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In the present paper we present a detailed analysis of quantum effects in the spin-glass transition 
as described by a quantum Heisenberg analogue of the Sherrington-Kirkpatrick model. The spin 
operators are represented in terms of two fermion fields and the problem is reduced to that of n fer­
mion leveis at one site in a random time-dependent field and with an interaction delocalized in time. 
It is shown that within a Hartree-Fock approximation in a replica-symmetric theory one obtains a 
mean-field description of the transition with satisfactory zero-temperature properties. The transi­
tion is described by two order parameters: the static magnetic susceptibility and the spin-glass order 
parameter. The saddle-point equations obtained in this work are analogous to those of Sommers for 
a theory of classical spins. 

I. INTRODUCTION 

1t is the purpose of this paper to present a detailed 
analysis of quantum effects in the spin-glass transition 
and to show that within a simple Hartree-Fock approxi­
mation in a replica-symmetric theory one obtains a 
reasonable description of the transition with satisfactory 
zero-temperature properties. 

The spin-glass transition is described in the mean-field 
approximation by the model of Sherrington and Kirk­
patrick 1 (SK) for classical spins, with infinite-range ran­
dom exchange forces that couple ali pairs of spins in the 
system. Current theories may be roughly classified along 
the following lines. 

(i) Static replica theories based on the replica method1•2 

to evaluate the configurationally averaged free energy. 
The replica-symmetric SK solution yields a negative en­
tropy at zero temperature, and it was shown later by de 
Almeida and Thouless3 that this replica-symmetric solu­
tion is unstable below Te. Since then, several theories 
with replica-symmetry breaking have been proposed.4•5 In 
particular, the solution to the model of De Dominicis and 
Garel5 (DDG) yields a positive entropy although it 
remains unstable below Te, and it is similar to 
Sommers's6 solution to the T AP equations, which we dis­
cuss below. A common feature of theories with broken 
replica symmetry is the occurrence of, at least, two order 
parameters, and the breakdown of the Fischer relation 
X={JO-q), for X the static magnetic susceptibility, q is 
the spin-glass order parameter, and {J = 1 I k B T. 

(ii) The static theory of Thouless, Anderson, and Pal­
mer7 (TAP) avoids the use of replicas by deriving modi­
fied mean-field equations for the random local-spin expec­
tation values. Sommers6 obtained a solution to the config­
urationally averaged T AP equations in terms of two order 
parameters which yields a positive low-temperature entro­
PY and also a breakdown of the Fischer relation. A de­
tailed analysis of different static theories is given in Ref. 
8. 

(iii) Dynamic spin-glass theories9• 10 that also avoid the 
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use of replicas and assume a Langevin model for the spin 
dynamics. The spin-glass order parameters of Ref. 9 are 
the time-persistent terms in the average spin-correlation 
function and the average response function, and 
Sommers's static solution is recovered with certain as­
sumptions on the dynamical behavior of the system in the 
thermodynamic limit. 

In contrast to the enormous amount of work done on 
classical spin systems, quantum effects in spin glasses 
have been relatively slightly studied until now .11 - 14 Al­
though quantum effects are expected to be irrelevant in an 
ordinary phase transition at finite temperature, the spin­
glass case may be different because time enters naturally 
in a quantum theory through the equation of motion of 
spin operators, and one may conjecture to make contact 
with the dynamic theories mentioned in case (iii). In fact, 
a natural starting point for the investigation of a quantum 
theory is to express the partition function as a functional 
integral, 12•14 with the Matsubara "time" O~ T ~ {J as a new 
variable, and to use the replica method to obtain the aver­
aged free energy. The resulting functional has a certain 
formal similarity with the dynamic generating functional 
for classical spins,9 except that in the quantum case one is 
forced to deal both with time and replicas. 

