
Driven one-component plasmas

Felipe B. Rizzato,* Renato Pakter,† and Yan Levin‡

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre 91501-970, RS, Brazil
�Received 30 March 2009; revised manuscript received 10 June 2009; published 14 August 2009�

A statistical theory is presented that allows the calculation of the stationary state achieved by a driven
one-component plasma after a process of collisionless relaxation. The stationary Vlasov equation with appro-
priate boundary conditions is reduced to an ordinary differential equation, which is then solved numerically.
The solution is then compared with the molecular-dynamics simulation. A perfect agreement is found between
the theory and the simulations. The full current-voltage phase diagram is constructed.
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I. INTRODUCTION

Unlike the equilibrium thermodynamics and statistical
mechanics, which are well developed after the pioneering
works of Boltzmann and Gibbs, our understanding of non-
equilibrium thermodynamics is restricted to some special
models and cases. Stochastic lattice gases have provided a
fertile testing ground for studying nonequilibrium stationary
states in driven systems �1–3�. These models exhibit a vari-
ety of phase transition arising from a diffusive �collisional�
relaxation. For some of these models local equilibrium and
hydrodynamic equations have been derived rigorously �4�.

There are, however, other physical systems for which the
approach to final stationary state is through a process of col-
lisionless relaxation �5–12�. Gravitational systems and con-
fined one-component plasmas are just two such examples.
For these systems the collision duration time diverges and
the relaxation is governed by the collisionless Boltzmann
�Vlasov� equation �13�. In the thermodynamic limit, the col-
lisionless relaxation process leads to non-Maxwell-
Boltzmann velocity distributions, even for stationary states
without macroscopic currents. Unlike normal thermody-
namic equilibrium, the stationary state that follows the colli-
sionless relaxation depends explicitly on the initial distribu-
tion of particle positions and velocities. In spite of this
complication, it was recently shown that it is possible to
construct a statistical theory that quantitatively describes
these states �11,12�.

Beams of electrons driven by accelerating vacuum de-
vices, such as the thermionic valves, diodes, and magnetrons,
also do not relax to the Maxwell-Boltzmann distribution
�14�. Unlike the driven stochastic lattice gases, these sys-
tems, however, are intrinsically collisionless. An important
practical question concerns the kinetic temperature distribu-
tion in thermionic devices in which the directed velocity pro-
duced by the electric field is comparable to the thermal ve-
locity �15�. This is particularly the case for the transitional
region between Child-Langmuir and no-cutoff regimes in
magnetrons, where the electric potential becomes compa-
rable to the thermal energy �15�. Even when the final di-

rected velocity is larger than the thermal velocity, there is a
region near the emitting cathode where thermal effects are
important. It is of great practical interest to determine the
extent of these regions �16,17�. Furthermore, since in these
systems the collision duration time diverges, there is no local
equilibrium, and one cannot a priori postulate an equation of
state relating the beam density and the beam temperature, as
for adiabatic or isothermal processes �15�. Instead, given the
properties of thermionic filaments—such as say the velocity
distribution of the emitted electrons—one should solve the
boundary-value problem posed by the Vlasov equation. This
is the approach used in the present paper. Taking into account
the collisionless aspects of the system, we obtain a solution
without any assumptions on possible equations of state. Our
methodology resembles the one introduced by Alfvén in the
context of electric double layers in plasmas �18–20�. To test
the predictions of the theory we have developed a molecular-
dynamics simulation method, which explicitly accounts for
the boundary conditions of the system. Excellent agreement
is found between the simulations and theory. In particular,
our results show that the isothermal hypothesis occasionally
used to simplify the analysis of driven one-component plas-
mas should not be employed.

In Sec. II we present the model and discuss the simula-
tional approach. In Sec. III we compare the solution of the
stationary Vlasov equation and results of simulations. In Sec.
IV we give our conclusions.

