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We study fully synchronized states in scale-free networks of chaotic logistic maps as a function of both
dynamical and topological parameters. Three different network topologies are consitleaedindom scale-
free topology,(ii) a deterministic pseudofractal scale-free network, @ing an Apollonian network. For the
random scale-free topology we find a coupling strength threshold beyond which full synchronization is at-
tained. This threshold scales lag‘, wherek is the outgoing connectivity and depends on the local nonlin-
earity. For deterministic scale-free networks coherence is observed only when the coupling strength is propor-
tional to the neighbor connectivity. We show that the transition to coherence is of first order and study the role
of the most connected nodes in the collective dynamics of oscillators in scale-free networks.
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I. INTRODUCTION AND MODEL ogy [24,25 and small-world topology[26—29. However,
) ) apart from a few exception®5,30,31, there is a quite gen-
Recently, intensive research on the structure and dynangra| lack of studies tackling synchronization of chaotic oscil-

ics of networks has provided insight for many systems whergators in scale-free topologies.
they arise naturallyf1-3. Complex networks appear in a |In this paper we present detailed results concerning syn-
wide variety of fields ranging from lasef4], granular media chronization in oscillator networks with scale-free topolo-
[5,6], quantum transpoifi7], colloidal suspension8], elec- gies. Our purpose is to determine under which conditions
trical circuits [9], and time series analysigl0], to heart scale-free topologies enable the emergence of coherent be-
rhythms [11], epidemics[12,13, protein folding[14], and  havior. As a general result, we present evidence that the tran-

locomotion[15] among other$1-3]. sition to synchronization is of first order. Our model reads
From the mathematical point of view, a network is a graph e
composed of nodes or vertices and their connections or edges Xee1j = (L —)f(x) + F E kj“f(xt'j), (1)
ije}Ci

[2]. When studying network dynamics, one frequently as-
sumes a regular structure where each node evolves accordigherei=1 ... L andt label discrete space and time, respec-
to some more or less complicated dynamics, typically fixedjyely, L being the total number of oscillatorsse <1 is the
points [16], limit cycles [17], or chaotic attractor$l8,19.  coupling parameterk; represents the set of labels of the
When studying network structure, one usually neglects nodeighbors of nodé, k; represents the number of such neigh-
dynamics and all complexity is introduced by the way nodesors, and\V;==; .k’ normalizes the interaction term in Eq.
are connected to each other, i.e., by the network topology:), The functionf(x) is a continuous function governing
Wlth respect to their topology, networks are usually dividednqqe dynamics when connections are absent. Here we
into three large classd2]: random networks, where all the -noose the well-known quadratic mdfx)=1-ax%, where
nodes are randomly connect¢20], small-world networks  yhe free parametea is restricted to the interval —0.25a
introduced recently by Watts and Stroga21,23 as a <5 and contains all possible dynamical regimes from a fixed
middle ground between regula/r gnd random networks, anBoint (e.g.,a=0) to fully developed chaotic orbitee.g., a
scale-free networkge.g., Barabasi and Albef23]), where  —5) The parameten is a real number controlling the homo-
growth and preferential attachment are considered. geneity in the coupling: positive values af enhance the

The next logical step toward real network dynamics is 10z ling strength with sites having larger number of neigh-
consider simultaneously structural and dynamic complexnybors, while negative values favor sites having fewer neigh-

One important question addressed in this context is to KNoWq .« Fore=0 the coupling between each site and its neigh-

if synchronization between oscillators in such complex t0-y5h00d is homogeneous, i.e., it is independent of the
pologies would appear and under which conditions it pre<qqdination. ' '

vails. In fact, coherent behavior of oscillator networks with  tha Jinear stability of the coherent states=X O i is

complex topologies has been studied for the random t°p°|governed by the variational equations of Etj), whose di-
agonal form read§32—-34

*URL: www.ical.uni-stuttgart.déflind gtﬂ'i - eXdA(S)\i)]gt'i =[bfe0 - 8Ain(X)]§’i ' @

TURL: www.ical.uni-stuttgart.défjgallas where A(e);) is the Lyapunov exponenBf(X) represents
FURL: www.ical.uni-stuttgart.défhans the identity matrix multiplied by the derivative ¢fx) com-
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puted atx=X, and\; are eigenvalues of the coupling matrix growth and preferential attachmeff]. In this section, we

