating-gradi
magnetic quadrupole focusing channel~Sec. V B!, and ~c!
matching and transport of an ultrahigh-brightness rou
beam into a periodic focusing channel consisting of overl
ping solenoidal and quadrupole focusing fields~Sec. V C!.

In addition to illustrating a large class of beam equilib
predicted by the present equilibrium beam theory, these
amples are also intended to demonstrate a general techn
for controlling of large-amplitude beam density and flow v
locity fluctuations and associated emittance growth and b
g
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-
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n
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d
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x-
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-
m

halo formation often observed in ultrahigh-brightness be
experiments. To demonstrate the efficacy of this beam c
trol technique, the transport for an ultrahigh-brightness be
with an initial perturbation about the equilibrium transver
flow velocity is compared with the equilibrium beam tran
port ~Sec. V B!.

A. Corkscrewing elliptic beam equilibria
in a uniform magnetic field

As a simple example, we consider corkscrewing ellip
beam equilibria in a uniform magnetic field withBext

5Bz0êz . Setting Akz(s)5Akz05qBz0/2gbbbmc25const
andkq(s)50, it can be shown that Eq.~14! has the follow-
ing two branches of physically acceptable special solutio

a5a15S ax

ay
D 1/2F K

kz02~ax1Akz0!~ay1Akz0!
G 1/2

,

b5b15S ay

ax
D 1/2F K

kz02~ax1Akz0!~ay1Akz0!
G 1/2

,

u~s!5v1s5
axay

ax1ay
s1u~0!, ~19!

for branch A, and

a5a2

5S ax12Akz0

ay12Akz0
D 1/2F K

kz02~ax1Akz0!~ay1Akz0!
G 1/2

,

b5b2

5S ay12Akz0

ax12Akz0
D 1/2F K

kz02~ax1Akz0!~ay1Akz0!
G 1/2

,

u~s!5v2s5
axay24kz0

ax1ay14Akz0

s1u~0!, ~20!

for branch B. In Eqs.~19! and~20!, ax anday are constant.
For branch A, the conditions for the confinement of cor

screwing elliptic beam equilibria are

ax /Akz0,0, ay /Akz0,0,

~ax1Akz0!~ay1Akz0!,kz0 ~21!

for both positively and negatively charged particle beam
Becauseax anday have the same sign, the internal flow fo
branch A is always rotation like. For branch B, the con
tions for the confinement of corkscrewing elliptic beam eq
libria are

ay /Akz0.22, ax /Akz0.22,

~ax1Akz0!~ay1Akz0!,kz0 ~22!

for both positively and negatively charged particle beams
contrast to the internal flow for branch A, the internal flo
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for branch B can be either rotation like withax anday in the
same sign or quadrupole flow like withax anday in apposite
signs. Figure 2 shows the regions of the confinement of co
screwing elliptic beam equilibria in a uniform magnetic fie
applicable for both positively and negatively charged parti
beams. It is important to point out that the familiar cold-flu
round rigid-rotor beam equilibria@13,14# are recovered in the
present analysis by settingax5ay in either Eq.~19! or Eq.
~20!, as indicated by the dark solid line shown in Fig. 2.

B. Control of halo formation and beam hollowing
in ultrahigh brightness beams

As discussed in the Introduction, one of the key mec
nisms for halo formation in high-intensity electron or io
beams is due to a mismatch in the particle phase-space
tribution relative to an equilibrium distribution. In general,
distribution mismatch can lead to rather complex evolut
in a beam, including not only halo formation, but also be
hollowing. This mechanism for halo formation and bea
hollowing occurs for rms matched beams because rms b
matching does not necessarily guarantee the beam in an
librium state.

For example, both halo formation and beam hollowi
were observed in the heavy ion beam injector experimen
Lawrence Berkeley National Laboratory~LBNL ! @11#, in
which an ultrahigh-brightness, space-charge-dominated
tassium ion beam was generated with an axisymme
Pierce diode and then accelerated by a set of electros
quadrupoles. More recently, experimental evidence of be
hollowing was found in a high-brightness, space-char
dominated electron beam experiment at University of Ma
land @18#.

