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Nonintegrable interaction of ion acoustic and electromagnetic waves in a plasma
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In this paper we reexamine the one-dimensional interaction of electromagnetic and ion acoustic waves in a
plasma. Our model is similar to one solved by Raoet al. @Phys. Fluids26, 2488~1983!# under a number of
analytical approximations. Here we perform a numerical investigation to examine the stability of the model.
We find that for slightly overdense plasmas, the propagation of stable solitary modes can occur in an adiabatic
regime where the ion acoustic electric-field potential is enslaved to the electromagnetic field of a laser.
However, if the laser intensity or plasma density increases or the laser frequency decreases, the adiabatic
regime loses stability via a transition to chaos. Different asymptotic states are attained when the adiabatic
regime no longer exists. In these states the plasma becomes rarefied and the laser field tends to behave like a
vacuum field.@S1063-651X~97!05603-1#

PACS number~s!: 52.35.Mw, 05.45.1b
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I. INTRODUCTION

The recent developments of laser technologies allow
creation of strong pulses that can propagate in a plas
either to accelerate particles@1# or to induce laser-assiste
fusion @2#. Now, if a laser pulse interacts with a plasma, t
possibility exists of nonlinear wave coupling involving th
pulse itself and nonlinear plasma modes@2,3#. Since the va-
riety of these nonlinear plasma modes is large and since
mode exhibits a considerable richness regarding amplitu
polarization, and frequency range@4,5#, the nonlinear mode
coupling is a feature to be appreciated with care.

One important example of nonlinear mode coupling co
cerns the interaction of relativistically strong electromagne
waves with Langmuir waves@6–8#. These analyses are re
stricted to simple wave solutions with well-defined propag
tion velocities that are superluminous in an unmagneti
plasma. For these superluminous waves it is shown that
wave dynamics can be viewed as similar to the coupled
namics of two nonlinear oscillators with their natural fr
quencies given by real numbers. One of the oscillators
scribes the transverse electromagnetic field and the othe
longitudinal electrostatic field. The dynamics is found to
predominantly integrable. Some nonlinear resonant isl
chains are present in the appropriate Poincare´ maps@8#, but
their overlap is so small that the resulting trajectories
mostly regular.

In another important range of subluminous wave velo
ties, around the ion acoustic range, the laser wave can co
to ion acoustic plasma modes. In this case the coupled w
propagate with velocities close to the ion acoustic veloc
which is much smaller than the velocity of light. Here th
ionic dynamics plays a crucial role and the resulting dyna
ics, in principle, bears no resemblance to the dynamics
scribed in the preceding paragraph. A good deal of analyt
work has been done in Ref.@9# to show that if one assume
once more a common and constant propagation velocity,
system becomes again equivalent to a pair of nonline
551063-651X/97/55~3!/3423~8!/$10.00
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coupled oscillators. A different feature studied here is t
when the laser frequency is smaller than the average pla
frequency, wave localization can occur such that one has
formation of intense solitary pulses. In terms of the system
equivalent oscillators, the possibility of solitary pulses o
curs when by varying the appropriate parameters the lin
frequency of that oscillator describing the laser wave
comes imaginary. Using the language of nonlinear dynam
this change in the character of the frequency occurs bec
the central elliptic point present in the appropriate pha
space turns into a hyperbolic point@10#.

The work by Raoet al. @9# utilizes powerful approxima-
tion techniques, but is essentially analytical as commen
before. Therefore, one would like to have some informat
on the stability of the solitary pulses thus formed, and this
what we do here. The stability issue has already been
dressed several times over the past years, but the focus
been preferentially directed upon the linear perspective@11#.
However, if one wishes to have some additional insight in
the nonlinear development of these instabilities, the most
propriate tools of investigation appear to be the Poinc´
maps mentioned above. With these maps one records
phase-space coordinates of one of the oscillators, as on
the coordinates of the other crosses its zero with a defi
sign for the derivative. Since the system is two degrees
freedom and since there exists a conserved Hamiltonian
the system, the point recorded on the map gives all the
evant information for the dynamics. Regular motion is as
ciated with smooth curves of the Poincare´ maps and chaotic
~or nonintegrable! motion is associated with an erratic distr
bution of points representing the trajectory. We find here t
the stability of the solitary pulses is quite limited. In fact, w
found no regular motion for velocities sufficiently below th
ion acoustic velocities and for effective laser frequencies s
ficiently below the average plasma frequency. In those c
otic situations the final asymptotic behavior looks like t
one corresponding to uncoupled waves in the vacuum.
intrinsic instability of the system for too low values of th
3423 © 1997 The American Physical Society
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effective laser wave frequency, in particular, seems to p
clude the formation of some special soliton solutions, as
shall see. Chaos is present because our system is two de
of freedom and the system is two degrees of freedom
cause we allow for charge separation in the ion acoustic
namics. Had we used quasineutrality assumptions, the
tem would be one degree of freedom and chaotic soluti
would be absent. We finally point out that the transition
chaos we detect here is of a conservative character, so
chaotic dynamics we expect to see is of different type fr
the one present in dissipative systems@5,12#.

