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ABSTRACT

This work proposes to utilize the high-level synthesis technique to implement a LDPC

(Low-Density Parity-check Code) decoder in hardware, starting with its software version.

Location and correction codes are essential in the computing world. The LDPC codes

created in 1960 were rediscovered in the years 1990’s and its utilization has become each

day more frequently used in high-end technologies, due to its great performance.

However, implementing the decoder for such codes proved to be a great challenge for

the hardware development community.

This work will present the steps utilized to synthesize hardware working the closest as

possible from the behavioral model of system. The final results are created so they work

in a Xilinx Virtex 6 FPGA.

Keywords: High Level Synthesis, LDPC codes, System Design, block codes.



RESUMO

Implementação em Hardware de Decodificador de códigos LDPC com Síntese de

Alto Nível

Esse trabalho propõe utilizar o método da síntese em alto nível para implementar

um decodificador de códigos LDPC em hardware, partindo de sua implementação em

software. O decodificador sintetizado é voltado para aplicação em códigos de barra 2D.

Códigos de detecção e correção de erros são essênciais para o mundo da computação.

Os códigos LDPC criados em 1960 foram redescobertos nos anos 1990 e sua utilização

torna-se cada vez mais frequentemente utilizada em aplicações de ponta, devido ao seu

alto desempenho.

Contudo, a implementação de decodificadores mostrou-se um desafio para a comuni-

dade de desenvolvimento de hardware.

Serão apresentados os passos utilizados para sintetizar hardware trabalhando o mais

próximo possível do modelo comportamental do sistema. Os resultados finais são gerados

para operar em FGPA(Xilinx Virtex 6).

Palavras-chave: códigos LDPC, Projeto de Sistemas, Síntese de Alto Nível, HLS.



12

1 INTRODUCTION

Location and correction codes are of vital importance in the computing world. It

is known that when we transmit data through any communication channel (telephone

line or optical fiber, for example) it is susceptible to noise which can bring errors to the

transmission. Every error correction technique is based on the concept of transmitting

some kind of redundancy with the code, so it is possible to recover the original data in

case that it is corrupted.

In 1948 Claude E. Shannon showed [11] that any communication channel can be char-

acterized by two simple parameters: bandwidth and noise. Bandwidth is the difference

between the upper and lower frequencies in a continuous set of frequencies, and may

sometimes refer to passband bandwidth, depending on context. Passband bandwidth is

the difference between the upper and lower cutoff frequencies.

The cutoff frequencies are defined as the frequencies in which the signal power drops

down to half (3dB) and they are a feature of the transmission environment. Noise is any

modification in the signal spectrum.

Given a channel with particular bandwidth and noise characteristics, Shannon showed

how to calculate the maximum rate at which data can be sent over it without errors. He

called that rate “the channel capacity”, but today, it is just as often called the Shannon

limit.

However, during many years, the transmission rate achieved showed to be well below

to the theoretical limit foreseen by Shannon, so a lot of research was done in order to find

ways to transmit information in a rate closer to this limit. A group of engineers demon-

strates that newly devised error-correcting codes could boost a modem transmission rate

by 25 percent, but it was still far below to Shannon’s limit, it was necessary to develop

codes that could increase the performance.
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In 1963 Robert G. Gallager develop in his PhD Thesis [22] the theoretical base for

Low-density parity-check (LDPC) codes. Due to its computational cost, too high for the

time when the first commercial modem was just being launched, their incredible potential

remained hidden and the LDPC codes were forgotten for almost 35 years. In the meantime

the field of forward error correction was dominated by highly structured algebraic block

and convolutional codes as Reed Solomon codes.

In 1993, Claude Berrou and Glavieux introduced the Turbo codes [33], the first to get

closer to Shannon’s limit. These codes became the standard in the late 1990s, showing

great performance. As they were created basically with the trial-and-error method, re-

searchers struggled through the 1990s to understand just why turbo codes worked as well

as they did.

However, shortly after that, more research in this field led to the rediscovering of the

LDPC codes in 1995 David J. C. MacKay and Radford M. Neal [44] in parallel with Niclas

Wiberd [55]. Today the LDPC codes use is increasing in high-end technologies due to their

performance that can usually easily overcome the Turbo Codes.

In addition to the strong theoretical interest in LDPC codes, such codes have already

been adopted in satellite-based digital video broadcasting in 2003 beating six turbo codes

to become the error correcting code in the new DVB-S2 standard, and long-haul optical

communication standards LDPC is also used for 10GBase-T Ethernet, which sends data

at 10 gigabits per second over twisted-pair cables. As of 2009, LDPC codes are also part

of the Wi-Fi 802.11 standard as an optional part of 802.11n and 802.11ac.

LDPC codes are a class of linear block-codes, which means that any linear combina-

tion of codewords is also a codeword, and belong to the field of forward error correction

(FEC) also referred to as channel-coding. FEC provides the receiver with the ability to

correct errors without a reverse channel to request the retransmission of data. They are

capacity-approaching codes, as practical constructions exist that allow the noise threshold

to be set really close (in some cases arbitrarily close) to the Shannon theoretical maxi-

mum.

The noise threshold defines an upper bound for the channel noise, so below that the

probability of losing information can be made as small as wanted. It has been shown

that the performance of appropriately designed LDPC codes asymptotically approaches

to Shannon limit as we extend the code length [66]. Using iterative belief propagation
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techniques, a message passing algorithm for performing inference on graphical models,

LDPC codes can be decoded in a computing time which is linear on their block length.

1.1 LDPC Decoder

There are several decoding algorithms for LDPC codes that were discovered indepen-

dently over time and ended up receiving different names. Robert Gallager had already

provided a decoding algorithm when he first introduced LDPC codes, which is nowadays

called belief propagation (BP), sum-product (SP) or message-passing (MP) algorithm.

Wolfgang Proß has used LDPC codes in his PhD Thesis [77] to construct two dimen-

sional(2D) barcodes targeting its use in industrial environments.

Figure 1.11.1 and figure 1.21.2 shows the two most famous barcodes. LDPC codes with

short block length are addressed since the number of bits that can be stored inside of a 2D

barcode is limited.

The feature of LDPC codes to perform near the Shannon limit of a channel is known

for large block lengths only. So he introduced a new method for decoding short LDPC

codes and proved that his method gives a superior decoding performance for additive

white Gaussian noise (AWGN) channels and for the Markov-Modulated Gaussian Chan-

nel (MMGC) compared to well-tried optimization methods known from literature.

Figure 1.1: QR code.

Figure 1.2: DMC code.