As an important application of the equilibrium bea
theory presented in Sec. IV, we develop and demonstra
technique for controlling of beam halo formation and be
hollowing in ultrahigh-brightness beams. This technique
widely applicable in the design of ultrahigh-brightne
beams and is effective before any collective instability d
velops to reach considerably large amplitudes.

To demonstrate the efficacy of this technique, we cons
here a specific example, namely, the matching of a ro
particle beam generated by an axisymmetric particle sou
into alternating-gradient magnetic quadrupole focusing ch
nel. For comparison, we analyze two nonrotating r
matched beams with the same intensity; one beam will b
equilibrium, and the other beam has an initial perturbat
about the equilibrium transverse flow velocity. At the e

FIG. 2. Regions in parameter space for confinement of co
screwing elliptic beam equilibria in a uniform magnetic field.
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trance of the alternating-gradient magnetic focusing chan
(s50), both beams have the same density profile define
Eq. ~15!, but the transverse flow velocities of the beams
of the form @19#

dx'

ds
5

x'

a S da

dsD F11nS 12
2x' •x'

a2 D G , ~23!

wherev is a parameter that measures the nonlinearity in
velocity profile. For example, an initial velocity profile wit
n.0 in Eq.~23! may model the effects of the concave sha
of a Pierce-type ion diode in the LBNL 2-MV Heavy Io
Beam Injector Experiment@11#. The value ofv in the LBNL
experiment@11# is estimated to ben50.25. For equilibrium
beam propagation,n50.

The rms matching for both beams withv50 and 0.25 is
obtained by numerically solving the rms envelope equati
@5#

d2ā

ds2
1kq~s!ā2

K

2~ ā1b̄!
50, ~24a!

d2b̄

ds2
2kq~s!b̄2

K

2~ ā1b̄!
50, ~24b!

whereā[^x2&1/2 and b̄[^y2&1/2 are the rms envelopes,^¯&
denotes average over the particle distribution, and emitta
terms are neglected. For given beam intensityK and focusing
channel parametersC3 andh shown in Fig. 3, we make us
of Eq. ~24! to determine the injection parameters for t
axisymmetric beam, namely,ā(0), b̄(0), ā8(0), andb̄8(0),
as well as the strengths of the two quadrupoles centere
s5S/4 ands53S/4 in the first lattice,C1 andC2 , as shown
in Fig. 3, assuming all quadruples having the same width
and equally spaced. Because Eq.~24! has a unique solution
for an rms matched beam in the constant-param
alternating-gradient focusing section withs/S.1, integrating
Eq. ~24! from s5S to s50 yields four implicit functions
ā(C1 ,C2), b̄(C1 ,C2), ā8(C1 ,C2), and b̄8(C1 ,C2). The
conditions for an initially converging round beam, i.e
ā(0)5b̄(0)5a(0)/25b(0)/2 and ā8(0)5b̄8(0), uniquely
determine the parametersC1 andC2 , which is done numeri-
cally with Newton’s method. The results are presented
Figs. 3 and 4.

-
FIG. 3. Plot of the focusing parameterS2kq as a function of the

propagation distances.
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Figure 3 shows the focusing field parameterS2kq as a
function of s, whereh50.3, C152.31, C257.44, andC3

510.0. In Fig. 4, the solid and dashed curves show, resp

tively, the rms matched envelopesā(s) and b̄(s) for the
focusing channel with vacuum phase advances0570.8° and
beam perveanceSK/4«(0)516.0 ~corresponding to a space
charge-depressed phase advance ofs55.4°!, where a negli-
gibly small unnormalized rms emittance of«(0)50.15
31026 m rad has been assigned to the beam ats50.

Self-consistent simulations are performed withNp
53072 and free-space boundary conditions to study
phase space evolution for the two beams in the focus
channel shown in Fig. 3. In Fig. 4, the solid dots and op
circles correspond to the rms envelopesā(s) and b̄(s) ob-
tained from a self-consistent simulation for a beam initia
with a nonlinear velocity profile withn50.25. It is evident in
Fig. 4 that there is excellent agreement between the pre
tion of the rms envelope equations~24a! and ~24b! and the
results of the self-consistent simulation, despite that
transverse flow velocity is perturbed substantially.

