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Canonical quantization of a two-dimensional model with anomalous breaking of gauge invariance
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%e investigate in detail the operator quantum dynamics of a two-dimensional model exhibiting
anomalous breaking of gauge invariance. The equal-time algebra is systematically obtained by using
the Dirac-bracket formalism for constrained systems. For certain values of the regularization pa-
rameter the system is shown to undergo drastic changes. For the value of the parameter corre-
sponding to the chiral Schwinger model no operator solutions are found to exist.

I. INTRODUCTION

In a recent paper' the interesting possibility has been
raised that in gauge theories involving chiral fermions the
local gauge symmetry present on the classical level may
not survive quantization and may provide an alternative
mo:hanism of mass generation of the vector bosons in
weak interactions. Even if local gauge invariance is bro-
ken on the quantum level, the current coupling to the
gauge field may still be conserved, in which case no incon-
sistency with the equation of motion

a z~"=z"

arises. An example of this is provided by the (1+ I)-
dimensional chiral model defined by the Lagrangian'

4Ft'"F„„—+g[ig+ev trA(1+iy5)]g . (1.1)

At the classical level W is invariant under the local gauge
transformation

A„(x) A„(x)+B„a(x),

(1.2)

-2ie~ea{x}P
P(x)~f(x)e

where

P+ ———,
' (1+its) .

On the quantum level, it was shown in Ref. 1 that the
dynamics of the model is described by the local effective
Lagrangian

~.rt= ' I'""I'—
t .—+ i (~4')(~t 4»

+e(g"" et'")t)„$—A„+ ,' ae A„A", —(1.3)

where a is a constant related to the different regulariza-
tion procedures used for calculating the fermionic deter-
minant. As was pointed out in the above-mentioned refer-
ence, no choice of a can restore the original gauge symme-
try.

The dynamics arising from (1.3) was partially studied in
Ref. 1 for the case a & l. In particular, the solutions ap-
pear to be singular for a = l. A similar statement applies
to the case a =0. It is thus unclear whether the theory
exists for these values of a.

One can convince oneself that the Lagrangian (1.3) de-
scribes a constrained system. Hence, a systematic opera-

tor quantization of the theory can best be carried out us-
ing a Dirac-bracket formalism. As we shall show the
constraints are second class for all values of a, which
clearly indicates that the original symmetry (1.2) does not
survive quantization.

In this paper we have canonically implemented the
quantum dynamics of the model for a &0. The equal-
time commutator algebra studied in Sec. II turns out to be
singular for a =1, while the operator solutions become
singular for a =1 and 0. Hence, these two cases will be
treated separately in the following sections. For the case
a & 1 it is rigorously shown that the equal-time commuta-
tor algebra, abstracted from the Dirac brackets for the
original fields (b and A", can be realized in terms of two
free scalar fields. The above-mentioned singularity at
a =1 now manifests itself in the equal-time commutators.

Although the limit a —+I does not exist, a consistent
quantum theory is obtained by setting a =1 in the La-
grangian given by Eq. (1.3). This case is studied in Sec.
III. One of the peculiar features of the system is that, for
this value of a, the number of constraints doubles and
hence one is led to a completely new equal-time commuta-
tor algebra. The theory remains a second-class theory and
therefore the local gauge symmetry remains broken.

For a ~1 the model develops tachyons. On the other
hand, the equal-time commutator algebra possesses a
well-defined limit a ~0. Nevertheless there exist no
operator solutions compatible with the equal-time com-
mutator algebra for a =0, as we shall demonstrate in Sec.
IV. Some final remarks and the conclusions are contained
in Sec. V.

Qf= fjo—0

~,=F"=a'A ' —a'A',

BP+e(go„eo„)A—", —

(2.1)

(2.2)

(2.3)

where 0& is the primary constraint. The total Hamiltoni-
an Hz following from (1.3) in the standard way is

Hz H+ I dy'g (y')no——(y'), (2.4a)

where

D. CANONICAL QUANTIZATION FOR a & 1

From the Lagrangian (1.3) we obtain for the momenta
canonically conjugate to the coordinates A, A ', and (()
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—em~(go„—eo„)A"—e(gi„—ei„)(B'P)A" (2.4b)

and g (y ') is a (so far arbitrary) Lagrange multiplier.
Following the algorithm of Dirac, we find that the re-

quirement of persistence in time of the primary constraint
leads to the existence of the secondary constraint

