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Experimental analysis of lateral impact on planar brittle material: Spatial properties of cracks
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The breakup of alkaline glass and alumina plates due to planar impacts on one of their lateral sides is studied.
Particular attention is given to investigating the spatial location of the cracks within the plates. Analysis based on
a phenomenological model suggests that bifurcations along the cracks’ paths are more likely to take place closer
to the impact region than far away from it, i.e., the bifurcation probability seems to lower as the perpendicular
distance from the impacted lateral increases. It is also found that many observables are not sensitive to the plate
material used in this work, as long as the fragment multiplicities corresponding to the fragmentation of the
plates are similar. This gives support to the universal properties of the fragmentation process reported in previous
experiments. However, even under the just mentioned circumstances, some spatial observables are capable of
distinguishing the material of which the plates are made, which therefore suggests that this universality should

be carefully investigated.
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I. INTRODUCTION

The breakup of matter into smaller pieces, i.e., the
fragmentation process, is of great interest to the industrial
community [1]. For instance, grinding, which is one of
the steps in the comminution process in mining, is of
great relevance as it appreciably impacts on the final costs.
The academic interest stems from both the association of
the process with critical phenomena [2—6] and understanding
the propagation of cracks into brittle materials [7-10]. In one
of the proposed scenarios [7-9], the propagation of the cracks
is associated with dynamical instabilities related to frustrated
microcracks initiated from the main fracture. This picture is
very different from that [10] in which flaw points ahead of
the tip of the propagating crack can be randomly excited
due to the local intense stress field of the perturbation. One
of the main difficulties in this study lies in the extremely short
time scale for the development of cracks [11-13]. The very
small spatial extension associated with the crack tip [11] also
brings additional difficulties to the study. Therefore, conclusive
experimental analysis must be extremely detailed in both
time and space. Despite many theoretical and experimental
efforts [7—17], a clear scenario of the dynamics of the cracks
has yet to emerge.

Although of great interest from the theoretical point of
view, the connection between the fragmentation process with
critical phenomena has been criticized by some authors (see,
for instance, Ref. [18]) who emphasized the relevance of
exploiting broad ranges of size scales as, in practical situations,
lower and upper bounds to the size distribution must be present.
The existence of scale invariance clearly conflicts with this
fact and requires a thorough analysis to avoid ambiguities.
Since this aspect has, to a large extent, been neglected in
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most analyses, further investigations are necessary in order to
achieve definitive conclusions.

The theoretical model we use in this work to interpret our
fragmentation data lies on assumptions very close to those
assumed in Ref. [10], where bifurcations occur at the tip
of the propagating cracks. We have successfully employed
it in the description of several experimental observables [19]
and therefore it is also adopted in the present work.

In Ref. [19], experimental results corresponding to the
breakup of alkaline glass and alumina plates, due to lateral
impact, were reported and discussed. The main focus of that
work was on the production of exclusive events, classified
according to the impact velocity on one of the plate’s laterals.
In this way, similar events were grouped according to the
violence of the impact and the properties of the fragmentation
process were studied.

In this work we use the same experimental setup of the
former study but we now focus on the spatial location of
the cracks. With the present analysis, we aim at investigating
the existence of preferred regions to the development of
fractures and examine whether it is possibly related to standing
waves caused by the impact. We also found that the violence
of the impact does not seem to be the best choice to single
out events. By collecting them according to the fragment
multiplicity, we show that several properties of the glass
and alumina plates are very similar, in contrast to what was
obtained in the former work [19] when the events were
classified according to the impact velocity.

The remainder of the paper is organized as follows. We
briefly sketch our experimental apparatus in Sec. II, whereas
the main features of the model are recalled in Sec. III. The
results are discussed in Sec. IV and the main findings are
summarized in Sec. V.

