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Information space dynamics for neural networks

R. M. C. de Almeida and M. A. P. Idiart
Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brazil

~Received 6 February 2002; published 21 June 2002!

We propose a coupled map lattice defined on a hypercube inM dimensions, the information space, to model
memory retrieval by a neural network. We consider that both neuronal activity and the spiking phase may carry
information. In this model the state of the network at a given timet is completely determined by a function

y(sW ,t) of the bit stringssW 5(s1 ,s2 , . . . ,sM), wheres i561 with i 51,2, . . . ,M , that gives the intensity

with which the informationsW is being expressed by the network. As an example, we consider logistic maps,

coupled in the information space, to describe the evolution of the intensity functiony(sW ,t). We propose an
interpretation of the maps in terms of the physiological state of the neurons and the coupling between them,
obtain Hebb-like learning rules, show that the model works as an associative memory, numerically investigate
the capacity of the network and the size of the basins of attraction, and estimate finite size effects. We finally
show that the model, when exposed to sequences of uncorrelated stimuli, shows recency and latency effects
that depend on the noise level, delay time of measurement, and stimulus intensity.

DOI: 10.1103/PhysRevE.65.061908 PACS number~s!: 87.18.Sn, 05.45.Ra
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I. INTRODUCTION

Coupled map lattices@1,2# present a wealth of differen
and interesting behaviors and are used as a tool to m
nonlinear systems made of many interacting elements
particular, it has been recently shown that coupled map
tices defined over the vertices of a hypercube inM dimen-
sions may present short and long term memory of its ex
sition to external stimuli, as well as a dynamical mechani
to forgetting@3,4#. In this context, a map is associated wi
each hypercube vertex, labeled by a string ofM bits, and the
different states assumed by these maps represent diffe
combinations of patterns that are simultaneously expres
by the system. The hypercube is then the information sp
of these models where couplings between different patte
are explicitly considered and may be monitored. The fact t
each bit string may be mapped to an integer in the inte
@0,2M21# brings additional advantages to the numeri
treatment of the evolution of such systems@5#.

Neural networks are generally conceived considering
teractions involving two neurons, the one that is firing, th
is, releasing neurotransmitters, and the post synaptic ne
that is receiving these neurotransmitters. However, as n
rons are not exactly touching each other in the se
that there is a small space—the synaptic cleft—between
presynaptic neuron and the receptors of the postsynaptic
ron, the synapse would be better described as a small re
containing extracellular liquid, the receptors of the posts
aptic neuron, and the region of the presynaptic neuron fr
which the neurotransmitters are released. It is importan
notice that other neurons can have axons or dendrites in
the influence region of a given synapse and axon-axon
dendrite-dendrite synapses are also possible. Therefore
postsynaptic response may in fact depend on the stat
many neurons, instead of only two, being more exactly
scribed as many-body interactions involving more neuro
Moreover, both the release and reception of neurotrans
ters are strongly influenced by the local properties of
1063-651X/2002/65~6!/061908~13!/$20.00 65 0619
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synaptic cleft, as an electrical potential or the concentrat
of neurotransmitters, their agonists, or antagonists@6,7#. In
this sense, the effective intensity of the exchange of n
rotransmitters may vary, depending on the state of the b
as a whole. Recent developments in neuroscience revea
the biochemistry of the local extracellular medium, due
the presence of hormones and neuromodulators, may m
late the intensity of interactions among neurons, represen
global interactions through other channels besides the
apses@8–12#. Regions in the brain may be recognized, whe
specific information processing takes place as, for exam
speech centers or regions where the different sensory or
send their signals to. However, these centers are also
tensely connected to other regions in the brain and may
ceive feedback. Brain activity and the emerging mind ori
nate in this intricate exchange of information throu
synapses and hormone release and in being recursively
externally stimulated by both environment and signals co
ing from the body. The modeling of the brain by synaps
only, and in fact, by one only homogeneously coupled neu
net, is certainly too simple when the aim is to successfu
describe the emergence of the mind or, less ambitiou
some specific cerebral function. It is important to consid
multi-interactions and a dynamical modulation of these int
actions, in the sense that it is the overall activity of the n
that should define how these interactions are modulated

Events happening in different time scales play differe
roles in the functioning of the brain. Specifically, when
neuron fires, it generally fires a train of pulses. The typi
time scale for one pulse is 1 ms followed by an absol
refractory period of 1 ms, such that the maximum firing ra
of a neuron could be of the order of 500 Hz. Temporal su
mation of excitatory postsynaptic potentials, that is, the
tion potential measured inside the postsynaptic neuron
possible when the pulses occur in rapid succession, with
to 15 ms from one another. The modeling of neural netwo
by physicists generally considers discrete time evoluti
where at each time step a neuron is either active or inact
©2002 The American Physical Society08-1
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in the sense that the information received from other neur
have been summed at the soma@13–16#. This time step
should englobe the necessary time for the neuron to integ
the incoming signals both spatially and temporally, that
the physicists’ time step should be of the order of 15 m
However, it has been pointed out by many authors that
only the coincidence in neurons activity during the integ
tion time interval, but also the relative phase of pulse tra
could be relevant for information processing@17–22#. These
relative phases may represent additional variables that r
late the intensity of effective neurotransmitters exchange
given time. Consequently correlations among spike train
different neurons, averaged over the integration time, can
regarded as further dynamical variables of the system,
subject to evolution equations.

Furthermore, there are some indications that neural
nals are integrated both temporally and spatially. For
ample, Mountcastle@23–25# proposed minicolumns as se
of neurons more intensely coupled between themselves
with other neurons. Analogously, minicolumns that inter
more intensely between themselves than with other mini
umns form the so-called cortical columns. There is evide
of these spatially integrated structures beyond the sen
cortex@26–29#, and they have been proposed as the proc
ing units in a mammalian cortex@30,31#.