We now examine the evolution of the particle distributi
if the nonlinearity in the initial transverse flow velocity pro
file is introduced and compare with equilibrium beam prop
gation. The results are summarized in Figs. 5 and 6. Figu
shows a comparison between particle distributions in
configuration space with and without nonlinearity in the in
tial transverse flow velocity at three axial positions:s/S
50, 1.0, and 2.5. These axial positions are chosen such
ā(s)5b̄(s). In Fig. 5, the plots shown on the left correspo
to n50 and those on the right ton50.25. Forn50.25, the
initially round beam develops sharp edges after the first
tice, becoming partially hollow subsequently ats/S52.5. In
Fig. 6~b!, the radial distribution of 3072 macroparticles
s/S52.5 shows that the density at the edge is twice the d
sity at the center of the beam and that there is a small h
extending outward beyond the radius where the den
reaches its maximum. The partially hollow density profi
shown in Fig. 6~b! is similar to, but not as pronounced a
that observed in the heavy ion beam injector experimen
LBNL @11#. In contrast to the case withn50.25, the beam
propagates in an equilibrium state forn50 without beam
hollowing and without any significant beam halo formatio
as shown in Fig. 6~a!.

FIG. 4. Plots of rms beam envelopes versus propagation
tances. Here the solid and dashed curves are obtained from Eq.~24!,
whereas the solid dots and open circles are from the self-consi

simulation for a beam withn50.25. Hereā andb̄ are normalized to
A«(0)S.
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C. Matching and transport of a beam into a periodic focusing
channel consisting of overlapping solenoidal and

quadrupole focusing fields

As another example of corkscrewing elliptic beam eq
librium, we consider the matching and transport of an i
tially round beam into a periodic focusing channel consist

FIG. 6. Radial distribution of the macroparticles ats/S52.5 for
~a! n50 and~b! n50.25.

s-

nt

FIG. 5. Particle distributions in the configuration space forn
50 ~left! and n50.25 ~right!. Here the coordinatesx and y are
normalized toA«(0)S.



ds
m

le

s
-

f

nd

re

sing
e of
lds
age
ra-
as
in
u-

-

e

ma
d
o

e
re

p
d

fro

ed

PRE 62 2795COLD-FLUID EQUILIBRIUM FOR A CORKSCREWING . . .
of overlapping solenoidal and quadrupole focusing fiel
Figure 7~a! shows plots of dimensionless focusing para
etersS2kz andS2kq versus propagation distances/S for the
channel. In Fig. 7~a!, the width of solenoidal and quadrupo
magnets is 0.3S. In the matching section (0,s,S), two
quadrupoles ats/S50.25 ands/S50.75 are placed at angle
wq5250° andwq5240°, respectively. In the periodic fo
cusing section (s.S), the quadrupoles are placed atwq
50° in the first cell (1,s/S<2) and are rotated by2120°
in each of subsequent cells, yielding a periodicity of 3S for
the channel. To determine the angles and the strengths o
matching quadrupoles, we first find from Eq.~14! periodic
solutions with a(s1S)5a(s), b(s1S)5b(s), ax(s1S)
5ax(s), ay(s1S)5ay(s), andu(s13S)5u(s) in the pe-
riodic focusing section and then match the initially rou
beam witha(0)5b(0) andax(0)5ay(0) with the periodic

FIG. 7. Plots of focusing and beam parameters versus nor
ized propagation distances/S for an equilibrium beam in a tapere
linear focusing channel consisting of overlapping periodic solen
dal and alternating-gradient quadrupole magnetic fields. HerK
51.631025 andS51.0 m. In ~a! the solid and dashed curves a
dimensionless focusing parametersS2kz(s) and S2kq(s), respec-
tively; in ~b! the solid and dashed curves are the beam envelo
a(s) and b(s) predicted by Eq.~14!, whereas the solid dots an
open circles are obtained from the simulation; in~c! the solid curve
and open circles are the angles of the beam ellipses obtained
Eq. ~14! and the simulation, respectively.
.
-

the

solution ats/S51 using a shooting method. The results a
shown in Fig. 7 forK51.631025 andS51.0 m. The solid
and dashed curves in Fig. 7~b! are calculated envelopesa(s)
andb(s), and the solid curve in Fig. 7~c! is the angleu(s).