The paper is organized as follows. In Sec. II we revi
the basic theory governing the interaction of a laser and
ion acoustic mode. In Sec. III we analyze the nonintegra
dynamics with help of Poincare´ maps. In Sec. IV we con
clude the work.

II. BASIC THEORY

A. Introductory remarks

We consider here the interaction of a laser wave and
ion acoustic mode in a globally neutral plasma consisting
light electrons and massive ions. Let us rederive the gov
ing equation for the laser mode in a slightly different w
from the one used in Ref.@9#. If one assumes that the wave
are plane waves propagating along thez axis, the equation
governing the high-frequency laser dynamics can be wri
in the form

]2C

]t2
2c2

]2C

]z2
52

4pq2

me
~n01dne!

C

A11uCu2
, ~1!

where2q is the electron charge,me its rest mass,n0 the
average density,dne the fluctuations of the electronic densi
due to the action of the waves, andc the velocity of light. In
Eq. ~1! the laser intensity is considered strong enough
drive electrons to relativistic velocities. The fieldC(z,t) is
defined in terms of the relation

qA

mec
2 5

1

2
~ x̂2 i ŷ!C1c.c., ~2!

whereA is the vector potential of a circularly polarized las
field, with i 2521 and c.c. designating complex conjuga
Now we assume solutions of the form

C~z,t !5c~j!ei ~kz2vt !, ~3!

with k andv, respectively the wave vector and the effecti
frequency of the laser, withj[z2Vt andc a real slowly
varying variable;V denotes the propagation velocity. Ne
we substitute relation~3! into Eq.~1! and separate the resul
ing equation into its real and imaginary parts. The imagin
component yields the relation

V5
c2k

v
, ~4!

from which one can determine the propagation veloc
given the frequency and wave vector of the carrier. The r
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part, on the other hand, yields a governing equation for
real amplitudec, valid whenV!c,

b
d2c

dj2
52Dc1~11dne!

c

A11c2
. ~5!

In Eq. ~5!, space is normalized by the electronic Deb
length lDe5(Te/4pn0q

2)1/2, time by the ion plasma fre-
quencyvpi

2 54pn0q
2/mi , and density byn0; mi is the ion

mass, Te is the electron temperature,b5c2/v te
2 @1,

D5v2/vpe
2 , v te

2 5Te /me , andvpe
2 54pn0q

2/me . Note that
in our calculations the character of the electromagnetic w
is determined by whetherD is larger or smaller than unity. In
the former case one has propagation in an underdense pl
and in the latter case one has propagation in an overd
plasma. Since it can be seen in Eq.~5! that the coefficient of
the linearc term is given by 12D, wave localization in
overdense situations occurs when the natural frequenc
the associated oscillator can be interpreted as an imagi
number. Our factorD is defined in terms of the effective
frequency v, which incorporates all possible frequenc
shifts. Therefore, this factorD replaces, in a simplified way
the slightly more complicated total frequency shift intr
duced in Ref.@9#. This is why we adopt the present forma
ism.