II. EXPERIMENTAL SETUP

The fragmentation of alumina (0.5-mm-thick) and alkaline
glass (1.0-mm-thick) square plates with 100.0-mm sides has
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FIG. 1. (Color online) Average multiplicity as a function of the
average cylinder pressure. For details see the text.

been studied using the apparatus presented in Ref. [19]. We
refer the reader to that work for detailed information and
describe here only its main features. The plates are laid down
on a flat surface and are laterally hit by a steel piston, which
is accelerated through the release of compressed air into a
pneumatic cylinder. The air pressure is controlled by a solenoid
valve so that the impact velocity is suitably tuned, as shown in
Ref. [19]. A steel block, whose side is larger than the plate’s
lateral, is attached to the end of the piston in order to ensure
that, when aligned, the plates are homogeneously impacted on
their lateral.

The fragments produced in the process are then col-
lected and subsequently digitalized. Individual fragments are
identified by labeling pixels whose colors differ from the
background. In this way, the area of a fragment is directly
determined by counting its contiguous pixels. Since the
analysis is discussed in details in Ref. [19], we do not provide
further details here.

In that work, a high resolution scanner has been employed
to digitalize the fragments. All the alumina and most of the
glass data discussed in this work have been processed in this
way, as they were produced in the experiments performed in
the first part of this work [19]. An extra 73 glass plates have
been fragmented at low impact velocity (corresponding to the
cylinder pressure equal to 6.8 bars), which gives an average
fragment multiplicity equal to M = 27.9 + 15.2. As shown in
Fig. 1, it is only at this pressure value that there is an overlap
of the fragment multiplicities for the alumina and glass data in
the pressure range we study.

The glass data herein has been analyzed by photographing
the fragments with a digital camera. The perpendicular
distance to the surface on which the fragments are laid is kept
fixed and is adjusted to give 8.6 pixels per millimeter. Since
the glass plates have 1.0-mm thickness, which corresponds
to 8 pixels, this resolution is sufficient for our purposes.
Furthermore, fragments with any length less than 10 pixels
are discarded from the analyses presented below since it
may correspond to the plate thickness instead of one of the
fragment’s side. By discarding such fragments we leave no
room for ambiguity.
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Since the glass plates are transparent, they should be made
opaque in order to facilitate the fragment recognition. Thus the
surface of these glass plates has been divided into 9 squares,
which have been painted with different colors. This helps
the digital reconstruction process when the plate is rebuilt by
arranging the fragments’ images one by one at their original
places. This procedure then allows us to discuss the properties
of the spatial location of the cracks. Since all the alumina data
have been taken from the former experiment [19], those plates
have been reconstructed without coloring them. Although the
method employed in the analysis of the glass plates makes
the reconstruction much easier, it is obviously possible to
do the same without colors. Then, 66 alumina plates, which
have been fragmented into M = 30.0 £ 12.0 pieces, have been
rebuilt and will be used in the subsequent analysis. A typical
fragmentation pattern is illustrated in Fig.2.

III. PLAQUE FRAGMENTATION MODEL

The schematic model employed in this work was developed
in Ref. [19]. As mentioned above, it is based on a scenario very
close to that proposed in Ref. [10] in which secondary cracks
appear at the tip of the perturbation. Since it is discussed in
detail in Ref. [19], here we summarize its main features.

(i) At the first time step, N, cracks are randomly selected at
one of the plate’s sides and the propagation angle 6 is randomly
chosen in the interval 7 /6 < |6] < /2, with respect to the
normal to the impacted surface.

(i1) All cracks propagate at the same velocity in straight
lines and stop only if one of the borders is met or if its course
is interrupted by another crack.

(iii) Ny flaw points, sampled from a Poisson distribution
with mean value (N), are uniformly placed over the plates.
They correspond to circular areas of radius R.

(iv) Secondary cracks appear with probability P, whenever
the propagating crack enters the circular area of one of the
flaw points. Then its propagation direction 6’ is sampled in the
interval 77 /6 < |0’| < 7/2 with respect to the primary crack.

(v) Secondary cracks propagate following the same rules as
the primary ones.

