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Ergodicity breaking and quasistationary states in systems with long-range interactions
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In the thermodynamic limit, systems with long-range interactions do not relax to equilibrium, but become
trapped in quasistationary states (qSS), the life time of which diverges with the number of particles. In this paper
we will explore the relaxation of the Hamiltonian Mean-Field model to qSS for a class of initial conditions of
the multilevel water-bag form. We will show that if the initial distribution satisfies the virial condition, thereby
reducing mean field changes, the final distribution in the qSS can be predicted very accurately using a reduced
exactly integrable model. The calculated distribution functions obtained using this approach are found to be more
accurate than the ones predicted by the Lynden-Bell theory.
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I. INTRODUCTION

Long-range interacting (LRI) systems are ubiquitous in
nature. They range from the astronomical scale [1–3], to the
macroscopic, e.g., non-neutral plasmas [4,5], wave-plasma
interacting systems (free-electron lasers) [6,7], and two-
dimensional geophysical vortex systems [8], down to the
atomic scale, e.g., classical and quantum cold atoms interacting
via quasiresonant lasers [9,10]. In spite of their importance,
much of the behavior of these systems remains poorly
understood (for recent reviews, see, e.g., Refs. [11–13]). It
is known that LRI systems can exhibit ergodicity breaking
[14–17], anomalous relaxation and diffusion [18,19], quasis-
tationary states (qSS) [20,21], vanishing Lyapunov exponents,
inequivalence of ensembles [22–24], negative specific heat
(nonconcave microcanonical entropies) [25,26], temperature
discontinuities, etc. The thermodynamic anomalies result from
the nonadditivity of energy, while the dynamical pathologies
arise from the complexity of collisionless relaxation driven by
the wave-particle interactions.

In the thermodynamic limit N → ∞, the dynamics of
systems with long-range forces is governed by the collisionless
Boltzmann, or Vlasov, equation:

∂f

∂t
+ p · ∇qf − ∇qV [f ](q,t) · ∇pf = 0, (1)

V [f ](q,t) ≡
∫ ∫

dq′ dp′ f (q′,p′,t) ν(|q − q′|), (2)

where f (q,p,t) is the one-particle distribution function and
where ν(|q − q′|) is the two-body microscopic interaction
potential. Note that the mean-field potential V [f ](q,t) is
a functional of the one-particle distribution f (q,p,t). This
makes the Vlasov equation (1) nonlinear and very difficult to
solve. Equation (2) shows that the mean-field potential and the
distribution function dynamics are intertwined.

The dynamics of a large, but finite, N system may also be
well approximated by the Vlasov equation up to time tmax.
Indeed, Braun and Hepp’s theorem [27] states that for a two-
body smooth long-range potential the “distance” (in the space
of all measures) between two initially close solutions of the
Vlasov equation increases at most exponentially in time, which
establishes a lower bound tmax = O[ln(N )] for the time up to
which the molecular dynamics (MD) evolution of a finite N

LRI system will be described by its associated Vlasov flow.1

In fact, qSS (corresponding to stable stationary states of the
Vlasov equation) persist for times that grow as a power of N

[21]. Therefore, for LRI systems the lim N → ∞ and lim t →
∞ do not commute; taking the latter limit before the former,
the system should reach thermodynamic equilibrium, while
taking the former before the latter, Vlasov dynamics is always
valid and thermodynamic equilibrium is not reached.

For LRI systems with a finite number of particles, the
strongly oscillating mean-field potential and the resulting
parametric resonances lead to a fast relaxation to qSS, on a
time scale independent of N . This is known in astrophysics as
a violent relaxation [28]. The time reversibility of the Vlasov
equation implies that the phase space evolution continues
indefinitely on progressively smaller scales. Therefore, no
invariant fine-grained measure can ever be reached. Filamen-
tation of the distribution function occurs because initially
neighboring phase space elements will evolve according to
distinct phase velocities. Evolution deforms initial condition
support through ever finer filamentations. The coarse-grained
distribution function f̄ , on the other hand, approaches a
stationarity. The concept of qSS and of entropy production
are valid only on a coarse-grained level f̄ (q,p,t). In the limit
N → ∞, the mean-field potential in the qSS will become
stationary, while for finite N small oscillations will persist
indefinitely. These fluctuations will eventually drive a finite
system out of the qSS and to the Boltzmann-Gibbs equilibrium.
In this paper we will not be interested in the finite N corrections
to the Vlasov dynamics, restricting ourselves to the time scale
shorter than the lifetime of the qSS.