In a previous paper14 we studied a simple model ob­
tained by setting g = 1 in the Hamiltonian of Eq. (1). 
Without realizing that in this limit the model is, in fact, 
exactly soluble, the problem was treated in the "static" 
and replica-symmetric approximations as in Ref. 12. This 
does not invalidate the results, because the "static" ap­
proximation coincides with the exact solution, as shown in 
Sec. IV. We analyzed this solution also below Te to show 
explicitly that it almost reproduces the SK results, except 
for the occurrence of two order parameters and a break­
down of the Fischer relation as in the more accurate 
theories for classical spins discussed in cases (i)-(iii). 

In the present paper we study the quantum Heisenberg 
spin glass by representing the spin operators as bilinear 
combinations of two fermion fields. We show that the 
configurational averaged free energy can be expressed as 
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an effective "free energy" for localized fermions in a ran­
dom time-dependent field and with a retarded two-body 
interaction, averaged over the Gaussian distribution of 
random fields. Replica symmetry is assumed throughout 
this work and the effective "free energy" can be written as 
a stationary functional of renormalized fermion propaga­
tors. In the simple Hartree-Fock approximation the 
saddle-point equations are analogous to those of the 
theories of Sommers6 and DDG.5 The solution yields a 
positive entropy at low temperatures, but we suspect it, 
without proof, of being unstable below Te, as in the DDG 
model.5 

In Sec. 11 the general formal theory is described, the 
Hartree-Fock approximation is discussed in Sec. III, while 
a detailed discussion and comparison with other works are 
left for Sec. IV. 

11. GENERAL FORMULATION 

Quantum effects in spin glasses are studied11•12 by 
means of the Hamiltonian 

(1) 
i,j 

in the Heisenberg limit g = +. The spin operators satisfy 
the commutation rules [ur ,aj] = +&11u(, [ui ,uj] 
=2&ijUÍ· 

We choose to represent the spin operators by bilinear 
combinations of fermions with spin, localized at lattice 
sites i, 

uf=t(l/Jrrl/Jit-1/J;ll/JH)' 
(2) 

Uf=l/Jrrl/JH=(ui)*' 

where the operators 1/J:,l/Jis satisfy fermion anticommuta­
tions rules and s = t or l. Expression of the spin opera­
tors in terms of fermions introduces a difference between 
the previous work 11 - 13 and ours. While in the aforemen­
tioned papers the spin eigenstates at every site belong to 
the same irreducible representation I ms ) , in the present 
work the eigenstates are labeled by the eigenvalues n;s of 
the occupation number operator 1/JZ 1/J;s, n;s =O or 1, and 

the eigenvalues of uf may be s (s + 1) = t or zero. 
As in the SK model, 1 the random J11 are infinite 

ranged, with a Gaussian probability distribution of zero 
mean and variance [J1]1cA=J24/N, N being the number 
of sites. We indicate by [ · · · ]CA the average over dii. 

The grand-canonical partition function is expressed as a 
functional integral: 15 

Z= f gl/Jtl/Jexp ~~Al+ ~{3J1i~S1 (v)·S1(-v)), 
J I,J v 

OJ,S 

Sj( v)=+~ [ 1/Jjr<w +v)l/Jir(w)-1/Jjl(w +v)l/Jil(w )] , 
O) 

sJ-(v)= ~ 1/Jjl(w+v)l/Jir(w)=Sj(v)-iSJ(v), 
O) 

(3) 

(4) 

(5) 

(6) 

(7) 

where JL is a chemical potential to be fixed by the condi­
tion of having, on the average, one electron per site, 
w=(2m + Hrr and v=27rl, are the Matsubara frequencies, 
/3= 1/kB T, and 1/J:(w ), 1/J;s(w) are complex anticommuting 
Grassmann variables that satisfy16 

1/JA. =sA +i7JA,, 1/JÃ =sA -Í7JA. , 

I SA·SA' J = { 7JA.,7JA.' J = {SA.·71A'l =0 ' (8) 

f dsA.= f d1JA.=o, f sA.dsA.= f 1JA.d1JA.=1 . 

