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In this work we analyze how amplitude modulations of the laser field affect the plasma-wave 
amplification in the beat-wave accelerator. It is shown that under certain resonance conditions, 
modulated lasers may cause the plasma wave to grow beyond the limits calculated from homogeneous 
models with the same initial-energy content. 

In the beat-wave accelerator, an intense plasma wave 
with frequency very close to the plasma frequency Wp is 
generated by the beating of two high-frequency electro­
magnetic modes with frequencies w1 and w2 such that 
w1 - w2 - wp = 6( <t:: wp) [1-4]. In most of the models for 
this kind of process, the amplitude of the light waves is 
assumed to be constant. If one thinks that the lasers are 
being constantly fed by some externai source, this could 
be a justifiable approximation, but even in those energy­
constant cases other processes may induce some inho­
mogeneity in their amplitudes. In this regard, besides 
laboratory-controlled amplitude modulations, which will 
be shown to be of some interest, one should consider 
the modulational instability (MI) of the laser and elec­
trostatic fields [5-7], where it is seen that the relativistic 
correction ofthe electronic massas well as ponderomotive 
effects produce nonlinear changes in the group velocity 
of the waves, causing some energy redistribution over the 
entire space, without any variation of the total content. 
Taking those observations into consideration, assuming 
propagation along the x axis, introducing the normal­
ized density fluctuation of the electrons in the field of 
the plasma wave as nfno = ape(ikpx-wpt)+c.c., defining 
the normalized inhomogeneous electromagnetic pumps as 

eai~2mp /mc2 = a1,2(x, t) e(ik,,2x-w,,ot) + c.c., 

and assuming 8tap,1,2 <t:: wpap,1,2, 8.,ap,1,2 <t:: kpap,1,2, 
one can derive an evolution equation for the induced elec­
trostatic wave in the form 

i(8t + v9,8.,)ap = -6ap -lap!2 ap + S(x, t), (1) 

where we are considering S(x, t) = ~(ckpjwp)4a1a2 
with t -+ ~(wpfckp) 2wpt, x -+ ~(wpfckp)2 (wpfc), 6 -+ 
i(ckp/wp) 26fwp, and Vgl (the group velocity of the 
plasma waves)-+ v9 ,fc. The cubic term in the amplitude 
of the plasma wave originates from relativistic corrections 
to the electronic mass and is fundamental in determining 
the saturation levei of the process. 

When the source function S is space-time independent 
(So), one can perform yet another normalization to write 
the evolution equation in the form 

(2) 
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Our next step is to perform the following coordinate 
and field transformations: 

t-+ t, x-+ { = x- v9,t, ap = aei9 , (3) 

in order to obtain the following two coupled equations 
for the phase and amplitude of the plasma wave: 

8ta =-sinO (4) 

and 

a8t0 =-cosO+ 6a + a3 . (5) 

From these two equations it is readily shown that 

(6) 

from which we conclude that the quantity in large paren­
theses is a conserved (in t) one, which from now on will 
be denoted as H. 

Now we are able to calculate the maximum amplitude 
obtainable in the process when the initial state is the 
one with a = O (or H = 0). To do that, it suffices to 
note that when a is maximum Eq. (4) indicates cosO = 
±1, a result that when inserted in the above-mentioned 
conserved quantity furnishes the various possibilities of 
solutions (roots) represented in Fig. 1, where we indicate 
the 6 = -3 situation. From this figure it is possible to 
arrive at two conclusions. . 

(i) If 6 is larger than a certain criticai value, only one 
maximum is present. 

(ii) If 6 is smaller than this criticai value three maxima 
are possible, two of which grow with decreasing 6. 

Those considerations could lead us to think that in 
order to have higher plasma-wave amplitudes, it would be 
enough to work with lasers with very large (and negative) 
frequency mismatches. However, it has been shown that 
this is not so. Based on effective (or Sagdeev) potential 
considerations it is possible to see that, for each value of 
6, the plasma-wave amplitude oscillates with its nonlinear 
frequency only in the allowed (A) regions of Fig. (1), 
the other regions representing impenetrable "potential 
barriers" [8]. As already noted [8] even a mismatch that is 
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FIG. 1. Maximum amplitudes of tbe plasma waves. Tbe 
symbol A (NA) denotes allowed (not allowed) regions of non­
linear oscillations. All tbe quantities represented in tbe figures 
are dimensionless. 

close to and slightly larger than the criticai one offers no 
practical advantage; for in this case, although the large 
root is accessible (it is, in fact, the only one present), the 
long time consumed close to the (virtual) smallest ones 
would be incompatible with beam loading, which must 
occur in much shorter time scales. 