15

1.2 Motivation

In the reading algorithm for 2D LDPC-based barcodes, the decoding of these codes

is critically important. When the code is read, several factors (as variations in the read-

ing angle or even dirty on the code, for example), increase drastically the probability of

occurring errors. Furthermore, specially in the industry, this process needs to be done as

fast as possible.

The work here presented was develop at the Eberhard Karls University of Tübingen

inside a project that aims the decoding of 2D barcodes, as a way to accelerate the decoder

initially developed in C++ by Wolfgang Proß in his PhD. For that, the decoding algorithm

will be implemented in hardware.

1.3 Goals

To achieve that, the method chosen to generate hardware was high-level synthesis

(HLS) in SystemC, a standard for hardware development that is growing every year and

getting more and more acceptance in the industry.

In this work scope it will be done the less modification as possible in the original code

trying to shrink the errors which are created during the process of hardware design, lower

the development time, as well as studying the possibility of synthesize hardware starting

with a software description.

Structure of the Technical Report.

This work is structured as follow, Section 2 gives a theoretical review of LDPC codes

and the hardware synthesis through HLS. Section 3 discusses related works. Section 4

show the techniques used to synthesize the LDPC decoder of Wolfgang Proß in hard-

ware. Section 5 presents the results gotten and finally section 6 gives the conclusions and

indicates possibilities of future work.
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2 THEORETICAL BACKGROUND

This section gives the reader a theoretical background on LDPC codes and Systems

Design. It starts defining what are LDPC codes on section 2.1, then section 2.2 shows

the data structure used for the decoding algorithm, the Tanner Graph. Section 2.3 gives

the reader a basic idea how the decoding algorithm works. Section 2.4 gives a theoretical

background on Systems Design.

2.1 Low-Density Parity-Check codes

LDPC codes are linear block codes, which means that every linear combination of

codewords is itself a codeword. The notation and the definitions used here follows the

approach in [77].

In the case of binary messages, the information is divided in blocks of bits with length

k, what can represent until 2k different messages u = (u0, u1, . . . , un−1). For encoding

m redundancy bits are added, so the message u becomes a new message x represented by

n bits (with n = k +m). In linear block codes this means that the messages are:

x = x0, x1, . . . , xn−1 = u0g0 + u1g1 + . . .+ un−1gn−1 (2.1)

This can also be written in the matricial form as:

x = uG (2.2)

G is a matrix of dimensions (k, n) and it is called the generator matrix, because the

linear combinations of its lines with the bits in the message u as coefficients generate the

new codeword x.

There is also a (m,n) matrix H that fulfils:
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GHT = 0 (2.3)

Where 0 is an all-zero matrix with (k,m) dimensions. As x is a set of linear combi-

nations of G:

xHT = 0 (2.4)

The matrix H of dimensions (m,n) is known as Parity-check matrix and the scalar

product (also called dot product) with a codeword vector x must be zero. In the context

of error correction, if this scalar product result is not zero then the codeword is wrong. In

other words, each row in H does a parity-check on the codeword x received.

Thus linear code blocks are defined by their generator matrix G and their parity-check

matrix H (PCM). The encoding part of LDPC codes is done using the Generator matrix

and the decoding part uses the Parity-check matrix. LDPC codes are linear block-codes

with low density of non-zero elements in their PCM.

There are two number that can be used to characterize this matrix: Wr is the number

of 1’s in each row and Wc is the number of 1’s in each column. For a (m,n) matrix to

be considered low-density it must fulfil two conditions: Wc << m (that is, the number

of 1’s in a column has to be much smaller than the number of lines) and e Wr << n (the

number of 1’s in a row has to be much smaller than the number of columns). From this

definition comes the “low-density” part on the LDPC codes name as the PC part comes

from the Parity-check matrix PCM.

2.2 Tanner Graph

The algorithm synthesized in this work utilizes the Tanner Graph data structure. The

Tanner Graph was introduced in 1981 by Michael Tanner [88] as a graphical way to repre-

sent LDPC codes. It is a bipartite graph, which means that its vertices can be divided in

two disjunct sets (an edge connects only nodes in distinct sets).

In the case of linear block codes, these sets are called Check-nodes (also known

as Subcode-nodes or Parity-nodes) and Symbol-nodes (also known as Digit-nodes or

Variable-nodes). The Check-nodes represent the rows of the Parity-check matrix and

the Symbol-nodes represent the columns.
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An edge connects a Check-node to a Symbol-node if the intersection between the

column and the row at the PCM is non-zero. Figure 2.12.1 shows a Parity Check Matrix and

figure 2.22.2 shows its corresponding Tanner Graph.

Figure 2.1: Parity Check Matrix (PCM) example.

Figure 2.2: Tanner Graph.

Figure 2.12.1 shows a regular LDPC code with Wc = 2 and Wr = 3. Looking at the

Tanner Graph it is also possible to observe that it is a regular code as the number of edges

connecting every Check-node to its Symbol-nodes is always constant. When the number

of 1’s in a row or column is not constant in a LDPC code it is called irregular.

2.3 Decoding

The decoding algorithms are generally called message-passing algorithms as they can

be explained as a set of messages being exchanged between Symbol-nodes and Check-

nodes in a Tanner graph. A node on the graph uses only the information given by the

nodes connected to it. A basic decoding algorithm is done as follows:
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Step 1: Every Symbol-node Si sends a message to their Check-nodes (always two in

the figure 2.22.2) containing the bit that they believe to be the right one.

Step 2: The Check-nodes Ci calculate a response for each Symbol-node connected.

The message at the answer contains the bit that Ci believes to be the correct for this

Symbol-node Si, assuming that the other Symbol-nodes connected to Ci are correct. In

other words, using the example in figure 2.12.1, a Check-node Ci looks the received message

and considering its parity-check equation, uses two Symbol-nodes and calculates the bit

that the third Symbol-node should be to fulfil the parity equation.

Step 3: The Symbol-nodes receive the messages from the Check-nodes and uses this

additional information to decide whether the bit that they received in first place was right.

A simple way to do so is with voting. In the example, every Symbol-node has three

sources of information, the original bit received and two suggestions from twi Check-

nodes. The result is resend to the respective Check-nodes for the next iteration.

Step 4: Each Check-node is checked verifying if the parity equations are fulfilled. If

yes, it means that the right word has been found. If not, in case there are still iterations

to be performed it goes back to step 2, otherwise the decodification ends. Figure 2.32.3

ilustrates the algorithm.

This algorithm is useful for us to understand the basic ideas behind the decoding

algorithms for LDPC codes. The message-passing algorithms are also called iterative

decoding algorithms as the messages are passed between Check-nodes and Symbol-nodes

iteratively until the correct result is found or the max number of iterations reached.