II. MODEL

A. Vlasov equation

As a prototype of a collisionless driven system, we con-
sider a beam of electrons, accelerated by an external electric
field, traveling from an emitting �planar� cathode to a collect-
ing �planar� anode across the device gap. The cathode, lo-
cated at position x=0, is kept at electrostatic potential ��x
=0�=0 and is heated to temperature Tc, resulting in the emis-
sion of electrons. After traversing the device gap, these elec-
trons are collected at the cold anode �Ta�0� located at x
=L and kept at potential ��x=L�=V�0. During the steady-
state operation, the region between the cathode and anode
contains a total of N electrons, resulting in a current density
j. Our goal is to relate j to the potential difference V, the
number of electrons N, the device width L, and the cathode
temperature Tc.
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For planar electrodes, particle distribution transverse to
the x axis can be taken to be uniform. Furthermore, the one-
particle distribution function for a collisionless system in a
steady state must satisfy the stationary Vlasov equation,

v
� f

�x
+

e

m
� ��x�

� f

�v
= 0, �1�

where e is the elementary charge, m is the electron mass, and
f = f�x ,v� is the static distribution function. In the thermody-
namic limit, Vlasov equation becomes exact for particles in-
teracting by long-range potentials �21�.

It can be readily seen that the distribution functions of the
form f�x ,v�= f���x ,v��, where � is the mean particle energy,
��mv2 /2−e��x�, satisfy Eq. �1�. Therefore, if f��� is speci-
fied at x=0, f is then also determined for any other position,
provided that the electrostatic potential ��x� is known. This
potential can, in turn, be calculated self-consistently from the
solution of the Poisson equation

d2��x�
dx2 =

e

�0
n�x� , �2�

where the particle density n�x� is given by n�x�=�vf���dv
=�vf�mv2 /2−e��x��dv, the total particle number is N
=A�v�0

Lfdxdv, and the transverse cross sectional area of the
essentially one-dimensional �1D� device is A. To represent
both the thermal distribution near the cathode, and the fact
that only particles with positive velocities actually move into
the device gap, we choose at x=0 a unidirectional Maxwell-
ian distribution of the form

f�x = 0,v� = �n0	 2m

�kBTc
exp
−

mv2

2kBTc
� if v � 0,

0 if v � 0,
�

�3�

where kB is the Boltzmann constant, Tc is the cathode tem-
perature, and n0 is the beam density at the cathode after the
stationary state is achieved. The value of n0 can only be
obtained once the full problem has been resolved. The dis-
tribution function over the length of the whole diode is then

f�x,v� = �n0	 2m

�kBTc
exp
−

�

kBTc
� if v � vmin�x� ,

0 if v � vmin�x� ,
�

�4�

where vmin�x�=	2e��x�
m . The unidirectional velocity distribu-

tion is similar to the one used in the analysis of current-free
globally neutral double layers �20�; however, in our case we
do have circulating current generated by a one-component
non-neutral electron beam.

Integrating the distribution function f���x ,v�� over the
possible values of velocity, we arrive at a nonlinear integrod-
ifferential equation for the electrostatic potential,

d2�

dx2 =
Ne

�0A

e�e��x��/kBTcErfc
	e��x�
kBTc

�

 e�e��x��/kBTcErfc
	e��x�

kBTc
�dx

. �5�

It is important to note the difference between this equation
and the Poisson-Boltzmann equation obtained for usual col-
lisional plasmas and electrolytes in the mean-field limit �22�.
Equation �5� can be solved numerically to yield the electro-
static potential and the distribution function for the electron
beam in a stationary state.

