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Stochastic diffusion of ions due to a finite set of lower hybrid waves

Lucio M. Tozawa and Luiz F. Ziebell
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In this paper we generalize the discussion on stochastic diffusion of energetic ions by lower hybrid waves by
considering a case where a set of waves with similar frequencies is present in the system. In the particular case
of a finite number of coherent waves, we show that the threshold for stochastic diffusion is reduced in
comparison with the threshold in the one-wave case, and that the ensuing particle diffusion in velocity space
occurs in periodic bursts along the time evolution. In the more general case of a set of waves with random
phases, we have obtained even more efficient long-term diffusion in velocity space, for the same number of
waves, although the initial diffusion rate can be smaller than in the case of coherent waves.
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I. INTRODUCTION

The possibility of stochastic ion diffusion by lower hybr
~LH! waves has been proposed and explained over two
cades ago, when it was shown that the movement of an io
a uniform magnetic field becomes stochastic in the prese
of a perpendicularly propagating coherent electrostatic wa
if the wave amplitude exceeds a threshold@1,2#. When the
stochasticity criteria is satisfied, the ions diffuse in veloc
space and it is possible to derive a diffusion equation
describe the time evolution of the ion distribution functio
Such a diffusion mechanism may have important con
quences, as indicated by relatively recent experiments, w
have obtained evidence of interaction between lower hyb
waves and energetic ions in large tokamaks@3,4#.

In a previous approach to the subject of interaction
tween energetic ions and LH waves in tokamak plasmas
studied the parametric dependence of the threshold co
tion, and we have shown that the threshold condition as
tained in Ref.@1# may not be easily satisfied in present d
large tokamaks, but can be attained in small tokamaks w
relatively modest levels of wave power@5#.

In another approach, we studied the same kind of inte
tion using a numerical analysis based on a quasilinear
malism appropriate for the situation in which ion stochas
diffusion occurs. The results obtained have shown signific
wave-particle interaction taking place when a population
energetic ions is present in the plasma, in partial agreem
with the evidence from experimental results available in
literature @6#. Proceeding with the investigation of the su
ject, in Ref. @7# we considered a case where a spectrum
low-intensity LH waves is present in the plasma, granting
use of quasilinear theory. The numerical implementation
the formalism has been considerably modified relatively
the previous formulation. In particular, in Ref.@7# the profile
of energy deposition on the electron and ion distributions
been self-consistently evaluated for LH waves. In this inv
tigation conducted in Ref.@7#, as well as in Ref.@6#, the
energetic ion population was generated by a model term
scribing ion cyclotron ~IC! waves, which was not self
consistent. The spatial distribution of IC wave power h
been simply assumed as independent of the quasilinear
lution of the distribution function.
1063-651X/2002/66~5!/056409~13!/$20.00 66 0564
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In this paper, we investigate the transition between th
two situations, namely, the transition from the one-wave s
ation to the continuous wave spectra situation, and cons
the appearance of stochasticity along this transition. Thi
accomplished through the generalization of Karney’s
proach to the case in which a finite number of waves
present in the system. The generalization can be made
mally quite straightforward by the assumption of a simplif
ing hypothesis that the waves form a sufficiently narro
wave packet ink space. Despite the relative simplicity of th
Hamiltonian obtained, the system dynamics is complica
and gives rise to interesting behavior, which has not up to
present been widely studied in the literature@8#, although
some relatively recent papers can be mentioned as dea
with different features of the subject@9,8,10#.

The structure of the paper is the following. In Sec. II, w
explain the fundamental features of the system and derive
equations of motion. In Sec. III, we present some numer
results that illustrate the appearance of stochastic diffusio
the system due to the presence of a set of lower hyb
waves, considering both the particular case of coher
waves and the more general case of waves with rand
phases. Finally, in Sec. IV, we summarize our findings a
comment on the main results of the paper.

II. THE DESCRIPTION OF THE SYSTEM
AND THE EQUATIONS OF MOTION

Let us, therefore, consider the following magnetized s
tem:

B5B0ez ,

E5(
i

Ei~v i !cos@ki~wi !y2v i t2f i #ey . ~1!

The v i appearing in this expression are angular frequenc
of the individual waves in a set ofnv waves, theEi(v i) are
the amplitudes of these waves, and thef i are their phases.

Assuming the Coulomb gauge,

A52B0yex ,

we can writeE52“F, with
©2002 The American Physical Society09-1
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F52(
i

Ei~v i !

ki~v i !
sin@ki~wi !y2v i t2f i #ey . ~2!