The determination of stable solutions to the Vlasov dy-
namics is not an easy task. Besides the usual constants of
motion such as energy, linear and angular momentum, Vlasov

1The initial error of a large N particle approximation fN (q,p,t)
of a continuous distribution f (q,p,t) is d0 = O(1/

√
N), on account

of the central limit theorem. Hence, since Braun-Hepp’s theorem
is also valid for weak solutions, the maximum time during which
the molecular dynamics discrete distribution may, within an error ε,
coincide with its associated Vlasov description grows as ln(N ) at
least,

d(fN,f ) � d0 eα t � ε → tmax � O[ln(N )].
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dynamics has an infinite number of conserved quantities
known as the Casimir invariants or simply the Casimirs
[29,30],

Cs[f ] =
∫

s[f (q,p,t)] dq dp, (3)

where s(x) is an arbitrary functional. Their conservation is
equivalent to the conservation of phase space densities, which
are a special case of Casimirs. The Casimirs (3) represent
an infinity of conserved quantities. A given initial condition
will select from the start of the evolution a given invariant
submanifold, which will correspond to one of the stable
stationary states of the dynamics. Even if we were able to
know all solutions (invariant submanifolds) to the Vlasov
equation, we would still need to determine to which invariant
submanifold a given initial condition would correspond.

The nonlinearity and the infinity of integrals of motion
complicate the study of LRI systems. To circumvent the
necessity of integrating the Vlasov equation to obtain the final
stationary state, Lynden-Bell (LB) proposed a Boltzmann-like
statistical approach. LB argued that the qSS should correspond
to the maximum of the coarse-grained entropy [28]. For this
to work, however, requires that the dynamics of a LRI system
must be ergodic and mixing, which in general is not the case.
Although simple and elegant, the LB theory in general is not
able to predict accurately the particle distribution inside the
qSS [13,31–38]. It was observed, however, that if the initial
distribution satisfies the virial condition, and the oscillations
of the mean-field potential are suppressed, the qSS marginal
distribution functions predicted by the LB theory are in
excellent agreement with the results of molecular dynamics
simulations [2,3,5,17,35,39]. The virial theorem establishes a
stable stationarity condition for a system of bound interacting
particles. For an isolated system starting from an arbitrary
initial condition, its kinetic and potential energies will oscil-
late around the corresponding virial condition, progressively
approaching it as the system approaches stationarity. The
closer the system is to such virial condition, the smaller is
the amplitude of the mean-field potential oscillations.

On the other hand, if the initial distribution does not satisfy
the virial condition, the mean-field potential undergoes violent
oscillations. Some particles can then enter in resonance with
the macroscopic oscillations gaining large amounts of energy,
thus populating the regions of the phase space that are highly
improbable from the perspective of LB or Maxwell-Boltzmann
statistics, forming a thin halo. The particle evaporation
produced by the resonances takes away energy from the
collective motion leading to Landau damping [40–42] of the
macroscopic oscillations of the mean-field potential. If the
oscillations die completely, the mean-field potential becomes
static and the dynamics of each particle becomes integrable
(for systems with one degree of freedom). The final qSS
reached by LRI systems is not ergodic, with the particle
distribution often characterized by a “cold” dense core and
a “hot” tenuous halo of evaporated (resonant) particles [13].
On the other hand, a good agreement between the LB theory
and MD simulations for initial distributions satisfying the virial
condition has been attributed to the existence of ergodicity and
mixing. This, however, is paradoxical. As has been discussed
above, the relaxation dynamics of LRI systems is driven by the

fluctuations of the mean-field potential. If, on the other hand,
the initial distribution function satisfies the virial condition,
the oscillations will be suppressed diminishing the mixing of
different phase space levels, which should lead to poor mixing
and lack of ergodicity.

Recently, an approach very different in spirit to LB theory
has been proposed to account for the qSS attained by the
Hamiltonian Mean-Field (HMF) model [43–45]. Since the qSS
are characterized by the virialization of the distribution, i.e.,
by the stationarity of the mean-field potential and consequent
integrability of the model, it might be reasonable, under
some conditions, to consider from the start the associated
integrable model of uncoupled pendulums subject to an
effective external field. The authors of Ref. [43] found that
the marginal distributions for this integrable model (IM) fit
well the corresponding HMF qSS distributions for some initial
conditions. We shall argue here that this will be the case only
if the oscillations of the mean-field potential are negligible
from the start, i.e., if the initial distribution satisfies the virial
condition. The possibility of approximating the dynamics of
the HMF by that of an IM further demonstrates that the
hypothesis of ergodicity intrinsic to LB statistics is not valid.

In this paper we will compare the predictions of LB statistics
and of the IM with extensive MD simulations of the HMF
model with initial multilevel water-bag distributions satisfying
the virial condition. In addition to the marginal distributions
[Pθ (θ ) and Pp(p)], we also calculate the energy distribution
f (ε), which provides a sharper distinction among the different
approaches [36,38]. With this comparison, we are interested
in verifying whether the agreement observed between the
LB theory and MD simulations for one-level distributions is
fundamental or is simply a coincidence.