B. Simulations

For systems with long-range interactions, Vlasov equation
should become exact in the thermodynamic limit. To confirm
this for our system, we have performed molecular-dynamics
simulation of an equivalent one-dimensional model. The
simulated system consists of Ns mutually interacting charged
sheets of area A—each containing ns electrons of the same
velocity—moving along the x axis, under the action of the
external electric field produced by the grounded cathode
��0�=0 and an anode kept at a fixed potential ��L�=V. The
interaction potential between the two sheets G�xi ,xj� is the
Green’s function �23� of the Laplace equation,
d2G�x ,y� /dx2=1 /L	�x−y� with the boundary conditions
G�x=0,y�=G�x=L ,y�=0. Solving this equation we obtain
G�xi ,xj�=x� /L�x� /L−1�, where x� and x� are the smaller
and the larger of the two-particle coordinates xi and xj. The
effective Hamiltonian for the sheet dynamics is then

H = �
i

msvi

2

2
−

esV

L
xi� −

1

2

es
2L

�0A
�
i,j

G�xi,xj� , �6�

where es=nse and ms=nsm are the charge and mass of each
sheet, respectively. The acceleration of each simulated sheet
then follows from the canonical equations of motion,

v̇ =
eV

mL
+

Ne2

2�0mA
�
n�left� − n�right�

Ns
� − 
1 – 2

x̄

L
�� , �7�

where n�left �right�� is the number of sheets to the left �right� of
the one considered, and x̄ denotes the positional average x̄
=� jxj /Ns. Since 0
 x̄
L, from Eq. �7� one sees that the
electron acceleration at the device entrance where n�left�→0
and n�right�→Ns satisfies eV /mL−Ne2 /2�0mA� v̇�x=0�
�eV /mL, which reveals that in space-charge dominated de-
vices where eV /mL�Ne2 /2�0mA, acceleration at beam en-
trance may be zero or even negative �24�. When the accel-
eration vanishes, the associated current is denoted as the
limiting one. Since we wish to describe a hot cathode and a
cycling current inside the device, we adopt the following
strategy. We advance the simulation in small time steps, al-
ways obeying Eq. �7�. Whenever a particle crosses the anode
and exits the system, it is reinjected at the cathode position.
At this point all the particles in a small region 	s around the
cathode are rethermalized so as to ensure that the distribution
there keeps its original form of a truncated Maxwellian. The
width 	s must be sufficiently small, 	s�L, but apart from
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this condition its precise value is arbitrary. The simulations
were performed with 	s /L=0.01 and Ns=50 000. In all cases
we start with uniform distributions of sheets and compute the
observables only after the system reaches its final stationary
state. It is interesting to note that unlike for collisionless
nondriven systems, the stationary state achieved by a driven
one-component plasma does not depend on the initial par-
ticle distribution.

III. COMPARISONS

To compare the predictions of the theory with the results
of the simulations, we consider the density and the tempera-
ture distributions inside the diode. The kinetic temperature is
defined as

kBT�x� = v2�x� − v̄2�x� , �8�

where the over bar denotes the velocity average at a given
position x. The theoretical averages are calculated using the
distribution function f���x ,v��, while in the simulations, the
averages are performed over the particle velocities within
narrow bins along the x axis. Note that because of the asym-
metry of the velocity distribution at x=0, T�0��Tc.

It is convenient to scale space and time with the diode
length L and the plasma frequency �p

2 �Ne2 /�0mLA, respec-
tively. Dimensionless coordinate and velocity can then be
defined as x�=x /L and v�=v /L�p. In addition, Eqs. �4� and
�7� show that adimensional temperature and adimensional
voltage can be defined as T�=kBT /mL2�p

2 and V�

=eV /mL2�p
2, respectively, and serve as the control param-

eters for the system.
In Fig. 1�a� the scaled temperature T� is plotted against

the scaled coordinate x�. We consider Tc
�=0.05 and also con-

sider a device operating at its limiting current, v̇�x=0�=0. A

striking feature of this plot is that the temperature drops rap-
idly as one moves away from cathode toward anode. We next
study the dependence of scaled density n��x��=n�x�AL /N
along the length of the diode. The density is very high near
the cathode, where the average velocity is small. It then
drops rapidly toward the anode, where particles are acceler-
ated up to high speeds, see Fig. 1�b�. Agreement between the
simulations and the theory for both the kinetic temperature
and density is excellent. Unlike the analytical solution,
which only describes the stationary state of a driven one-
component plasma, the simulations provide the entire dy-
namical evolution of the electronic system. They also show
that the final stationary state is independent of the initial
conditions, as discussed earlier.