Q, =a'~—, + ae'a' e'(g— e)—a "+e~& ea'—y=o.
(2.5)

A"= — [8'P+ (1—a)ei'"BP —ad'"8 Jr ],
ae

where

(2.9)

(2.10)

The most general solution to these equations can be shown
to be'

IQi(x'), Qq(y') I = —e (a —1)5(x'—y') (2.6)

In the case a & 1 no new constraints are generated by re-
quiring persistence in time of this secondary constraint.
Indeed, since the Poisson brackets (2+m )o =0,

Eh =0,
(2.1 1)

(2.12)

does not vanish for a & 1, the constraints are second class,
and hence the persistence in time of Q2-0 merely serves
to determine the Lagrange multiplier g . The nonvanish-
ing of (2.6) implies that the local gauge invariance (1.2)
has been broken at the level of the effective Lagrangian
(1.3). One might erroneously conclude that for analogous
reasons the local gauge symmetry remains unbroken for
a = 1. However, this is not so, as will be shown in the fol-
lowing section.

The canonical quantization of the theory is achieved by
abstracting the equal-time commutators from the corre-
sponding Dirac brackets. The nonvanishing commutators
read

[A '(x '), iri(y ') ]=i5(x ' —y
' ),

[P(x'),n~(y')] =i5(x ' —y'.),
[A (x'),A'(y')]= 8„'5(x' —y'),

e (a —1)

[A (x '),P(y ')]= 5(x ' —y '),
e(a —1)

4

[A (x'),vari(y')]= 5(x' —y'),
a —1

[~0(x'),~,(y')]= ' a.'5(x'-y'} .
e(a —1)

(2.7)

Clg = —e (g""—ei'")B„A„,
CI Al' iFB+ "+acid"—= —e(g""+e"")BP.

(2.8)

We remark that, in particular, all equal-time commutators
involving a constraint vanish.

From (2.7) it follows that operator-ordering problems
exist in the Hamiltonian (2.4b). We ensure the Hermitici-
ty of H by replacing ordinary operator products by sym-
metrized products. One can then easily show that the cor-
responding Heisenberg equations of motion together with
the constraints are completely equivalent to the Lagraage
equations of motion derived from (1.3):

a 2 2

PP2

a —1
(2.13)

Although cr and h are free fields they may not be indepen-
dent. Their precise interrelationship is determined by the
initial conditions, i.e., the Lagrangian version of the
canonical equal-time commutators (2.7} (including the
vanishing ones). The commutators we shall need are

[~'(x'),~'(y')]=, ' a,'5(x' —y'),
ei(a —1)

[A (x'),P(y')]= 5(x' —y'),
e(a —1)

[Ao(x'), BoA'(y')]= 5(x' —y'),

[~'(x'),a'~'(y'}]=i 1—, a„'a,' 5(x' —y'),
e (a —1)

[A (x'),8 P(y')]=0, (2.14)

[A '(x '),8 P(y ') ]= — 8„'5(x ' —y '),
e(a —1)

[P(x'),8 A'(y')]= 8,'5(x' —y'),
e(a —1)

[P(x '),3 P(y ') ]=i 5(x ' —y '),
a —1

[aors(x '),a'y(y ')]=0 .

[h(x'},h(y')]=0,

[h(x'), 8 h(y')]=i5(x' —y'),
and o satisfying

(2.15)

Using the solution (2.9) and (2.10), it follows from the
above commutation relations that o and h are in fact in-
dependent fields with h satisfying standard canonical
commutation relations
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[cr(x'),o(y')) =0,

[o(x'),a'~(y')]= ' 5(»' —y') .
a —1

(2.16}

From here and (2.10) it follows that P and h are not in-
dependent fields.