The paper is organized as follows: in Sec. II, we introduce
the model and calculate the generalized virial condition for
the multilevel ICs; in Sec. III we review the LB formalism; in
Sec. IV, we present the IM of uncoupled pendula and use it to
calculate the distribution functions for the qSS of the HMF;
Sec. V is devoted to results and Sec. VI to conclusions.

II. HMF MODEL

The HMF is a paradigmatic model of a system with LRI
[46,47]. The model was originally introduced to study the
collective behavior observed in plasma and astrophysics. The
model describes N interacting particles constrained to move on
a unit circle, or N spins interacting through pairwise exchange
interaction. The Hamiltonian of the ferromagnetic version of
the model is given by (in units of the coupling constant)

H =
∑

i

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − cos(θi − θj )], (4)

where θi is the position of the ith particle on the unit circle and
pi is its conjugate momentum. In equilibrium the model has a
second-order phase transition between a homogeneous and an
inhomogeneous bunched (ferromagnetic) state.

The one-particle energy is

ε(θ,p) = p2

2
+ 1 − Mx cos(θ ) − My sin(θ ), (5)
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where M = Mx + i My = 1/N
∑N

j=1 ei θj is the instanta-
neous magnetization, i.e., the average mean-field felt by any
particle [see Eq. (2)], which in the case of the HMF is a
position-independent function of time:

M =
∫

dθ dp f (θ,p,t) ei θ . (6)

In this work we will explore the microcanonical dynamics
of the HMF, which conserves the average energy per particle
u = 〈p2〉

2 + 1−|M|2
2 .

A. Virial condition

The determination of the virial condition for the HMF
model poses a problem, since its interaction potential is not
a homogeneous function of coordinates. This means that one
cannot find a relation between the averages of kinetic and
potential energy, and instead we are left with a functional
equation which depends on the one-particle distribution
function. To proceed we observe that in a stationary state the
virial G = 〈p · q〉 does not depend on time, so that

d

dt
〈p · q〉 =

〈
d

dt
(p · q)

〉
= 0. (7)

Rewriting the above equation as

〈p2〉 = −〈q · q̈〉 (8)

and considering a self-averaging system, i.e., that the above
time averages are equivalent to averages over the particles,
while making use of Hamilton’s equations, it is easy to show
the previous equation is equivalent to

〈p2〉 = − 1

N

N∑
i=1

Fi · qi . (9)

Furthermore, in the case that interactions are long range and
in the thermodynamic limit, the mean-field limit is exact, and
thus the two-particle distribution function factorizes into a
(one-particle) density distribution (pair correlations vanish)
[2]. The virial theorem in this case reduces to

〈p2〉 = −
∫

dq′ dp′ f (q′,p′)
[
−∂V (q′)

∂q′ · q′
]

, (10)

where V (q′) is the mean-field potential, given by (2). The
〈·〉 denotes the time average, which is equivalent to the
ensemble average with a stationary measure. In the case of
the HMF model, however, one is still left with a functional
equation since the stationary distribution is not known. In
Ref. [17], the authors propose a generalized virial condition
for a water-bag initial distribution centered at θ = 0 (My = 0),
with the support [−θm,θm] × [−p1,p1] in phase-space. Using
Eq. (10), 〈p2〉 = − sin(θm) cos(θm)

θm
+ sin2(θm)

θ2
m

. For the water-bag

initial condition, 〈p θ〉(t = 0) = 0, which implies that 〈θ2〉
remains constant for short times, so that the water-bag domain
is not deformed and the relation M = sin(θm)

θm
continues to hold.

Replacing 〈p2〉 by the corresponding function of u and M , one
ends up with the generalized virial condition for the HMF:

(2u − 1)θm + cos(θm) sin(θm) = 0. (11)

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-π -π/2 0 π/2 π

p

θ

FIG. 1. (Color online) Phase-space representation of a multilevel
initial condition. Different colors correspond to different phase space
densities.

Equation (11) is only an approximation, since a water-bag
distribution is not a stationary solution of the Vlasov equation.
Nevertheless, the virial water-bag initial distribution should
be “sufficiently close” to the final qSS to suppress any strong
oscillations of the magnetization [17].

In this paper we will consider initial conditions uniform in
θ , and multilevel in p, given by

f0(θ,p)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η1, for 0 � |p| � p1,

η2, for p1 < |p| � p2,
...
ηL, for pL−1 < |p| � pL,

⎫⎪⎪⎬
⎪⎪⎭ for |θ | � θm,

0, otherwise,

(12)

where p1 < p2 < · · · < pL−1 < pL (see Fig. 1). For these ICs,
the initial magnetization is always the same function of the
envelope of the distribution, θm: M0 = sin(θm)

θm
, so the virial

condition will be the same as Eq. (11).

