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Multiband and mass-anisotropy effects in the magnetoconductivity 
of a disordered electron gas 
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We investigate the magnetoconductance of a two-band electron system and a model with effective­
mass anisotropy by means of the method based on the exact electron eigenstates in a magnetic field pro­
posed formerly by us to study a single-band, isotropic system. We show the universality of the results, 
the details of the model being absorbed in properly defined effective diffusion constants, cyclotron fre­
quencies, and lifetimes. 

I. INTRODUCTION 

In a previous publication, 1 referred to as I, we studied 
the magnetoconductivity of a one-band, isotropic, nonin­
teracting electron gas in three dimensions by using the 
exact electron eigenstates in a magnetic field in place of 
the usual semiclassical approximation.2•3 The main result 
obtained was an anisotropic conductivity tensor for aver­
age fields with wc-r..S 1, while the usual isotropic predic­
tions in the semiclassical approximation were recovered 
in the weak-field limit wc-r<< 1, where wc =eB /m 0 is the 
electron cyclotron frequency and -r is the lifetime for elas­
tic scattering. 

In the present paper we investigate the universality of 
the results in I by applying the same method to the study 
of more realistic models in three dimensions. In previous 
work4 the theory of Hikami, Larkin, and Nagaoka5 for 
two-dimensional systems was generalized to multiband 
electron models, and the results indicate that weak locali­
zation effects in these systems are indeed universal in 
terms of properly defined, effective diffusion constants 
and averaged lifetimes. Electron localization in aniso­
tropic two-dimensional systems was studied in Ref. 6 in 
the absence of a magnetic field; there results for the mag­
netoconductivity are not presented. In this work the au­
thors considered that anisotropic scattering is essential to 
obtain the correct observed behavior of the conductivity 
tensor, and within these assumptions they obtain an ex­
pression for the conductivity tensor where all anisotropy 
effects are absorbed in the definition of an anisotropic 
diffusion constant. 

In order to test the universality of these results, we 
study in Sec. 11 the magnetoconductivity of a two-band 
system 7 of noninteracting electrons with the method of 
Ref. 1. We obtain that the diagonal components of the 
conductivity tensor consíst of an ísotropic universal term 
that depends only on an effective diffusion constant as 
predicted in Ref. 4, multíplied by an anisotropic contri­
bution dependent on the band details. In the limit of 
weak fields we recover a universal, isotropíc result as in I. 

In Sec. Ill we analyze with the same method the mag-
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netoconductivity of a model with effective-mass anisotro­
py,6 although we consider only isotropic, s-like impurity 
scattering. We obtain that the magnetoconductivity ten­
sor can be expressed in terms of anisotropic diffusion con­
stants D ~'=f< E pT /m ~') and of an effective cyclotron fre­
quency wc =eB /(mxmy )112, where B is the strength of 
the magnetic field in the z direction, while Ep, -r, and m~' 
stand for the Fermi energy, inverse scattering lifetime, 
and effective mass in the 1-L direction, respectively. Al­
though we consider only isotropic scattering, we obtain a 
universal contribution that scales as the conductivity in 
zero field of Ref. 6, multiplied by the anisotropic term ob­
tained in I for average field strengths. 

11. TWO-BAND ELECTRON MODEL 

We generalize the model of Ref. 7 to describe nonin­
teracting electrons in two nonequivalent bands, in the 
presence of a constant magnetic field B in the z direction. 
The Hamiltonian is, in units where fz=c = 1, 

H=~ {-<ôap12ma)J drl/J;;(r)D;l/Ja(r) 
a,fJ 

+ J drl/J;;(r)Vap(r)l/Jp(r)}, (1) 

where a,/3= 1 or 2 is the band index and vafJ ís the 
scatteríng potential due to random impurities, with zero 
mean and variance: 

( Vap(r)Va'fJ'(r'))=[ roÔatJÔa'fJ' 

+r'(l-ôapH1-ôa'fJ')]ô(r-r'), (2) 

where r o and r· are the strengths of intraband and inter­
band scattering, respectively. 