In Eq. (8) the index Â. stands for the set (í,s,w). Bilinear 
combinations of Grassmann variables are commuting en­
tities that can be treated as c numbers in Eq. (5); therefore 
we use the replica method12- 14•15 to write the configura­
tional averaged (CA) thermodynamic potential per site: 

1 . (Z 11]çA-1 
fi=- f3'N hm , n-o n 

(9) 

where 

[Z,.]cA= f [TI 91/J!l/Ja )exp ~~Ala+ /32~22 ~. ~.M:!.'<v,v')M:~.(v,v') , 
a j,a v,v a,a 

1,1' 

(10) 

where t =x,y,z and 

M:~·(v,v')= ~Sfa(v)Sf~·(v')=M!::.'( -v,-v'). (11) 

Here, a=O, 1, ... , n is the replica index and Ala is the same as in Eq. (6) with the a-dependent variables 1/J'fs*(w), 
1/f]s(w). The reduction to a one-site problem is achieved by the introduction of complex fields, 

Q:!:.·< v,v') = [Q:;:;.( -v, -v')]* , (12) 

in order to split the M*M term in Eq. (10) by Gaussian integration, with the result in the thermodynamic limit from Eq. 
(9), 
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{Jfi= lim _!_ +, ~ ~ I Q!,.(v,v') 1 2-lnA] , 
.. -o n 8{3 J a,a' "·" 

t,t' 

A= f ~t/l*tf!exp ~~A~+ ~.~[Q!,.(v,v')S~(-v)S~.(-v')] ]· 
a a,a v,v' 

t,t' 
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(13) 

(14) 

Here, A~ and S~(v) refer to one site and they are given by Eqs. (4)-(7), respectively, with the site indexj replaced by 
the replica index a. The Q!,· in Eqs. (13) and (14) satisfy the saddle-point equations: 

+,Q!,.(v,v')= tt' ô lnA=(S~(v)S~·(v')), (15) 
4{3 J [ôQ00•(v,v')]* 

where ( · · · ) in Eq. (15) indicates a thermal average with the effective single-site partition functional A of Eq. (14). 
A replica-symmetric, time-translational-invariant, isotropic solution to Eq. (15) is of the forro 

n' ') p2 2[X(v) ]~;: ~ Q00 (v,v =4 J - 2-+q(v) uv,-,Ut,t', 

(16) 

Q~~·(v,v')=4{32J2 [q(v)- X~v) ]Bv,-,Ôt,t' for a=!=a', 

whereX(v) and q(v) are necessarily real parameters. It is obtained by introducing Eq. (16) in Eqs. (13)-(15), 

{Jfi= l2{32J 2 ~X(v)q(v)- lim [_!_lnA] , (17) , ,._o n 

where A is now given by 

A= f ~t/ltt/Jexp ~A~+4{32J2 ~q(v)~S0(v)·~S0·(-v) 
a v a a' 

+4{3212 ~ X~v) r~Sa(v)·Sa(-v)- ~ Sa(v)·Sa·(-v) l 
v a a#:a' 

a, a' 

The term affected by q(v) in Eq. (18) may be split again by Gaussian integration to obtain 

A= f'"' [n ds,d7, ]exp [-+ ~ lv,l2je-"õp' 
-co " (21T) " 

where the components of the vector v, are 

v~=s~+i7J~=<v:_,>•, 

e-IIÕP= f ~t/Jtt/Jexp [ ~ A 0 +4{32J 2 ~X( v)~ (Ô00·-+ lSa(v)·Sa·< -v)] , 
a v a.a' 

and 

(I),S , 

(18) 

(19) 

(20) 

(21) 

(22) 

What was obtained in Eq. (21) is the partition functional for a localized system of n fermion leveis in a time-dependent 
field, 

2h(-r)=2{3J ~ v'2q(v)v,e;...,., 
, 

and with a two-body interaction delocalized in time: 

t/1!1a(T)t/J820(T)y::· s' s' U(T-T')t/J:. 0 h')t/J,• 0 ,(T'), 
I 2• I 2 I 2 

where 

(23) 