As for the ion acoustic field excited by ponderomoti
effects associated with the electromagnetic wave, we sim
write down the governing equation obtained from the ana
sis of the low-frequency dynamics involving the ion acous
electric-field potentialF, the massless warm electronic flui
and the massive cold ionic fluid. One has@9#

d2F

dj2
52

M

AM222F
1eF1b2bA11c2, ~6!

whereF has been normalized byTe /q (q is the ion charge!
and we have introduced the Mach numberM5V/Cs with the
ion acoustic velocity Cs written in the form Cs
5(Te /mi)

1/2. The ions are considered nonrelativistic due
their large mass. We point out here that the total ion a
electron densities are respectively measured by the abs
values of the first and second terms on the right-hand sid
Eq. ~6!; in particular, the fluctuating electron density o
tained under the assumption of massless electrons,

dne5eF1b2bA11c221, ~7!

is the expression to be used in Eq.~5!.
Equations~5!–~7! govern the nonlinearly coupled dynam

ics of the dynamical variablesc(j) andF(j). We assume
propagation at a constant velocityM and take into consider
ation full nonlinear effects in both the ion acoustic and t
transverse relativistic dynamics of electrons. It is worth me
tioning that alternative approaches do not restrict the spa
time dependence of the solutions, but use weak nonlin
expansions instead@13–15#.

Now, as shown in the paper by Raoet al. @9#, Eqs.~5! and
~6! can be obtained from a generalized two degrees of fr
dom HamiltonianH,
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H5
Pc
2

2b2 2
PF
2

2
2

Db

2
c21MAM222F1eF1b2bA11c2,

~8!

where a misprint in@9# has been corrected. In the Ham
tonian,Pc andPF are the canonical momenta conjugate
the corresponding subscript coordinates. Hence our sys
contains four dimensions:c, Pc , F, andPF .

Since the Hamiltonian~8! does not depend explicitly on
the ‘‘time’’ coordinatej, it is a constant of motion. We wil
be interested in finding solitary waves and all those soluti
towards which initial solitary waves can evolve in time
they are unstable. Therefore, we shall work on the partic
energy surface that allows for the presence of the config
tion F5c5PF5Pc50, since this configuration is in fac
the appropriate asymptotic solution for solitary pulses. W
recall that from the canonical equations generated byH, Eq.
~8!, it follows thatdF/dj52PF , dc/dj5Pc /b

2, and the
boundary conditions for a solitary pulse are, in the mo
traditional form,F, c, dF/dj, anddc/dj→0 as uju→`.
The above considerations enable one to determine the
stant numerical value of the Hamiltonian; it rea
H511M2.

The Hamiltonian supports pure ion acoustic waves; i
easy to see that regardless of the values ofPF and F, if
c(j50)5Pc(j50)50, then c(j)5Pc(j)50 at any j.
This is not true for electromagnetic waves. Even if one sta
with a laser pulse in the absence of any space-charge fi
(F5PF50), Eq. ~6! indicates that the dynamics of th
electric-field potential is subsequently driven by ac2 factor.

We shall restrict the present analysis to subsonic ca
whereM,1. This causes the coefficient of the linearF term
in Eq. ~6! to assume only negative values. As for the la
field, we focus attention on overdense plasmas withD,1.
Since the linear coefficient of Eq.~5! is given by a factor
(12D)/b, as already mentioned, the system is linearly u
stable against the generation and propagation of electrom
netic modes. Nonlinear saturation of the unstable proc
may be responsible for the creation of solitary pulses.

B. Adiabatic approximation

It has been seen that laser localization occurs in overde
plasmas whereD,1. Since, in general,D is only slightly
different from unity and since the small factor 12D is yet to
be divided by the large factorb to obtain the coefficient of
the linear term of Eq.~5!, the conclusion is that, in genera
the following relation may hold:

S 12D

b D!U12
1

M2 U. ~9!

But if such a relation does hold, it is likely that the dynami
on the (c,Pc) phase plane tends to be much slower than
corresponding dynamics developing on the (F,PF) phase
plane. In this limiting case one could be tempted to use
results of the center manifold and adiabatic theorems@16#,
which say that the integration on the latter phase plane co
be done simply by taking Eq.~6! with c2 considered as a
constant factor. In addition, asc slowly evolves as a func
m
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tion of j, theF dynamics evolves in such a way as to co
serve the action integral (1/2p)rPF dF. In Fig. 1 we take
fixed values ofc to plot contour levels of the driven ion
acoustic Hamiltonian, which is here defined as

FIG. 1. Phase space on the (F,PF) plane for fixed values of
c, with M50.9 and b5100: ~a! c50 and ~b! c50.001. ~c!
(c,Pc) phase space usingD50.98.
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HF52
PF
2

2
1MAM222F1eF1b2bA11c2. ~10!