We also have in Eq. (1): 

D,=V,-íe A 0(r), A 0(r)=( -By,O,O). (3) 

The impurity-averaged quantities are obtained by stan­
dard díagrammatic methods8 and the averaged Green's 
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function Ga13 (r,r';E) is given by the diagrams in Fig. 1, in 
the Born approximation. The off-diagonal components 
G 12 >==O ( r 2 ) and can be neglected; then we get for the di­
agonal ones, following the method in I, 

Gaa(r,r';El=l: tf/f:(r)l/JJ..(r')Ga(n,kz;E), 
À 

Ga(n,kz;E)=[ úJa(n +tl+( 112malkl-Ep 
(4) 

-E-(i /27a)sgn(E)]- 1 , 

where {À J = ( n, kx, kz) indica te the set of Landau quan­
tum numbers and 1/JJ..(r) is the wave function for an elec­
tron of mass ma in a magnetic field. In the following we 
prefer to use the equivalent expression: 1 

Ga(r,r',E)=ei(eB/l)(y+y')(x-x'lga(r-r',E), (5) 

with 

ga(r,E)=eB l: f (dp/21T)e-ipze-eB(x2+y2)/4 
n 

(6) 

In Eq. (4) we indicate by úJa=eB !ma the cyclotron fre­
quency for electrons in each band, and Ln(x) is a 
Laguerre polynomial. lt is very important to remark at 
this point that the wave functions in Eqs. (4) and (6) de­
pend only on the combination úJama =eB and they are in-

+ 
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( b) 
FIG. I. (a) One-particle Green's function in the Born approx­

imation for a two-band system in terms of the intraband and in­
terband scattering potentials r 0 and r', shown in (b). Here ais 
the band index and ã = 2 or I if a= I or 2. 

dependent of the band index. This will allow us to solve 
the integral equation (10) below. The inverse lifetime in 
each band is given by 

(7) 

where ã=2 (1) ifa=l (2) and Na=21TV2Ep(ma) 312 is 
the density of states for the a band. 

Standard linear-response theory8 gives for the diagonal 
components o f the conductivity tensor: 

( )-Lfo d fa , iq·(r'I-rl[ J.L- ~-'*] [D~-' -D~-'*] ~ 1 II ( '· , ) a J.LJ.L q,úJ - 4 E r ,e Dr Dr r =r ' r' '= ·~ aa' r, r ,r,,rl,E,úJ ' 
TT'úJ -w 1 l rl rl r a,a' mama' 

(8) 

where the contributions of the multiply crossed diagrams to the diagonal polarizability IIaa are shown in Figs. 2 and 3. 
These processes are the same as those considered in Ref. 7 in the absence of a magnetic field. The off-diagonal IIaã does 
not present a diffusion pole and it can be discarded. 

We get for IIaa from Fig. 2: 

IIaa(r,r';r'1,r 1 )= G ;;-(r ,r' )G;; (r;;r1 ) +r o f dr2G ;;- ( r,r2 )G ;;- (rú r' )G;; (r;, r 2 )G;; ( r 2,r1 ) 

+ l: f dr3dr2G;;(r,r2 lG;;(r;,r2 lraa'Ka'a"(r2,r3 lra"aG;;(r3,r')G;;(r3,r1), (9) 
a' a'' 

where we introduced the notation r li =r 22 =r o and 
r 12=r21 =r' and G;;(r,r'), G;;(r,r') stand for 
Gaa(r,r',úJ+E), Gaa(r,r',E), respectively. The coupled 
integral equations for Kaa•(r,r') in Fig. 3 can be written 
in a compact 2 X 2 matrix form: 

K(r,r')=K 0(r,r')+ f dr1K 0(r,r1l.I'_K(r1,r'), (10) 

where 

.r.= [ro r' l 
r' ro 

and Ko is a diagonal matrix with elements 

K~a(r,r' )=G ;;- (r,r' )G;; (r,r') 

(11) 

=eieB(y +y')(x -x'lga(r-r',úJ+Elga(r-r',E) ' 