III. LYNDEN-BELL STATISTICS

Lynden-Bell suggested a statistical approach, based on a
coarse-grained entropy [28], to try to account for the mass
distribution in elliptical galaxies. Since the relaxation to qSS
of elliptical galaxies is collisionless and is characterized by
very strong oscillations of the mean-field potential, LB called
this process violent relaxation.

A fundamental insight of LB’s theory is that Vlasov flow
is incompressible. This can be seen by recognizing that the
volume in phase space occupied by a given phase space density
level,

vη =
∫

dq dp δ[f (q,p,t) − η], (13)

is a Casimir invariant [Eq. (3)] and is, therefore, preserved by
the dynamics. Notice that this implies that the phase space
density at later times cannot exceed the maximum of the
density at time t = 0.

Lynden-Bell argued that variations of the mean gravita-
tional field to which particles (stars) are subjected are so violent
that all phase space elements are equally likely to be found at
a given energy. This is equivalent to requiring ergodicity and
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mixing. The relaxation of such systems should take place under
the following constraints:

(1) That the total number of elements of phase with a given
mass density (resp. magnetic moment, charge density, etc.)
is conserved (incompressibility of Vlasov flow, no sinks, no
sources).

(2) That total energy is conserved (isolated system).
(3) No overlap of two elements of phase is allowed by the

dynamics, since in this case there would be no conservation of
the number of phase elements as stated before (exclusion).

These three assumptions are a direct consequence of
the Vlasov equation to which the dynamics of the time-
dependent phase space distribution function f (q,p,t) is
subjected. However, although very reasonable, the assumption
of ergodicity does not have any a priori justification. This
hypothesis, however, is crucial to LB statistics, since it allows a
combinatorial counting of states, i.e., an “ensemble” approach
to the distribution function.

LB defines a coarse-grained entropy, which is a func-
tional of the coarse-grained one-particle density distribution
f̄LB(q,p) = ∑L

α=1 f̄α(q,p) and must be maximized with
respect to {f̄α}. The index α runs over the L phase space
levels, and f̄α(q,p) are the respective level distributions. The
most probable qSS should be the one which maximizes the
entropy subject to the constraints of conservation of the phase
space volumes of each level [Eq. (13)] and of the total energy∫ (

p2

2m
+ V (q)

2

)
f̄LB(q,p)dq dp = u. (14)

V (q) is the average mean-field potential at point q [Eq. (2) with
f (q,p,t) = f̄LB(q,p)]. Since Vlasov dynamics does not lead
to entropy production, entropy increase in the LB scheme is
the result of coarse graining. Solving the variational problem,
we obtain

f̄LB(q,p) =
L∑

α=1

ηα

exp[−βα(ε({q},{p}) − μα)]

1 + ∑
γ exp[−βγ (ε({q},{p}) − μγ )]

,

(15)

where the ηα are the respective phase space level densities, and
μα and βα = β ηα are the effective chemical potentials and the
inverse temperatures, which enforce the respective phase space
volumes and energy conservation. The “inverse temperature”
β gives a measure of how degenerate the system is. In the limit
of very low phase space density (high β), i.e., fα 	 ηα , the
LB distribution tends to a sum of Maxwellians.

The hypothesis of ergodicity “washes out” the memory of
the initial condition, except for the conservation of the re-
spective phase space volumes. Using the molecular dynamics
simulations, in the forthcoming sections, we will show that
conservation of the phase space volumes is not sufficient to
predict the particle distribution in the qSS.

IV. INTEGRABLE MODEL ANALOGUE

We now consider an approach that is diametrically opposite
from the ergodicity-based LB statistics [43,45]. When the
system attains a qSS the mean-field potential must be sta-
tionary, V (q,t) = V (q). Conversely, the mean-field potential
can be stationary only if the density distribution function,

ρ(q) ≡ ∫
dp f (q,p,t), is also stationary [see Eq. (2)]. In this

limit, particle movements uncouple, and V (q) simply factors
out as a constant (in the case of HMF, at least). Motivated by
this, the authors in Refs. [43,45] propose that the qSS of the
HMF model might be well described by the qSS attained by
an associated IM of uncoupled pendulums subject to a fixed
external field H , whose single-particle energy function is given
by

ε(θ,p) = p2

2
+ 1 − H cos(θ ). (16)

The value of the field H is then fixed self-consistently to be
H = 〈cos(θ )〉 = 1

N

∑
i cos(θi). It was observed, however, that

even though for some initial conditions this approximation
leads to qSS distributions which are in a good agreement with
the MD simulations, in general this is not the case. Indeed,
from our previous discussion, we expect that the distribution
function of uncoupled pendulums will provide a reasonable
approximation to the qSS distribution of the HMF only
if the oscillations of the mean-field potential are negligible
from the start, i.e., when the initial particle distribution satisfies
the virial condition. On the other hand, if the initial condition
is far from virial, the parametric resonances will lead to the
formation of a qSS with a characteristic core-halo structure
[13,17,48].