What emerges from the scenario described above
highly complex structure, with neurons integrating sign
both spatially and temporally coming through nonlinear
teractions involving many neurons, represented by syna
and other information diffusion channels, and responding
them in a nontrivial way. On the other hand, we observe th
although simple models for neural networks, such as
Hopfield model or the Perceptron and their derivations, h
many unbiological features, they do present the possibility
recognizing what information is and how information pr
cessing takes place. In these models, initial states or in
may be mapped to some given information and the resu
letting the system evolve is the retrieved information or
output for a question. Some earlier works approached a
ciative memory in attractor neural nets@32–36# and rule
learning processes in layered nets@37,38#, where multi-
interactions have been explicitly considered. The resul
that the information processing capability in the two i
stances is greatly enhanced by multi-interactions.

It would certainly be rather desirable that a more comp
model for neural networks could keep the ability of follow
ing the information flux, incorporating features such as te
poral and spatial signal integration together with the dyna
cal modulation of the synapses to emulate hormone
extracellular medium effects.

With this too ambitious goal in mind, we essay a fir
move in this direction by introducing a model for neur
networks where we can recognize Hebb terms and Hebb
terms for multi-interactions, as well as the modulation of t
interactions by the global activity of the net, in an attempt
incorporate biologically based hypotheses to the informa
processing capabilities of previous models. The model st
from a different point of view in relation to classical neur
network models, by proposing evolution equations in an ‘‘
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formation’’ space from which the dynamics for the neuro
can be derived. In Sec. II we define information space a
present the model, in Sec. III and IV we define order para
eters and discuss analytical results, and in Sec. V we pre
numerical simulations results and apply this model to sh
term human memory. Finally, in Sec. VI we discuss our fin
ings and conclude.

II. THE MODEL

A. Experimental quantities and model variables

The definition of complexity is rather controversial, but
general we can state that more complex devices may
criminate subtler differences in stimuli, yielding richer r
sponse repertoires. When proposing a mathematical mo
higher complexity implies that the model system states
external stimuli should present more possibilities, leading
different trajectories in the life history of the system. In ve
complex systems, small differences in the system state o
the external stimulus may imply completely different ou
comes. Neurons are complex unities and we should ex
that a whole network of neurons is even more complex.
the other hand, it is common wisdom that one should
complicate models more than necessary at the price of d
ing with too much information to infer the relevant causes
a given phenomenon. The optimal equilibrium between co
plexity and simplicity, such that the model is tractable a
the phenomenon is still present may be elusive and diffic
to reach. Modeling is also an art.

Neural networks, as has been vastly investigated
physicists, consist of a network of simple unities that can
general assume two values. The connection between
mathematical models and real neural networks is m
through the assumption that the value11 of a binary vari-
able Si at a given timet should be associated with the e
perimental fact that the neuron is active. Since a neuron
physiological conditions is always spiking, activity has to
interpreted as a state where the neural firing rate exceed
baseline firing rate.

Physicists then proceeded by assuming evolution eq
tions for the individual neurons, that take into account t
state of the network of these idealized neurons in previ
times. Typically the interaction is considered to happen
tween each pair of neurons, describing independent s
apses; that is, each interaction depends on the state o
two involved neurons only and on a predetermined syna
parameter, fixed during a previous learning phase. The
sults are well described in the literature~for reviews see@13–
16#! and, although very interesting, these models present
rious limitations in reproducing the observed behavior of r
neuronal networks. From this particular point of view, w
can say that these systems are not responding differently
different stimuli and hence other, more complex mod
should be proposed.

There are at least two different directions to increase co
plexity in neural networks. The first is to assume mul
interactions, as has been proposed in some earlier w
@32–38#. The results show an enhanced information proce
ing performance but the models still lack biological featur
8-2
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INFORMATION SPACE DYNAMICS FOR NEURAL NETWORKS PHYSICAL REVIEW E65 061908
The second direction is to consider more complex unit
that is, a system ofN neurons should have more possibiliti
to describe its state. In this work we propose a model t
increases complexity in both directions.

We assume that to completely determine the state of
network at a given time one must know not only the firi
rate of each neuron, but also their spiking relative phase
a time intervalDt, of order of 15 ms, during which a neuro
can spike and recover several times. This is the relevant
scale for the discrete dynamics of our model and it is c
sidered as the integration time scale, or the integration t
that leads to cognitively meaningful states. The spikes h
roughly the same shape, varying the cross membrane po
tial from to 265 mV up to 40 mV, then decreasing t
280 mV, and finally relaxing back to265 mV during a time
interval of about 2 ms. One way to model the state o
neuron is to consider a partition of the intervalDt in K equal
slices, typically less than 2 ms, and assign a value 1 if
neuron spiked in that time slice and zero otherwise. The s
of a neuron during a given integration time interval is th
given by a sequence ofK bits, similar to what is done in
information theoretical analysis of spike trains@39,40#. As
we shall see in what follows, in this model neuron states
given time t determine the neuron states in the next tim
interval, labeled byt1Dt, implying that the dynamics of the
-
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model takes into account the exact spike times occurring
K previous time slices. This fact may be regarded as a fo
of temporal integration of neural activity.