In the adiabatic regime this is the Hamiltonian controlli
the fast motion on the (F,PF) plane. For vanishingly smal
values ofc2 one can see in Fig. 1~a! an elliptic fixed point at
the origin and a hyperbolic point located atF,0; trajecto-
ries move counterclockwise and the typical parame
b5100 andM50.9 are considered. Now asc2 grows the
elliptic point moves toward the hyperbolic point, as seen
Fig. 1~b!. For large enough values ofc the elliptic and hy-
perbolic fixed points coalesce in an inverse saddle-node
furcation@17#; we shall refer to this coalescence as collap
For completeness we display in Fig. 1~c! the (c,Pc) phase
space obtained from the full Hamiltonian~8! when we set
F→0 andPF→0. Note that whenD,1, as in Fig. 1~c!,
where we considerD50.98, the fixed point at the origin i
hyperbolic; forD.1 the fixed point would be elliptic.

A delicate point about the adiabatic approach is that
adiabatic theory may be expected to work relatively w
only if the maximum value ofc2 throughout the entire dy
namics is much smaller than the critical value for which t
collapse does occur. Indeed, if this is the case, the rotati
frequency around the elliptic point on the (F,PF) plane can
be expected to be larger enough than the characteristic
scale of thec dynamics. But, on the other hand, if the max
mum value ofc2 becomes too close to the critical value, t
rotational frequency tends to diminish and attain values co
parable to thec time scales. The rotational frequency act
ally vanishes at the collapse. From this point of view, Eq.~9!
may not be sufficient to guarantee adiabaticity since it
derived on the basis of linearization procedures, where
fields are assumed to be much smaller than the maxim
values they can actually attain as time elapses. With tha
mind we now proceed to derive a validity condition for ad
baticity that takes into account the nonlinear effects ass
ated with the finiteness ofc2. We shall see that the adiabat
range is in fact much smaller than the one suggested by
~9!.

Let us then examine the adiabatic trajectory of the ellip
point on the (F,PF) plane. Our interest lies in the fact tha
the existence condition for this point provides a reasona
good estimate of the range of validity of the adiabatic
gime; we emphasize that adiabaticity is expected to br
down when the elliptic and hyperbolic points cease to ex
One can use the results from the center manifold theorem
estimate the location of slowly moving fixed points,

]HF

]F U
fixed

5
]HF

]PF
U
fixed

50. ~11!

For a given value ofc, we thus have

eFfixed1b2bA11c22
M

AM222Ffixed

50, ~12!

from which a series expansion yields a relation correct up
quadratic terms
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c25
2

b S 12
1

M2DFfixed1
122b22M21M4

b2M4 Ffixed
2 ; ~13!

as forPF one hasPF,fixed50. We point out that in the ex-
treme adiabatic limit where frequency shifts are vanishin
small,D→1, the first term on the right-hand side of Eq.~13!
coincides with expression~35! of Ref. @9#.

Givenc, the quadratic relation above furnishes two roo
in the variableF if the appropriate discriminant is positive
One of the roots represents the elliptic point, which we sh
call Fell(c

2), and the other represents the hyperbolic po
Fhyp(c

2), both seen in Figs. 1~a! and 1~b!. What must be
done now is to substitute the adiabatic relati
Fell5Fell(c

2) into Eq. ~5! to determine and examine th
slow dynamics on the (c,Pc) phase plane. Assuming for
momentuFu andc2 small, which shall be seen to be true
D is sufficiently close to unity, we drop the quadraticF term
in Eq. ~13! and obtain

Fell'
1

2

M2b

M221
c2, ~14!

which shows thatF,0 if M,1. Therefore, in the presen
approximation thec dynamics is commanded by the effe
tive potential written, apart from a global multiplicative con
stant, as

Veff~c!5
1

2
~D21!c21

1

8 S 11b2
M2b

M221Dc4. ~15!

It is thus seen that near the ion acoustic resonance w
M'1, the electric-field potential response satisfi
uFu@c2 and essentially determines the adiabatically sa
rated value of the laser field

cmax
2 '4

~D21!~M221!

b
. ~16!