Determining the stationary distribution attained by the sys-
tem of uncoupled pendulums is straightforward. Let’s consider
an arbitrary initial phase space distribution of angles and
velocities. Evidently the dynamics of uncoupled pendulums
is such that the number of pendulums with energy [ε,ε + dε]
is a constant of motion. Since the force derived from Eq. (16) is
nonlinear in angle, the particles on the energy shell [ε,ε + dε]
with slightly distinct energies will have incommensurate
orbital frequencies. Therefore, after a transient period, the
resulting phase mixing will lead to a uniformity of the particle
distribution over the energy shell. Suppose that we start with
a distribution of angles and velocities f0(θ,p). The number of
particles with energy between [ε,ε + dε] is n(ε)dε, where

n(ε) =
∫∫

dθ dp f0(θ,p) δ[ε(θ,p) − ε]. (17)

The density of states with a given energy [ε,ε + dε] is

g(ε) =
∫∫

dθ dp δ[ε(θ,p) − ε]. (18)

At t = 0, however, not all of these states are occupied.
Nevertheless, as the dynamics evolves, the phase mixing will
result in a uniform occupation of all the states of a given
energy, keeping n(ε) constant. The coarse-grained distribution
function for the stationary state of a system of uncoupled
pendulums f̄ (ε) must then satisfy f̄ (ε)g(ε) = n(ε), from
which we conclude that

f̄ (ε) =
∫ ∫

dθ dp f0(θ,p) δ[ε(θ,p) − ε]∫ ∫
dθ dp δ[ε(θ,p) − ε]

. (19)

The density of states can be calculated explicitly to be [36]

g(ε) =
{

4 K(κ1/2)/
√

H, if κ � 1,

4 K(κ−1/2)/
√

Hκ, if κ > 1,
(20)
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where κ(ε; H ) = (ε − 1 + H )/2H , and K(x) is the complete
elliptic integral of the first kind (defined as in Ref. [49]).
Again it is important to stress that the formalism above applies
only to the IM of uncoupled pendulums. In particular we see
that the initial occupation of the energy shells is preserved
throughout the dynamics. The initially unpopulated energy
shells will remain unpopulated in the stationary distribution
derived above. This, in general, is not the case for the HMF
model away from the virial condition when the parametric
resonances lead to the occupation of the high-energy states
not present in the initial distribution. On the other hand, if
the virial condition is satisfied, M(t) will remain constant (in
the thermodynamic limit) and the parametric resonances will
be suppressed. In this case IM with H = M(0) = M0 should
provide an accurate description of the stationary distribution.

To calculate the coarse-grained distribution for the sta-
tionary state starting from an initial water-bag distribution
f0(θ,p) = 1

4θmp1
�(θm − |θ |) �(p1 − |p|), we must perform

the integration over the phase space in the numerator of
Eq. (19). Integrating first over momentum, we find

2η1

∫
dθ �(θm − |θ |)

∫ p1

0
dp δ

{
p2

2
− [ε − 1 + H cos(θ )]

}

= 2
√

2η1

∫ θm

0
dθ

�[ε − 1 + H cos(θ )]√
ε − 1 + H cos(θ )

×�

{
p2

1

2
− [ε − 1 + H cos(θ )]

}
, (21)

where η1 = 1
4θmp1

is the normalization constant of the density
distribution function f0. The theta functions in the integrand
above impose restrictions on the domain of integration over
θ . Performing the integration in θ , the numerator can then be
written as∫ ∫

dθ dp f0(θ,p) δ[ε(θ,p) − ε]

= 1

θmp1

1√
H κ

[
F

(
θ (1)

up

2
,κ−1/2

)
− F

(
θ

(1)
low

2
,κ−1/2

)]
,

(22)

where F (φ,x) is the incomplete elliptic integral of the first
kind, and the appropriate limits of integration θ

(1)
low and θ (1)

up are
defined below.