Besides temporal integration, spatial integration may a
be considered. Individual neurons subject to the same stim
present large variability regarding whether and when
spikes occur, generating sources of noise that may deg
information processing. Summing over a set of neurons
well as different time slices could decrease this effect. Si
lar to the integration time intervalDt, an integrated process
ing unit may be defined as a set of intensely coupled n
rons, in the spirit of the minicolumns that were proposed
Mountcastle@23–25#. We note that spatially integrated stru
tures have been found in the somatosensory cortex as e
as 1956@25#, in the visual cortex@26,27#, and more recently
their existence has been proposed beyond the sensory c
@28,29#. To consider the evolution of these processing un
one may then consider the joint evolution of all neurons
the set, during a finite time interval. We model this joi
temporal and spatial integration by considering that each
is composed ofn neurons, such that the stateS̃i(t) of the i th
processing unit at timet is specified by the state of each on
of the n neurons at each time slice in the interval betwe
t2Dt and t, that is
S̃i~ t !5~s1,1
i ,s1,2

i , . . . ,s1,K
i ,s2,1

i ,s2,2
i , . . . ,s2,K

i , . . . ,sn,1
i ,sn,2

i , . . . ,sn,K
i !, ~1!
nd

ve

ch
s
an-
t is
t in
for-

bit

f an

on-
wheresj ,t
i 561 indicates whether thej th neuron in process

ing unit i has spiked in thetth time subinterval.
Correlation functions among different units are defined

^S̃i 1
~ t !S̃i 2

~ t !•••S̃i m
~ t !&5

1

nK (
j 51

n

(
t51

K

sj ,t
i 1 sj ,t

i 2 . . . sj ,t
i m ,

~2!

where i 1 , i 2 , . . . ,i m correspond to different processin
units. As each bitsj ,t

i 561, the above equation implies tha
correlation functions with one or more repeated units
redundant. For example, the self-correlation function^S̃i

k& is
calculated as

^S̃i
k&5

1

nK (
j 51

n

(
t51

K

~sj ,t
i !k5H ^S̃i& if k is odd,

1 if k is even.
~3!

Consequently, the complete set of correlations involving o
different units carry all information about the system.

For a network withN neurons, there areM5N/n process-
ing units, andM correlation functions involving only one
unit. The firing rate, defined as the average number of sp
produced by then neurons during the integration timeDt, is
therefore
s

e

y

es

r i5
1

2t0
@^S̃i&11#, ~4!

wheret05Dt/K is defined as the lasting time of a spike, a
hence 0<r it0<1 since21<^S̃i&<1.

For m.1 in Eq. ~2!, the correlation functions involve
more units and carry information on the spiking relati
phases. Observe that for the same values of^S̃1& and ^S̃2&,
for example, there can be different values for^S̃1S̃2&. In fact,
there are 2M21 different correlation functions for 0,m
<N, and they may assume the discrete values21,21
12/(Kn), . . . ,22/(Kn),0,2/(Kn), . . . ,122/(Kn),1, that
is, 1/(Kn) gives a scale for the correlation functions, su
that whenKn→` the correlation functions are continuou
quantities. These correlation functions are well defined qu
tities that may be, in principle, experimentally measured. I
their evolution that we propose to model here and we do i
an indirect way, using an associated space that we call in
mation space.

We begin by defining a given information pattern by a
string sW 5(s1 ,s2 , . . . ,sM) of M bits (s i561 for 1< i
<M ). This bit string is a vector in anM-dimensional space
but may also be mapped to the binary representation o
integer, here represented bys, such that 0<s<2M21. The
idea is to somehow associate information patterns to c
8-3
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R. M. C. de ALMEIDA AND M. A. P. IDIART PHYSICAL REVIEW E 65 061908
figurations of a neural network. As the bit strings represe
ing the information patterns haveM bits and to completely
represent the configuration of a neural network we n
KnM bits, only whenK51 andn51 the information pat-
terns may be mapped to the instantaneous configuratio
the net. In this case the processing units in the neural
work are composed by single binary neurons (n51) with
nonsliced integration times (K51). Here we work with
more complex units, so this map is not straightforward.

In order to obtain the map between the configuration
the network and the information patterns, we consider t
the network made ofM processing units may simultaneous
express different information patternssW with intensities
y(sW ,t) at a given timet. Given the expression intensity of a
information patterns, one should be able to uniquely de
mine the state of the network that is accomplishing suc
deed and vice versa. This is possible by prescribing the
lowing map between the representation intensity funct
y(s,t) and the quantities representing the network activ
and correlations:

a~ t !5 (
s50

2M21

y~s,t !,

^S̃i~ t !&a~ t !5 (
s50

2M21

y~s,t !s i ,

^S̃i~ t !S̃j~ t !&a~ t !5 (
s50

2M21

y~s,t !s is j , ~5!

A

^S̃1~ t !S̃2~ t !•••S̃M~ t !&a~ t !5 (
s50

2M21

y~s,t !s1s2•••sM .

The number of correlation functions on the left-hand s
must be equal to the number of averages in the informa
space that lays in the right-hand side of the above equati
which explains the reason why the bit-string lengthM in the
information space must be equal to the numberN/n of pro-
cessing units, whereN is the total number of neurons in th
net. The role played byK, the number of time slices in th
integration time, is to approach the correlation functions
the continuous limit, (Kn→`). Observe that, given all ex
perimental quantities, in the continuous limit, we can univ
cally determiney(s,t) up to a normalization constanta(t).
On the other hand,a(t) can be viewed as an overall info
mation activity of the network, as measured in the inform
tion space.

B. The dynamics

The dynamics is modeled by the way the information p
terns interact with one another in the information space. T
is, we propose a dynamics for the intensitiesy(s,t) as fol-
lows:
06190
t-

d

of
t-

f
at

r-
a
l-
n
y

e
n
s,

o

-

-

-
at

y~s,t11!5@12a~ t !#y~s,t !

3Fx~s!1
z

a~ t ! (
i 51

M

y~s ( i ),t !G , ~6!

where the integers ( i )5s1(11s i)2
i 22 is associated with

the vertex neighbor tos in the hypercube that has itsi th bit,
s i , flipped.z is a parameter of the model that regulates
coupling between a given information pattern and its nei
bors in the information space. One can imagine couplin
between information patterns with more bits flipped or so
other neighborhood relation; this is certainly interesting b
is beyond the scope of the present work. Observe also
the information activitya(t) of the net modulates the cou
pling between neighboring sites in the information spa
when the net is expressing a lot of different information a
is too active the association between similar information
less intense.