G whose diagonal values agg =1, while the off-diagonal use the algorithm of Barabasi and Alb§2;23] to construct
elements aregij:—kj’//\/i if nodesi andj are coupled and the network: starting with a small number of nodes, sgy
zero otherwise. If> has zero-sum rows and all its eigenval- fully interconnected with each other, one adds iteratively a
uesA;<M\,=<---=<)\, are real, them\;=0 corresponds to the new node withk new edges, which connect randomly the
mode parallel to the synchronization manifold and the largeshew node with previous nodes, depending on their own num-
Lyapunov exponent defines a master stability func{ida]. ber of connections. As a general feature, one fj2jis con-
The coherent state is stable whenevkfe\;) <0 for i nectivity distribution which follows a power law with an
=2,...,L [32-34. In our case, it is easy to check that indeedexponenty=3, independently ofm, and k. After a certain

G has a zero-row sum, yielding =0, and all its eigenvalues number of iterations, one has a network wittnodes, and

are real, since dét —\1)=de(C—\I) whereG is a symmet- then we place chaotic maps at the nodes, according to

ric matrix, namely,G=HKLKH with L. being the Laplacian Eq. (1), and observe if they synchronize or not after some

transient.
of the network[32,35, and matricesd and K being the : A ;
) : . _ A I h h f ch
diagonal matrices with elemerit =A" 172 andKii:k{”’z, e suitable approach to study synchronization of chaotic

. oscillators on an arbitrary network topolo is to com-
spectively. y pologgd]

N . . te the standard deviati
From Eq.(2), taking into account the ordering of the ei- pute the standard mean square deviation
genvalues\;, one easily concludes that the stability condition 1t
for chaotic maps reads ol= EE (X = %)2, (4)
i=1

1-expg-\) 1+exg-\) - . -

N <e< X , (3)  wherex is the average amplitude at a given time steps

2 L one easily sees, all the nodes are synchronized at the same
amplitude wheneves? is zero within numerical precision,

whereN is the Lyapunov exponent of the local map. In par- o2 30 .
ticular, there is a range of coupling strengths enabling synl-€-» @ ~107". We call these fully synchronized states-
N N herent statesto distinguish them fronpartially synchro-

. o . _)\ _ _)\
chronizability if A, /A, < (1+e™)/(1-€™) holds. Therefore, - ;o configurations, when several different clusters of nodes
by computing the eigenvalues of the Laplacian matrix one igyith the same amplitude are obsenjdd).

able to find the range of couplings for which coherent states |, 5 previous work by Jost and Jég5], concerning lat-

are stable. For more detailed results see Fa}. , tices of coupled maps with different coupling topologies, a
Instead of starting from coherent states and studying theifansition to coherence between chaotic maps was found,

stability to perturbations, in this paper we consider 1arggypen considering the Barabasi-Albert network, occurring for

samples of random initial configurations and study howyaticylarly high coupling strengths, typically of the order of

much and under what conditions they converge toward & 9. QOur simulations have shown that these transitions

coherent state. This procedure not only reveals the exsteng%cur after discarding transients sfL0* time steps and they

of stable solutions but also gives a rough measure of its basig, ot change significantly with the network size. Moreover,

of attraction. » _this transition to coherence is robust with respect to initial
Earlier result§25] show a transition to full synchroniza- configurations.

tion for two particular values of the nonlinearity in the Figure 1 shows a typical histogram of the standard mean

homogeneous regiméa=0), when either the coupling gqare deviation as a function of the coupling strength

strength or the number of outgoing connections is Variedcomputed from a sample of 500 initial configurations, and
Here, we show that the threshold value of such a transition 9fxing L=1000,a=2, andk=m,=8. From the histogram, one