This algebra provides a Fock-space realization for the
solution (2.9) and (2.10), and it is a simple exercise to
sho~ that

(0
~
T[A&(x)A "(y}]

~
0}=i —g""+ ai'a" 1 2

a —1 e2 C3

a a "+a"a~
C3

Dz(x —y) +contact terms, (2.17}

which, aside from the contact terms, agrees with the re-

sult of Ref. 1. In (2.17) we have used the notation a"
DF(x —y) is just the usual two-dimensional prop-

agator of a free massless scalar field.
We note that the commutation relations (2.7) and (2.14}

as well as the propagator (2.17) are singular at e =0, so
that the theory does not admit a perturbative expansion in

the coupling constant. In particular, the theory does not

approach a free field theory in the limit e ~0.
Finally we observe that for 0 & a & 1 the theory involves

tachyons. ' Hence, we shall limit ourselves in the follow-

ing sections to a discussion of the singular cases a =1 and
0.

[A (x'),A'(y')]= 2a„5(x —y'),

[A'(x'), y(y')] =—'5(x' —y'),
e

[A (x'),~&(y')]= —a'5(x' —y'),

[A '(x '),P(y ')]= ——5(x ' —y '),
e

[A '(x '),ir~(y')]= ——a,'5(x ' —y '),

[f(x'),np(y')]=i5(x' —y') .

(3.4)

Q2=a'ni e(eA '—+np a'p) =0, —

one obtains the new secondary constraint

(3.1)

m. CANONICAL qUANTIZATION FOR a =1

As seen from Eq. (2.6), the Poisson brackets
IQi(x'), Qz(x )I =0 for a =1. Hence, only two possibili-
ties exist: (a) the theory becames a gauge theory, or (b)
the theory remains second class; then, additional con-
straints must emerge. The first possibility is ruled out by
a simple inspection of the Lagrangian (1.3). Thus, we ex-
pect to find new constraints.

Indeed, by requiring persistence in time of
H[y, &,]= ,' J dx'[~,~,-+(a'y)(a'y)] . (3.5b)

The second term in (3.5a) vanishes strongly and the spec-
trum of the Hamiltonian is that of a free massless field.
From the constraints (3.1}—(3.3) one finds

%'e remark that a11 equal-time commutators involving any
of the constraints vanish. In particular [A'(x'},ni(y')]
=0.

For a = 1 the Hamiltonian (2.4b} can be rewritten in the
following form:

H= H[g, np]

+ J dx'[ —,'Q, Q, +A'a'Q, —(A'+A')Q, ], (3.5a)

where

03=+)-0, (3.2)

which expresses the vanishing of the field tensor. In turn,
the condition a Qi-0 leads to

Q =e(A +A ')+(eA ' np+O'P}=0—. (3.3)

Since

I Qi(x '),Q4(y ')
) ~0

the requirement 8 Q&-0 just determines the Lagrange
multiplier in (2.4a). Therefore, there are no further con-
straints, and one easily verifies that all constraints are
second class. This drastic change in ihe constraint struc-
ture evidently is hnked to the singular behavior of the
equal-time algebra (2.7) in the limit a = 1.

Proceeding as in Sec. II, we obtain this time for the
nonvanishing equal-time commutators the following ex-
pressions:

A'= —A'= ——a,y,e
(3.6)

J":aqF&"= e—A" e(g —~+ a~—)a~/,

0/=0 .

From (3.6) and (3.7) one sees that

(3.7a)

(3.7b)

(3.8)

which is in agreement with (3.2). Hence, the quantum
theory exists for a =1, and it cannot be obtained as the
limit a-+1 from the theory discussed in Sec. II. In par-
ticular the A& propagator turns out to be given by the fi-

where a+ denotes the derivatives with respect to the
light-cone variables x+-=x +x'. Since P is a massless
free field, Eq. (3.6) shows that A" is a regressive wave

propagating with the velocity of light. The Lagrange
equations of motion implied by (3.4) and (3.5a) are
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nite result
4

(0
~ T[A "(x)A "(y)]

( 0)=—,(28"8"+cV'8"+8"8")

XDF(x —y), (3.9)

Using (4.8}and (4.5), we obtain for A" in (4.4)

A (x)= —,
' x f(x+)+ f dy g(y ) +8 h(x),

(4.11a)

whereas the limit a~1 of the propagator (2.17) does not
exist.

r

A'(x)= ——, x f(x+)+ f dy g(y } +8'h(x} .

(4.11b)

IV. THE CASE a =0

CI{(}= —e(g""—et'")B„A„,
aW" —a"(a~")= —e(g""+W")aP .