That is what could be said about homogeneous pump 
lasers. Next we focus our attention on the case of laser 
fields modulated in space and time, where we shall see 
tha.t under certain circumstances, the electrostatic beat 
wave could be noticeably enhanced. Actually, we shall 
see that when the modulation is in resona.nce with the 
nonlinear oscillatory frequency of the plasma-wave en­
velope and the frequency mismatch is below the criticai 
one there can occur some induced sort of "jump" be­
twe~n sma.ll and large amplitudes. This jump is caused 
by resonant energy transfer between the modulations of 
the electromagnetic field and the nonlinear oscillations of 
the electrostatic mode envelope, with a subsequent de­
struction of the "potential barrier" that separates those 
two types of roots. In order to pursue our topic, let us 
assume that one of the laser fields is modulated. Consid­
ering a simple model for the modulation (which could be 
artificially obtained in the laboratory, anyway), we may 
write 

S(x,t) = 1 + fei(Kx-Ot), (7) 

where f (O ~ f ~ 1) is a quantity that measures the 
degree of modulation. 

The exponential factor for this field may be trans­
formed accordingly to the rules defined by Eqs. (3): 

ei(Kx-nt) = eiK{ei(Kv 9,-n)t, 

which is a fact that enables us to write our equation in 
the form 

i Ôtap = -liap -laPI2aP + 1 + feiK{ei(Kv.,-n)t. (8) 

When f is zero, Eq. (8) is integrable along the steps we 
h ave followed above. An interesting point about that case 
is that after our coordinate transformations, the equation 
is converted into one independent of the spatial variable 

x. With this in mind we see that if a1(t) is a possible solu­
tion, sois ap(t- .À{) = ap(t- .À(x- v9,t)) (with arbitrary 
.À), for example, which means that from a purely tem­
poral solution, we can generate traveling-wave solutions 
that propagate with velocities v9 , + 1/ À. For small values 
of v91 , the usual case, one notices that for .À smaller or 
larger than 1, we have superluminous and subluminous 
propagation, respectively. 

In the case where f -:f. O, things become more compli­
cated. Our equation becomes a nonintegrable one (the 
factor H is no longer conserved) and a numerical anal­
ysis is necessary. We did that for the case of a strongly 
modulated train with f= 1 and e =o, with a value of li 
below the criticai one. We chose f = 1 as a typical value 
because smaller values would imply, in much longer time 
scales, changes in amplitudes of the plasma waves; again, 
this would be an adiabatic process not compatible with 
beam loading. 

In Fig. 2 we compare the solutions for the case f = O, 
li = O ( and a pump amplitude ,j3fi rather than 1 in 
order to assure the laser energy of the perturbed and 
unperturbed systems to be exactly the same) with the 
one defined by f = O, li = -3. Much in accordance with 
Fig. 1, one sees a dramatic reduction in the plasma wave 
amplitude; the large amplitude modes are not accessible 
from noise-level initial conditions. 

In Fig. 3 we compare the solution f = O, li = O, which 
is thought to be the most practical one in the case of 
homogeneous pumps [8], with the one defined by f= 1, 
li = -3.0, {=O. In this situation, where we have taken 
the frequency of the laser modulations to be in resonance 
with the nonlinear period of the unperturbed electro­
static mode, one sees an appreciable amplification of the 
plasma wave in few periods of the nonlinear frequency. 

Although for this kind of intense perturbation it is dif­
ficult to speak in terms of the "nonlinear frequency of 
the unperturbed systems," one can still think of it as 
an extrapolation of the case of small perturbations. In 
this regard, what is happening is that, as the system 
resonantly absorbs energy from the perturbed pumps, it 
passes from a state of small amplitudes to another with 
large amplitudes, because the above-mentioned potential 
barrier [9,10] that separates those two classes of roots is 
destroyed during the modulation period. That can be 
verified if one turns the modulation off when the ampli-

FIG. 2. A comparison of oscillations induced by bomo­
geneous pumps, for plasma waves tbat grow from tbe noise 
level; curve (a) 6 = -3 and curve (b) 6 =O. 
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FIG. 3. Oscillations with modulated [curve (a)) and ho­
mogeneous [curve (b)J pumps. For curve (a) i = 1, 6 = -3; 
for curve (b), i = O, 6 = O. The oscillatory behavior of a 
occurs after the modulation is turned off. 