a function of coupling strength and outgoing connectivity cjearly sees the sharp transition to coherence and also its
obeys a power law with an exponent that depends on thg)pystness to initial configurations, since for each coupling
nonlinearity. We study not only the usug@indomscale-free  gyrength all the final configurations have approximately the
network of Barabasi and Albef@3], but alsodeterministic  game standard mean square deviation. In particular, above
scale-free networks constructed in an iterative W8%-39.  he thresholde,~ 0.9, all initial configurations converge to-
Deterministic scale-free networks are analytically easier tQyard a coherent state, indicating that in this parameter region
handle[37,4Q. Deterministic networks are applied, for in- he pasin of attraction of coherent states fills almost the en-
stance, in spin systenf89] and geographical and social net- tjre phase space. These two features, sharp transition to co-
works[39,41. _ _herence and robustness with respect to initial configurations,
We consider in Sec. Il the homogeneous coupling regimere also observed when varying the connectikitas illus-
for the random scale-free topology. In Sec. Ill we extend OUk,4teq by Fig. 2. Both Figs. 1 and 2 were drawn fixing one of
results to two deterministic scale-free networks, namely, gne parameterss or k. Our simulations show that for the
pseudofractal network38] and an Apollonian network39]. |1y chaotic regime(a=2) the transition to coherence occurs
Discussion and conclusions are given in Sec. IV. for gradually smaller coupling strength if the connectivity
is increased. Figure(d) illustrates this fact, plotting the frac-
tion N of initial configurations which converge to a coher-
Random scale-free networks share with many real netent state. One sees a clear transition to coherence. Comput-
works, e.g., the worldwide web, two generic mechanismsing similar histograms for other values af smaller thera

II. RANDOM SCALE-FREE NETWORKS
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FIG. 1. Typical histogram of the standard mean square ampli- M

tude deviatiorns? as a function of the coupling strength showing

the transition to coherence for a sample of 500 initial random con-
figurations. HereN represents the fraction of configurations, and we

discarded transients of 4@ime steps and fixed nonlinearig=2,
connectivity k=my=8, and number of nodes=1000, anda=0.
The base of the logarithm is 10.
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=2, and projecting them in thés,k) plane one observes oa
similar transition lines in ranges with smaller coupling
strengths. Figure (B) illustrates this fact by plotting the
threshold valueg. andk. at the transition curves fqifrom

bottom to top a=1.5, 1.6, 1.8, 1.7, 1.9 and 2, in the same °2
conditions as in Fig.@). For all these values @&, the single
uncoupled map shows chaotic orbits, or at least the orbits o
have very large periods>10*. Note that the curve foa
=1.8 isbelowthat fora=1.7; this slight discrepancy is due to
the fact that fora=1.8 the amplitudes of the logistic map
vary (chaotically in a smaller interval than that observed for _,,
a=1.7. As illustrated in Fig. @), all curves obey, within our

®
o0
Q

—_—

statistical precision, a power law

gc < k. (5
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FIG. 3. Transition to coherence as a function of connectikity

For the six values o above, the exponents are, respectively,and coupling strengtla. (a) FractionN,-o of coherent states from
n=0.2345, 0.2354, 0.2353, 0.2231, 0.2023, and 0.1804. 1800 random initial configurations f@=2. (b) Coherence transition

other words, the exponent is almost constant bedowl.7

curves in thee,k) plane for(from bottom to top a=1.5, 1.6, 1.8,

1.7, 1.9, and 2, an¢c) the same transition in a log-log plgbase

10), showing power-law dependence between connectivity and cou-
pling strength for the transition curves, with an expongnwhich
depends on the value af(see inset Here «=0,L=1000, and we
used transients of fQime steps. By increasing the transient size to
~10° one sees clearly that the transition to coherence is of first
order either(d) when varying the coupling strengthor (e) when
varying the outgoing connectivity.

and decreases above this value, as illustrated in the inset of

Fig. 3c).
In order to determine the nature of the transition to coher-

FIG. 2. Typical histogram of the standard mean square deviatio®@nce seen in Fig.(8), we show in Fig. &l) a high-resolution

logig o2 as a function of connectivitl, fore=0.95a=2,a=0, and

plot of N,-o as a function ofe for different connectivities.

L=1000. The same conditions and initial configurations of Fig. 1Here one clearly sees a well-defined jump indicating that the

were used.

transition to coherence is of first order. One also observes
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first-order phase transitions when the outgoing connectivity
is varied[see Fig. 8)]. That the transitions are indeed of
first order is easily recognized by the clear existence of hys-
teresis: when increasing eitheror k the configuration even-
tually falls into a coherent state, no longer spontaneously
desynchronizing, no matter how far the parameters are tuned
back. @)

In this section we consider only the case of homogeneous
coupling(«=0). For @>0, when the coupling to nodes with
a large number of neighbors is strengthened, we find transi-
tions to coherence similar to the ones illustrated in Fig. 3,
occurring at weaker coupling strengths.