The Hamiltonian for the system can be written as

h5
P2

2m
1qF, ~3!

where

P25px
21py

21q2B0
2y222qpxB0y,

and whereq andm are the ion charge and mass, respective
and thepi are the Cartesian components of the particle m
mentum. We have usedpz(t50)50, which impliespz(t)
50.

For the sake of simplicity, we consider thatnv is an odd
number, with waves equally spaced in frequency. We den
the amplitude, the angular frequency, and the phases o
central wave asĒ, v̄, andf̄, respectively, and assume initia
conditions such that the phase of the central wave is z
(f̄50). Using these definitions, we introduce the dime
sionless variables

t85Vt, V5
qB0

m
, y85 k̄y,

pi85
k̄

mV
pi ~ i 5x,y!, ~4!

wherek̄5ki(v i5v̄).
As a consequence of these definitions, the Hamilton

appears as

h85 1
2 @~px81y8!21py8

2#2a(
i

r Ei

r ki

sin~r ki
y82n i t82f i !,

~5!

where

a5
qmE0

k̄

k̄2

m2V2
5

E0

B0

k̄

V
5

E0 /B0

V/ k̄
,

r Ei
5

Ei~v i !

E0
,

r ki
5ki / k̄, n i5v i /V, andh85hm/(mV/ k̄)2. The amplitude

E0 is obtained from the following normalization condition

E0
252K S (

i
Ei cosw ieyD S (

j
Ej cosw jeyD L ,

wherew i[(kiy2v i t2f i), and the symbol̂•••& means the
time average over a time interval sufficiently large in order
be an integer multiple of the periods of all waves appear
in the k wave packet. The rate of amplitudesr Ei

, therefore
satisfies the following constraint:
05640
,
-

te
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g

(
i 51

nv

r Ei

2 ^cos2w i&12 (
i 51

nv21

(
j . i

r Ei
r Ej

^cosw i cosw j&5
1

2
.

~6!

After performing the time average, we obtain^cos2wi&
50.5, and^coswi coswj&50.0, and therefore, from Eq.~6!,

(
i 51

nv

r Ei

2 51. ~7!

In the case in which thenv waves of thek space packet
have the same amplitude (r Ei

5r E , for any i ),

r E5~nv!21/2. ~8!

We can also definer v i
5v i /v̄, and consider that the wav

spectrum is nonvanishing only betweenv̄2dv and v̄
1dv, and thereforer v i

spreads fromr v i
512D to r v i

51

1D, whereD5dv/v̄. Therefore, it is useful to introduce a
integer index i ranging from 2ni to ni , where 2ni11
5nv , and write

r v i
511 iD8, 2ni< i<ni ,

whereD85D/ni .
If the wave packet in thek space is narrow, we may

assume also for the sake of simplicity that for the waves
the packet

v

k
.V, ~9!

whereV is a constant. As a consequence,

r v i
5

v i

v̄
5

Vki~v i !

Vki~v̄ !
5

ki~v i !

k̄
5r ki

~v i !,

and therefore

n i5
v i

v̄

v̄

V
5r ki

n̄ where n̄5
v̄

V
.

Dropping the ‘‘primes,’’ for simplicity, we obtain as the
system’s Hamiltonian,

h5 1
2 @~px1y!21py

2#

2a(
i

r Ei

r ki

sin@r ki
~y2 n̄t !2f i #. ~10!

Following steps similar to those employed in Ref.@1#, we
perform the following canonical transformation:

~x,y,px ,py!⇒~X,Y,Px ,Py!, ~11!

F2~x,y,Px ,Py!5~Px2 n̄t !x1Py~y2 n̄t1Px!,
9-2
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X5
]F2

]Px
5x1Py ,

Y5
]F2

]Py
5y2 n̄t1Px ,

px5
]F2

]x
5Px2 n̄t,

py5
]F2

]y
5Py ,

K5h1
]F2

]t
5h2 n̄~x1Py!5h2 n̄X,

resulting in

Y5y1px , X5x1py .

The new Hamiltonian is

K~X,Y,Px ,Py!5 1
2 @Y21Py

2#

2a(
i

r Ei

r ki

sin@r ki
~Y2Px!2f i #2 n̄X.

~12!

Performing now a second canonical transformation,

~X,Y,Px ,Py!⇒~ I 1 ,v1 ,I 2 ,v2!,

F1~X,Y,v1 ,v2!5 1
2 Y2 cot~v1!1Xv2 ,

Px5
]F1

]X
5v2 ,

Py5
]F1

]Y
5Y cot~v1!→Py5~2I 1!1/2cos~v1!,

I 152
]F1

]v1
5

1

2
Y2 cosec2~v1!→Y5~2I 1!1/2sin~v1!,

I 252
]F1

]v2
52X,

we arrive at the final form of the Hamiltonian, denoted asH,

H5K1
]F1

]t
5K.