The L-level initial conditions defined by Eq. (12) may be
considered as a superposition of water bags with different
supports. Superposition of result (19) is possible since the
pendulums are noninteracting. For these ICs the contribution
to the numerator of Eq. (19) from each of the L water bags of
the multilevel IC gives

I (i)(ε; H ) ≡ 4
√

2√
H κ

[
F

(
θ (i)

up

2
,κ−1/2

)
− F

(
θ

(i)
low

2
,κ−1/2

)]
,

(23)

where the superscript (i) refers to a water bag with domain
[−θm,θm] × [−pi,pi]. The upper and lower limits of integra-

-2

-1

 0

 1

 2

-π -π/2 0 π/2 π

p

θ θmin θmax

FIG. 2. (Color online) Schematic representation of the construc-
tion of the final distribution function for the uncoupled pendulums.
Superimposed is the support of the water-bag initial condition. In red
are the orbits (chunks of orbits) that contribute to the integral (19).

tion are determined by (see Fig. 2)

θ (i)
up = min{cos−1(1 − 2κ),θm}

θ
(i)
low =

{
0, for ε � p2

i /2 − H,

min
{

cos−1
( p2

i

2H
+ 1 − 2κ

)
,θm

}
, for ε > p2

i /2 − H.

(24)

Of course, I (i)(ε; H ) = 0 for energies ε � 1 − H or ε �
εmax = p2

i /2 + 1 − H cos(θm) [from Eq. (24)]. The single-
particle distribution function is then given by

f̄ (ε) = ηL I (L) + ∑L−1
i=1 (ηL−i − ηL+1−i) I (L−i)

g(ε)
. (25)

V. NUMERICAL RESULTS

To explore the validity of the theory constructed above we
have performed molecular dynamics simulations of the HMF
model with N = 106 particles. The system is allowed to relax
until a qSS is reached. We then compute the position and
momentum marginal distribution functions Pθ (θ ) and Pp(p),
as well as the energy distribution f̄ (ε) [36]. In Figs. 3–5 and
8–10 we compare the predictions of LB theory and of IM with
the results of MD simulations for water-bag initial distributions
with increasing number of levels L.

0

 0.2

 0.4

0 π/2 π

P θ
(θ

)

θ

(a)
0

 0.2

 0.4

 0.6

0 1 2

P p
(p

)

p

(b)

10-3

10-1

0 π/2

10-3

10-1

0 1 2

FIG. 3. (Color online) Comparison of the marginal distributions
in (a) angles and (b) velocities with the results of MD simulations for
the qSS of the HMF. The LB distribution (blue dashed curves) and
the IM distribution (red solid curves) for a virial one-level water-bag
initial condition with u = 0.4, M0 = 0.742.
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FIG. 4. (Color online) Comparison of the marginal qSS distri-
butions in angle [(a) and (c)] and momentum [(b) and (d)] of the
MD (black squares), the corresponding LB stationary distribution
(blue dashed curves), and IM distribution (red solid curves), for
two sets of virial two-level water-bag initial conditions. (a) and (b)
u = 0.3, initial magnetization M0 = 0.822, θm = 1.06, p1 = 1.02,
η1 = 0.106; (c) and (d) u = 0.5, M0 = 0.637, θm = 1.58, p1 = 1.24,
η1 = 0.059. For both ICs p1 = 0.3p2, η2 = 0.5η1.

A. Marginal distributions

Figures 3–5 show the marginal distributions of angles (left
panels) and velocities (right panels), which are calculated from
the full single-particle density distribution function f (θ,p) as

Pθ (θ ) ≡
∫

dp f (θ,p); Pp(p) ≡
∫

dθ f (θ,p). (26)

Figure 3 is for a one-level water-bag initial condition; Fig. 4,
for a two-level IC; and Fig. 5, for a three-level IC. We note the
departure of both IM and LB from MD for increasing number
of density levels L.
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FIG. 5. (Color online) Comparison of the marginal qSS distri-
butions in angle [(a) and (c)] and momentum [(b) and (d)] of the
MD (black squares), the corresponding LB stationary distribution
(blue dashed curves), and IM distribution (red solid curves), for
two sets of virial three-level water-bag initial conditions. (a) and (b)
u = 0.3, initial magnetization M0 = 0.822, θm = 1.06, p1 = 1.12,
η1 = 0.079; (c) and (d) u = 0.5, M0 = 0.637, θm = 1.58, p1 = 1.35,
η1 = 0.044. For both ICs p1 = 0.3p2, η2 = 0.5η1, p3 = 0.2p1, η3 =
0.3η1.
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FIG. 6. (Color online) The rms deviations ξθ and ξp between the
LB (IM) marginal distributions in angle and momentum, respectively,
and the MD distributions, as a function of number of levels L.
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pink symbols, to u = 0.5.