(4.la)

(4.1b)

It is interesting to note that, even though on the level of
the effective Lagrangian (1.3) with a =0 the original local
gauge invariance (1.2) is completely broken, there exists a
residual gauge invariance on the level of the equations of
motion (4.1) corresponding to the transformations

3"~A"+cFA, CIA=0,

a~+W"a~, ZA=O.

From (4.1a) and (4.1b) it immediately follows that

CI{(}=0,
a a„=e'"a„~„.

(4.2a)

(4.2b}

(4.3a)

(4.3b)

To look for solutions of Eqs. (4.1) we make use of the fact
that in 1+ 1 dimensions A& can always be written in the

~~=a"a~+a ~, (4.4}

which enables one to recast (4.3b) and the curl of (4.1b) in
the form

Clg =CIA,

C3C3X =0 .

From (4.6) it follows that OX is a harmomc field, i.e.,

The most general solution to Eq. (4.7) is

X= —,
' x f dy+f(y+)+x+ f dy g(y )

(4.5)

(4.7)

(4.8)

where f and g are defined via the general decomposition
for a harmonic field in 1 + 1 dimensions

h (x)=f(x+)+g(x ),
and where h is another harmonic field, i.e.,

Clh =0.

(4.9)

(4.10)

From inspection of (2.6} it follows that the constraint
structure for a =0 is the same as in the case a ) 1. Thus
the equal-time commutators for a =0 are those of Eq.
(2.7) after setting a =0. The Hamiltonian (2.41) with
a =0 leads in a way analogous to that of Sec. II to the
Lagrange equations

Here h(x) is still another harmonic field. Introducing
(4.11}into (4.1b), one finds that the fields f and g are re-
stricted to satisfy the equations

a,g(x+) =O,

B+f(x+)=—eB+Q(x) .

(4.12)

(4.13)

Note that the right-hand side of Eq. (4.13) does in fact
only depend on x+ since, according to (4.3a), P(x) is a
harmonic field and, therefore, admits a decomposition of
the form of (4.9}.

From inspection of (4.11) it follows that translational
invariance cannot be implemented by a unitary operator
in the usual way, unless f=g =0. This leaves A&=P'h
as the only possibility. However, this mould imply m~ ——0,
which is inconsistent with the equal-time commutator
[2 '(x '), ir i(y ') ]=i 5(x ' —y '), following from (2.7) for
a =0. Hence, no operator solution compatible with the
equal-time commutator algebra exists in this case.

V. CONCLUDING REMARKS

Using the Dirac-bracket formalism we have shown that
the model defined in (1.3) may be systematically quan-
tized within the operator approach.

We have studied the model for all values of the regular-
ization parameter a in the range a)0. For a)1 the
solution to the field equations could be expressed in terms
of two decoupled free scalar fields.

For a =1 the model undergoes a drastic change which
manifests itself in the appearance of new constraints, lead-
ing to a completely new commutator algebra. One of the
new constraints expresses the vanishing of the field tensor.
Furthermore, not only the divergetice of the gauge current
but the current itself vanishes, and thus the model
remains consistent. From the point of view of the original
theory defined by (1.1), the vanishing of the gauge current
is a highly nontrivial effect produced by the interaction.
For a =1 the A& propagator is finite and of course can-
not be obtained via a limiting procedure from that of Ref.
1. An interesting consequence of the particular chiral
coupling chosen in (1.1) is that for a = 1 the A" field only
propagates along the x+ =const branch of the light cone.

The a =0 case is what may be ea11ed the ehiral
Schwinger mode1. It turns out that no operator solutions
compatible with the equal-time algebra exist. Neverthe-
less, a finite A" propagator can be constructed as the lim-
it a~0 of the corresponding propagator for a ) 1. That
this is not in contradiction with the singular behavior of
the field operator A" for a —+0 can be traced to the fact
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that in this limit the field tr becomes a massless field
quantized with the wrong sign, as seen from Eq. (2.18).¹teadded in proof. After this paper was submitted
for publication we learned that a similar analysis of the
cases a ~ 1 and a =1 had been carried out independently
by Rajaraman. s However, the presence of the constraint
(3.3) was overlooked in Ref. 5, thus leading to the errone-
ous conclusion that there was some residual local gauge
freedom left in the theory for a =1. This mistake was
recognized by R. Rajaraman (private communication). A

brief comment on this point has also been included in a
recent paper of the same author.
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