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Fluctuation conductivity of inhomogeneous superconductors: A fractal aggregation model 
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Numerical simulations of diffusion processes are performed on fractal aggregates designed to 
mimic the structure of inhomogeneous granular superconductors. The spectral dimensions ob­
tained yield ftuctuation-conductivity exponents that are compared with experimental results on 
ceramic samples ofhigh-Tc oxides ofthe YBaCuO system. 

I. INTRODUCTION 

The concept of fractal has lately received a great deal 
of attention, and applications of it have been devised in 
nearly ali fields of physics and related sciences. 1 Whenev­
er inhomogeneities play a major role in determining the 
properties of a system it is almost certainly possible to ad­
vance a description in terms of fractais. 

In the field of superconductivity, Char and Kapitulnik2 

(CK) have pointed out the relevance of considering a 
fractal topology in order to explain the anomalous jluc­
tuation conductivity observed in inhomogeneous super­
conducting materiais. The excess conductivity ( âu) due 
to fluctuations into the superconducting state diverges as 
the transition temperature T c is approached from above, 
with a power law3 of the form 

(1) 

where E= ( T - T c ) /T c is the reduced temperature. For 
homogeneous superconductors the observed values of À. 
generally agree with the Aslamazov-Larkin (AL) theory,4 

which takes in to account Gaussian fluctuations of the or­
der parameter around the Ginzburg-Landau minimum. 
According to that theory, À. is given in terms of the space 
dimension das À.AL =t(4-d). The analysis ofCK shows 
that for inhomogeneous materiais the fracton dimension1 

ii (also called spectral dimension) of the underlying frac­
tal structure should be substituted for the space dimen­
sion in À.AL yielding 

Â.=~4-i1>. m 
This has been successfully applied2 to the case of per­
colating clusters, which is experimentally realized in 
metal-insulator mixtures like Al-Ge. 

It is well known that inhomogeneities play a major role 
in polycrystalline high-T c superconductors. In particu­
lar, a picture of superconducting grains connected by 
"weak links" is the usual explanation for the broad, two­
step transition5 as well as the small criticai currents6 that 
have been observed. Recent measurements7•8 of the fluc­
tuation conductivity in ceramic samples of various high­
T c compounds have shown unequivocally the presence of 
inhomogeneity effects and the appearance of exponents 
not consistent with an integral dimensionality. The maio 
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experimental results of Ref. 8 may be summarized as fol­
lows. 

(i) The temperature derivative of the resistivity 
presents two peaks, a feature that is consistent with the 
occurrence of a two-step transition in a granular system. 
The position of the higher-temperature peak (in general 
the sharpest one) is interpreted as the criticai tempera­
ture T ct at which a superconducting state is established 
inside the grains, while long-range order does not set in 
until the lower zero-resistance temperature T co is 
reached. 

(ii) A power-law behavior as in Eq. (1) is observed in 
two different regimes. In the vicinity of the intragrain 
transition, where the reduced temperature is defined with 
respect to T Ct• there appears a sample-dependent ex­
ponent Ã. 1, whose value increases from 1.0 to about 1.5 
with increasing normal state resistivity (see Fig. 1). Near 
zero resistance, defining the reduced temperature with 
respect to T co• the observed exponent, that we will call 
Ã.0, has its values distributed with a small dispersion 
around 1.47, not showing a significant sample depen­
dence (Fig. 2). Another regime is observed further above 
Tc 1, and interpreted as a Maki-Thompson9 contribution 
(higher temperature part in Fig. 1). This will not be ad­
dressed here. 

Although a thorough discussion of these results has 
been presented in Ref. 8 we include some comments here, 
for the sake of completeness. The observation of Ã.1 close 
to 1.0 in low-resistance samples indicates that the dom­
inant superconducting fluctuations are of a two­
dimensional nature, probably associated with the Cu-O 
planes. The expected crossover to three dimensions 10 ap­
parently occurs very close to Tc 1, but it is masked by 
finite grain-size effects as well as the onset of intergrain 
correlations (smoothly curved behavior in the lower tem­
perature part of Fig. 1). The increase in Ã. 1 with sample 
resistance may be interpreted as evidence that some kind 
of disorder, probably related to local variations of oxygen 
concentration, breaks the homogeneity of the supercon­
ducting fluctuations on the Cu-O planes. Those fluctua­
tions develop then in an effective dimension intermediate 
between one and two. A fractal topology for the global 
arrangement of grains and weak links can also be inferred 
from the value of À.0• In this case, dominance of fluctua­
tions in a larger length scale may explain the observed 
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FIG. 1. Fluctuation contribution to the temperature deriva­
tive of the resistivity as a function of the reduced temperature 
near the intragrain transition, as reported in Ref. 8. Straight 
lines indicate power-law regimes for the fluctuation conductivi­
ty, in accordance with Eq. (1), with the quoted exponents. The 
Ã2 regime is not addressed in this work. 
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FIG. 2. Resistivity as a function of reduced temperature in 
the vicinity of the transition to zero resistance, as reported in 
Ref. 8. Continuous straight lines indicate power-law behavior 
with the quoted exponents. There is an early departure from 
the scaling behavior for one of the samples at higher tempera­
tures, probably due to the small difference between T c 1 and T co 
for that sample. 