(24) 



562 ALBA THEUMANN 33 

v 

The saddle-point equations give, from Eqs. (17) and (18), 

3X(v)= lim [.!_(l:Sa(v)·l:Sa·(-v)) I • 
n-o n a a' 

where ( · · · ) indicates a thermodynamic average over the 
partition functional A of Eq. (18). It is clear from Eq. 
(27) that X(v) is the configurational averaged response 
function to a time-dependent externai field Phexeivr, and 
then 

3X(v)= X( v) 
p 

for X( v), the dynamic magnetic susceptibility. 

(29) 

The thermodynamic potential in Eq. (17), together with 
Eq. (19), has the more general expression compatible with 
isotropy, time translational invariance, and replica sym­
metry. 

The results in the Hartree-Fock approximation will be 
discussed in the next section. 

III. APPROXIMATION OF STATIC FIELD 
ANO INSTANT ANEOUS INTERACTION 

We present in this section the evaluation of the thermo­
dynamic potential in Eq. ( 17) within the simple approxi­
mation 

q(v)=q8v,O' 

X(v)=X for all v. 
(30) 

The problem then reduces to a system of n fermion lev­
eis at one site in the presence of a static magnetic field 

2h=2(3.11/'2q v (31) 

from Eqs. (23), where v=v0, and, with the instantaneous 
two-body interaction, 

(32) 

from Eq. (25). 
The action A in Eq. (22) can be written within this ap­

proximation as 
-t -1 -Aa= l: t/Ja((J))Qo ((J))t/Ja((J)), (33) 

"' 
where 

(34) 

and 

(25) 

(26) 

(27) 

(28) 

[
i(J)+f.l-hz -h_ ] 

YÕ 1((JJ)= -h+ i(J)+f.l+hz ' (35) 

with h± =hx ±ihy- _ 
The linked-cluster theorem 17 allows us to write n in 

Eq. (21) as 

nÕ= -n l:{TrlnQ- 1((JJ)+ Tr[Q((JJ) ~((JJ)]j +R , (36) 

with 

[~o+~z ~((JJ)= ~+ (37) 

(38) 

and R is the sum of all closed skeleton diagrams with the 
interaction of Fig. l(a) and the full propagators Gss·((J)) 

a 

a 
(c) 

FIO. 1. (a) Retarded two-body interaction U;"(T-T'); (b) 
and (c) Hartree and exchange contribution to lntfl, respectively. 
Solid double lines and wavy lines indicate a dressed propagator 
and the interaction of (a). 
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obtained by inverting the matrix in Eq. (38), with the ob­
vious notation: 

(39) 

The expression for Õ in Eq. (36) is stationary with 
respect to variations of l:;..(w), À=O,z, + ,-, for fixed I-L• 
and self-consistent approximations for the self-energy are 
obtained from the stationary condition: 

õÕ 
õl:;..(w) 

o. (40) 

To lowest order, we approximate R by the two dia­
grams shown in Figs. l(b) and l(c); then l: will be in­
dependent of w. We call 

(41) 

and by using the standard formula17 

i<rJll [ ]-) l: -.e--= l+e" , 
,., IW-X 

(42) 

we obtain, from Eqs. (37) and (38), 

1 1 (fl-l:ol I I Bo=T(On+Bu>= 2D (e +cosh h+l: ) , (43) 

8 = h+l: sinh I h+l: I 
I h+l: I 2D ' 

(44) 

where 8 is a vector of components 8z=i-<8u-Onl, 
O_= On, 8 + = 8l! in the notation of Eq. (39). Here, 

D=cosh(~-L-l:o)+cosh I h+l: I , (45) 

and for any vector M, 

IM I =<M}+M+M_)112 • (46) 