tude attains the maximum peak. Then, the final oscil­
latory behavior of Fig. 3 (after turning off) would cor­
respond to oscillations in the allowed region of Fig. 4, 
which is constructed with H calculated at the peak of 
Fig. 3 and where indeed no "barrier" separating small 
and large roots is seen. We did not get any relevant 
amplification for values of 8 below -3.2, because in this 
case the potential barrier is too high to be completely 
destroyed. However, we would like to point out that if 
one compares Figs. 1 and 4 it is possible to see that our 
final state could be considered as equivalent to the ini­
tial one with 8 ~ -4.65. No amplification as appreciable 
as the last one was noticed in a few periods when we 
took the condition of optimal dephasing J<Ç = 1r, 371", ... , 
for in this case there is destructive interference between 
the perturbation and the original oscillations. Interest­
ingly, from this la.st point we conclude that the amplifi­
cation of the electrostatic field will be highly varying and 
periodic along the space and time; if one wishes maxi­
mum efficiency, one must keep following pulses defined 
by cosK Ç = O with velocity Vgi· 

Although the type ofmodulated laser beam we are em­
ploying in this paper may be quite adequate to describe 
modulations artificially produced in the laboratory, it is 
not the most appropriate one to describe MI, because in 
this last situation what we have is not only one harmonic 
mode being excited but an entire wave packet with sev­
era! harmonic components [6]. So, from this present per­
spective one may visualize MIas a damaging process that 
can disrupt the sharpness involved in the construction of 
our resonance conditions, therefore limiting the efficiency 
of the whole process; indeed, the size of the electrostatic 
beat wave would be physically limited by the time over 
which MI develops. This appears not to be quite so se­
vere a restriction, since in general the MI time scale of the 
laser field is longer than the "build up" time for homoge-
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FIG. 4. State of the system (in terms of H) after the mod­
ulation is turned off. The new region of oscillation is shown. 

neous systems (11], which is about the same as the one for 
our modulated case (see Fig. 3). Another important ob­
servation to be made is that the electrostatic beat wave is 
also modulationally unstable [8]. This kind of instability 
can also reduce the efficiency of the process by affecting 
the nonlinear resonances via frequency shifts, but if one 
considers very weakly dispersive systems [an a.pproxima­
tion already used to discard the second derivatives of om· 
basic equation, Eq. (1)], its characteristic time scales are 
longer than the one we are interested in. We should still 
point out that MI may be an important factor in the 
particle-acceleration time scales [6], but again, in such a 
stage the plasma wave has already attained its maximum 
value and no concern about the interference between ar­
tificial and unstable modulations is really necessary. 

To summarize, it is seen that modulations of the laser 
beams of the beat-wave accelerator scheme could induce 
the generated plasma wave to be intensified to large val­
ues that are physically inaccessible when it grows from 
the noise leve! in completely homogeneous systems. This 
kind of amplification does not require any extra energy 
for the laser fields and originates as the plasma wave 
climbs its own effective potential well, with a subsequent 
destruction of the separatrix [9,10] that separates the 
small and large roots representing maxima of its ampli­
tude, a fact made possible due to the presence of res­
onances and resonance overlaps involving the nonlinear 
frequency of the plasma-wave envelope and the modula­
tion frequency of the laser pumps in the case of optimal 
phase, KÇ = O, 271", .... Calculations with more refined 
models (as, for example, with the more realistic situa­
tions of localized electromagnetic pulses) will be reported 
elsewhere. 

ACKNOWLEDGMENTS 

I would like to thank Dr. M. C. Barbosa for a critica! 
reading of the manuscript. This work was supported by 
Conselho Nacional de Desenvolvimento Científico e Tec­
nológico (CNPq) and Financiadora de Estudos e Projetos 
(FINEP), Brazil. 

701 (1972). 
[3] C. M. Tang, P. Sprangle, and R. N. Sudan, Phys. Fluids 

28, 1974 (1985). 



RAI'ID COMMUNIC A TIONS 

R2258 F. B. RIZZATO 44 

[4] R. J. Noble, Phys. Rev. A 32, 460, (1985). 
[5] C. E. Max, J. Arons, and A. B. Langdon, Phys. Rev. 

Lett. 33, 209 (1974). 
[6] C. J. McKinstrie and R. Bingham, Phys. Fluids B 1, 230 

(1989). 
(7] A. C.-1. Chian and C. F. Kennel, Astrophys. Space Sei. 

97, 9 (1983). 

[8] C. J. McKinstrie and D. W. Forslund, Phys. Fluids 30, 
904 (1987). 

[9] B. V. Chirikov, Phys. Rep. 52, 263 (1979). 
[10] A. J. Lichtenberg and M. A. Lieberman, Regular and 

Stochastic Motíon (Springer-Verlag, Berlin, 1983). 
[11] P. Gibbon, Phys. Fluids B 2, 2196 (1990). 