(12) 

where the last equality is obtained from Eq. (5). Just be-

cause the exponential factor in Eq. (12) is independent of 
the band index, we can prove, as we did in I, that the 
solution of Eq. (10) can be written 

K(r,r')=eieB<x-x')(y+y')~(r-r')' (13) 

with ~(r) satisfying the equation 

f ieB(x y -y x) 
~(rl=&(r)+ dr 1~0(r 1 ).[_~(r-r 1 )e 1 1 , (14) 

where ~o is a diagonal matrix with elements 

A~(r)=ga(r;úJ+E)ga(r;E) . (15) 

The solution of Eq. (14) is obtained as in I, first expand­
ing to O ( ( eB )2 ) and then solving for the Fourier trans­
form ~(k). 

We obtain by Fourier transforming Eq. (15): 

A~(k)=27aNa[l-8a) ' (16) 

(17) 
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FIG. 2. Diagonal component of the polarizability as a func­
tion of the vertices K af3 in Fig. 3. The open and solid circles 
stand for r 0 and r•, as in Fig. 1. 

where 
D~ =i-(EF'Talma ), D{f =D~ [ 1 +((L)a'Ta)2 ]-1 (18) 

are the diffusion constants for each band and r a was 
given in Eq. (7). 

We obtain by expanding Eq. (14) to 0((eB)2 ) that the 
Fourier-transformed matrix .ô,.(k) is given to this order by 
the equation 

A(k)=A(k) {t- <eB>z A-1 [ az& r az:6: + a2& r az:6: 
- - 2 .ll() ak 2 - ak 2 ak 2 - ak 2 

X y y X 

a2& a2:x l} -2 r---=--""'--
akxaky- akyaky ' 

(19) 
where, keeping only the leading terms in (Ja in the 
denominator, 
A<k>=[ 1-Mr1&= [((J1N 1 /2r1H(fJ2N 2 /2r2 )]- 1M , 

(20) 

M= [N~~2 N~~z] (21) 

The rest of the calculation is straightforward but tedi­
ous. We obtain to O((eB)2 ): 

1 Ik2DO +Ik2DH 
TzelfTlelf 

(22) 

.. ~K .. 
r~r· 

+ 
ã 

t~r: 
ã rj 

FIG. 3. Coupled integral equations for the vertex functions 
Kaa and Kaã with the same notation as in Figs. 2 and 1. 

in terms of the effective diffusion constant 

(23) 

H_ [ N1D~ N2D~ ] 1 
D.~r- 2 + 2 --' 

1 +((L)1'T1) 1 +((L)z'Tz) N(O) 

and the density ofstates N(O)=N1 + N 2 • 

The result obtained for A_(k) in Eq. (22) coincides with 
the corresponding expression in the single-band model 
calculated in I, the only difference being the dependence 
on the effective diffusion constant in Eq. (23). 

By combining Eq. (22) with Eqs. (13) and (9), the calcu­
lation of the conductivity in Eq. (8) proceeds along identi­
callines as in I. To calculate IIaa in Eq. (9), we need 

Qaa(k)= [L.ô.(k).[]aa 

= [1/(2ra)2 ][1/N(O)] 

X [ fk}D~~r+fkfD~ ] 2 +(eBD~~rl2 ' 
(24) 

and we obtain for the diagonal components of the con­
ductivity tensor: 

- o+ , u I'JL - u 1'1' u JLJL ' (25) 

where u~JL is the Lorentz resistivity and 

u~=- e 22 _l:~Qaa<r=o>Joo !!:E_2d eB i p 2[G;(n,p)G;;(n,p)f, (26) 
27T a ma - 00 1T n =O 

u~ = -~ _l: - 1-Qaa<r=O) J oo !!E_(eB)2 i { n + 1 [G; (n,p)G;; (n + l,p)]2+ 2n [G; (n,p)G;; (n -l,p)f} , 
27T2 a m ~ - oo 27T n =O 2 

(27) 

where u 1 =u XX =uyy and the functions a;(n,p) =Ga(n,p,€=0±) were defined in Eq. (4). 