Different message-passing algorithms receive their names based on the type of mes-

sage passed within them. Bit-flipping algorithms use binary messages, in the case of

the algorithm developed by Wolfgang Proß [77] the technique used is belief propagation,

which receive this name because the information transferred is the probability of a bit to

be right. Usually it is convenient to express this probability in the Log domain.

In that way, the belief propagation algorithms are also known as sum-product decod-

ing since using the Log domain allows the calculation be performed as sums and products

operations. The algorithm synthesized in this work is called Min-Sum C decoder and

uses a variation of the belief propagation technique, it uses more advanced math which

has an explanation that is beyond the scope of this work.
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Figure 2.3: Decoding Flowchart.

2.4 Systems Design Process

Systems design is a very complex task. Usually this task implies the development of

a basic system model in some language as C/C++, Java or similar. This model is called

System Architectural Model(SAM). SAM is used as a communication channel between

the algorithm, hardware and software groups in charge of the system development.

It can be used as a way to refine the chosen algorithm or as a basis for deriving a

specification for hardware and software subsystems. After this step, typically each group

uses its own specific language to refine their part of the system and the SAM is abandoned.

In the system design sight, this method can be basically represented in figure 2.42.4.

Splitting the development teams up and changing the languages introduces a great

number of errors, especially in the transcription of the original algorithm written in a

higher level language to hardware. Furthermore, this disconnection between the used
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Figure 2.4: Classic System Design model.

models creates different testbenches for each version, that is, different ways to verify the

system.

These are some of the problems associated with this classical system design method,

which is still vastly utilized. Moreover, more complex and bigger systems are being

developed everyday, which means more code lines and more implementation errors.

The complexity at the hardware development process implies its hierarchical separa-

tion in a set of design levels. A fundamental way to achieve that, is using information

abstractions. An abstraction level in the context of computational systems design is a set

of descriptions with the same detailment grade. For designing a System on Chip(SoC), a

great number of design descriptions with different abstraction levels are used.

For instance, logical gates representing an adder have much less details than the phys-

ical layout of it, but both are relevant at some point in the design flow. Some abstraction

level used are:

Architectural: Used for non-functional decisions, describe the system with intercon-

nections between smaller subsystems.

Behavioral: Describes the system functionality without technological details.
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Register Transfer Level (RTL): Implements the system as a set of registers and com-

binational logic, focus on describing the flow of signals between registers and is currently

the most used model for hardware design.

Gate: The system is described in terms of logic gates and the interconnections between

these gates.

Switch level (Transistors): The design is implemented using interconnected switch-

es/transistors.

Physical Level (Layout): It is the lowest abstraction level. The circuit representation

of the components of the design are converted into geometric representations of shapes

which will implement the design in its physical form.

Figure 2.52.5 shows how the abstraction models work together:

Figure 2.5: Abstraction Levels relation.

The number of abstraction levels needed during the design of complex systems is

increasing along with the increasing complexity of these systems. Beyond that, the need

to rise the productivity and to shrink the design time has made new abstraction levels

higher than RTL emerge.

Figure 2.62.6 shows three examples of design generations for a SoC (System on chip):

yesterday, today and tomorrow. It shows the number of code lines estimated for design

this system at four abstraction levels. Tomorrow’s design are being developed today, it is
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visible the exponential growth of code lines.

Figure 2.6: Code Complexity at Four Abstraction Levels.

Figure adapted from [99].

Even today’s systems are only possible because there are a lot of tools developed

to generate gates and layout automatically using the RTL design. Tomorrow’s systems

will easily have more than 1 million code lines of RTL code if we design them with the

same techniques as before. These problems made it necessary for the design community

to develop higher abstraction levels, new methods that will lower the errors manually

introduced in the transcription out of the SAM model to the final hardware, lower the

number of code lines needed and also shrink the design flow time.

For that, High-Level-Synthesis (HLS) was developed. HLS allows us to design hard-

ware out of its behavioral implementation. Thus, when the project design is done at higher

abstraction level, much less details are needed and less code lines used. Using less code

lines, less errors are introduced and the repairs become easier. When a designer works at

the behavioral level, he does not need to worry about issues as clock frequency or target

technology. It makes possible for the designer to focus at the desired functionality.

Once the high level model is ready, HLS automatizes the process of RTL implemen-



24

tation, what eliminates potential manually introduced errors. The generated code is then

passed to one of the long-term used tools to synthesis that uses the RTL model as input. A

language that already proved to fulfil the requirements for this task and is becoming each

day more important for for HLS is SystemC.

Strictly speaking, SystemC is not a language, but a library of C++ classes which

implements the functionalities needed for HLS modeling, however it is constantly quoted

as a language by its own. Many tools are available today that allows hardware synthesis

using SystemC. Trying to take advantage on these HLS characteristics, the LDPC decoder

that this work describes is going to be implemented in SystemC utilizing the Cadence’s

tool Cynthesizer version 4.1.
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3 RELATED WORK

High Level Synthesis has been an intensive area of research for a long time. In [1010]

published more than 20 years ago, Raul Camposano explains how the idea of HLS is even

older, having started in the years 1960. However, it was seen only as an academic activity

as the real synthesis problems at the time were located in others abstraction layers, as the

physical layer.

The author also described in [1010] the steps made in HLS for it to work. He showed

how the knowledge basis for utilizing it were already in a state where many practical

applications could be done, with losses in both area and performance. The maturation of

HLS tools and their acceptance by the industry, however, took much more time and only

now this kind of synthesis seems to be starting its consolidation on the industry.

Nowadays, according to the authors in [1111], for the Field Programmable Gate Array

(FPGA) design community HLS is transitioning from a field of research and investigation

to the development method choose. Also in [1111], the authors make an analysis of the

various advantages and disadvantages of this method and, in the end, explain some of the

problems that are not solved yet.

Nevertheless, many tools were developed so that HLS could become a reality. In [1212],

the authors made a comparison between several tools of this method that are available

today, evaluating them under various aspects. As already said in [1111], it is demonstrated

that, while these tools had greatly evolved in the last years and its utilization by the indus-

try is already possible - and a reality - a lot of work still need to be done.

David J. Pursley and Brett L. Cline [1313] tried to introduce HLS as a way to measure

the trade-offs of algorithm implementation in hardware or software. The tools utilized for

this is the same used in this work, the Cadence Cynthesizer. The authors came to the con-

clusion that using HLS can be useful to decide whether an algorithm will be implemented
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in hardware or software. They notice that the method can even bring great performance

gains with a small incrise in area. These results are encouraging because formerly using

HLS would bring the certainly of performance loss with area increase.