The Hamiltonian is therefore

H5I 11 n̄I 2

2a(
i

r Ei

r v i

sin$r v i
@R sin~v1!2v2#2f i%,

~13!
05640
where we have usedr ki
5r v i

and definedR5(2I 1)1/2.
The Hamiltonian equations are easily obtained as follo

v̇ i5
]H

]I i
, İ i52

]H

]v i
,

v̇1512sin~v1!
1

R
a(

i
r Ei

cos$r v i
@R sin~v1!2v2#2f i%,

v̇25 n̄,

İ 15cos~v1!Ra(
i

r Ei
cos$r v i

@R sin~v1!2v2#2f i%,

İ 252a(
i

r Ei
cos$r v i

@R sin~v1!2v2#2f i%. ~14!

The Hamiltonian can be cast in a different form, which
more convenient for the ensuing analysis. We start ag
from Eq. ~13!, use r v i

511 iD8, and defineu5R sin(v1)

2v2, for simplicity,

H5I 11 n̄I 22a(
i

r Ei

~11 iD8!
sin@~11 iD8!u2f i #

5I 11 n̄I 22a(
i

r Ei

~11 iD8!
@sin~u2f i !cos~ iD8u!

1cos~u2f i !sin~ iD8u!#.

SinceD8 is a small quantity, we can, in principle, bene
from the following expansions:

1

~11 iD8!
5(

j 50

`

~2 iD8! j ,

cos~ iD8u!5 (
k50

`

~21!k
~ iD8!2k

~2k!!
u2k,

sin~ iD8u!5 (
k50

`

~21!k
~ iD8!2k11

~2k11!!
u2k11.

The expansions for the trigonometric functions can
truncated only if the argument is sufficiently small. Howev
sincev25 n̄t1const, the argument is small only for times
order t<1/(n̄D). If, for instance,D50.01 andn̄530, that
meanst<3. This is a very restrictive condition, which is no
useful in the context of the present investigation. Therefo
we do not expand the trigonometric functions and write
Hamiltonian as follows:

H5I 11 n̄I 22a(
j 50

`

(
i

r Ei
~2 iD8! j@cos~ iD8u!sin~u2f i !

1sin~ iD8u!cos~u2f i !#. ~15!
9-3
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Regarding the equations of motion, these can be derived from the Hamiltonian given by Eq.~15!,

v̇1512a
]u

]I 1
(
j 50

`

(
i

r Ei
~2 iD8! j$@cos~ iD8u!cos~u2f i !2sin~ iD8u!sin~u2f i !#

1~ iD8!@2sin~ iD8u!sin~u2f i !1cos~ iD8u!cos~u2f i !#%

512a
]u

]I 1
(

i
r Ei

@cos~ iD8u!cos~u2f i !2sin~ iD8u!sin~u2f i !#(
j 50

`

@~2 iD8! j2~2 iD8! j 11#

512a
]u

]I 1
(

i
r Ei

@cos~ iD8u!cos~u2f i !2sin~ iD8u!sin~u2f i !#F11(
j 51

`

~2 iD8! j2(
j 51

`

~2 iD8! j G ,
d
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where we have usedj 85 j 11 in the last term, and then use
j 8→ j , for simplicity. Therefore,

v̇1512a
1

R
sin~v1!(

i
r Ei

@cos~ iD8u!cos~u2f i !

2sin~ iD8u!sin~u2f i !#. ~16!

The other Hamiltonian equations can be easily obtain

v̇25 n̄,

İ 15aR cos~v1!(
i

r Ei
@cos~ iD8u!cos~u2f i !

2sin~ iD8u!sin~u2f i !#,

İ 252a(
i

r Ei
@cos~ iD8u!cos~u2f i !

2sin~ iD8u!sin~u2f i !#. ~17!

Equations~16! and ~17! are completely equivalent to thos
appearing in Eqs.~14!.

An interesting limiting case is obtained from the Ham
tonian ~15! if Du is a small quantity, as it may occur fo
initial times in the case of narrow wave spectrum. In th
case, the trigonometric functions can be expanded, and
neglecting terms of orderDu and higher, the following ap-
proximated Hamiltonian is obtained:

H5I 11 n̄I 22a(
i

r Ei
sin~u2f i !. ~18!