As discussed in Ref. [19], the number of initial cracks N,
and the probability of producing secondary cracks must be
related and are associated with the violence of the impact. In
this work we adopt the same ad hoc functional relationship

FIG. 2. Reconstruction of the glass plate after the fragmentation
process. The arrow indicates the side on which the plate was hit. For
details, see the text.
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employed previously:
N. = —10In(1 — P,). (1)

The parameters (Ny) and R, which are related to the
brittleness of the material, have been fixed in Ref. [19] and
are (Ny) = 10000 and R = 0.0005, and the plate’s area Ag is
set to unity. For simplicity, this parameter set is used for both
alumina and glass plates. Thus the only free parameter of the
model is P,, which is selected according to the violence of the
impact.

IV. RESULTS

Fragmentation events of alumina and glass plates whose
fragment multiplicities correspond to M = 30.0 £ 12.0 and
27.9 £+ 15.2, respectively, have been grouped for analysis.
All the results discussed below are obtained from these data
sets except for those displayed in Fig. 4, where a broader
multiplicity range is used. The area distribution F(A), defined
as [2]

F(A) = % /A ” n(ANdA', 2)

where n(A)d A is the number of fragments with area between
A and A + dA, is displayed in Fig. 3. In order to investigate
whether it varies along the surface of the plates, the frames
in this figure show the size distribution of fragments whose
centers of mass lie inside the hatched area. The arrows indicate
the direction of the piston motion. One observes that, except
for large areas A/Aq >> 0.01, the size distributions exhibit no
dependence on the position with respect to the impact region
and are fairly well described by a power law F o< (A/Ag) !
at small areas. The sensitivity observed at large areas is
obviously related to geometrical constraints. The differences
between the fragmentation of the alumina and glass plates
for A/Ap > 0.01 are due to the poor statistics at large areas
and stay within the error bars. The same remarks hold for the
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FIG. 3. (Color online) Size distribution for the fragmentation of
alumina (M = 30.0 & 12.0) and glass (M = 27.9 £ 15.2) plates. The
hatched area, corresponding to 1/4, 1/2, 3/4, and 4/4 of the total
surface, represents the region at which the centers of mass of the
fragments are located. The arrows indicate the piston velocity. For
details, see the text.
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FIG. 4. (Color online) Sum of the perimeters of all fragments for
a given event as a function of the corresponding fragment multiplicity.
The model calculations have been carried out using P, = 0.365,
0.425, and 0.670. The alumina data have been multiplied by 10?
and the glass data by 10! in order to separate the sets. The lines
represent the parametrization Py, /+/Ag = 2.2M°%, also multiplied
by the factors above, where necessary. For details, see the text.

comparison with the model simulation, also displayed in this
figure, using the model presented in Sec. IIT with P. = 0.365.
The interpretation of the properties of the size distribution was
discussed in Ref. [19] and the present analysis provides no
further information in this context. Since this point is not the
main focus of the present work, we refer the reader to that
paper for a thorough discussion.

In contrast, it is important to emphasize the independence
on the plate’s material observed in Fig. 3, in agreement with the
results reported in Ref. [2]. However, in a previous work [19],
we found that, for a given impact velocity, the fragmentation of
alumina and glass plates does lead to distinct size distributions.
This is readily confirmed by the results shown in Fig. 1, from
which one clearly sees that the fragment multiplicities differ
appreciably at a given impact velocity (cylinder pressure) for
different plate materials. This is a mere consequence of the fact
that a given impact produces more or less damage according to
the material being hit. We find that the alumina and glass size
distributions are statistically equivalent only if the events have
similar multiplicities, such as those selected for the present
analysis. This conclusion is supported by model simulations
at higher fragment multiplicities, where one observes size
distributions that are very similar to those displayed in Fig. 3.
The main change is the progressive reduction of the power law
domain as one increases the total fragment multiplicity.

The above results suggest that distinct energy amounts are
needed to produce a fracture inside different materials, as is
intuitively expected on physical grounds. Indeed, as shown in
Fig. 4, the sum of the perimeters of the fragments Py, of a
given event is strongly correlated with the corresponding total
fragment multiplicity M. In order to extend the multiplicity
interval as much as possible for this particular discussion, all
the available data are displayed instead of those corresponding
to the narrower multiplicity sets employed in Fig. 3. As
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mentioned above, the latter are used in all the subsequent
figures. The results exhibited in Fig. 4 seem to indicate that
the total fragment multiplicity (or the energy effectively used
in the creation of the fractures) is the key quantity to the
fragmentation process in the pressure range studied in this
work. One should also note that there seems to be a universal
function relating Pg, and M as the alumina and glass data
follow the same curve in a broad pressure range. The same
is true for the model results, whose points associated with
different values of P. follow this curve very closely.