To better appreciate the relevance of each te
observe that in some cases Eq.~6! may be regarded as
logistic map with an effective parameterl5$x(s)
1@z/a(t)#( i 51

M y(s ( i ),t)%. Depending on whetherl is less
than, equal to, or greater than one, there may be attractor
y(s,t→`) larger than zero, for somes. There are two terms
in the expression forl: x(s), which does not depend o
time and is a function ofs only, and a dynamically set term
which describes the coupling between different informat
patterns. Hence, the retrieving of a given pattern may or m
not be stable depending on the value ofx(s), and the first
term in the square bracket of the right-hand side of Eq.~6!
describes the difference between permanently learned
not learned patterns. On the other hand, the second
dynamically sets the possible values for the effective para
eterl: it describes how the state of the whole network infl
ences the effective retrieving of a given pattern.

Equation~6! describes the evolution of the pattern inte
sitiesy(s,t), making the processing units to follow a give
trajectory. In fact, there is an underlying dynamics for t
neurons that may be made apparent by multiplying Eq.~6!
by s i and summing overs. We then arrive at

a~ t11!^S̃i& t115 (
s50

2M21

s i@12a~ t !#y~s,t !

3Fx~s!1
z

a~ t ! (
i 51

M

y~s ( i ),t !G . ~7!

The first term in the large square brackets, containing in
mation about stored memories, may be related to Hebb-
learning rules for the synapses, while the second term is
highly nonlinear term that describes nonlearned synapses
other global connections between the units and conseque
between the neurons in the net. Obviously to obtain
Hebb-like synapses we must conveniently define the func
x(s). We choosex(s) to assume either one of two values

x~s!5H km if s is a learned pattern,

kv otherwise,
~8!
8-4
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wherekm andkv are conveniently chosen to ensure, resp
tively, thats is or is not a memory, that is, it may present
attractor state with an intensityy(s,t→`) larger than zero.

Now, suppose that there is a set ofP memorized patterns
sm, for m51,2, . . . ,P. In case we want to reobtain th
Hopfield model in the appropriate limits, we must consid
that the patterns images on the hypercube,sm5(2M21)
06190
-

r

2sm, are also stored@32#. The functionx(s) may be written
as

x~s!5kv1~km2kv! (
m51

P

@d~s2sm!1d~s2sm!#, ~9!

whered(s2sm)51 if s5sm and zero otherwise. The trick
now is to write thed functions as follows:
ce of
n

d~s2sm!5) i 51
M

11s is i
m

2

5
1

2M F11(
i 51

M

s is i
m1 (

i 51

M21

(
j 5 i 11

M

s is i
ms js j

m1•••1s1s1
ms2s2

m
•••sMsM

m G , ~10!

such that by using this expansion for bothd functions in Eq.~9!, we may rewritex(s) as

x~s!5kv1
2P

2M
~km2kv!F11 (

i 51

M21

(
j 5 i 11

M

Ji j
(2)s is j1 (

i 51

M23

(
j 5 i 11

M22

(
k5 j 11

M21

(
l 5k11

M

Ji jkl
(4) s is jsks l1•••1J12 . . .M

(M ) s1s2•••sMG ,

~11!

where the synaptic intensitiesJ(k) describe multi-interactions involvingk neurons and are given as

Ji j
(2)5

1

P (
m51

P

s i
ms j

m ,

Ji jkl
(4) 5

1

P (
m51

P

s i
ms j

msk
ms l

m ,

~12!

A

J12 . . .N
(N) 5

1

P (
m51

P

s1
ms2

m
•••sN

m ,

which are the same expressions presented in Refs.@32# and@37#. Here we have only even order synapses as a consequen
storing both patterns and their images. The expansion forx(s) proposed in Eq.~11! implies that the first term in the evolutio
equation Eq.~7! is regulated by Hebb-like terms. Using Eq.~11! in Eqs.~7! we obtain

a~ t11!^S̃i& t115Fkv1
2P

2M
~km2kv!G (

s50

2M21

@12a~ t !#y~s,t !s i1
2P

2M
~km2kv!

3 (
s50

2M21

@12a~ t !#y~s,t ! (
j 51

M21

(
k5 j 11

M

Jjk
(2)s jsks i1

2P

2M
~km2kv!

3 (
s50

2M21

@12a~ t !#y~s,t ! (
j 51

M23

(
k5 j 11

M22

(
l 5k11

M21

(
m5 l 11

M

Jjklm
(4) s jsks lsms iA

1 (
s50

2M21

@12a~ t !#y~s,t !
z

a~ t ! (
i

M

y~s i ,t !s i . ~13!

That can be rewritten as
8-5
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a~ t11!^S̃i& t115@12a~ t !#a~ t !H Fkv1
2P

2M
~km2kv!G ^S̃i& t1

2P

2M
~km2kv! (

j 51,j 5” i

M

Ji j
(2)^S̃j& t1

2P

2M
~km2kv!