As a general conclusion one could say that, although the
exponenty of the power-law distribution of connections (b)
characterizing scale-free networks does not depend on the
outgoing connectivityk [23], synchronization behavior is
quite sensitive to this quantity.

IIl. DETERMINISTIC SCALE-FREE NETWORKS

In the preceding section we focused on random scale-free rig 4 |ystrations of two deterministic scale-free networes:

networks, i.e., growing networks where new nodes are conge pseudofractal networfél], and (b) the Apollonian network
nected following probabilistic rules. Although this stochas-(3g) |dentical symbols label nodes belonging to the same genera-
ticity is typical for real networks, it is more difficult t0 ton n (see text, namely,O for n=0, B for n=1, and « forn=2.
handle analyticallyj37]. In this section we study a different

type of network: deterministic scale-free netwof83—39. nine triangles, and so disee Fig. 4b)]. With this construc-

: In particular, we use two different determ|n|st|g topolo- tion procedure one obtains a deterministic scale-free network
gies, namely, the pseudofractal scale-free network introduce 9, where the number of nodés and the number of con-
by Dorogovtsewet al. [38], which is similar to the first de- nect,ionsM are qiven. respectivelv. b
terministic scale-free network proposed by Baraletsal. n 9 - Tesp y. by
[37], and was recently applied, e.g., to studies of opinion
formation [41], and the Apollonian network introduced by L,=1(3"1+5) (7a)
Andradeet al. [39]. "2 '

The pseudofractal network of Dorogovtsev al. is ob-

tained, starting from three nodes interconnected with each 3ol
other, and at each iteration each edge generates a new node, Mp=3(3""+1). (7o)
attached to its two vertices. Figurgaj illustrates this net-
work after three iterations, i.e., with three generations of,, . . .
nodes. With such a construction the number of nddeand At iteration n, the number of nodes with degrée=3,3

; ! X2,3x22,...,3x2"1 3x2" and 2*! is equal to
the number of connectiord,, increases ag38] 33132 32 3 1 and 3 respectively 3ie|ding a

L,= g(gn +1), (6a) power-law distribution with the same exponents the one
found for the pseudofractal network.
M. = 31 (6hb) From Fig. 4 and the description above, one easily con-
. ' cludes that for the pseudofractal network the outgoing con-

wheren is the number of iteration steggenerations More-  nectivity is fixed atk=2, while for Apollonian networks one
over, at iterationn the number of nodes with degrde hask=3. Despite the fact that both networks have a small
=2,2,...,2v1 2" and 2*1 is equal to 8,3"%,...,3% 3, number of outgoing connections, they are quite different
and 3, respectively, yielding a power-law distribution with from the geometrical point of view. In fact, while the pseud-
exponenty=1+In 3/In 2=2.585. ofractal network has no metric, Apollonian networks are em-

The Apollonian network has a construction algorithm dif- bedded in Euclidean space and fill it denselynas, being
ferent from that of the pseudofractal network: one starts wittparticularly suited for describing geographical situations
three interconnected nodes, defining a trianglenAD one  [39].
puts a new node at the center of the triangle, joined to the As mentioned by Barabast al. [37], a strong advantage
three other nodes, and thus defining three new smaller trief deterministic networks is that it is often possible to com-
angles. At iteratiom=1 one adds at the center of each of puteanalytically their properties, for example, the adjacency
these three triangles a new node, connected to the three vanatrix, whose eigenvalue spectrum characterizes the topol-
tices of the triangle, defining nine new triangles; at iterationogy [2]. A simple way to write the adjacency matrix of the
n=2 one adds one new node at the center of each of thegeseudofractal network is
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Bp-1= : oo (10 FIG. 5. Typical histogram of the standard mean square deviation
) ) log, o for the pseudofractal network as a function of the coupling
@ D .. A 3m1x3n-1 strengthe. Similar result is obtained for the Apollonian network.
Nodes are ruled by the mafx)=1-2x? and we fixedx=0. For the

and whose starting form is pseudofractal network we fixed the number of notesl095 (six

011 generations of nodgswhile for the Apollonian network.=1096
=A,=|1 0 1 . (11) (six generations of nodgsFor each coupling strength, the valhe
indicates the fraction of 500 initial configurations, and we used
1 1 Ofsxs transients of 1Htime steps.
For the Apollonian network, the adjacency matrix is given ghsence of synchronizability is valid only within the range
by the same recurrence of E@), but this time with 0=e=<1. Of course, as long as conditi¢8) holds, there is
0111 for sure some range of coupling strengths for which the co-
herent states are stable. However, since we are working with
1011 ; ; ;
Ag= , (12) maps qf }he interval, we neglept coupllng_strengths outside
1101 the unit interval, otherwise it is not possible to guarantee
1110 convergence foall initial configurations.