Nevertheless, IM accounts very accurately for the MD
data; see Figs. 3–5. The differences are noticeable only in
the tails of the distributions. Although for one-level initial
conditions LB theory provides an accurate description of the
marginal distributions, this agreement deteriorates rapidly for
multilevel initial conditions. The discrepancy between LB and
MD simulations is clearest when one considers the complete
distribution function f̄ (ε). In the next section we will see
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FIG. 7. (Color online) Comparison between the one-particle en-
ergies for a few selected particles and corresponding magnetization
as a function of time. Panels (a) and (c) correspond to u = 0.2,
L = 1; panels (b) and (d), to u = 0.2, L = 3; panels (e) and (g),
to u = 0.5, L = 1; panels (f) and (h), to u = 0.5, L = 3. Note the
presence of significant oscillations both in one-particle energy and in
magnetization, for multilevel distributions.
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FIG. 8. (Color online) Comparison between MD qSS energy dis-
tribution function (black squares), the corresponding LB distribution
(blue dashed curve), and IM stationary distribution (red solid curve),
for a one-level water-bag IC; (a) u = 0.2; (b) u = 0.5. Insets are the
same curves in log-linear scale. The same IC parameters as in Fig. 3.

that, although the simulations show the existence of a fully
degenerate core, LB theory predicts a nondegenerate core
characterized by a finite Fermi-Dirac temperature.

To quantify the extent of agreement between the MD
simulations and IM and LB theories we define the root-mean-
square (rms) deviation of f2(x) from a reference distribution
f1(x) as

ξx =
{∫

dx [f2(x) − f1(x)]2∫
dx f 2

1 (x)

}1/2

. (27)

In Fig. 6 we plot ξx for IM-MD (triangles) and for LB-MD
(circles) for marginal distributions in angle and momentum.
Although ξ do not exceed 10%, we see that for fixed L, the
deviations between LB-MD are always greater than deviations
between IM-MD. For given L and u, rms deviation between
LB-MD is roughly twice the corresponding deviation between
IM-MD. Therefore, the HMF qSS is closer to a completely
integrable system than to the ergodicity based LB theory.
Furthermore, since both ξ IM and ξLB (either for Pθ or Pp)
increase with increasing number of levels, results suggest
that for general ICs, HMF qSS will be neither ergodic nor
integrable.
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FIG. 9. (Color online) Comparison between MD qSS energy dis-
tribution function (black squares), the corresponding LB distribution
(blue dashed curve), and IM stationary distribution (red solid curve)
for a two-level IC; (a) u = 0.2; (b) u = 0.5. The same IC parameters
as in Fig. 4.
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FIG. 10. (Color online) Comparison between MD qSS energy
distribution function (black squares), the corresponding LB distri-
bution (blue dashed curve), and IM analog stationary distribution
(red solid curve) for a three-level IC; (a) u = 0.2; (b) u = 0.5. The
same IC parameters as in Fig. 5.

The departure from IM predictions, in particular, is a
consequence of the fact that, when increasing L, the virial
condition (11) does not restrict the stationarity of all the
density levels. This is clearly shown in Fig. 7, where we plot,
side-by-side, single-particle energies’ time evolution (for some
selected particles of the system) and the time evolution of the
system magnetization. There is a clear relationship between
the amplitude of the oscillations of the magnetization and both
the variation and variance of the single-particle orbit energies.
It demonstrates that for multilevel water-bag distributions
satisfying the generalized virial condition, both one-particle
energies and magnetization undergo significant oscillations.
These oscillations are expected to give rise to parametric
resonances which will lead to the halo formation.

B. Energy distributions

The integration over angles (momentums) required to
calculate the marginal distributions Pp (Pθ ) smoothes out these
functions. To explore better the one-particle distribution in the
qSS it is, therefore, important to study the full distribution
function f̄ (ε):

f̄ (ε) =
∫

dθ dp f (θ,p) δ [ε(θ,p) − ε]∫
dθ dp δ [ε(θ,p) − ε]

, (28)

where ε(θ,p) is the single-particle energy function (5) and the
denominator is the density of states g(ε).

Figure 8 shows the comparison between MD, IM, and LB
energy distributions for a one-level water-bag IC. Figure 9
shows the same for a two-level IC, and Fig. 10 for a three-level
IC. Here again the discrepancy between IM predictions and the
MD data is larger in the tails of the distributions. Even though
the system starts on the virial curve (11), the water-bag IC is not
a fixed point of the Vlasov dynamics. Therefore, for multilevel
distributions the magnetization (mean-field potential) may
undergo significant oscillations. In this case, some particles
may enter in resonance with the mean-field oscillations gaining
energy to form a tenuous halo.

For one-level water-bag initial conditions, we see that the
MD-obtained energy distribution is in very good agreement
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FIG. 11. (Color online) Snapshots of the phase space at (a) t = 0
(three-level IC); (b) t = 1.7 × 104 time steps after evolution under
Eq. (4) (HMF model); (c) t = 103 time steps after evolution under
Eq. (16) (uncoupled pendulums). In both cases (b) and (c) systems
have attained stationarity. The number of points is the same in all
panels.

with the predictions of IM. On the other hand LB theory is
incompatible with MD data (see Fig. 8), while MD shows a
plateau at the maximum phase-space density, corresponding
to a fully degenerate Fermi core [48], LB predicts a smoothly
decaying function, corresponding to a Fermi-Dirac distribution
with a finite temperature.