3 (
j 51,j 5” i

M21

(
k5 j 11,k5” i

M

Jjk
(2)^S̃i S̃j S̃k& t1

2P

2M
~km2kv! (

j 51,j 5” i

M22

(
k5 j 11,k5” i

M21

(
l 5k11,l 5” i

M

Ji jkl
(4) ^S̃j S̃kS̃l& t

1
2P

2M
~km2kv! (

j 51,j 5” i

M23

(
k5 j 11,k5” i

M22

(
l 5k11,l 5” i

M21

(
m5 l 11,m5” i

M

Jjklm
(4) ^S̃i S̃j S̃kS̃l S̃m& t . . . J

1z
@12a~ t !#

a~ t ! (
s50

2M21

y~s,t !s i(
j

M

y~s ( j ),t !. ~14!
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In the above equations we can recognize three diffe
classes of terms involving synaptic intensities. The first cl
contemplates the usual interactions, where other proces

units act on thei th unit state through terms asJi j
(2)^S̃j& t . In

the limit where n51 and K51 it is a usual, two-body,
Hebb-like interaction, for other values ofn and K it repre-
sents a mean field action of unitj on unit i. The second class

considers interactions asJi jkl
(4) ^S̃j S̃kS̃l& t , which describes how

the joint activity of three units (j ,k,l ) may act on a fourth~i!
composing a fourth order coupling. These are mean fi
approximations to Hebb-like terms describing many-body

teractions. The third class of terms, such asJjk
(2)^S̃i S̃j S̃k& t ,

describes how the interaction between other units (jk) influ-
ences thei th unit evolution, depending on the current state

S̃i . This term can be interpreted as the consequences

^S̃i& t11 due to changes in the extracellular medium cau
by the activation of synapses between other neurons in
network, for example.

In the discussion above, we chose to store both pat
and image to be able to recover the Hopfield model dyna
ics in the appropriate limits. We do not have to do so. In
results we present in Sec. III we do not make this assu
tion, since we think this is the more general case. We rem
however, that when images are not stored, the odd o
synapses are also present and their learning rules are d
generalizations of the even order synapses learning rule

The last term in Eq.~14! also deserves some comments
is a highly nonlinear term and it can be shown that it may
decomposed in sums of products of correlation functions
volving a different number of units. They do not conta
Hebb-like synaptic intensities and are not modified in lea
ing. They are interpreted as describing inbuilt relations, r
resented byz, between neurons that are specific of each br
center. In the particular model we propose here, these r
tions have been chosen to pair similar information patte
and to endow the network with content addressable mem
capabilities. In other models, describing other devices,
ferent relations between information patterns may be
sumed. We also stress that the assumption of Eq.~6! is rather
arbitrary. It has been chosen due to its memory device p
erties@4#, due to the fact that it presents a sensible limit
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n5K51, and because it yields promising results. Howev
other equations could also present the same advantages
point here is to propose an information space formalism w
the adequate transformation to the network configurat
space as a convenient tool to approach information proc
ing by biological neuronal networks.

The correlation functions are hence relevant in determ
ing the evolution of the system. In fact, for the evolutio
equations given in Eq.~6! to completely specifyy(s,t11)
~up to the normalization constant!, it is necessary to know al
pattern intensities at timet. As there are 2M intensities, the
complete specification of the state of the net requires a ph
space of 2M dimensions, where Eq.~6! can be regarded as
master equation of a Markov process. Observe that the s
the quantities a(t), ^S̃i& t , ^S̃i S̃j& t , ^S̃i S̃j S̃k& t , . . . ,

^S̃1S̃2•••S̃M& t contains 2M elements and allows us to dete
mine the 2M values ofy(s,t) at a given timet and their
subsequent evolution. In the next section we define or
parameters that we use to investigate the behavior of
present model.

III. ORDER PARAMETERS

We first define the average overlap^mm& t of the network
with the information patternsm at time t as an average ove
the information space where the weights are given by
relative intensityy(s,t)/a(t) with which the informations
is being expressed by the net at timet,

^mm& t5 (
s50

2M21
y~s,t !

a~ t !
m~sm,s!, ~15!

where the time dependence appears through the averag
plied in this equation and the specific overlapm(sm,s) is
the usual overlap between the stored patternsm and the in-
formations,

m~sm,s!5
1

M (
i 51

M

s i
ms i . ~16!

We note thats i may take the values61 so thatm(sm,s)
may assume values in the interval@21,1# and assumes 1, 0
8-6
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or 21 whens andsm are, respectively, equal, orthogona
or images of one another in the information space. The s
cific overlaps can be written in terms of the Hamming d
tanceH, defined as the number of different bits between t
patterns:

m~sm,s!512
2H~sm,s!

M
. ~17!

In what follows we obtain stationary values and time ev
lution for the above defined quantities under different pro
cols. Depending on how the stored patterns are chosen
the prescription we use to run and initialize the time evo
tions, we can gather different information about the perf
mance of the net.

IV. STATIONARY SOLUTIONS

We consider a network withP sparsely stored patterns
such that memories are not first or second neighbors on
hypercube. We look for stationary solutions wherel ^P of
these patterns are simultaneously retrieved, in the sense
the intensitiesy of these patterns are greater than zero. In t
case, the simplest stationary solution is

y~s,t !55
y0

m if s5sm for m51,2, . . . ,l ,

y1
m if s is first neighbor to asm,

for m51,2, . . . ,l ,

0 otherwise.

~18!

Using this solution in Eq.~6! we get

y0
m5~12a!y0

mFkm1
zMy1

m

a G , ~19!

y1
m5~12a!y1

mFkv1
zy0

m

a G .
Assuming thaty0

m.0 and y1
m.0 for all m< l , the above

equations imply that

y1
m5

1

M Fy0
m2

a~km2kv!

z G . ~20!

Summing overm we get

(
m51

l

y1
m5

1

M F (
m51

l

y0
m2

al~km2kv!

z G . ~21!

We now can use that

a5 (
m51

l

y0
m1M (

m51

l

y1
m ~22!

together with Eqs.~19! and ~21! to obtain the following re-
sults:
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m51

l

y0
m5

z1 l ~km2kv!

2z Fz1 l ~km1kv!22l

z1 l ~km1kv! G ,
(
m51

l

y1
m5

1

M

z2 l ~km2kv!