Furthermore, in the error correcting field, great efforts are being made upon LDPC

codes. Besides the different codes and different decoding algorithms proposed, a lot of

implementations for LDPC decoders have been proposed, as the decoder implementation

proved to be the bottleneck to implementing LDPC codes in hardware.

In this way, various LDPC decoder architectures can be find in the literature. The

slowest one, is the bit serial approach [1414], but it is also the cheapest in terms of the

hardware resources needed. The fastest approach is the fully parallel one [1515] [1616] ,

where the whole Tanner graph is transferred to hardware. Although this approach can

provide very high decoding throughput, it also requires a much larger amount of hardware

resources.

Another approach used are the partially parallel decoders [1717] [1818] which uses just a

few number of variable and check node processors in order to do some of the processing

in parallel. These decoders achieve lower throughputs than fully parallel architectures,

but consume much less hardware resources specially due to the easier wire routing.

Vikram Arkalgud Chandrasetty and Syed Mahfuzul Aziz [1919], implemented in a FPGA

a LDPC Decoder using a Reduced Complexity Message Passing algorithm for large

LDPC codes. Their main idea was to join the efficiency of the Sum-Product algorithm

with the simplicity of the Bit-Flip algorithm (BFA). The decoder was developed in Ver-

ilog. The proposed algorithm has reduced the average number of decoding iterations

compared to BFA and the decoder requires less hardware resources compared to the Sum-

Product algorithm (SPA).

Jin Sha, Minglun Gao, Zhongjin Zhang, Li Li and Zhongfeng Wang, developed in

[2020] a Quasi-Cyclic Low-Density Parity-Check decoder in a FPGA utilizing a the Verilog

language. The decoding algorithm used was a Modified version of the Min-Sum algorithm

to reduce the memory size needed for information storage.

Another approach was made by Mohammad M. Mansour and Naresh R. Shanbhag

[2121], they jointly designed the code and the decoder seeking to lower the computing com-

plexity and the power consumption as well. To do so, they proposed to partition the PCM

in smaller matrices what would simplify the interconnections between check nodes and
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symbol nodes.

Hao Zhong e Tong Zhang presented a partially parallel LDPC decoder [2222], trying to

lower the complexity of the routing wire in large LDPC codes. The decoder developed

utilizes codes of length 4K and 8K. The main advantage is that it was possible to explore

the trade-off between the hardware complexity and the decoding speed.

In [2323] the authors presents a hardware architecture for a fully parallel stochastic low-

density parity-check decoders. This decoder utilizes an irregular LDPC code (1056,528)

and it is implemented in a FPGA. The results provided in this paper validate the poten-

tial of stochastic LDPC decoding as a practical and competitive fully parallel decoding

approach.

In [2424] the authors introduced a new stochastic algorithm called Delayed Stochastic

(DS) decoding, to implement low-density-parity-check decoders. The algorithm proposed

uses an alternative method to track probability values, which according to the authors

results in reduction of hardware complexity and memory requirement of the stochastic

decoders. Two decoders are implemented using the DS algorithm for medium (2048,

1723) and long (32768, 26624) LDPC codes, using a fully-parallel implementation of

these decoders.

Alexios Balatsoukas-Stimming and Apostolos Dollas [2525] implemented a fast fully

parallel FPGA-based design of LDPC codes using a code length of 1000 and 1152. They

have used specific FPGA optimizations for shrinking the Lookup Tables (LUTs) need.

The final throughput is high, but the architecture lacks flexibility.

The best implementations achieved good performance but little flexibility, reaching

high frequencies only with platform-specific optimizations and using large LDPC codes.

For contribute with these efforts, this work proposes to implement the decoder de-

scribed in [77] for small LDPC codes, developed to be used with 2D barcodes. Using the

HLS method will help to lower the development complexity and to make the project more

flexible.
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4 IMPLEMENTATION

4.1 Goals and Strategy

Before starting out with the project, it is first needed to consider what we are trying to

accomplish. As previously said, the final goal of this work is to implement in hardware

the LDPC decoder developed in C++ by Wolfgang Proß [77]. The High Level Synthesis

method will be used so it is possible to keep the project the closer as possible to the

decoder algorithm model.

For that, first we must build a high-level C++ model of the LDPC decoder that we wish

to implement. This must include a test bench to ensure that the functionality incorporated

in the model behaves as expected. This high-level C++ description of the design will be

converted to RTL Verilog by the tool. So we can perform simulations of all generated

models (RTL C++, RTL Verilog, and Verilog gates) against the original C++ test bench

in order to verify that the transformations were done correctly.

4.2 Key files

The key files of the project are:

dut.cc + dut.h: Source code of the module. This is the core functionality that will be

synthesized.

tb.cc + tb.h: The testbench for the design module.

project.tcl: A Cynthesizer project file that contains the definition of the project and all

of the different explorations that will be performed. It is used to automatically generate a

Makefile that will be included in the top-level Makefile .

Makefile: A Makefile which contains all of the rules required to control the various

Cynthesizer runs for the project.
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goldenfiles: A directory that contains a number of “golden” results files to validate

that all versions of synthesized code are still functioning as expected.

A number of other support files are included in the project directory. These files will

not be described in detail.

4.3 Project Structure

Basically, a system in SystemC is constituted of two main parts: the Design Under Test

(DUT), with is the device desired to be implemented, and the Test Bench (TB), which is

used to give the input data to the DUT and to receive the output that will be verified later.

The DUT can be divided in several smaller modules if desired. Figure 4.14.1 illustrates

this configuration.

Figure 4.1: System in SystemC.

4.3.1 DUT Structure

The basic structure of the dut is as follows.

vo id dut : : mainThread ( ) {

reset ( ) ;

w h i l e ( t r u e ) {

dataIn ( ) ;

/ / DUT f u n c t i o n a l i t y h e r e .

decoder ( ) ;
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dataOut ( ) ;

}

}

reset() - DUT reset code: initialize all output ports and all data members of the module.

dataIn() - input hardware interface: This function represents the input interface of the

module. It is used to get data from the TB.

decoder() - Function where the actual code working on the input data is placed.

dataOut() - output hardware interface: This function represents the output interface of

the module, used to send data to the TB.

The DUT functionality should be placed between the dataIn() and dataOut() functions

which are placed inside an infinite loop.