The direct (Rd) and exchange (Rex> contributions to R 
in Figs. l(b) and I( c), respectively, give, in the limit n --+0, 

and hence from Eqs. (36), (47), and (48), 

{3Õ= -ln0+e2<,.-l:ol +2e(f1-l:olcosh I h+l: I) 

-2l:o80 +21:·8+{32J 2X(3lfo-5181 2> • (49) 

The stationarity condition in Eq. (40) yields the self­
consistent equations 

l:0 =3{32J 2X80 , (50) 

1:=5f32J 2X8. (51> 

At the stationarity point, Õ is given by 

{3Õ= -ln(l +/<fl-l:ol +2e (fl-l:olcosh I h+l: I ) 

1 ""2+ 1 1""12 . (52) 
3{32J2X ~o 5{32 J2X ~ 

What was obtained in Eq. (52) is the effective thermo­
dynamic potential, per levei, for the system of n fermion 
leveis. Õ is an explicit function of 11- that satisfies, for 
fixed 11- and from Eq. (43), 

aõ 
a/-L =-28o' (53) 

and Eq. (53) defines 80 (or .1:0) as a function of 1-L· The 
free energy should be stationary functional of 11- and satis­
fy, for fixed .1:0 (or 80), 

ai' =O, ai' 
a11- aeo = 211- · (54) 

We want to keep the average particle number per site 
equal to unity, that is 

(55) 

and this introduces a further constraint because Eq. (55) 
implies a functional relationship: 17 

(56) 

The free energy is then defined through a Legendre 
transformation and a Lagrange multiplier: 

f3F=f3Õ+2ecjL-MÕ, 

where À is determined through 

dF =O 
di-L 

and the constraint 8Õ = +. 
Equation (58) gives 

À=!-LI(}o, 

and we obtain, from Eq. (57), 

f3F=f3Õ+e(jL . 

(57) 

(58) 

(59) 

(60) 

Equation (60), together with Eqs. (50), (52), and (56), 
give, for the free energy, 

{3F= -ln(2+2cosh I h+l: I)+ 21 2 1.1:1 2 , (61) 
5{31 X 

where l: satisfies Eqs. (51) and (44). A solution is of the 
form 

(62) 

and then all the vectors are collinear and Tf is the solution 
of the equation 

rt=ff32J 2Xtanh [ {3J~v+rt ] , (63) 

with v= I v I from Eq. (31). 
Introducing Eq. (61) in Eq. (19), we obtain, for the sys­

tem free energy in Eq. (17), 
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where we used Eq. (30), and 11 is the solution of Eq. (63). 
The saddle-point equations give, for q and X, 

12X = J."" 2_!É!__e -v212 v3 tanh [ {3JVlq v +1l ] 
o V21T {3J V2q 2 ' 

(65) 

12 = J."" 2_!É!__e-v2!2 [~ j2!C. 
q o V217 {32 12X 5 

(66) 

Equations (64)-(66), together with Eq. (63), are similar 
to those obtained previously by Sommers6 and De Domin­
icis and Garel5 for spin-glass theories of classical spins. 
The solutions are as follows 

(i) T :::0. To leading order we obtain 

X=t(1Tf321 2ql-l/2, 
(67) 

12 = 2_- 16v'3 e -fJJvSJ-,./3;, 
q 4 vs;{3J ' 

F _ _ JVS _ sv'3 e -fJJv'S;-,./3;, 
- V1T3 {32 1 v1i5 ' (68) 

S =~e -fJJVs;-,./3;, . (69) 
1T 

(ii) T ~ Te. According to our interpretation of 
3X =X /{3, for X, the static susceptibility from Eq. (29), we 
look for solutions of Eqs. (63), (65), and (66) with X> O. 
To this effect we expand 11 in power series of Vq on both 
sides of Eq. (63) to obtain 

