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Stochastic dynamics in the interaction o f magnetized electrons and electromagnetic waves 
with ordinary-mode polarization 
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In the present work we perform analytical and numerical investigations on the conditions under which 
there occurs stochastic exchange of energy between unidirectionally magnetized electrons and perpen­
dicular electromagnetic waves that propagate with ordinary-mode polarization. It is observed that for 
low amplitudes of the fluctuating field, the electronic dynamics is essentially regular for small initial en­
ergies. On the other hand, for larger energies, the dynamics may be chaotic. It is also shown that sto­
chastic energy excursions may be larger than resonant ones. 
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With the advent of high-power free-electron lasers [1], 
gyrotrons [2], and the modern concepts of stochastic par­
ticle acceleration [3], the analysis of relativistic nonlinear 
interactions between magnetized particles and finite­
amplitude electromagnetic waves has become an area of 
major interest since it is of fundamental importance to 
identify the optimal conditions for wave-particle energy 
exchange. Actually, it has already been shown that, 
among other situations, such an exchange can take place 
in the case of parallel (with respect to the externai mag­
netic field) wave propagation [4], oblique propagation [3], 
and perpendicular propagation of extraordinary modes 
interacting with electrons of zero longitudinal momen­
tum [5]. 

In this regard, there has been some recent interest in 
the cyclotron interaction of magnetized electrons and 
large-amplitude ordinarily polarized modes propagating 
perpendicularly to the ambient magnetic field [6,7]. An 
approximation used in this context is to take the electron­
ic orbits to be affected only when isolated resonance con­
ditions involving the cyclotron and wave frequencies are 
satisfied. These conditions are written in the form 

(1) 

where m =±1,±2, ... , with wc and w as the cyclotron 
and wave frequencies, respectively. lt is known that in 
cases of weak coupling between field and particles, the 
isolated-resonance approximation is appropriate; the res­
onances do not touch each other because their widths are 
very small and the perturbed orbits occupy approximate­
ly the same region in the phase space as the unperturbed 
ones. On the other hand, when the coupling grows 
larger, the resonances may touch, estab1ishing some sort 
of web over which particles can be driven very far away 
from their initia1location [8-11]. 

As already mentioned, the works quoted above [6,7] 
are directed toward the study of the action of isolated 
resonances on the orbits. W e shall see that under the 
specific conditions assumed of small values of momenta 
and field amplitudes, this is the relevant situation. Here, 
the simultaneous action of several resonances shall be 
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taken into account. This seems to be the suitable ap­
proach to the study of the moderately relativistic highly 
suprathermal electrons that are involved in the electron­
cyclotron interactions [12]. Moreover, we intend to show 
that once the overlap of various resonances for a particu­
lar set of initial parameters occurs, it persists for larger 
values of the perpendicular momentum, leading to a sto­
chastic dynamical transition between initial and final 
electronic orbital states with different characteristics. 

Let us consider the relativistic Hamiltonian of our sys­
tem, recalling that it is constructed in order to describe 
the motion of an electron submitted to the combined ac­
tion of a constant and homogeneous magnetic field point­
ing along the z axis and a perturbing wave field propaga­
ting along the y axis with the corresponding electric field 
fluctuating along the z axis. Such a Hamiltonian reads 

_ 2 { I r [ eB0 ]
2 

2 :H-me 1+ m2c2 Px+-c-y +Py 

+[Pz-~Azrlr 12 • (2) 

where P is the canonical momentum, B 0 is the ambient 
magnetic field, and Az is the vector potential for the con­
sidered fluctuating electromagnetic mode. As said be­
fore, this wave field represents an ordinary like mode 
propagating along a perpendicular direction (we choose 
here the y axis), being therefore given by the form 

Az=a cos(ky -wt), (3) 

with a as the constant amplitude of the wave and k as its 
wave vector. 

At this point it is advantageous to introduce canonical 
quantities that are explicitly conserved in the absence of 
the wave field. The respective variable transformations 
are to be performed with help of the generating function 
':f defined by 

4188 



45 BRIEF REPORTS 4189 

where primed and unprimed variables denote new and 
old coordinates, respectively. 

If we define H=Jf' /mc 2, I=eB0P;/m 2c 3, replacing 
P;lmc--+P2 and eA2 /mc 2--+A2 , it becomes possible to 
recast the Hamiltonian in the form 

where the function H produces a canonical set of equa­
tions if time and space are normalized accordingly to 
t--+(eB0 /mc)t and r--+(eB0 /mc 2 )r and where we use the 
additional definitions, 1/J=kv2I sina-cot and y'=a, 
from which one can readily see that z is a cyclic coordi­
nate and the longitudinal momentum P2 is a conserved 
quantity. 

As the normalized amplitude a of the electromagnetic 
wave is in general much smaller than 1, it becomes possi­
ble to expand the Hamiltonian as a power series on that 
quantity. Doing this, one obtains in the lowest significant 
arder 

(6) 

where we have introduced the relativistic cyclotron fre­
quency as 

wc=ho'=(1+2I+P})-112' 

taking IPz I~ I ai (a suitable approximation for systems 
with not-too-low longitudinal currents) to discard 
second-order terms. When a --+0, the momentum I also 
becomes a constant of motion; in that case the Hamil­
tonian is simply h 0 and the dynamics is to be evaluated 
from the equation 

(7) 

which says that on the perpendicular (to the steady mag­
netic field) plane the electrons describe a periodic motion 
whose frequ~ncy decreases with I and/or P2 • 

N ow, by making use o f Bessel expansions 
+oo 

cos(k cosO)= ~ Jm(k)cos(mO), (8) 
m=-oo 

one can use the concept o f resonance overlap [8-11] to es-
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FIG. 1. The ratio r =r(p0 ,P.) for I=0.005. 