As may be noted from Fig. 4, the Py, versus M curve can
be fairly well approximated by Py, = 2.2M%%/A,, which
is represented by the lines. In order to illustrate the extent to
which this result can be explained by a simple picture, let us
assume that M — 1 fractures are created on the impacted side
of a square plate of unity area and that the cracks propagate
perpendicularly to this side. In this particular model, all the
fragments are rectangles of perimeter 2(1 + w;), where wj;
denotes the width of the ith rectangle. Since, for a given event,
the sum of w; over all fragments must add up to 1, one has
Pyum = 2(M + 1). Thus, considering large multiplicities, one
obtains Py, = 2M. This expression differs from the empirical
function found above mainly by the power law exponent.
Another simple result may be obtained by assuming that the
unity area square plate is fragmented into M squares. In this
case, one has Py, = 4M'/?, which gives an exponent much
closer to the empirical value but the global factor is about
two times larger than the experimental one. The differences
between these formulas and the empirical result are very likely
due to the more complex geometrical shapes that are allowed in
our model and experiment than in these simplified calculations.

Important insight into the underlying physics of the
fragmentation properties may be gained by examining the
behavior of the average number of fragments (N) whose
centers of mass lie within rectangular bins of length s,
where sy = +/Ag, and width s = 0.05s9. More specifically,
the plate is divided into +/Ag/s = 20 rectangular slices of
width s, which are used to compute the averages along the
plate’s length. In the top panel of Fig. 5, (N) is plotted versus
x = d /s, where d is the distance from the impacted side. The
model predictions are compared with the experimental alumina
and glass data. As is intuitively expected, the experimental
multiplicity diminishes as one departs from the impacted
border. The model, in contrast, predicts that (N) first falls off
quickly in the neighborhood of the impacted border and then
reaches an almost constant value all the way to the other side
of the plate. This clearly conflicts with the behavior observed
experimentally.

A possible explanation for this shortcoming is that the
model does not take into account that the probability of
creating new cracks must drop as one moves away from the
impacted lateral since more and more energy is expended
during the propagation of the crack. In order to verify this
hypothesis, we have modified our model so that the probability
of creating a new crack when a flaw point is met now reads
P! = P, f(x), where f(x)is a decreasing function of x. Then
f(x) accounts for the fact that energy is used to disrupt
matter along the crack’s path. Furthermore, as also pointed out
in Refs. [7-9], energy flows through frustrated microcracks
during the propagation of the main one. These two effects
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FIG. 5. (Color online) Average number of fragments whose
centers of mass lie inside rectangular bins of width s = 0.05sy and
length 50 as a function of the distance x = d /s from the impacted
lateral. For details, see the text.
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reduce the energy available to the branching process. They
are phenomenologically taken into account in our model by
f(x). We have used three different functions to check the
sensitivity of the results to particular choices: f(x) = 1 — x!/2,
1 — x,and | — x2, where P. now reads P, = 0.650, 0.550, and
0.450, respectively. The corresponding results are displayed
in the middle panel of Fig. 5. It should be noted that, from
this point on, the model calculations in which any of these
three functions f(x) is employed will be explicitly noted in
the figure captions. We keep the label “model” to denote the
results of the standard version, which corresponds to f(x) = 1.
The results shown in the middle panel of Fig. 5 reveal that N
is not appreciably sensitive to the specific function used in the
calculation as long as it decreases monotonically as a function
of x. Furthermore, one also observes that the values of N
obtained with P/ exhibit the desired behavior since it drops as
the distance from the impacted lateral increases.

The qualitative changes brought about by these modifica-
tions also improve the agreement with the data quantitatively,
as shown in the bottom panel of Fig. 5. The very good
agreement with the experimental results strongly suggests that
the probability of creating new cracks should fall off as the
perturbation front departs from the impacted region.