2 11=..!_ 1 {3JVlqv 
5{32 J2X 2 1 _ f {32 1 zx 

1 1 ({31Vlq v )3 . (70) 
24 0 _ tf32J2Xl4 

it follows from Eqs. (70), (65), and (66) that 

12X=l_ 1 _2. !3212 q (71l 
2 1-ff3z1zx 4 (1-ff3212Xl , 

12 =12. {3212 q-22 ({3212)2 q2. (72) 
q 8 (1-f[32J2X)2 8 O-ff321 zxls 

The solution to the equations are, for T > Te, 

q=O, X=----\--z-[4-{16-10{321 2 ) 112]' (73) 
10{31 

while, at T =Te, 

352 (f3cJl2(1- ff3~J2Xc )- 2 = 1 ' 
(74) 

- 1 
X c= f3eJVfõ ' 

which gives f3e =4!1Vfõ. 
For T::; Te we obtain 

(64) 

~=.2_ -6(2)5 +0( 2 ) 
l0/32J2 4 O- fp21 2X)z q q ' 

(75) 

and then 

12 3 1 5 2 - 2 
.r.-;:;10/31=-2 s 2 z_-2q+0(q )=12X+O(q ), 
v 111 1- 4 /3 J X 

(76) 
q~Tc-T. 

It is worth mentioning that the so1ution presented here 
in the criticai region differs from the DDG modeV as ít 
was found in Ref. 5 that both order parameters vanish for 
T> Te. From Eqs. (29) and (74) the susceptibílity X takes 
the va1ue 3/ 1V1õ at Te, a result also found in Ref. 12, 
whíle from Eq. (76) we obtain that, directly below Te, X 
sticks to the constant va1ue 

3 2 X= 1Vfõ +O(q ), T-:;,Tc. (77) 

A similar relation has been previous1y obtained in the 
dynamica1 theory of classical spins18 and in the solution 
of TAP equations for a classical m-vector model 19 with 
m>l. 

IV. DISCUSSION AND COMMENTS 

We have shown that quantum effects are relevant to the 
spin-glass transition in the sense that they allow for a 
replica-symmetric mean-field theory with sensible low­
temperature properties, although we are aware that the 
correct solution cannot be obtained wíthin a replica­
symmetric formalísm. There exist other theories5 that 
yield a positive entropy at low temperatures and they are, 
nontheless, unstable below Te. Our choice of representing 
the spin operators in terms of two fermion fields was dic­
tated by personal preference and it is not essential to the 
results. Ali the equations in Sec. 11 can be obtained 
within the Feynman formalísm used by Bray and 
Moore, 12 and the approximation of Eq. (30) would lead 
also in that representation to the problem of evaluating 
the free energy F of n spins at one síte with an effective 
"exchange constant" 4{32 J 2X, in the presence of a random 
static magnetic field {3JVlq v. A mean-field solution of 
this site problem reproduces our results, as shown below. 
What is essentia1 to the consideration of quantum spins is 
the occurrence of the site "local moment" 11 that follows 
adiabatically the random field through the mean-field 
equation (63), and also that the susceptibility X(v) is an 
order parameter of the theory as in dynamica1 theories of 
classical spins18• 10 and in the m-vector model spinglass 19 

for m > 1. This is not an artifact of the path-integra1 
method, as can be seen by analyzing the simp1e model ob­
tained by settíng g = 1 in Eq. (1). The Hamiltonian is 



33 QUANTUM SPIN GLASS: A REPLICA-SYMMETRIC THEORY ... 565 

now expressed only in terms of the operators o1 that com­
mute among themselves and can be treated as c numbers. 
Functional integrais are not needed in this case and one 
obtains, for the free energy, the analogue to Eq. (17), 

{3F'=2/32J2[(X')2+2q'X')--1- f"' dve-v212ln$', 
VÍ1T -co 

(78) 

where 

q'=(~..aiJ), a=l=f3 
(79) 

x·=(lif.l')-··= ~ [! (I~<?. p 
$'=Trexp[vf3JY2qi(nt -n 1 )+f32J 2X '(nt -n 1 )2] , 

(80) 
ns =1/J!I/Js, ns2=ns . 