4.3.2 TB Structure

The basic structure of the TB has only two functions that run in parallel.

source(): Code to get the input for the DUT and drive the DUT input ports with the

data. Here is also the reset function for the TB;

sink(): Code to receive the outputs from the DUT, process the output data and compare

it with the golden files. It is also used to end the simulation calling the function esc_stop().

4.4 Golden Files

The adapting process of the algorithm from software to hardware implies modifica-

tions in the original code. The code below shows the main decoder loop.

f o r ( i n t i = 0 ; i < maxIter ; i++) {

/ / Check−nodes u p d a t e

CN_update ( ) ;

/ / Symbol−nodes u p d a t e

SN_update ( ) ;

/ / ha rd d e c i s i o n
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hd ( ) ;

/ / Check i f v a l i d CW found . I f found , ends a l g o r i t h m

i f (check_CW ( ) ) b r e a k ;

}

Methods are needed to verify that the project developed is still reproducing the same

results as the original algorithm. Typically, to check if the algorithm is working, files with

the desired output are used to compare with the output generated by the project.

Usually, these data are obtained resolving the algorithm “by hand” or consulting a

specialist who can give the desired output. In this work, it is necessary to obtain the same

results as the software version. So, in order to get this output, the original software was

modified so it saves its output in a text file.

Besides that, as the LDPC codes decoding algorithm utilizes a set of steps and message

exchanging between symbol and check nodes at the Tanner Graph, it is important to know

if the intermediate steps are also providing the right results.

Because of that, all the data in these steps were also saved in separated files, willing

to ensure that the modified hardware version is providing the same data. This was done

modifying the CN_update(), SN_update() and HD() functions so they salve their outputs

to the golden files.

4.5 Division between Software and Hardware

After the verification data was obtained, the code modification to the SystemC version

can be made. Deciding what is going to be implemented in the Test Bench (which will

continue to be software) and what is going to be implemented in the DUT (and will be

synthesized to hardware) is one of the first project decisions that has to be done and is

nothing trivial.

As mentioned in section 3, there are two main ways to implement the LDPC decoder

in hardware, partially parallel and fully parallel. In order to obtain a decoder that can

be optimized to high throughput, it was chose to use the fully parallel implementation,

instantiating the entire Tanner Graph and the calculation in hardware.

It is known that the LDPC codes are defined by its Parity Check Matrix (PCM). This

matrix is described in a file and this file can be written in several ways, but the information
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contained in it must be correctly passed to the DUT. Willing to make the project more

flexible, the file describing the PCM will be read in the TB, this way the reading becomes

liable of modification if we have a new structure of PCM file. Besides that, reading the

file in the TB makes this step simpler.

The TB also sends the input word to the DUT and gets back all the data generated

during the decoding. In the end, it also compares these results with the golden files.

4.6 Communication between TB and DUT

The data read in the TB must be send to the DUT some way, this characterize an-

other project decision, which is implementing the communication between TB and DUT.

When developing projects in High Level Synthesis, the TB should be the same for all the

abstraction layers involved (starting in behavioral down to physical), for that, one must

guarantee that the communication do not depend on details of the lower abstraction levels

(as clock frequency, or waiting cycles for example)

Therefore, a handshake algorithm between these two modules was used, as it makes

the communication independent of these parameters. Figure 4.24.2 shows the signals con-

nections TB and DUT. A communication channel called inp_sig and two control signals

called inp_vld and inp_rdy where used to send the input data to the DUT. In the same way,

another communication channel called outp_sig and two control signals called outp_vld

and out_rdy where used to receive the output from the DUT.

Figure 4.2: Communication signals.
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The communication algorithm works identically for both ways (from TB to DUT and

from DUT to TB). As an example, it will be shown the communication algorithm working

from TB to DUT.

It works in three steps:

1. The TB put the data in inp and actives the inp_vld signal, indicating that there is a

valid data to be read in the channel.

2. The TB waits a undefined amount of time until the DUT reads the data in the inp

channel.

3. When the DUT reads the data in the inp channel, it sends the inp_rdy signal to the

TB, indicating that the data was correctly read and it can moves to the next data.

Figure 4.34.3 illustrates this process.

Figure 4.3: Handshake algorithm between TB and DUT.
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4.7 Structures Used

After defined the communication, the input data can be send from the TB to the DUT

utilizing the handshake described. These data are stored in a structure called TannerGraph

in the same as it is done in the software version.

Structure description:

/ / S t r u c t u r e s t_Node

/ / Used f o r each Symbol−node and

/ / Check−nodes c o n t a i n e d i n t h e st_PCM s t r u c t u r e

t y p e d e f s t r u c t {

i n t numRefs ; / / Number o f N e i g h b o r i n g Nodes

i n t ∗Refs ; / / R e f e r e n c e s t o N e i g h b o r i n g Nodes

i n t ∗crossRefs ; / / Ref−i n d e x of n e i g h b o r i n g node

/ / where t h i s node can be found .

do ub l e ∗Messages ; / / Incoming messages from N e i g h b o r i n g nodes .

} st_Node ;

/ / S t r u c t u r e st_PCM

/ / Used f o r t h e Tanner−Graph

t y p e d e f s t r u c t {

i n t numSymbolNodes ; / / number o f symbol−nodes i n t h e Tanner−Graph

i n t numCheckNodes ; / / number o f check−nodes i n t h e Tanner−Graph

i n t numEdges ; / / number o f edges i n t h e Tanner−Graph

st_Node ∗SymbolNodes ; / / p o i n t e r t o t h e symbol−node s t r u c t u r e s

st_Node ∗CheckNodes ; / / p o i n t e r t o t h e check−node s t r u c t u r e s

}st_PCM ;

The Node structure contains the number of references to its neighboring nodes (int

numRefs), the references to these nodes (int *Refs), the reference index from the neigh-

bor node where this node can be found (int *crossRefs, message to be send to neighboring

node Refs[i] is stored in Neighboring_node.Messages [This_node.crossRefs[i]]) and the

messages from the neighbor nodes for this node (double *Messages, Messages[i] is re-
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ceived from neighboring node Refs[i]).

The TannerGraph structure has a variable to store the number of Symbol-nodes in

it (int numSymbolNodes), a variable for the number of Check-nodes (int numCheckN-

odes), a variable for the number of edges in the Graph (in numEdges) and two node lists,

one for Symbol-nodes(st_Node *SymbolNodes) and another for Check-nodes (st_Node

*CheckNodes).

4.8 Code Modifications

4.8.1 Modifications in the Structures

The structures described before contain dynamic elements list, that is, their size is

variable and defined during run time. However, in the hardware version, there has to be a

fixed size, as these lists will be transformed in memories during the synthesis process and

it is necessary for the tools to know the memory size that will be allocated.