Despite the important information obtained above, the study
of (N) does not seem to allow one to obtain precise information
on f(x) due to its insensitivity to the details of the function
employed in the calculation. Therefore, we investigate the
average value of the fragments’ area whose centers of mass
lie within a rectangular bin of width s = 0.05sy and length sj.
The experimental results for both alumina and glass plates are
shown in the top panel of Fig. 6 as a function of the distance
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FIG. 6. (Color online) Average area of fragments whose centers
of mass lie inside rectangular bins of width s = 0.05s, and length s,
as a function of the distance x from the impacted lateral. For details,
see the text.

from the impact region. One notices that (A) is almost flat and
exhibits low values for distances up to approximately half of
the plate’s side so. A bump starts to rise in this region and falls
off smoothly as one approaches the other side of the plate, due
to the obvious geometrical constraints. Although large values
of (A) cannot appear at small values of x, the explanation for
the existence of a fairly broad peak in the second half of the
plate is not straightforward. For instance, the standard version
of the model, in which f(x) = 1, predicts that (A) is fairly
constant all over the plate’s length, exhibiting a small and
narrow peak around the middle of the plate, as is also shown
in the top panel of Fig. 6.

To investigate whether this bump may be explained by the
model if the probability of creating new cracks drops as the
distance from the impacted lateral increases, we plot, in the
middle panel of Fig. 6, (A) obtained in the model simulation
using the same functions f(x) employed above. One notes
that the bump becomes broader and higher as f(x) falls faster
as a function of x since large fragments are more likely to
be preserved if f(x) drops quickly. The inset in this panel
illustrates the differences between the distinct choices of f(x)
used in the calculations. This version of the model possesses
the qualitative features found in the experimental data and
the comparison with the latter, shown at the bottom panel of
Fig. 6, reveals that f(x) = 1 — x allows one to reproduce the
experimental observations fairly well. We have checked that,
for all the functions f(x) employed in this work, the bump
shown in Fig. 6 becomes broader and lower while moving
toward smaller x values, as larger average multiplicities M
are required in the calculations. As also expected on physical
grounds, (N) increases appreciable for small x values as M
becomes larger. Due to the sensitivity of this observable shown
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FIG. 7. Dalitz plots for alumina and glass data as well as for the
different versions of the model employed in this work. For details,
see the text.

in the middle panel of this figure, other choices for f(x) could
lead to better agreement with the data. However, the precise
determination of this function is not the main aim of this
study and it is currently beyond the capabilities of the present
apparatus since much larger pressure values should be used
in order to significantly increase the fragment multiplicity in
the fragmentation of the alumina plates so as to match those
attained in the fragmentation of the glass plates. We intend to
point out that important information on f(x) may be obtained
if one thoroughly studies (A) as a function of x.

A close inspection on the alumina data displayed in Fig. 6
reveals the presence of a small peak centered at x &~ (0.2. Since
the error bars are small in this region, the appearance of
this bump is not likely to be due to statistical fluctuations.
Thus there might be a mechanism responsible for it whose
interpretation is beyond the scope of the present model.
One possible explanation could be the effects associated
with standing waves [20], but it is difficult to draw precise
conclusions in this respect from the present analysis. However,
the detailed behavior of (A) seems to be sensitive to the
material being fragmented since the glass data do not exhibit
this secondary peak; further studies are necessary to achieve
definitive conclusions.