We have validated the exact steady-state solutions u
self-consistent simulations. In the simulations, use is mad
Green’s function method to determine electrostatic fie
generated by the charged particles in the beam and im
charges due to a perfectly conducting cylindrical tube of
dius r w . A detailed description of the simulation code w
presented earlier@19#. For the focusing parameters shown
Fig. 7~a!, 104 macroparticles are loaded in the present sim
lation according to the initial distribution function

f ~x' ,x'8 !5nb~x',0!exp$2@x'8 bbc2V'~x',0!#2/T~x'!%,

wherenb(x',0) andV'(x',0) are the initial density and ve
locity profiles defined in Eqs.~5! and ~6!, respectively,
T(x')5T0(x2/a21y2/b221) is an effective temperatur
profile, andT0 is a constant chosen to give an initial total~4
times rms! emittance of 0.231026 m rad. The conducting
cylindrical tube radius is chosen to ber w510.0 mm. Results
of the simulation are summarized in Figs. 7~b!, 7~c!, and 8.

l-

i-

es

m

FIG. 8. Particle distributions in configuration space obtain
from the simulation for the case shown in Fig. 7.
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Shown in Figs. 7~b! and 7~c! is the excellent agreemen
between the beam envelopesa(s) andb(s) and angleu(s)
obtained from the self-consistent simulation and those p
dicted by the generalized beam envelope equations~14!, as
expected. In Fig. 8, particle distributions in the plane~x,y!
are plotted at several axial locations of the matching sec
and the periodic focusing section, showing the transit
from a round beam to a corkscrewing elliptic beam in t
focusing channel. The elliptic beam completes a full cloc
wise turn froms/S51 to s/S54 @see Figs. 8~e!–8~h!#. Both
image charge effects and emittance growth are neglig
small. The density profiles are computed at various a
locations in the simulation, and they are found in good agr
ment with the density profile defined in Eq.~5!. It should be
stressed that the beam propagates in a steady state wi
either beam hollowing or halo formation.

VI. CONCLUSIONS

We have shown that there exists a new class of cold-fl
corkscrewing elliptic beam equilibria for ultrahigh
brightness, space-charge-dominated beam propaga
through a linear focusing channel consisting of uniform
lenoidal, periodic solenoidal, and/or alternating-gradi
quadrupole focusing magnets in an arbitrary arrangemen
cluding field tapering. Generalized beam envelope equat
were derived. The equilibrium beam density and flow velo
ity profiles and equilibrium self-electric and self-magne
fields were determined by solving generalized beam en
lope equations. For beams with negligibly small emittan
these steady-state solutions were validated with s
consistent simulations using the Green’s function meth
While these steady-state solutions correspond to corksc
ing elliptic beam equilibria in general, they do recover ma
familiar beam equilibria in beam physics, such as the co
ev
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fluid round rigid-rotor equilibrium and both the periodical
focused rigid-rotor Vlasov equilibrium and Kapchinski
Vladimirskij equilibrium in the zero-emittance limit.

Examples and applications of the present equilibriu
beam theory were discussed. In particular, a corkscrew
elliptic beam equilibrium in a uniform solenoidal magnet
field was obtained. As an important application of t
present equilibrium beam theory, a general technique
developed and demonstrated with an example to con
large-amplitude density and flow velocity fluctuations~such
as beam hollowing and halo formation! often observed in
ultrahigh-brightness beams. Furthermore, an ultrahi
brightness beam equilibrium in a periodic focusing chan
consisting of overlapping solenoidal and quadrupole foc
ing field was obtained to illustrate a wide range of applic
bility of the present equilibrium beam theory in manipulatin
ultrahigh-brightness beams.

It is anticipated that the equilibrium beam theory pr
sented in this paper can be used to perfectly match ultrah
brightness beams in practical beam transport systems an
design electron beam equilibrium configurations in n
vacuum electronic devices. Finally, the present cold-fl
equilibrium theory can be generalized to include the effec
finite beam emittance, which will be discussed in a futu
article.
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