2z Fz1 l ~km1kv!22l

z1 l ~km1kv! G , ~23!

a5Fz1 l ~km1kv!22l

z1 l ~km1kv! G .
The above equations imply the possibility of many differe
stationary solutions, depending on the individual values
y0

m and y1
m . For example, the activitya, given by the third

equation of~23!, can be written as a sum of anyl individual
activities am5y0

m1My1
m.0, provided they are compatibl

with positive values fory1
m yielded by Eq.~20!.

The constraint of positive intensities imposes limits on t
number of simultaneously retrieved memoriesl. To begin
with, a.0, and hence

l ,
z

22~km1kv!
. ~24!

Also, (m51
l y1

m must be positive, so that

l ,
z

km2kv
. ~25!

Considering 0,kv,1, the above conditions define a max
mum number of simultaneously expressed memories,

l max5H z/@22~km1kv!# if kv,km,1,

z/~km2kv! if km.1.
~26!

The interesting point here is an upper limit forl that may
be larger than one, stating that the system may be expres
more than one previously memorized pattern simultaneou
which is a feature presented by short term memory
humans@41#.

We have so far analyzed the existence of these statio
solutions. We turn our attention now to their stability. A
there are many different solutions, with different stabili
conditions, we restrict ourselves to special cases when e
l 51 or all retrieved memories are equally expressed, tha
y0

m5y0
l and y1

m5y1
l for all m< l . In these cases, Eq.~6! is

written as a fixed point equation of a logistic map, that is

y0
l 5

z1 l ~km1kv!

2l
y0

l S 12
2z

z1 l ~km2kv!
y0

l D , ~27!

where we can define the logistic parameterl as

l5
z1 l ~km1kv!

2l
, ~28!

yielding the solution

2z

z1 l ~km2kv!
y0

l 512
1

l
~29!
8-7
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that reproduces the solutions given by Eqs.~23! in the ad-
equate limits. Imposing the limits forl corresponding to
stable fixed points of the logistic maps, 1,l,3, we have

z

62~km1kv!
, l ,

z

22~km1kv!
, ~30!

where the lower limit corresponds to the onset of bifurc
tions and the upper limits correspond to the existence of
stationary solutions, and it is the same condition obtaine
Eq. ~24!.

Equations~23! and the above conditions consider that t
neighbors of a retrieved pattern are expressed by the net
is, y1

m.0. It is also possible a solution withy1
m50. In this

case, the stationary solution is

(
m51

l

y0
m512

1

km
~31!

and, when ally0
m are equal, it is stable provided 1,km,3

andkm<(kv1z/ l ).
We have explicitly used that only some of the memoriz

patterns and first neighbors are being expressed by the
with every other pattern presenting zero intensity. This
reasonable, sincey1

l ;1/M and we expect further neighbor
to be even less disturbed. In this approximation, the value
the overlap with the recovered patterns may also be obtai
in the limit where the stored patterns may all be taken
orthogonal to each other. In this case, the average ove
with one of the recovered patternm< l is

^mm&5^ml&5
y0

l 1My1
l ~122/M !

l ~y0
l 1My1

l !

5
1

l
2

z2 l ~km2kv!

zlM
, ~32!

where it can be seen that the average overlap with in
retrieving solution increases withM, going to 1 asM goes to
infinity. These solutions and their stability have been a
lyzed regarding the evolution equations as approximation
logistic maps. This assumption may be easily overruled b
further neighborhood effectively acting on the stored patte
and other stable or nearly stable solutions cannot be
carded.

We can expect limits in the performance of any real to
Here we can identify at least two different mechanisms t
impose limits in the memory capacity of this model. The fi
one is explicit and originates in the fact thata should be
greater than zero. Whenl increases,y0

l decreases and
memory recovery is less intense. Observe that the maxim
number of simultaneously retrieved memories depends
the values ofkm and kv and, more interestingly, increasin
the coupling between patterns,z, l max increases.

The second mechanism to limit the capacity of the
lays in the validity of the assumptions and has to do with
numberP of stored patterns. WhenP is too large, it may not
be possible to find information patterns such thatx(s)
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5km, while their first and second neighbors presentx(s)
5kv . Anyway, this mechanism suggests that the capacity
the net scales with the size of the information space, tha
with 2M.

Having investigated stationary states, we must now lo
at dynamical features of the model, such as the stability
these solutions and the size of the basins of attraction,
their relations with the network size.

V. NUMERICAL SIMULATIONS

A. Simulations without noise

We first choose the values forkm andkv that define which
patterns are memorized by the net and which are not. In
paper we shall considerkm51.5 andkv50.5. We also must
choose the coupling parameter and we takez51. For these
parameters, Eq.~26! states thatl max→`, but asl<P, this
result should be restated asl max5P. However, we note tha
for too large values ofP, Eq. ~26! is no longer valid. The
stationary solutions as defined by Eqs.~23! take the values
y0

151/3 and y1
150.0 when there is only one retrieve

memory with overlap given bŷml 51&51.0. We stress tha
these solutions are valid when the other information patte
intensitiesy(s,t) are zero or nearly so. This is only possib
when memorized patterns are sparsely distributed on the
percube, since nearby memorized patterns could be exc
through the coupling with their neighbors.

Given a numberM of processing units, there are 2M ver-
tices in the information space. This exponential increase
the number of the intensity function components stron
limit our calculations. Here we considerM512, 14, and 16,
and the calculations were performed in a Pentium II, 8
MHz personal computer using multispin coding techniqu
@42# to treat the integers representing the information p
terns and to access their binary representation.