We now study the current-voltage phase diagram of the
device. In general, current is a function of the voltage drop,
the temperature, the gap length, and the total charge of the
device. However, by measuring the time in units of one over
the plasma frequency �p

−1, and the length in units of the gap
length L, we can scale away two of these variables. The
current density can be calculated using

j = − e
 vfdv . �9�

Since in the steady state the current does not depend on
either time or coordinate, integration along the x axis and
over the cross sectional area A yields

jLA = − e
 vfdvdxd2r�. �10�

Furthermore, since the current density is measured in units
�j���Nev /AL�, rescaling it in terms of the gap length and
the plasma frequency, we can write the reduced current den-
sity as j�=−ej /�0mL�p

3, which then satisfies

j� = v���V�,T�� , �11�

where v�� is the reduced velocity averaged over all the par-
ticles. The reduced average velocity, in turn, must be a func-
tion of the two previously introduced control parameters: the
reduced voltage and temperature. Equation �11� is in fact a
similarity transformation relating systems with different
charge, length, temperature, and potential difference. In Fig.
2 we plot j� vs V� for various T�. The phase diagram pro-
vides all the information about the current-voltage character-
istics for all possible planar diodes. The first feature to note
is that all the different curves emanate from the limiting cur-
rent backbone, which traces a temperature dependent path in
the j�
V� plane. To the left of the limiting current border,
indicated by the solid line in Fig. 2, the distribution function
can no longer be described by a unidirectional Maxwellian,
such as expression �4�. The transition resembles Bose-
Einstein condensation �BEC�. In the case of BEC—below
the critical temperature—a macroscopically populated
ground state appears, and only a fraction of particles remains
in the excited states. Similarly, in the case of our diode, to
the left of the limiting curve, part of the charge must be
expelled from the system before a stationary state can be
achieved. As Tc

�→�, the voltage effects become negligible
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FIG. 1. �a� Temperature and �b� density versus position in the
case of the limiting current and Tc

�=0.05. Solid lines represent the
theoretical results while the circles are the results of the
simulations.
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compared to the thermal ones, and the beam density becomes
uniform across the gap. In this limit, it is possible to show
that the dimensionless backbone curve asymptotes to a ver-
tical line, V�=0.5, Fig. 2.

IV. CONCLUSIONS

To conclude, we have studied the dynamics of a driven
one-component plasma. Unlike the stochastic lattice gasses
that are significantly abstracted from reality, the model stud-
ied in this paper is very similar to real electronic devices,
such as the thermionic valves, diodes, and magnetrons. Fur-
thermore, differently from the lattice gases whose dynamics
is diffusive, the distribution function of collisionless systems
satisfies the Vlasov equation. For the class of driven systems
introduced in this paper, the stationary-state Vlasov equation
can be solved exactly. The theory developed in this paper
should, therefore, be relevant to the design and operation of
real electronic devices.

It is important to stress that in the absence of collisions, a
charged beam does not relax to an equilibrium with a known
equation of state. In fact, the thermodynamic temperature is
defined only in the vicinity of the hot emitting cathode. Away
from the cathode, dynamics is controlled by the collisionless
Vlasov equation, which has to be solved as a boundary-value
problem. Once the solution is obtained, all the macroscopic
quantities can be determined via appropriate averages. The
kinetic temperature is found to vary strongly across the de-
vice gap, precluding the use of conventional isothermal or
adiabatic assumptions and of the hydrodynamic formalisms.
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FIG. 2. Characteristic curves of j� vs V�. The thick solid line
represents the limiting current and the thick dashed line represents
the zero-temperature limit. To the left of the solid curve, charge
must be expelled from the system before a stationary state can be
achieved. Dotted lines represent the theoretical results for the indi-
cated temperatures. The circles are the results of the simulations at
the same temperatures.
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