The chemical potential Jl vanishes in this case and the 
trace over fermion states in Eq. (80) gives 

$' =2[ 1 +ep2J2X'cosh(f3JV2qiv )] . (81) 

The free energy in Eq. (78) together with Eq. (81) is 
analogous to the SK result, except that also in this case we 
have X ' as an order parameter to be determined by the 
saddle-point equations: 

aF' aF' 
aq' =0, ax· =0. (82) 

Equations (78) and (81) were previously obtained14 by 
using path integrais in the static approximation, and the 
saddle-point equations for X' and q' were solved at Te and 
at low temperatures. For T =0 we found the SK results, 
while for T <Te we obtained the same result as in Eq. 
(77), aside from numerical constants. This result merits 
further discussion. The second order parameter X ' ap­
pears naturally because the g = 1 limit in Eq. (1) does not 
yield the Ising model, namely ois = ± +. As stressed in 
Sec. 11, this is because we are not working within an ir­
reducible representation with s = +. but o1 in Eq. (2) can 

with h as given in Eq. (31). Standard mean-field theory 
gives, for s = +, 

2 
{30= { 2_ -ln[2cosh(f3Jv'2qv+1J)], (84) 

4{3J X 

where 

1J=4/321 2X I (S) I =2f32J 2Xtanh<f3Jv'2qv+17> (85) 

is the solution of ao;a1]=0. Equations (84) and (85) are 

take the values ± + or zero. This does not invalidate the 
theory, as the same result is obtained from any model 
with s > +· Let us consider, for instance, the case s = 1, 
then the operators o1 are represented by diagonal ma­
trices: 

1 o o 
(qj)s=l = O O O 

o o -1 

and (qj)2=1= 1. This is the case in the classical m-vector 
model with m > 1 considered in Ref. 19, where the result 
of Eq. (77) was first obtained. 

In Ref. 13 Sommers studied the quantum Heisenberg 
spin glass within the same formalism that lead to T AP 
equations in Ref. 6. A detailed comparison with Ref. 13 
is difficult due to the difference between both methods, 
but there are some results in common, such as the oc­
currence of the dynamical susceptibility both as an order 
parameter and a retarded self-interaction among local 
spins. In Ref. 13, however, the problem was solved in the 
"static" approximation X(T)=X, while we used the "in­
stantaneous" approximation X(T)=Xô(T) [Eq. (30)]. The 
approximation of Eq. (30) was chosen as the simplest and 
more tractable beyond the full static approximation, dis­
cussed in Ref. 14 for g = 1. 

To clear the doubts about the use made in this paper of 
the fermion representation for spin operators, we now 
briefly discuss the results obtained with our theory within 
a more conventional Feynman formalism. 

The only difference resides in going to the time repre­
sentation and to replace 

f g1/Jt1/Jexp [ f0
1 dT [1/J*(T)~+pi/J*(T)I/J(T) ]] I··· l 

by 

Tr T{· · ·l, 
where I · · · l is a functional of the time-dependent spin 
operators. We will then obtain the same formal results as 
in Sec. 11, and with the approximation of Eq. (30) we ob­
tain, for /30 in Eq. (21), 

(83) 

essentially the same as Eqs. (61) and (63). 
The order parameters of Eqs. (27) and (28) have been 

arbitrarily chosen. If the interpretation of X( v) as a mag­
netic response function is evident, what we obtain for q(v) 
is, from Eq. (28), 

3q (v)=.7([ (S(T)·S(T')) )cA 

+[(S(T)}·(S(T')))cA), (86) 



566 ALBA THEUMANN 33 

where the inner pairs of angular brackets indicate a 
"thennal average" over the time- (or temperature-) depen­
dent functional of A of Eq. (19), and it is assumed expli­
citly that the configurational average restares time 
translational invariance. The definition in Eq. (79) is 
slightly different in order to facilitate comparison with 
Ref. 14. 
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