The approximation we have used in Eqs.~15! and ~16! as-
sumes that the quadraticF term in relation~13! is much
smaller than the others. This is true only if one is sufficien
away from that situation where the discriminant vanish
causing the collapsing of elliptic and hyperbolic points. Ne
the collapse, in particular, the adiabatic approximation is
pected to break down. GivenM andb, use of Eq.~16! and
the self-consistency requirement of a non-negative discri
nant for relation~13! finally yields a complicated relation
that can be used as an estimate for the critical value
D,Dcr, below which approximation~14! is no longer valid,

D,Dcr[
2~2417 b18M21bM224M4!

4 ~122 b22M21M4!
'
71M2

8
.

~17!

As D starts to get too close toDcr the adiabatic approxima
tions are expected to get poorer and poorer. Condition~17! is
a rough estimate that could be refined with more deta
algebraic work. However, we shall take it as sufficiently a
curate and complete for our purposes. In any case, the
mate answer is yet to be given by numerical work, as we w
do next.



e

i
th
of

ol

te

n

nt
le

r
.
th
Eq
d

a

re
ct
ts
ca

a
T
be
il-

e
f

e

l
-
f

y
nt
rly
but
een,
n

-
the
the
f
tial

, a
en-
r-
nds.
re-

t
the
uces
e
n,
oes
e-
ss

the

55 3427NONINTEGRABLE INTERACTION OF ION ACOUSTIC . . .
III. TRANSITION FROM ADIABATIC
TO CHAOTIC REGIMES

A. Testing adiabaticity

In all the following numerical applications we us
b5100 andM50.9, which yieldDcr'0.976. We promptly
conclude that the validity range for the adiabatic regime
quite narrow, as a matter of fact, much narrower than
range predicted by Eq.~9!. Indeed, for the chosen values
b andM and considering overdense plasmas, Eq.~9! basi-
cally imposes no essential restriction on the value ofD, a
failure of the linear theory as mentioned before. In the f
lowing we shall see that the estimate based onDcr , Eq. ~17!,
is much more accurate than the one based on Eq.~9! and that
the destruction of the adiabatic regime is in fact associa
with a transition to chaos.

Before examining the validity ranges and the transitio
let us first perform some initial simulations of Eqs.~5! and
~6! to make sure that the adiabatic regime is in fact prese
condition~17! is safely observed. To do so we start a sing
initial condition with D50.99, and with c5PF50,
F50.0005, andPc50.0024 such thatH511M2. We plot
the time series forc(j) andF(j) in Fig. 2. In the figure we
see thatF undergoes a fast oscillatory motion, whilec
evolves in a much slower time scale. The adiabatic featu
can be visualized also on the (c,Pc) phase plane as in Fig
3. In the figure we compare three solitary trajectories:
exact trajectory, the adiabatic trajectory calculated from
~5! under the assumption~14!, and the trajectory calculate
from Eq. ~5! under the assumptionF→0. The adiabatic tra-
jectory yields a fairly good approximation to the actual tr
jectory. Here we useD50.98. This chosen value ofD is
slightly smaller than in Fig. 2 because it allows a clea
view of the differences between adiabatic and exact traje
ries. For values ofD closer to unity the approximation ge
better and better until such a point where no distinction
be appreciated.

B. Transition

Now the question is what happens as the parameters
varied beyond the validity range for the adiabatic regime.
simplify the discussion we shall focus attention on the
havior of the system asD decreases. As our system is Ham

FIG. 2. Time series in the adiabatic regime:M50.9, b5100,
andD50.99.
s
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tonian @see Eq.~8!# with two degrees of freedom, we mak
use of the Poincare´ map methodology and plot the pair o
phase variablesF and PF each time Pc50 with
dPc /dj.0. Several initial conditions are launched with th
numerical values forF(j50) distributed within a small
range typically satisfying20.001,F(j50),0.001. Simi-
larly to the initial simulation presented before, for all initia
conditions we always takec5PF50 and calculate the cor
responding initialPc from the constant numerical value o
the HamiltonianH511M2. This kind of launching condi-
tion initially places the system in the vicinity of the solitar
solution, which is the solution containing the poi
F5PF5c5Pc50. In integrable cases the ensuing nea
solitary trajectories progress in fact as trains of solitons,
even in the nonintegrable cases where solitons are not s
the trajectories still cross thePc50 plane several times, a
essential condition for the construction of the maps.