The sums over Landau leveis in Eqs. (26) and (27) were performed in I, with the result 

[ ] 

2 
1 --- ma 312 
112 H [J*-yeBD.~r]_l: - (DaTa) , 

(Delf) Delf a 7 a 

(28) 
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where I* is ao uninteresting, field-independent integra­
tion constant. In Eqs. (28) and (29) we may distinguish 
two different kinds of contributions: a universal isotropic 
term originating in the vertex function of Eq. (22), which 
reproduces the results of I with D0 replaced by Detr• and 
a band-dependent, anisotropic factor. For sufficiently 
low fields such that wa-ra<<l, we recover the isotropic 
magnetoconductance 

2 2 [ ]3/2 ---e 1 ma Da 
a'(eB)-a'(O)~VeBDetr4 N(O) l: . ~ D 

1r a V1"a eff 

(30) 

111. ANISOTROPIC SYSTEM 

We consider here a disordered electron system with an­
isotropic effecti v e mass 6 m JL in the J.L direction, J.L = x, y, 
or z, in the presence of a magnetic field in the z direction, 
with the Hamiltonian 

H=-l:-1-J dr1/J+(r)D!1/J(r)+ J dr1/J+(r)V(r)1/J(r), 
JL 2mJL 

(31) 

where D,. are the components ofD, in Eq. (3) and V( r) is 
the isotropic scattering potential with zero mean and 
variance: 

( V(r)V(r')) =r0ô(r-r') . (32) 

The calculations follow along the lines of Sec. 11 and 
we just quote the results. The one-particle Green's func­
tion is given by ao expression similar to Eq. (5): 

G( , ) i(eB/2)(px-Px·l<py+Py•l ( , ) r,r ,E =e g p-p ,E (33) 

in terms of the rescaled position vector p with com­
ponents 

Px= 
mx _ my 

[ ]
1/4 [ ]1/4 

my 'x• Py- mx ry, Pz=z · (34) 

The function g (p,E) in Eq. (33) is given by the same ex­
pression as in Eq. (6) with 

G(n,p,E)=[ Wc(n +-}H( 1/2mz )p 2 -Ep 

-E-(i/2-r)sgn(E)]- 1 , (35) 

where wc =eB /(mxmy )112 and the inverse lifetime is as 
usual calculated with the diagrams in Fig. 1 for only one 
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band. We obtain 

(36) 

Na =(mxmymz )112N(O) , (37) 

and N (O)= 27r~ is the density of states for electrons 
with isotropic effective mass equal to unity. 

The diagonal components of the conductivity tensor 
are given by Eq. (8) for only one band, with the mass ma 
replaced by the anisotropic m,. and with the position vec­
tor r replaced by the rescaled vector p in Eq. (34). The 
differential operators are also rescaled as 

D;=(mxlmy )114[(a/apx )-ieBpy] , (38) 

D~=(mylmx)114(a;apY), D~=a;apz. (39) 

The calculation now follows identical steps as in I or as 
in Sec. 11 for only one band in terms of the rescaled posi­
tion variables of Eq. (34), because the exponential factor 
in Eqs. (12) and (13) remains invariant under this trans­
formation of variables. The final result for the diagonal 
components of the conductivity tensor is 

a~,.=- 2e4
2 
(I*-V2wcTDo) fl [ 1 

112 ](D,.-r) • 
1r v (Dv-r) 

(40) 
where 

D,. =f(EpT!mJL) (41) 

is the anisotropic diffusion constant and D 0 = fE pT is the 
diffusion constant for isotropic unit mass. Although we 
consider only isotropic scattering potential, the expres­
sion of Eq. (39) could have been obtained phenomenologi­
cally from Ref. 6 by replacing the frequency w by the cy­
clotron frequency w c. 

IV. CONCLUSIONS 

We have extended the method of I based on the use of 
the exact eigenstates of electrons in a magnetic field, to 
investigate localization effects in the magnetoconduc­
tance of more complicated systems in three dimensions, 
such as a two-band electron model and a model with 
effective-mass anisotropy. In both cases we obtained 
universal expressions in terms of suitably defined effective 
diffusion constants, as predicted by other authors.4•6 
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