FIG. 2. The section r~ 1.0 ofthe ratio for I= 1.0. 

timate whether or not the dynamics is approximately in­
tegrable. In arder-to doso, we first calculate the location 
of each resonance defined by Eq. (1) and then we investi­
gate for which values of the relevant parameters, adjacent 
resonances do overlap. 

Using standard procedures [8-11], one can write this 
overlap condition as 

M -
r=-2-P =2w[2P aJ (kV2I )] 112 > 1 !J.I z P P , 

p 

(9) 

where we define BIP U=IP +MP) as the width of the p 
resonance introduced in Eq. (1) and !J.IP as the distance 
between the p and p + 1 resonances. To derive Eq. (9), 
one expands the Hamiltonian h 0 up to second-order 
terms in MP to include the relativistic detuning [6,7] but 
considers the Bessel functions with I --+IP. This is an 
inaccurate approximation when IP is so small that 
IP -::::MP, but we proceed along this way, because it pro­
vides reasonable order-of-magnitude estimates. 

Next we perform a numerical analysis where we inves­
tigate the nonlinear dynamical behavior of our system as­
suming that initially it is close to a situation for which an 
"initial harmonic number" can be defined: 

- lt) 

Po= -;;;---(I ) • 
c o 

(10) 

with the subscript zero indicating the value at t=O. We 
investiga te small and moderately large values of I 0 

FIG. 3. The section r~ 1.0 of r, now calculated as a function 
of I and w; Pz = 1.0. 
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FIG. 4. Jvs the normalized time for ! 0 =0.005, Pz=0.1, and 
a 0 =1r /2, with (a) Po = 1 and (b) 7. 

(J0 =0.005, 1.0), with a= -0.2. The case ofsmall values 
of 10 and Pz with a typical wave amplitude similar to the 
one we are using is analyzed in Refs. [ 6] and [7]. W e 
shall compare both situations to show that new physical 
aspects are present when one considers larger values of 
the initial momenta. 

To begin with, in Fig. 1 we plot the behavior of the ra­
tio r as a function of both the harmonic number p 0 and 
the longitudinal momentum Pz, with the wave frequency 
setas a harmonic of the cyclotron one, w=p0wc(I0 ,Pz ), 
with ! 0 =0.005. It is seen that for that particular value of 
I 0 , r is always smaller than 1. In Fig. 2 we plot the sec­
tion r::: 1 of r =r(p0 ,Pz) for I= 1.0. In contrast to the 
previous case, r is larger than 1 within a limited region of 
the p0-Pz plane; in both cases the width of the resonance 
islands reduces with p 0 • In Fig. 3 we study the behavior 
of r as a function of I and w for Pz = 1.0, considering, 
from now on, w=k (c= 1). This figure reveals a peculiar 
feature; it shows that once overlap does take place for a 
particular set of parameters and initial conditions, it per­
sists for larger values of I that may be attained as the sys­
tem evolves in time. This may result in relatively large 
excursions of the angular momentum in the chaotic re­
gime. 

The general conclusion is that for the typical (and 
representative) wave-field intensity employed in this pa­
per, overlap may be present only for relatively large 
values of ! 0 and Pz. This implies that in the case I<< 1, 
the largest energetic excursions will be probably obtained 
for the (integrable) first harmonic resonance, a result 
compatible with other works [6,7]. For larger values of I, 
on the other hand, it may happen that stochastic excur­
sions are larger than resonant ones if p0 and Pz pertains 
to the stochasticity domain appearing in Fig. 2. Next, we 
integrate the canonical equations for I and a in order to 
check the validity of the above assertions. 
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FIG. 5. I vs the normalized time for / 0 =1.0, Pz=l.O, and 
ao= 1T /2, with (a) p0 = 1 and (b) 7. 

In Fig. 4 we plot I versus t for ! 0 =0.005, Pz=0.1, 
a 0 = rr /2, and p 0 = 1 and 7; in Fig. 5 the same is done for 
I= 1.0 and Pz = 1.0. From Fig. 4, it is possible to observe 
that for both values of p 0 , there occur bounded periodic 
oscillations of I with time, with the smaller amplitude for 
the largest value of p 0 , a result that confirms the analyti­
cal predictions. From Fig. 5, on the other hand, we see 
that for the particular value p 0 = 7 that pertains to the 
domain of chaoticity displayed in Fig. 2, the excursion of 
I is larger than the one corresponding to the first reso­
nance, which again confirms the analytical conclusions. 

To summarize, in this work the nonlinear interaction 
between magnetized electrons and electromagnetic waves 
with ordinary-mode polarization has been studied. It was 
shown that for small values of I 0 and P., the dynamics is 
essentially regular, with the largest excursion of the angu­
lar momentum I corresponding to the first harmonic res­
onance, a result totally coherent with the analysis done in 
previous papers [6,7]. 

On the other hand, for larger values of ! 0 , it was shown 
that chaoticity may be present for a limited range of the 
initial harmonic number p 0 and momentum Pz. Interest­
ingly, once chaoticity is established for a particular initial 
value of I, it persists for larger values of this quantity. In 
this regard it was shown that the largest excursions of I 
correspond not to the regular first harmonic resonance as 
in the former case, but to values of p 0 and Pz well inside 
the stochasticity domain. 
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