We start by displaying in Fig. 4~a! the map obtained when
D50.98. For such a value ofD the adiabatic regime is ex
pected to prevail. In agreement with that, what is seen in
plot is a set of regular orbital concentric curves. Note that
elliptic point appears to be located at a negative value oF
simply because this is the value of the electric-field poten
when the recording conditionsPc50, dPc /dj.0 are satis-
fied. Now if one starts to decreaseD the transition to chaos is
expected to occur. Let us move on to Fig. 4~b!, where
D50.975. As anticipated from the analytical estimates
considerable amount of chaotic activity can already be id
tified. The central region of the map is completely su
rounded by a blend of stochastic orbits and resonant isla
In particular, it appears that the soliton solution that cor
sponds to the central fixed point no longer exists. In Fig. 4~c!
we enlarge part of Fig. 4~b! to show details of the resonan
islands. These small remaining regions of regularity of
phase space are then totally suppressed when one red
D further below. In Fig. 4~d!, for instance, we consider th
caseD50.97 to show a deep chaotic regime. In conclusio
a complete destruction of the regular trapping region d
indeed occur asD decreases. But if there is no trapping r
gion, how would the trajectories behave? We will addre
this issue next.

FIG. 3. Accuracy of the adiabatic approximation tested on
(c,Pc) plane:M50.9,b5100, andD50.98.
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FIG. 4. Transition to chaos forM50.9 andb5100: ~a! D50.98,~b! D50.975, and~d! D50.97.~c! Details of the resonant islands i
~b!.
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C. Asymptotic states beyond the transition

We can actually see some persistency in chaos only
those intermediary situations whereD is not too close to
unity, but not too small. Indeed, ifD becomes sufficiently
small, sayD,Dcr , no trapping region is effectively forme
on the (F,PF) plane. Even initial conditions originally
launched within the trapping region predicted by the ad
batic theory whenc50 do not remain there. As a matter o
fact, the trajectories are eventually ejected into unboun
regions of the phase space whenD crosses the validity limits
of adiabaticity. For those cases, chaos would be at mo
transient that would take place during initial instants, bef
ejection. The question to be asked now should be on
configuration of these unbounded orbits. What we have
served is that once the trajectory escapes from the trap
region in the ion acoustic phase space, it starts to follow
open flow lines of Fig. 1. This is confirmed in Fig. 5~a!,
where we show a continuous plot displaying a freed traj
tory that was started withD50.97 andF(j50)50.0001
@Figs. 5~a! and 5~b! are not Poincare´ maps; the trajectory
points are periodically recorded with a small but const
time step#. The fact that the subsequent trajectory evolv
along the flow lines implies thatF gets more and more nega
tive. Now, if one considers Eq.~8! one readily sees tha
regardless the value ofc,
or

-

d

a
e
e
b-
ng
e

-

t
s

lim
F→2`

H5
Pc
2

2b2 1
Db

2
c22

PF
2

2
1MAM222F. ~18!

In other words, laser and ion acoustic fields become dec
pled in this limit. SinceDb.0, the corresponding dynamic
of the laser field must necessarily become that of an undri
harmonic oscillator. This is what is shown in Fig. 5~b!,
where we project the same dynamics of Fig. 5~a!, now on the
(c,Pc) phase plane. After a certain amount of time follow
ing a figure-eight shape like the ones seen in Figs. 1~c! and 3,
there is a dynamical transition to the circular shape so ch
acteristic of the harmonic oscillator. The instant of the tra
sition coincides, as it should, with the moment of ejecti
seen in Fig. 5~a! and occurs approximately after 30 cycles
the laser wave in its initial figure-eight phase trajectory. A
other interesting point connected to this asymptotic stat
that asF→2`, the particle density becomes very small@see
Eq. ~7!#. Noticing thatF,0, the ponderomotive field cre
ated by the laser induces an initial potential well in which t
interior of the ion fluid undergoes acceleration, thus beco
ing less dense. If the amplitude of the laser is too large
process is unstable and never arrests. When the dens
low the laser becomes an almost standing wave with a sm
propagation velocity of the crests (V!c).
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D. Role of relativistic effects

Our original equation~5! includes full relativistic elec-
tronic nonlinearities. As a final topic it is perhaps interesti
to discuss the role of these relativistic nonlinear effects
compared to ponderomotive nonlinear effects.