We plot the averagélog,;,c?) as a function of both the

and M, being a matrix with(3"+5)/2 rows and 3 columns  nonlinearitya and the coupling strength simultaneously.
and having in each column three nonzero elements only. Figure 6 shows this dependence for the full range of the

For stability analysis purposésee Sec.)| one could de-  coupling strength & e=<1 and for nonlinearities above the
rive the Laplacian matrices directly from these adjacencyaccumulation point of the first period-doubling cascade of
matrices, multiplying the adjacency matrices by -1 and addthe quadratic map, namelg=1.411. In Fig. ¢a) we use a
ing the appropriate number of connections of each niode pseudo-
along the main diagonal. fractal network, while in Fig. @) the Apollonian network is

As shown in Fig. 5, despite having quite similar structuralconsidered. In both cases six generations of nodes are taken,

properties38,39, the global dynamics of the entirely deter- yielding a total ofL=1095 nodes for the pseudofractal net-
ministic scale-free networks shows quite different behaviofyork andL=1096 for the Apollonian network.

from the one observed for the Barabasi-Albert model in the As can be seen from these figures, in both cases one has
previous section; namely, therens coherence observed for two main regions:(I) a region where the standard mean
the fully chaotic map fom=2. In fact, from Fig. 5 one sees square deviation is large and varies smoothly with the pa-
that the standard mean square deviation never vanishes. Ipameters andl) a region where the mean square deviation is
stead, it is characterized by some large value which is almosmaller but has larger fluctuations. For the Apollonian net-
constant beyond the weak coupling regifee=0.2). In the  work the irregular region is characterized by significantly
weak coupling regimge <0.2) the standard mean square smaller values for the standard mean square deviation.
deviation is even larger, since the coupling is not strong The results observed in the histograms of Fig. 6 are some-
enough to compensate the highly chaotic local dynartacs how surprising, since irregular variations of the standard
=2). Our simulations have shown that this feature remainsnean square deviation occur for low nonlinearity and high
valid for any transient up to £time steps, and it seems to coupling strengths, precisely where one would expect the
be valid for any value ofa for which the quadratic map most regular behavior of the node dynamics. However, this
supports chaotic orbits. One possible physical explanatioifregularity is just apparent, sincgog;,o?) is an average

for this absence of synchronizability is that long range ran-over a sample of initial conditions. Whenever some initial
dom connections are crucial to improve the ability for syn-configuration leads to coherence the zero standard deviation
chronization and, due to the deterministic construction of thelecreases this average. Therefore,derl.7, i.e., in the re-
network, there are no long range connections as in thegion of irregular variations o, coherent solutions are ob-
Barabasi-Albert scale-free network. Rigorously speaking, theerved. In fact, from the stability condition in E¢B) one
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FIG. 7. Transitions to coherence in deterministic scale-free net-
works, when synchronizing the firgtgenerations of nodes out 6f
generationgsee text (a) Pseudofractal network ar{td) Apollonian
network. The collective dynamical behavior is quite insensitive to
hubs(see text Insets show that transitions to coherence are of first
order. For each network, we uge=9 generations of nodes ared
=2 fixed. The base of the logarithm is 10.

Starting from a total number of generations, one effi-
cient way of inducing coherence is by imposing synchroni-
zation among a certain number @& ¢ generations. By gen-
eration we mean the set of new nodes appearing
simultaneously at a given iteratian during the “construc-
tion” of the network. For instance, in the Apollonian net-
work, the first generation has; =3 nodes, the second has
L,—L;=9 nodes, and theth generation hat,-L,.;=3"
nodes. In other words, we are interested in the collective
effects when the most connected nodesbg are synchro-
nized. We will show that, in fact, hubs play no dominant role
for the synchronization of nodes.