For a two-level IC (Fig. 9), we see that the distribution
function predicted by the IM deviates from the results of MD
simulations. The qualitative structure, however, is maintained.
In particular, a small (for the specific set of chosen parameters)
plateau persists for low energies, as well as a two-step decay
of f̄ (ε), which reflects the two-level IC. While MD shows
that the occupation of the lowest energy levels is the same
as in the initial distribution, LB predicts a lower maximum
density for the qSS. The perfect mixing required by LB allows
for initially more energetic levels to decay and penetrate the
region originally occupied by the less energetic levels, contrary
to what is seen in numerical simulations [36].

For the three-level IC (Fig. 10), we see that the energy
distribution starts to deviate significantly from predictions of
IM. This is the result of mixing between the different density
levels, which within IM is possible only among the initial levels
lying on the same trajectory (orbit) (see Fig. 11). Nevertheless,
we see that for lower energies, IM and MD curves still coincide.
One might think that increased mixing between the different
phase space density levels will lead to an improved agreement
between LB theory and MD simulations. This, however, is
not the case, and, in particular, we see that for three-level
distributions LB theory provides an even poorer fit of MD data
than for two levels.

One may notice that for higher average energies u [insets
in the (b) panels in Figs. 8–10] the tails of the distributions,
which lie close to the separatrix energy εsx = 1 + M0, are
closer to LB distribution. For these values of u, the separatrix
is occupied by the initial distribution f0(θ,p). Since at the sep-
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FIG. 12. (Color online) The rms deviations ξε between LB (IM)
energy distributions and the corresponding MD distribution, as a
function of number of levels L. Triangles correspond to IM-MD
rms deviation, ξ IM

ε , and circles to IM-MD rms deviation, ξLB
ε . Red

symbols (triangles and circles) correspond to u = 0.2; green symbols,
to u = 0.3; blue symbols, to u = 0.4; and pink symbols, to u = 0.5.

aratrix the resonance criterion is met by mean-field oscillations
of any frequency (and infinitesimal amplitude) [50], particles
initially at [εsx − δε,εsx + δε] will be excited, and the tails
of f̄ (ε) will not coincide with the distribution given by the
IM approximation. Even though the LB distribution allows
for particle excitation, we argue that similarity with the tails of
the numerical data is incidental, since the particles forming the
tails of the MD distributions represent a fraction of �0.1% of
the total system. Moreover, we argue that the similar behavior
observed at the tails of the marginal distributions (Figs. 3–5)
should be reminiscent of the same phenomenon, since the
marginals Pθ (θ ) and Pp(p) are derived from the full energy
distribution f̄ (ε) through integration over p or θ , respectively.

In Fig. 12 we compare the rms deviation ξ IM
ε (triangles)

and ξLB
ε (circles) as a function of the number of levels in the

IC, for different values of the average energy per particle u.
Once again we see that for a given L, the rms deviation ξ IM

ε

is always below ξLB
ε . Furthermore, sensitivity to u is much

milder than sensitivity to L. Specially for the more complex
ICs (two and three levels), the relative departure of LB and IM
predictions for the energy distributions is significantly larger
than it is for the marginal distributions, being close to 25% for
L = 3 (ξLB

ε ).

VI. CONCLUSIONS

We have computed, using extensive MD simulations, the
qSS distribution functions of the HMF model starting from the
multilevel water-bag initial conditions. The distributions were
compared with the predictions of the Lynden-Bell theory and
a theory based on the coarse-grained dynamics of uncoupled
pendulums, the integrable model (IM) [28,44]. To suppress the
halo formation all the initial water-bags were chosen to satisfy
the generalized virial condition [17].

It is important to stress that LB and IM theories are based
on diametrically opposite assumptions. While LB requires
ergodicity and good mixing, IM is completely nonergodic.
We have verified that for all sets of parameters considered,
the HMF model was closer to the integrable limit than to
the LB-postulated ergodicity. We have also verified that as
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the initial conditions become more complex, i.e., as the
number of levels increases, the distribution functions deviate
stronger from the predictions of both LB and IM theories.
Nevertheless for all the cases investigated, IM remained more
accurate than LB theory. The challenge for the future is
to understand the structure of the qSS for the multilevel
distribution functions, which do not satisfy the virial condition.
For one-level water bags the core-halo theory provides a very
accurate description of the structure of such qSS [13]. For mul-
tilevel systems, however, the complicated mixing between the
different phase-space density levels results in a very complex

evolution of the core, which so far has escaped any simple
characterization.
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