What we find here is that while in the adiabatic regim
saturation is essentially governed by ponderomotive non
earities. This is the basic conclusion associated with
~16!. Now we would like to know whether or not relativisti
effects grow in importance in chaotic regimes. To this e
we perform two pairs of simulations, which are displayed
Fig. 6. In the upper panel of each pair we depict time se
for F(j) considering exact fully relativistic nonlinear dy
namics. In the lower panel we consider the time series w
relativistic mass correction suppressed. It is seen that in
adiabatic regime of Fig. 6~a!, where we considerD50.98,
relativistic effects are not prominent, as both figures are
most identical. On the other hand, in Fig. 6~b!, where we
considerD50.97, relativistic effects are of relevance. I
deed, in the time series of Fig. 6~b! we see that for the par
ticular initial conditions we use, the nonrelativistic trajecto
undergoes much earlier ejection from the initial trapping
gion. For other initial conditions, the escape order may

FIG. 5. Asymptotic states on the phase planes.~a! The escaping
trajectory and~b! the circular trajectory appear on the respect
phase planes after approximately ten figure-eight cycles of
c,Pc variables:M50.9,b5100,D50.97.
s

,
-
q.

d

s

h
he

l-

-
e

reversed and the nonrelativistic trajectory may be ejected
ter the relativistic one. What is really remarkable here, how
ever, is that even in our case of small field amplitudes whe
relativistic effects are small, relativistic and nonrelativisti
trajectories may largely differ in chaotic regimes, the reaso

e

FIG. 6. Influence of relativistic nonlinearities on the dynamics
In the lower panel of each part the relativistic effect is artificially
suppressed.~a! Adiabatic regular regime withD50.98 and ~b!
D50.97 is taken to produce an escaping trajectory after some tra
sient chaos. It is seen that in the chaotic case one should not disc
relativistic effects.
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for this being the extreme sensibility of chaotic systems
parameter variations.

IV. CONCLUSION

We have performed a nonlinear analysis on the interac
of high-power laser waves with ion acoustic waves in
plasma. We assume stationary propagation in an overd
plasma and consequently show that three generic config
tions take place. If the effective laser frequency is on
slightly lower than the average electron plasma frequen
the ensuing dynamics is adiabatic. The faster varying
acoustic field is adiabatically enslaved to the slowly vary
envelope laser field and the resulting electromagnetic en
lope solitons are likely to exist and remain stable. As o
starts to decrease the effective laser frequency, adiabat
becomes progressively poorer. A blend of confined cha
regions and nonlinear resonance islands are seen on
(F,PF) phase space. Then, for yet smaller values of
laser frequency adiabaticity is completely destroyed. Ini
conditions are rapidly ejected from the trapping region on
ion acoustic phase space and proceed to move along
bounded curves towardsF→2`. In this limit the system
becomes decoupled, the laser field starts to behave lik
vacuum field, and the plasma becomes progressively
efied.

Relativistic effects are moderate in adiabatic regimes,
of considerable relevance in chaotic regimes. We saw
s

u-
o

n

se
ra-

y,
n

e-
e
ity
ic
the
e
l
e
n-

a
r-

ut
at

trajectories with relativistic corrections artificially remove
can largely differ from the exact ones, the reason being
sensibility of chaotic systems to parameter variations.

One general conclusion obtained here is that the par
eter range for the existence of a solitary wave is extrem
narrow. This numerically confirmed fact can be predict
only by nonlinear estimates such as that provided by
~17!, which takes into account the effect of finite values
c2 on the existence of fixed points. Linear estimates such
that of Eq.~9! are much less accurate. Due to this narro
existence range, we have not observed, for instance, do
hump solitons such as those obtained in Ref.@9#. The point is
that according to the calculations done in this reference,
making the appropriate connections and translations betw
the various formulas, double hump solitons exist only wh
D reaches small values,D;0.7. However, for such a sma
value of this parameter, our system has already lost stab
due to the transition to chaos.
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