Figure 7 shows the standard mean square deviation as a
a function of nonlinearitya and coupling strength, for determin- function of _couplmg 5”9'?9‘“ for pseudofractatig. 7(a)]
istic scale-free networks, namel) pseudofractal network ani) and Aponoman.network{f'g' Ab)]. .In each case we c;hopse
Apollonian network. The mean square deviation is averaged over ghe fully chaotic map(a—.2) and '”?pose Sync.hromzatlon

po q g
sample of 500 initial configurations and during 100 time steps, afte mong the nodes Of. the flrgtgeneratlons by setting them to
discarding transients of fQime steps. Herev=0 and the base of e their mean amplitude at each time §tep.
the logarithm is 10. For both netwo_rks_, one sees from Fig. 7 that the sta}nda_\rd
mean square deviation remains large when synchronization

S Sy ons. X
sees that for periodic maps, the lower boundary of ¢he grelrg%zsé?\?eznoﬁllg fo{(j;]:%—g; naer{ggc;ngs_ 1C ol?:;ggg sao Iggg_ns

range is always negative while the upper is positive, yieldingyjing threshold which is smaller for the latter case. Surpris-
always a finite range of coupling strengths where synchronipqy for g=¢-1 the transition to coherence occurs precisely
zability is possible. Since for Apollonian networks the fluc- for the same coupling strength in both networks. This may be
tuations occur at small values of the standard deviation, thigye to the fact that the fractidny/L, of nodes on which one
means that there is probably a larger number of cohereninposes synchronization is approximately the same for both
solutions. networks. Forg=¢-2 the pseudofractal network shows co-
Figure 6 indicates that there is a lack of coherent solutionierence only above very high coupling strengths, near
abovea~1.7. To explain this fact one should notice that ~1, while for Apollonian networks the threshold is much
both the pseudofractal and Apollonian networks have smallower. Although in this case the fraction of nodes on which
outgoing connectivitiesk=2 and k=3, respectively. Since one imposes synchronization is also similar for both net-
one also observes almost no coherent solution for randomworks, it is much smaller than in the case whegref —1. The
scale-free networks either fé&e=2 or for k=3 (see Sec. )|  transition to coherence occurs at different coupling strengths
we believe that the outgoing connectivityis the main pa- because the number of synchronized nodes is not enough to
rameter controlling synchronization between oscillators insuppress the effect of the outgoing connectivity. So, since the
complex networks. By choosing another deterministic scaleeutgoing connectivity is larger for the Apollonian network,
free network with a higher outgoing connectivity, 3ay10, its transition to coherence occurs for weaker coupling
one might see coherent solutions beyond a coupling threststrengths. For both networks, one obtains similar results for
old value approximately similar to those computed for ran-any higher valuel of generations since the quotient of the
dom scale-free networksee Fig. 3. number of nodes between two successive generations
In the remainder of this section we will consider the twolL,/L,-;— 3 asn increases.
deterministic scale-free topologies, and study possible ways As a general remark, one observes from Fig. that one
of inducing coherent states. needs to synchronize a rather high number of generations to

FIG. 6. Histogram of the standard mean square deviatfoas
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spatial instabilitieg21]. From Figs. &) and §d) one ob-
serves that all these transitions to coherence are of first order.

For the pseudofractal, the upper threshold disappears
when the heterogeneity is further increased. However, for
the Apollonian network the upper threshold not only persists
but shifts toward smaller and smaller coupling strengths
when « is further increased. As far as we know, this is the
first time that one has observed such behavior, and it should
be related to the geometrical differences between the two
networks. In other words, since the Apollonian is a very
particular scale-free network, being the only one studied so
far which is embedded in Euclidean space, this particular
feature seems to enable nontrivial synchronization behavior:
stronger dominance in the coupling to the most connected
nodesdestroyscoherence.

IV. DISCUSSION AND CONCLUSIONS

In this paper we studied fully synchronized solutions for
three scale-free network topologies. The main conclusion is
the following: in random scale-free networks synchroniza-

0 ‘ ‘ ‘ ‘ - tion of chaotic maps not only depends on the coupling
SR ‘¢h P strength but is mainly controlled by the outgoing connectiv-
?0 | Apollonisn Preudo oo | ity k, which is a measure of cohesion _in th_e networks. Be-
= o fractal cause of that, one finds coherent solutions in random scale-

free networks of fully chaotic logistic map&@=2) with
] outgoing connectivityk=8 and homogeneous coupling, but

Apollonian not in deterministic scale-free networks, since they have
(©) (d)
_30 ‘ G | B L = rather small effective outgoing connectivity, namédy,2 for
075 oL 0.77 0985 o 0968 097 the pseudofractal network ard=3 for the Apollonian net-
work.