So, the structure came to be defined as follows:

/ / Nodes

t y p e d e f s t r u c t {

i n t numRefs ;

i n t Refs [MAXREFS ] ;

i n t crossRefs [MAXREFS ] ;

do ub l e Messages [MAXREFS ] ;

}st_node ;

/ / TannerGraph

i n t numSymbolNodes ;

i n t numCheckNodes ;

i n t numEdges ;

st_node SymbolNodes [NUMSYMBOLNODES ] ;

st_node CheckNodes [NUMCHECKSNODES ] ;

/ /

The chosen size for these lists is MAXREFS = 252, NUMCHECKSNODES = 252,

NUMSYMBOLNODES = 504, MAXEDGES = 4096, because these are the biggest val-

ues found in the PCM file that describe these codes. This will guarantee that the decoder
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works for codes with this size or smaller (with some more modifications that will be

described in the following sections).

Besides that, as there is no need to define the TannerGraph structure, as it is the only

one in the whole code and it is global to the DUT, it started to not be defined as a data type

anymore. While this change seems to have no impact, only by defining the Tanner Graph

as a data type was creating extra control logic in the hardware synthesis and creating an

unnecessary delay.

4.8.2 Modifications in the Control Variables

To store data in the structures, reading loops are used, as it is done in the software

version. However, again some modifications must be performed. When reading the PCM

file in software, loops with variable size can be defined, as the PCM file has the number

of Check-nodes and of Symbol nodes and these values can be used to control the reading

loops size.

Some HLS tools can deal with variable loops and Cynthesizer is one of them. Never-

theless, usually it is not interesting to use this ability. During the optimization part, it is

normally useful do loop-unrolling in some loops, what cannot be done when the loop size

is variable. In the limit, the tool can be set to unroll all loops in the project, although it is

usually prohibitive due to the great increase in the area need to implement the design.

For this reason, the loops that were written this way:

f o r ( i n t CheckNodes i = 0 ; i < numChceckNodes ; i++) {

TannerGraph .CheckNode_Refs [i ] = inp .get ( ) ;

}

Started to be written this way:

f o r ( i n t CheckNodes i = 0 ; i < NUMCHECKSNODES ; i++) {

i f (i == numCheckNodes ) b r e a k ;

TannerGraph .CheckNode_Refs [i ] = inp .get ( ) ;

}

This way, it is guarantee that the loops can be unrolled if it is interesting for perfor-

mance reasons and, at the same time, they will work for cases where the PCM describes
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different codes (with the condition that the number of check nodes and of symbol nodes

is smaller than the defined max).

After the data is correctly store in the structures, the next step is to ensure that all the

calculation part work correctly. When passing the algorithm to the DUT functionality,

one of the first problems to deal with is the fact that some functions normally used in C

are not available in SystemC, that is, they are not synthesizable. They can be used for

testing the behavioral version, but they must be replaced when we want to work in lower

abstraction levels. This also applies to some data types (as double),

Functions to print data normally used in software (as prinft) must be taken out or

passed to the TB. The function abs(arg) that returns the absolute value of arg was also

not synthesizable and a SystemC version had to be implemented. When done with the

replacement of these functions, the behavioral model was tested and validated. The com-

parison between the output files and the golden files showed that the results were identical,

but to be synthesizable, more modifications had to be done.

4.8.3 Modifications in the Data Types

Not all constructors used in C/C++ are synthesizable with HLS, for example: alloc/-

malloc, exit, new, recursive functions, union, bit fields and virtual functions.

Floating point variables initially are not synthesizable, but they can be used as param-

eters in some cynthesizer commands. These variables and function parameters are also

supported as long as their values are not used in behavioral code that will be synthesized

(used in the TB, for example).

Although there are some paid libraries that make it possible to synthesize floating

point variables, this usually is translated to a huge increase in the area needed. For these

reasons all the double typed variables where replaced by SystemC native variables for

fixed point sc_fixed < n,m >, where n in the total bits number and m in the number

of bits in the integer part. In this project, the main variable with the double type was

Messages[MAXREFS], used in each node so it knows the messages from its neighbors.

Testing the algorithm several times against the golden files, the value < 62, 6 > proved to

be sufficient so that the algorithm works without errors.

A lot of area is wasted when more bits than the necessary are used to store variables.

For instance: a variable of the int type used to control a for of 10 iterations could be stored
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with only 4 bits using sc_uint<4>. However, if int is used, although the size depends on

the platform used, usually the value is 32 bits. Because of that, all variables utilized in the

design were replaced by native SystemC types. This not only decreases the area needed

to implement the project as is makes it faster.

4.9 Libraries

In order generate the RTL model it is necessary to utilize a parts library which char-

acterize the components for a specific technology. In this library are all the compo-

nents(multipliers, adders, logic gates etc) parameters, as delays and area.

These libraries can be automaticaly generated using Cynthesizer version 4.1.

In this project, a part library for FPGAs were generated. The FPGA chosen is the

Virtex 6, part XC6VHX565T, package FF1923 with speed grade -1.
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5 RESULTS

Finally, with all the adaptations done, several representations on different abstraction

levels were created so they can be tested against the TB developed. The representations

used were:

BEH: Fully behavioral model, keeps the code in C. It was heavily used to test the code

functionality at a high level, and it is really useful as it has the fastest simulation time.

RTL_C: RTL model generated in C++, the simulation is slower.

RTL_V: RTL model generated in Verilog, the resulting code is used as input for the

other synthesis tools.

LS: Logic Synthesis, it used the resulting code out of the RTL_V representation as

input to generate the gate-level model. This is done with the Xilinx SynplifyPro tool.

PNR: Place and Route, last synthesis level of this work. Uses the result from the LS

representation as input and it is also done with the Xilinx tools.

For each representation a simulation was created and then tested against the TB, which

compares the results with the golden files. All data generated by the DUT was exactly the

same as the software version, with no differences in the golden files, what characterizes

the correct functionality of the project.

The Appendix D presents the project.tcl file used in this project. The Appendix A,

presents the main part of the tool log file showing the components generated to implement

the RTL model. It uses a total of 3735 LUTs, 2 dedicated multipliers, 1634 register bits

and 15 internal RAM blocks.

For the logic synthesis, which generated the gate-level representation of the design, the

input was mapped to 2135 look-up tables (LUTs), 1447 register bits, 524 Block RAMs,

and some dedicated cells. More details can be found in the Appendix 2. The Place and

Route got the gate-level components mapped to 805 Slices in the FPGA (where each slice
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contains four 6-input LUTs and eight flip-flops), utilizing 1977 LUTs and 1447 registers,

524 Block RAMs and other dedicated components, as the logic synthesis. More details

are placed in the Appendix 3.