Initial states for the simulations are built as follows. A
information patterns init ial is generated by flippingh0 ran-
domly chosen bits of a randomly chosen memorized pat
s* . The initial configuration of the system is given by

y~s,t50!55
0.3 if s5s init ial ,

0.012/M ,

if s5first neighbor ofs init ial ,

0.000001r otherwise,

~33!

wherer is a random number in the interval@0,1#. The initial
configuration is represented in the information space b
peak in the intensity distribution located at a distance ofh0
bits from a randomly chosen memorized pattern. We then
the system evolve and we monitored the average ove
with the memorized patterns* , ^m* &, averaged over 100
samples during 100 time steps. We considered different
ues for the numberP of memorized patterns and differen
values ofh0.

Consider first the time evolution of̂m* & for different
values ofh0. Figure 1 shows the results for a system w
M516. Typically, forP51, the system always converges
the stationary solution with a peak at the memorized patte
8-8
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FIG. 1. Time evolution of the overlap̂m* & with the stored
patterns* , averaged over 100 samples. The initial condition is
intensity function peaked at an information patternh0 bits far from
s* , for M516 and ~a! P51, ~b! P52, ~c! P510, ~d! P
516 000.
06190
regardless of the initial condition, as shown in Fig. 1~a!. For
all cases,a converges to 1/3 corresponding to the calcula
stationary solution. However, the convergence time to t
stationary solution increases withh0. For P52, the final
state depends on the initial conditions, as shown in Fig. 1~b!.
When the system starts too far froms* , the final configura-
tion may either converge to a stationary solution around
ther one of the two memorized patterns, or to a mixed so
tion, presenting peaks at both memorized patter
preserving the overlaps with the two stored patterns
roughly 1/2.

Figure 1~c! shows that forP510 there are enough memo
rized patterns distributed on the hypercube for the final c
figuration to converge to patterns that are, on average,
thogonal tos* when h0>2. As the number of memorized
patterns increases still further, the chances that the in
condition is at or very near a memorized pattern other th
s* also increases and the final configuration converges
these nearby memorized patterns. The final overlap t
stays at roughly its initial value, as shown Fig. 1~d!, for P
516 000.

We now analyze what happens whenh050, that is, ini-
tially the intensity peak is localized right at a memoriz
pattern and we vary the number of stored memoriesP. Fig-
ure 2 presents the long time value of^m* & for different
values ofP and network sizes ofM512, 14, and 16. For
P,10, the performance is the same for every network s
in this limit the number of stored patterns is far from th
percolation threshold on the hypercube (P!2M/M ), and the
long time behavior of̂ m* & depends onP, but not onM.
However, asP increases, the percolation threshold is reach
earlier for smaller nets, and we find that analogous behav
are presented by systems where the value ofP/2M is the
same.

Figures 1 and 2 show that the system behaves as a
tractor neural network with content addressable memor
The size of the basins of attraction is roughly 2 bits for sm
P, and this limit is clearly due to the coupling assumed in E
~6!. Longer range couplings, involving further neighbors
the information space, or larger values for the coupling c
stantz will have relevant effects in the size of the basins
attraction. This point is under investigation and will be pu

n

FIG. 2. Long time value of̂ m* & for different values ofP and
network sizes ofM512, 14, and 16.
8-9
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lished elsewhere. The limit on the network loadP depends
on the performance indicator we use. In the simplest cas
uncorrelated information patterns, with couplings betwe
first neighbors in the information space, the limit for retrie
ing only one pattern at a time depends on the size of
region covered by the retrieving solution: when only o
pattern and its first neighbors are noticeably excited,
limit scales with the percolation threshold of occupying t
hypercube with balls formed by a vertex and its first neig
bors.

We have considered noiseless equations and their s
solutions. We do not expect this to be the case of neuro
networks in a mammalian brain. Random stimuli both fro
other parts of the brains, as well as from the body and fr
the environment are continuously being received by the
ferent regions of the brain. Moreover, individual neuro
may present chaotic dynamics and do not work as co
pletely deterministic units. In what follows, we consider t
effect of a small random term introduced in the evoluti
equations.

B. Simulations with noise

The noise term is introduced in the evolution equations
the model, by adding a random term in Eq.~6!,

y~s,t11!5@12a~ t !#

3H y~s,t !Fx~s!1
z

a~ t ! (
i 51

M

y~s ( i ),t !G1n~ t !J ,

~34!

wheren(t) has probability (12pR) of being zero andpR of
assuming a small valuenR . In this paper we consideredpR
50.01 andnR51024. Figure 3 shows the evolution of^m* &
starting with h050, averaged over 10 samples during
3104 steps forM514 and different network loadsP. The
solutions are stable only forP51 and 2. For largerP the
systems tend to lose the initial memory as time passes,
the typical time for losing the memory depends onP. When
P is not too large, increasingP implies a smaller memory
decay time. However, for very largeP, there is a stabilization
at higher values of̂m* &. This is so because the activity ha
attained a stable value by the excitation of nearby memor

This result is particularly interesting. Two relevant fe
tures in human short term memory are that~i! it may keep
simultaneously aroused several items and~ii ! it decays with
time. These features are presented by this model, as we
just shown, and to better illustrate its potential we conside
the next section the results for a simulation protocol wh
the laboratory procedures for performance measuremen
short term memory are reproduced.

C. Short term memory performance

As nicely reviewed by Baddeley in his bookHuman
Memory@41#, short term memory in humans is measured
06190
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asking subjects to memorize stimuli, which can vary from
list of written known words to spoken unknown sounds, u
der different circumstances where the time delay betw
stimuli and the time delay for testing the memory, bac
ground sound or visual stimuli, and simultaneously p
formed tasks are varied. In the simplest example, subjects
asked to read words that successively appear on a sc
After a list of N items, the subject is asked to remember t
words. The retrieving probability, defined as the relative f
quency with which each word of the list is retrieved, is o
tained after the test is repeated with different subjects. P
ting the retrieving probability as a function of the ord
number of the words, we can see peaks for the first wo
which is called the latency effect, and for the last words
the list, which is known as the recency effect@43#. Typical
investigations aim at measuring the number of items t
humans can simultaneously remember within a short inte
of time and the causes for memory loss. Two differe
mechanisms for short term memory loss seem to be in
tion: a natural decay with time, which should be intrinsic
the dynamics of the system, and interference effects, wh
the memory loss is due to another stimulus the subject
been exposed to.