sample independence, since one could expect ali samples 
to be macroscopically identical. 

Inspired on the above picture, we developed a numeri­
cal simulation of a simple model system showing a granu­
lar structure with fractal topology both globally and in­
side the grains. lts spectral dimension was determined 
(see Sec. 111) by simulating a diffusion process (or random 
walk) in two regimes: ( 1) diffusion in a normal conductor 
and (2) diffusion in a random (fractal) network of super­
conducting grains and normal "bridges." The spectral 
dimensions so determined were related to the tempera­
ture ranges T>Tc1 and Tc0 <T<Tc1, respectively. We 
wish to emphasize that, in contrast to the fractal (or 
Hausdorff) dimension, 1 which is a purely geometrical 
property, the spectral dimension depends on the effective 
topology for each process. For this reason, it has 
different values in each conduction regime. 

We have built our system according to the cluster­
cluster aggre~ation model for diffusion-limited aggrega­
tion (DLA), 1 •12 because it generates highly extended 
structures, whose dimensionality could be expected to fali 
in the range inferred from experiment. Due to the large 
amount of computational work involved, we have limited 
our simulations to two dimensions. Although this may 
be justified for the intragrain regime, a more realistic 
model of the approach to zero resistance should be based 
on a three-dimensional arrangement of grains and weak 
links. 

In Sec. 11 we describe the construction of the aggre­
gates and obtain their fractal dimension. The diffusion 
processes determining the relevant spectral dimensions 
and the corresponding ftuctuation conductivity exponents 
are analyzed in Sec. 111, and our main results are dis­
cussed in Sec. IV. 

11. CONSTRUCTION OF THE AGGREGATES 

Cluster-cluster (cl-cl) aggregation is a model for DLA 
that well succeeded in describing formation of fractal col­
loids and aerosols. 12 Recently, it has been pointed out as 
a possible model for other observed fractal structures 
like, for instance, quantum-restricted semiconductor clus­
ters. 13 In its original version, cl-cl aggregation starts with 
a low concentration of identical (spherical) particles ran­
domly distributed in a box, with periodic boundary con­
ditions on the walls. At each step of the computation, 
one particle (or cluster) is chosen at random and made to 
perform a Brownian step of length equal to the particle 
diameter. Whenever two clusters touch, they stick to­
gether irreversibly, building up a new, larger cluster. 
Eventually a single final aggregate is formed. Such an ob­
ject is a fractal1 characterized by a fractal dimension D, 
defined, as usual, through the relation between the 
object's mass, or number of particles in the aggregate (N), 
and a typicallinear size R (the radius of gyration, for ex­
ample): 

N-RD. (3) 

For random fractais, as is the case of aggregates, D must 
be determined after averaging over a large number of 
samples. 
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The simulations are easier and faster if one uses a lat­
tice version of the model, in which the only allowed posi­
tions for the particles are the sites of a (hipper) cubic lat­
tice. The length of a Brownian step is now equal to the 
lattice parameter, and two clusters touch when at least 
one particle belonging to each of them occupy nearest­
neighbor positions. The fractal dimension of aggregates 
constructed according to the cl-cl model in two­
dimensional Euclidean space has been determined to be 
1.44±0.05, either on- or off-lattice. 12 

We worked out a generalization of the on-lattice cl-cl 
model in which two kinds of equal-sized particles are 
present in different proportions. Particles of one kind, in 
larger number, will eventually form the grains that are to 
become superconducting; the others will provide the 
"bridges" between those grains. During the growth pro­
cess, whenever two clusters touch via particles of the 
same kind they stick together with probability one; when 
contact occurs through different types of particles the 
sticking probability is p < 1. By choosing a low value for 
p, we ensure segregation of the two components and ob­
tain the desired structure of grains and bridges in the 
final aggregate. 