As no implementation of this specific algorithm was found in the literature, it was

chosen to compare it with algorithms that use a similar word size (n, k) - where n in the

total number of bits and k in the number os redundant bits. The design uses a (756,252)

regular LDPC code, as it is the word size in the software version.

The design was compared to other works from [1919] and it shows great results, using

less area and components as it shows in table 5.15.1 (the values used were the ones obtained

after the place and route).

It is also important to note that the design also addresses one of the main weakness of

the other projects which is the lack of flexibility.

Resources SPA[1919] SMPA[1919] BFA[1919] Min-Sum C (This work)

Device Virtex 5(XC5VLX110T-3FF1136) Virtex 6(XC6VHX565T-1FF1923)

LDPC code (648,324) regular (756,252) regular

Slices 15684 4046 1396 805

LUTs 58787 14239 3577 1977

Registers 12443 5963 2069 1447

Table 5.1: Comparison with other works
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6 CONCLUSIONS AND FUTURE WORK

This work used a combination of techniques and principles acquired during the course

of Computer Engineering as computers architecture, digital circuits and programming.

The project was successful, as all the goals were achieved and validated within the

scheduled. The set of techniques here used can be applied to any kind of project where it

starts with an algorithm in a high level language and it should be implemented in hardware

using HLS.

Besides that, it can be concluded that the HLS has reached a maturation level which

allows complex hardware implementations to be generated starting out with models much

closer to the algorithmic model, what brings great benefits to the developers and the in-

dustry, as discussed before.

The work developed here has several options to be continued, starting with optimiza-

tions that the tool itself provide. Among them the pipelining and the loop-unrolling tech-

niques can be highlighted. Another modification that which could show some good results

is introducing an explicit memory to the project, although this would also create the ne-

cessity to control it manually.

It can be noted that although the HLS tools are currently very powerful and efficient

in the systems design, the designer still needs to deal with architectural issues and take

specific decisions for the hardware design.
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APPENDIX A RTL ALLOCATION REPORT

Allocation Report for all threads:

Per Instance Total

Resource Count LUTs Mults LUTs Mults

dut_Mux62_2 3 62 0 186 0

dut_Mux16_2 8 16 0 128 0

dut_MuxS62_4 1 124 0 124 0

dut_Mux17_14 1 119 0 119 0

dut_Mux9_6 3 27 0 81 0

dut_Mux16_8 1 64 0 64 0

dut_Sub_62S_4 1 63 0 63 0

dut_Add_62S_3 1 62 0 62 0

dut_Mux62_3 1 62 0 62 0

dut_MuxS62_2 1 62 0 62 0

dut_Mux17_2 3 17 0 51 0

dut_Minus_62S_0 1 46 0 46 0

dut_Mux9_4 2 18 0 36 0

Eq16 6 6 0 36 0

Add17 2 18 0 36 0

dut_Mux17_4 1 34 0 34 0

dut_Mux16_3 2 16 0 32 0
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dut_GreaterThanEQ_1U_5 1 31 0 31 0

dut_LessThan_1U_1 1 31 0 31 0

dut_GreaterThan_1U_2 1 31 0 31 0

dut_Mux12_4 1 24 0 24 0

dut_Mux9_5 1 23 0 23 0

dut_Mux8_5 1 20 0 20 0

dut_Mux9_2 2 9 0 18 0

dut_Mux9_3 2 9 0 18 0

Add16 1 17 0 17 0

dut_Mux17_3 1 17 0 17 0

Sub16 1 17 0 17 0

GtLt8 2 8 0 16 0

GtLt16 1 16 0 16 0

dut_Mux8_4 1 16 0 16 0

dut_Mux1_3 15 1 0 15 0

dut_Mux12_2 1 12 0 12 0

Add8 1 9 0 9 0

GtLt9 1 9 0 9 0

Xor8 1 8 0 8 0

dut_Mux8_2 1 8 0 8 0

Ne11 1 4 0 4 0

Eq12 1 4 0 4 0

RedOr8 1 3 0 3 0

And_1 3 1 0 3 0

Xor2 1 2 0 2 0

dut_Mux1_2 2 1 0 2 0

dut_gen_busy 1 2 0 2 0

RedOr2 1 1 0 1 0

Xor1 1 1 0 1 0

Or_1 1 1 0 1 0

Ne2 1 1 0 1 0
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RedNor1 2 0 0 0 0

dut_RAM_63504X62_5 1 -1 0 -1 0

dut_RAM_4096X16_2 1 -1 0 -1 0

dut_RAM_63504X16_4 2 -1 0 -2 0

dut_RAM_504X62_3 2 -1 0 -2 0

dut_RAM_127008X62_6 3 -1 0 -3 0

dut_RAM_504X16_1 6 -1 0 -6 0

MulS_dedicated9 1 0 1 0 1

MulS_dedicated10 1 0 1 0 1

Register bits 1634 0 0 0 0

Implicit mux LUTs 945

Estimated cntrl 1188

Total LUTs/Mults 3735 2
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APPENDIX B

LOGIC SYNTHESIS RESOURCE USAGE REPORT

Resource Usage Report for dut

Mapping to part: xc6vhx565tff1923-1

Cell Usage

DSP48E1 2

FD 103

FDE 1249

FDR 4

FDRE 113

FDS 1

FDSE 2

GND 75

MUXCY 28

MUXCY_L 305

MUXF7 11

RAMB36E1 524

VCC 75

XORCY 198

LUT1 12

LUT2 278

LUT3 375
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LUT4 264

LUT5 705

LUT6 899

LUT6_2 5

I/O ports: 70

I/O primitives: 54

IBUF 19

IBUFG 1

OBUF 34

BUFG 1

I/O Register bits: 25

Register bits not including

I/Os:

1447

RAM/ROM usage summary

Block Rams 524 of 912

DSP48s: 2 of 864

Global Clock Buffers: 1 of 32

Total load per clock:

dut|clk 2002

Mapping Summary

Total LUTs: 2135

Unique control sets: 72
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APPENDIX C

PLACE AND ROUTE DEVICE UTILIZATION SUMMARY

Device Utilization Summary

Slice Logic Utilization:

Slice Registers: 1,447 out of 708,480

used as Flip Flops 1447

used as Latches 0

used as Latch-thrus 0

used as AND/OR logics 0

Slice LUTs 1,977 out of 354,240

used as logic 1,956 out of 354,240

using O6 output only 1325

using O5 output only 6

using O5 and O6 625

used as ROM 0

used as Memory 0 out of 101,920

used exclusively as

route-thrus

21

with same-slice register load 19

with same-slice carry load 2

with other load 0
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Slice Logic Distribution