It is important to mention that we have checked that the
agreement with other relevant observables presented above
(such as the size distributions shown in Fig. 3) and in the
previous work [19] remains unchanged if one uses P, =
P, f(x) provided P. is conveniently modified. For brevity,
to illustrate this point, we show in Fig. 7 the Dalitz plots
[19] obtained experimentally as well as those calculated
with the different versions of the model. As discussed in
Ref. [19], it easily reveals some qualitative features of the
size distributions by focusing on the relative size of the
three largest fragments within each event. More specifically,
the perpendicular distance from one of the triangles’ side
corresponds to the fragment’s size divided by the sum of the
sizes of the three largest fragments. Thus, if the three largest
fragments have almost the same size, the corresponding point
is found nearly at the triangle’s center. If one of them has a
negligible size compared to the other two fragments, the point
is located close to the middle point of one of the triangle’s
side. Finally, if one fragment is much larger than the other two
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largest fragments, the corresponding point is found near one
of the triangle’s corner. We refer the reader to Ref. [19], where
the construction of the Dalitz plot is carefully discussed and
illustrated. As shown in Fig. 7, the same qualitative features
are found in both alumina and glass data, as well as in the
different model simulations. The qualitative agreement with
the experimental results and the model simulations leads one to
the conclusion that the model indeed possesses many relevant
features of the fragmentation process necessary to describe
the observables discussed in this work. Indeed, except for the
statistical differences, the plots furnish the same information
on the fragmentation process. They all agree that there is an
important contribution of events in which one of the three
largest fragments is much larger the others. Furthermore, one
also notes that the results obtained with the different functions
f(x) are in very good agreement with those given by the
standard version of the model.

It should also be mentioned that we found, in Ref. [19], that
the largest three fragments are of approximately the same size
in the fragmentation of the glass plates, in contrast with the
results just reported. Therefore, we found that there is a change
of regime, where the three largest pieces of the glass plates tend
to be of similar sizes at high impact velocities whereas the
fragmentation process preferably produces one fragment that
is much larger than the others at lower impact velocities. The
former behavior was not observed in fragmentation of the
alumina plates and, if it ever takes place, it might occur at
higher impact velocities.

V. CONCLUSION

The spatial location of the cracks produced in the breakup
of alumina and glass plates due to impacts uniformly applied
on one of their lateral sides is studied. The analysis of
the fragment size distributions shows that this observable
is not sensitive to the distance with respect to the impact
region. Furthermore, the selection of events according to their
total fragment multiplicity, rather than to the violence of the
impact, shows that the fragment size distribution is the same
whether alumina or glass plates are fragmented. This is in
agreement with previous findings [2] where an independence
from the material being fragmented has being reported for
this observable but, as discussed above and also shown in
Ref. [19], the fragmentation of alumina and glass plates
impacted laterally does not exhibit such a feature unless the
analyzed events have similar multiplicities.

The average area (A) and the average number of fragments
(N) as a function of the distance from the impact region
have also been studied. Both observables are constructed
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considering only fragments whose centers of mass lie within
a rectangular bin of width 0.05sy and length sy, where sg
is the plate’s side. We found that, in order to reproduce the
experimental findings, one needs to assume that the branching
probability of cracks falls off continuously as one departs from
the impact region. The branching of cracks is a microscopic
process [7-17] whose detailed treatment is beyond the scope of
the phenomenological model used in this work. However, the
corresponding effects manifest themselves macroscopically,
which allows one to examine this point. The average fragment
multiplicity (N) turned out to be fairly insensitive to the details
of the function employed in the model calculation to take this
fact into account in contrast with (A), which exhibits a fairly
large sensitivity to the exact functional dependence assumed.

The conclusions drawn in this work should be carefully
examined at higher fragment multiplicities in order to check
whether the best functional form for the statistical function
f(x) does not depend on the violence of the impact. This
is beyond the scope of the present work due to limitations
on the highest pressure that can be employed with our
apparatus. Indeed, in order to obtain similar multiplicities
for both materials, pressure values close to the maximum
allowed in the setup are employed in the case of alumina
plates, whereas much lower values have been used for glass
plates, as shown in Fig. 1. The investigation of the above
findings at different multiplicities therefore requires another
experimental setup so that the alumina plates can be hit at
higher velocities, leading to larger multiplicity values. On the
theoretical side, we have checked that the model results change
only quantitatively at higher multiplicity values. However,
more precise conclusions can be obtained only through direct
comparison with experimental data. We therefore suggest that
this kind of study should be systematically carried out for other
materials and different impact velocities or multiplicities in
order to achieve precise conclusions on this valuable piece of
information regarding the propagation of cracks.
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