If we wanted to make a closer analogy between this 
model and the real materiais, we could interpret the su­
perconducting particles as representing small regions in 
the system in which inhomogeneity effects are not strong 
enough to inftuence superconducting correlations. Of 
course, the size of these regions depends strongly on the 
coherence length, which is actually very short in high-Tc 
superconductors. On the other hand, the bridge particles 
in this model should represent the regions where the su­
perconducting order parameter is strongly depleted, due 
to, for instance, variations in oxygen concentration. Here 
we are assuming that the size of the homogeneously 
coherent regions (superconducting particles) is approxi­
mately the same as that of depleted regions (bridge parti­
eles). Due to the higher concentration of superconduct­
ing particles, these will form large clusters (grains) that 
will eventually be connected to each other by small clus­
ters of bridge particles (weak links). As discussed in Ref. 
8 the superconducting grains are not necessarily related 
to the crystal structure and polycrystallinity, but only to 
conduction properties. We are also assuming that the 
volume fraction of material in which superconducting 
ftuctuations actually develop in the vicinity of the transi­
tion is small. Otherwise, more compact structures, with 
higher fractal dimensions would be formed. Of course, 
this is a very simplified model, and its relation to real sys­
tems must be considered as pictorial. 

Our simulations were performed in two dimensions, 
with 1000 particles on a square lattice of 158X 158 sites, 
which corresponds to a global concentration of 0.04. The 
relative concentrations of grain and bridge particles were 
chosen in the ratio 7:3, and we used a sticking probability 
p=O.l. The fractal dimension was determined in the fol­
lowing way. At each step of the growth process, the ra­
dius of gyration (R) of the cluster with the largest number 
of particles (M was determined. These values were aver­
aged over ten sample aggregates. The fractal dimension 
of this ten-sample "batch" was then determined by a 
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FIG. 3. Typicallogarithmic plot of the number of particles 
in the largest cluster against the corresponding radius of gyra­
tion during the growth process, averaged over ten sample aggre­
gates. The straight line is a linear fit to the data. 

linear fit to a plot oflog1oN X log1oR, according to Eq. (3). 
A typical plot is shown in Fig. 3, where it can be seen 
that the agreement with Eq. (3) is very good. This pro­
gram was run ten times and the final fractal dimension 
determined as the arithmetic mean of the fractal dimen­
sions of the ten batches. The result was 

D = 1.48±0.04 . (4) 

Although the estimated uncertainty does not allow us to 
say that we have a significant difference with respect to 
the single component case, a slightly larger D was actual­
ly expected, on the basis that lower sticking probabilities 
tend to generate more compact aggregates. This has been 
verified in some extensions of the cl-cl model. 12 

III. DETERMINATION OF THE 
SPECI'RAL DIMENSIONS 

The spectral dimension of a fractal structure may be 
obtained by studying diffusion processes in that struc­
ture. 12 lt is well known that the mean-square-distance of 
a random walker to its starting position grows linearly 
with time (for long times) when the random walk is per­
formed on compact lattices, independently of their 
dimensionality. On fractallattices, however, this lineari­
ty breaks down, and anomalous diffusion occurs. The 
mean-square-distance of the random walker now depends 
on the spectral and fractal dimensions of the lattice ac­
cording to the relation 12 

( rz(t))- ta;D . (5) 

In our model we have two spectral dimensions, de­
pending on whether we are studying diffusion in the nor­
mal state (Ã 1 regime) or in the fractal superconducting 
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network state (À.0 regime). The simulation for the À. 1 re­
gime is just a random walk on a fractal lattice, or the 
"ant in the labyrinth" model, 14 since there is no 
significant difference between the particles that constitute 
the aggregate in this situation. For the Ã.0 regime, 
though, a special kind of random walk is needed in which 
the speed of the walker becomes infinite inside the super­
conducting grains while remaining finite on the bridges. 
This is indeed the "termite diffusion" model, 15 that has 
been used to analyze random superconducting networks. 
In practice, the simulation is performed with the time 
counter being incremented only when the walker steps on 
a bridge particle. 

We averaged r 2(t) over 15 000 walks on each 10 sample 
aggregates. To avoid surface effects, each walker started 
on the particle closest to the center of mass of the aggre­
gate. In the end, the values o f ( r 2( t) ) for each time were 
again averaged over the ten samples. The results are 
plotted in Fig. 4. 1t can be seen that the asymptotic re­
gime is rapidly reached, and the agreement with Eq. (4) is 
very good. The fracton dimensions obtained from those 
plots for the two regimes considered above are 

ill = 1.11±0.03 (6a) 

and 

il0 =0.92±0.03 . (6b) 

With these, and using CK's prescription, Eq. (2), we 
determined the fluctuation conductivity exponents 
relevant to each regime to be 

1 ,_ __ r-~-n~~--r-~,Tn--~~rT~~ 
10 1 o 2 1 o 3 1 o. 

time 

FIO. 4. Logarithmic plot of the mean-square distance of a 
random walker to its starting position as a function of "time." 
The upper (lower) straight line is a linear fit to the data obtained 
for the Ào (1..1) regime. The density of data points for large times 
is much higher than shown in the figure, where it has been re­
duced for the sake of clarity. The fittings have been performed 
with the complete data set. 