Occupied Slices 805 out of 88,560

LUT Flip Flop pairs used 2577

with an unused Flip Flop 1,161 out of 2,577

with an unused LUT 600 out of 2,577

Fully used LUT-FF pairs 816 out of 2,577

Slice register sites lost

to control set restrictions 0 out of 708,480

IO Utilization

bonded IOBs 54 out of 720

IOB Flip Flops 25

Specific Feature Utilization

RAMB36E1/FIFO36E1s 524 out of 912

using RAMB36E1 only 524

using FIFO36E1 only 0

RAMB18E1/FIFO18E1s 0 out of 1,824

BUFG/BUFGCTRLs 1 out of 32

used as BUFGs 1

used as BUFGCTRLs 0

ILOGICE1/ISERDESE1s 13 out of 720

used as ILOGICE1s 13

used as ISERDESE1s 0

OLOGICE1/OSERDESE1s 12 out of 720

used as OLOGICE1s 12

used as OSERDESE1s 0

DSP48E1s 2 out of 864

STARTUPs 1 out of 1
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APPENDIX D PROJECT.TCL

#

# Cynthesizer Project File

#

# This file contains all of the basic options needed to synthesize

# and simulation a Cynthesizer project

#

#

# Technology Libraries

#

set LIB_PATH "$env(FORTE_HOME)/examples/tutorials"

techLib "$LIB_PATH/exampleLib_5000ps/sxlib013.lib"

techLib "$LIB_PATH/exampleLib_5000ps/dff013.lib"

cynthLib "$LIB_PATH/exampleLib_5000ps" -optional

cynthLib "./NOVA_Cynw_Virtex6_XC6VHX565T_FF1923_1_25ns" ←↩

-optional

#

#In FPGA the default is ns, in ASIC the default is ps

# Basic GCC compiler options

#

ccOptions "-DCLOCK_PERIOD=25"

#
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# Global Command Line Options

#

cynthHLOptions "--clock_period=25"

cynthHLOptions "--inline_partial_constants=on"

cynthHLOptions "--timing_aggression=-10.0" ##Helps with timing

#cynthHLOptions "--sched_asap=on" ##timing problems

#cynthHLOptions "--balance_expr=delay" ##timing problems

#cynthHLOptions "--unroll_loops=on" ##design gets too larg

#cynthHLOptions "--flatten_arrays=all_const" ##timing problems

# Simulation Options

#

verilogSimulator mti

endOfSimCommand "\@make --no-print-directory compare"

#

# Testbench or System Level Modules

#

systemModule main.cc system.cc tb.cc

###################################################################

# Synthesis Module Configurations - SC_MODULES to be Cynthesized

###################################################################

# The cynthConfigs use the [lib ...] subcommand to select a

# specific cynthLib to use. The RTL will be optimized for the ←↩

specific

# FPGA device characterized in the library.

cynthModule dut dut.cc \

[cynthConfigs {

BASIC [lib exampleLib_5000ps]

V2P [lib NOVA_Cynw_Virtex6_XC6VHX565T_FF1923_1_25ns] ←↩

--inline_partial_constants=on

}]
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###################################################################

# Logic Synthesis Configurations

###################################################################

# For FPGA targets, SynplifyPro is used as the logic synthesis

# command.

logicSynthCommand bdw_runspro

# The logicSynthConfigs specify a cynthConfig as input; the RTL

# generated for that cynthConfig will be given to

# SynplifyPro. Xilinx-specific option settings are passed via an

# options file (spro_xilinx_options.tcl) located in this

# directory. Please see that file for details.

logicSynthConfig LS_V2P {dut V2P} \

[options {BDW_LS_OPTION_FILE spro_xilinx_options.tcl}]

###################################################################

# P&R Configurations

###################################################################

# For each FPGA, the appropriate tool chain is used for P&R.

# The pnrConfigs specify a logicSynthConfig as input. The gate-level

# Verilog generated by SynplifyPro is used as input to the P&R tools.

pnrConfig PNR_V2P LS_V2P [pnrCmd bdw_run_xilinx]

#

# Simulation Configurations

# for ASIC

simConfig BEH { dut BEH BASIC } [ escArgv "" ]

simConfig BASIC_C { dut RTL_C BASIC } [ escArgv "" ]

simConfig BASIC_V { dut RTL_V BASIC } [ escArgv "" ]

###################################################################

# Simulation Configurations
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# for FPGA

###################################################################

# Behavioral simulation

simConfig B {dut BEH}

# Behavioral simulation using the V2P results

simConfig B_V2P {dut BEH V2P}

# RTL SystemC simulations, one for each cynthConfig

simConfig C_V2P {dut RTL_C V2P}

# RTL Verilog simulations, one for each cynthConfig

# We need the appropriate Verilog primitive libraries for each

simConfig V_V2P {dut RTL_V V2P}

# Check to see if we have the appropriate tools/libraries available.

set VERBOSE 0

if { [array names env -exact XILINX] == "" } {

if { $VERBOSE } {

puts stderr ""

puts stderr "Warning: The \$XILINX environment variable is not ←↩

set."

puts stderr "Check Xilinx toolset installation, needed for ←↩

Verilog simulation libraries."

puts stderr "Using the current directory as the source of ←↩

libraries."

puts stderr "Gate-level simulations will not work if libraries ←↩

are not available."

puts stderr ""

}

set XIL_DIR "." ;# probably will not work

} else {
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set XIL_DIR $env(XILINX)

}

# Gate-level Verilog (pre-P&R, untimed) simulation, one for each

# logicSynthConfig. Note the special Verilog libraries required for

# simulations. The [nosdf] command is required for pre-P&R ←↩

simulations

# since SynplifyPro does not produce an SDF file.

simConfig VG_V2P {dut GATES_V LS_V2P} \

[vlogFiles $XIL_DIR/verilog/src/glbl.v] \

[vlogTopModules glbl] \

[vlogLibs $XIL_DIR/verilog/src/unisims] \

[nosdf]

# Gate-level Verilog (post-P&R, timed) simulation, one for each

# pnrConfig. Since the P&R tools produce an SDF file, it will be used

# in the simulation for full timing analysis.

simConfig VPNR_V2P {dut GATES_V PNR_V2P} \

[vlogFiles $XIL_DIR/verilog/src/glbl.v] \

[vlogTopModules glbl] \

[vlogLibs $XIL_DIR/verilog/src/simprims]
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