FIG. 8. Inducing transition to coherence by varying the hetero- Therefore, although the exponeptof connection distri-
geneity o [see Eq.(1)] in scale-free networks(a) Pseudofractal butions in scale-free networks does not depend on the out-
network and(b) Apollonian network. For strong heterogeneity co- going connectivity{2], we have shown that, in general, syn-
herence appears beyond a relatively high coupling strength, but ghronization of chaotic maps in such coupling topologies is
disappears again for very large couplingse text For each net- quite sensitive to it. Moreover, the transition to coherence is
work, we usef=6 generations of nodes and f<2. (c) and(d)  of first order, indicating a similarity with other complex net-
show high-resolution plots of” as a function ofs for @=2, em-  \yorks[21]. In particular, the threshold values of the coupling
phasizing the first-order phase transition to coherence. The base gfrength obey a power law, Ep), as function of the outgo-
the logarithm is 10. ing connectivity. The exponent of this power law depends on

induce coherence. Therefore, it seems that dynamical colle¢h® nonlinearitya of the chaotic map, being almost constant
tive behavior on scale-free networks is quite insensitive t?€lowa.~1.7 and decreasing linearly above it. Interestingly,
hubs. As shown in the insets of Figay and 1b), the tran-  this value ofag is in the vicinity of the bifurcation of the
sition to coherence is of first order. quadratic map where the period-3 window appears, and co-
Another way to induce coherence in these two determinincides with the appearance of other nontrivial behaviors in
istic scale-free networks is, instead of imposing synchronizacoupled map lattices with regular topologies, namely, in the
tion to the most connected nodes, to strengthen their courelocity distribution of traveling wave solutiorjg2].
pling to the other nodes by taking>0 in Eq.(1). Figure 8 The synchronization criterion was based here on the
illustrates the transition to coherence by varying the heterosquare mean standard deviation following previous studies
geneitya for the pseudofractdFig. 8@)] and the Apollonian  [25]. Of course, it could be possible to have numerically a
network [Fig. 8b)]. For both networks, one sees that coher-zero standard deviatios? ~ 10-%° with a particular oscillator
ence sets in for=1.5, and only beyond a certain threshold slightly nonsynchronized. However, in such a case the devia-
of the coupling strength. tion of the oscillator amplitude from the rest of the network
In particular, one observes the remarkable fact that conemould be of the order of 10° a value above the precision
ence appears only in an intermediate coupling range, i.efor our criterion. Therefore, we believe that within this nu-
neither too large nor too small values. This is in agreemeninerical precision there are no spurious results. Further inves-
with previous work [18] concerning other systems of tigations could be done, implementing extensions of cluster-
coupled chaotic oscillators, where one also observes thag criteria such as, e.g., that of Pikovsktal. [43].
synchronized chaos requires that the coupling must be nei- For deterministic scale-free networks with homogeneous
ther too weak nor too strong in order to avoid triggeringcoupling, the same valua, indicates the threshold above
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which no coherent solutions are observed, independently aif node amplitude but also, in random scale-free networks,
the coupling strength. Abova,, coherence is observed only against changes of the connection network. We also pre-
for heterogeneous coupling, namely, fe= 1.5. However, sented preliminary results indicating that in scale-free net-
for this range of values, we have also shown that coherenagorks hubs play apparently no fundamental role in the dy-
is absent either for very small or for very large couplingnamical collective behavior, which remains to be further
strengths, due to spatial instabilities. Another particularly in-investigated.
teresting result that still needs to be explained is that, for
Apollonian networks, the coupling threshold beyond which
coherence disappears gets smaller when the heterogeneity is
further increased. This point is not observed for the pseudof- The authors thank J. S. Andrade, Jr., A. O. Sousa, and M.
ractal network and may be due to the geometrical difference€. Gonzélez, for useful discussions. P.G.L. thanks Fundac&o
between the two deterministic networks. para a Ciéncia e a Tecnologia, Portugal, for financial support.
As a general property, we have shown that all transitionsg.A.C.G. thanks Conselho Nacional de Desenvolvimento
to coherence are of first order. Furthermore, all results ar€ientifico e Tecnoldgico, Brazil, and Sonderforschungsbere-
robust not only against changes of the initial configurationdgch 404, Germany, for financial support.
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