À.l = 1.45±0.02 (7a) 

and 

Ã.0 =1.54±0.02. (7b) 

Comparing these values with the experimental results re­
ferred to in Sec. I, one can see that the agreement be­
tween our simulation for the À. 1 regime and the experi­
mental values for high resistance samples is quite good. 
In addition, the observed relationship Ã 1 < Ã0 is qualita­
tively preserved. 

IV. CONCLUSIONS 

We have presented a model simulation of an inhomo­
geneous granular superconducting network in two dimen­
sions, constructed within the cluster-cluster aggregation 
scheme. Two kinds of particles, with a low sticking prob­
ability between different particles, yielded the formation 
of inhomogeneous superconducting grains interconnected 
by normal weak links. Numerical simulation of diffusion 
processes in these aggregates, both in the normal state 
and in the weak-linked superconducting grains regime, 
were used to determine fracton dimensions for both 
cases. These, in turn, were employed to determine fluc­
tuation conductivity exponents, through the relation ob­
tained by Char and Kapitulnik's modification of the 
Aslamazov-Larkin theory for the inhomogeneous case. 

Our results are of interest in two distinct areas. As far 
as fractal growth is concerned we have constructed a new 
type of aggregate, with two kinds of equal-sized particles 
that segregate during the growth process, forming a 
granular fractal structure. We have then determined its 
fractal and spectral dimensions. There might be real sys­
tems other than ceramic superconductors that can be 
modeled according to this scheme. On the superconduc­
tivity side, our results reproduce qualitatively-and, to a 
limited extent, quantitatively-the experimental observa­
tions of fluctuation conductivity exponents, providing in­
sight on the topology of the superconducting state in 
high-Tc oxides. 

We obviously do not claim to have a realistic model of 
the polycrystalline oxide superconductors. Nevertheless, 
we can say that some features of our "toy" model have a 
counterpart in the real system. W e could not expect 
good agreement with experiment as far as the Ào regime 
is concerned, since our simulations are restricted to two 
dimensions, while intergrain correlations in the real sys­
tem certainly take place in three-dimensional space. We 
can, however, have higher expectations concerning the Ã 1 

regime, on the basis that two-dimensional processes 
occurring on the Cu-O planes could be e:...pected to dom­
inate the system's behavior. In this case, the quantitative 
agreement obtained may be indicative that short-scale in­
homogeneities in high-resistance samples of YBa2Cu30 7 

and related compounds prevent superconducting fluctua­
tions to develop uniformly in the Cu-O planes. Further­
more, it may indicate that the topology of the fraction of 
those planes on which the superconducting state is actu­
ally established may be similar to the one shown by frac­
tal aggregates constructed by the cl-cl model in two di-
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mensions. Experimentally it was observed8 that the ex­
ponent Ã1 can vary significantly from sample to sample, 
with a range of values consistent with topology variations 
from homogeneous planes to percolation clusters (d =f) 
to fractal aggregates. Our choice of the last one was a 
matter of convenience, in order to study the topological 
crossover between the two regimes. 

Other questions may be raised conceming the near­
zero resistance regime, besides the restriction to two di­
mensions in this simulation. For instance, it is not clear 
that our "bridges" can be a meaningful representation of 
the actual weak links. Here we just kept them in the nor­
mal state below the criticai temperature for the intragrain 
transition. The weak links in the real materiais are most 
probably Josephson junctions.16 However, we believe 
that this would not invalidate the simulations, since a 
tunneling probability across the junction would manifest 
itself in a random "time delay" to cross the bridge, which 
is essentially what happens in our model. 

Of course, the present analysis would not apply, as dis­
cussed in Ref. 8, if criticai (non-Gaussian) fluctuations 
were important, in which case a simple relation like Eq. 
(2) would break down. Nevertheless, we insist on the 
relevance of fractal topology eft'ects, based on the experi­
mental evidence of nonuniversal conductivity exponents, 
a fact that could not be explained in the framework of the 
theories of criticai phenomena. The situation is not so 
clear with respect to the approach to zero resistance, 
since there the experiments reveal a nearly universal be­
havior. One would thus be tempted to discard an ex-
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