The model for neural networks we propose here is able
present latency and recency effects and shows both mem
loss mechanisms. To show that, we simulated the mo

FIG. 3. Evolution of^m* & and a with time, starting withh0

50 and averaged over 10 samples during 83104 steps for M
514 and a different network loadP.
8-10
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INFORMATION SPACE DYNAMICS FOR NEURAL NETWORKS PHYSICAL REVIEW E65 061908
equations with noise. We started with every intensity be
zero and, after stabilizing the system, at intervals ofT time
steps we added a fixed valueystim to a randomly chosen
memorized pattern. We consideredP520, T51500, ystim
50.1, 0.05, and 0.03, with other parameters as in the
ceding section. Figure 4 shows the time evolution of
average overlap̂m(m)& with time for m51, . . .,10. The
presentation of each stimulus is clearly seen by the disco
nuity in the curves. When a new stimulus is presented,
overlap jumps from the background to a finite value. At th
instant, previously shown patterns suffer a decrease in t
overlap, which is interpreted as the interference mechan
for memory loss. Simultaneously, several patterns have t
overlaps above the background what may be interprete

FIG. 4. Time evolution of the average overlap^m(m)& with time
for m51, . . .,10. At intervals of 1500 time steps,ystim is added to
a randomly chosen memorized pattern intensity.~a! ystim50.1, ~b!
0.05, and~c! 0.03.
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being simultaneously remembered. Eventually these over
merge back in the background noise, and that can be in
preted that the associated pattern has been forgotten. A
ten stimuli, the network is let to evolve without further pe
turbation and all overlaps decrease, eventually merging w
the background: the decay mechanism for memory los
clearly present. The decay mechanism in this model
caused by the noise, which here we take as being intrinsi
the dynamics of individual neurons and the exposition of
network to some environment.

When measured immediately after the presentation of
last stimulus, the lastly presented patterns have their ove
above the background, that is, the last stimuli are alw
remembered. This is the recency effect, which may disapp
when the measurement is performed later after the prese
tion of the last stimulus due to the intrinsic decay.

The latency effect, that is, the high probability of remem
bering the first stimulus in the list, is present when t
stimuli are not too intense. Everything happens as if the fi
stimulus had forced the network in a quasistable soluti
with a large decaying time, which weak stimuli cann
strongly disturb. Strong enough stimuli, on the other ha
disrupt this solution and latency effects are not verified a
more.

As we mentioned, there are several different protocols
procedures to investigate short term memory, where
noise level, number of items in the list, waiting times, simu
taneous tasks, correlation between the items in the list,
are varied. It would certainly be interesting to investiga
whether and if yes, under which circumstances, the pre
model is able to reproduce the experimental results.

VI. DISCUSSION AND CONCLUSIONS

We have presented a model to simulate an associa
memory device, and we indicated how the different terms
the model evolution equations could be realized by a n
work of neurons where multi-interactions and modulations
these interactions are taking place in such a manner tha
many neuron correlation functions are also dynamic va
ables of the system. The model is very idealized in the se
that all possible interactions and modulations are present
it worked well as an associative device. It has the appea
pointing in what direction all the wet machinery present
the brain may be acting to enhance its information proce
ing abilities, and indicates the relative spiking phases
gether with an assembly of neurons as quantities that sh
be further monitored. On the other hand, the assumed in
actions in the information space may be too simple and
incorporation of so many more dynamic variables~from M to
2M), besides the desirable fact of enhancing information p
cessing abilities, brings along the unwanted increase in
demands of computational resources to deal with reali
numbers of neurons.

The interactions in the information space are supported
synapses and modulations among real neurons. A car
analysis of what terms are possible and what are not in
8-11



le
u
o
el
t

eb
c
dy
se
th

i
tw

ng
o

b
e
en
m

ex-
can
an
al

s in
ory,
ain

t in
ork
ade
cal

n
.A.

s.

R. M. C. de ALMEIDA AND M. A. P. IDIART PHYSICAL REVIEW E 65 061908
systems is a necessary step to obtain a more realistic, or
idealized, model of neuronal networks. However, in o
opinion, the analysis should start from two different points
view. At one end, we should consider only a few, more r
evant terms, supported by experimental evidence, where
first of these terms corresponds to the two neuron, H
synapses. At the other end, the analysis should start by
ting some terms from an ideal, optimal model and by stu
ing its performance as an information processor. The pre
model could be the zeroth step of the investigation from
idealized system side.

We applied the model to describe short term memory
humans and could find recency and latency effects, and
different mechanisms of memory loss~decay and interfer-
ence!. In our opinion, these results are very encouragi
since they link the results of experiments with human perf
mance and neuron dynamics.

The dynamics for the intensity function, as proposed
Eqs.~6! and~34!, is certainly arbitrary. They have the virtu
of presenting Hebb-like terms in memorization-depend
terms, but these terms could have different functional for
os
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The justification for this choice here is hencea posteriori
since they yield sensible results. However, a thorough
perimental investigation must be performed before we
state we have a first principle model for short term hum
memory. Also, the second kind of term in the dynamic
equations, that is, the pairing between neighbor pattern
the hypercube is intended to describe associative mem
but different couplings are possible to describe other br
functions.

Nevertheless, we stress that a novel and strong poin
this approach is the transformation from the neuron netw
configuration space to the information space, which is m
possible by the consideration of more complex dynami
units.
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