Particularly, if all waves in the wave spectrum have the sa
phase~for simplicity the same phase as the central wavef̄
50), the Hamiltonian is further simplified,

H5I 11 n̄I 22aS (
i

r Ei D sinu, ~19!

which has the same form of the Hamiltonian used in Re
@1,2#, with an effectivea,
05640
,

t
by

e

.

ae f f5a(
i

r Ei
. ~20!

Therefore we can conclude that forDu!1, in the case of
coherent waves, the threshold for the onset of stochastic
fusion is reduced in the case of several waves, as comp
to the one-wave case. Particularly, if all waves have the sa
amplitude, using condition~8! we obtain

ae f f5a~nv!1/2. ~21!

This result shows that the increase in the number of
herent waves, even with amplitudes restricted by the con
tion ^E2&5E0

2, decreases the threshold for the occurrence
stochastic diffusion, since the value ofa necessary to pro-
duce the same effect caused with one wave is decrease
the factor( i r Ei

. In the limiting case of a continuous spe
trum of coherent waves, with an infinite number of wave
this result predicts that the threshold goes to zero and tha
initial diffusion occurs even for vanishing value ofa.

After the initial stages, the subsequent evolution is
longer ruled by Eq.~19!, but rather by Eq.~15!, or Eq.~13!.
The behavior of the system in that case, as well in the m
general case of incoherent waves, must therefore be the
ject of a numerical analysis, with results presented in S
III.

III. SOME NUMERICAL RESULTS

For the numerical solution of the Hamiltonian equation
we assume a given number of particles (np) and a given
number of waves (nv) and givea and n̄ as parameters. We
also assume a given value ofD and a distribution of wave
amplitudesr Ei

.
As loading procedure for the numerical calculation, w

initially consider the following case: We give parametersI 1
0,

a0, and the initial HamiltonianH, and attribute, for thenp
particles, regularly spaced values ofI 1 , v1, andv2:
9-4
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I 15I 1
01

1

np
a0 ,I 1

01
2

np
a0 , . . . ,I 1

01a0 ,

v152p
1

np
,2p

2

np
, . . . ,2p,

v252p
1

np
,2p

2

np
, . . . ,2p,

I 25~H2I 11S!/ n̄, ~22!

where

S[a(
i

r Ei

r v i

sin$r v i
@R sin~v1!2v2#2f i%.

In other words, the loading procedure assumes initial v
ues forI 1 , v1, andv2, and evaluatesI 2 in such a way that
all the particles have the same initial Hamiltonian (H), for
which we have arbitrarily assumed the valueH5I 1

01 n̄I 1
0.

Once we know the initial values ofv1 , v2 , I 1, andI 2, it is
possible to evaluate the value of the productDu.

When assuming the initial value ofI 1 for each particle,
we are simply assuming the initial value of the perpendicu
canonical momentum of the particles, since reversing the
nonical transformations one obtains

I 15
1

2

k̄2

m2V2
@py

21~px2qAx!
2#,

wherepx andpy are thex- andy-dimensional components o
the particle momentum, as used in Eq.~3!, before the intro-
duction of the dimensionless variables by Eq.~4!.

In Fig. 1 we show the initial value ofDu for np51000
particles, assumingI 151.253103, a05400, and D51.0

FIG. 1. Initial values ofDu vs particle indexi, for np51000
particles, assumingI 151.253103, a05400, andD51.031022.
The initial conditions for the particles are attributed such thatv1

andv2 are between 0 and 2p andI 1 is betweenI 1
0 andI 1

01a0, and
I 2 is evaluated under the restriction that all particles have the s
value of the Hamiltonian (H).
05640
l-

r
a-

31022. It is seen that the quantityDu is indeed smaller than
unity for all particles, which means that the Hamiltonia
equation as given by Eq.~18! approximately rules the initia
stages of the evolution of the system, in the particular cas
coherent waves.

With this choice of parametersI 1
0 and a0, the spread of

perpendicular momenta of the particles is such that 5
,R,57.4, where, as we have seen,R5A2I 1. Assuming for
instancen̄530 and vanishing wave intensity (a50), the
quantity A2I 2 therefore satisfies 49.7,A2I 2,50.0, having
limits slightly different from these values in the case of fin
a, according to Eq.~22!. This range of parameters is simila
to that utilized in previous studies of the one-wave ca
which we use for comparison when considering the case
several waves@1,2#.

According to these studies, for one wave and inte
value of n̄, and small wave amplitude, the phase space
dominated by large first-order islands. At intermediate wa
amplitudes, stochastic motion appears near the separat
between the islands. For growing wave amplitude the size
the stochastic region increases, and the threshold for stoc
ticity has been defined as the wave amplitude for which
fraction of phase space occupied by the islands has appr
bly diminished in comparison with the size of stochastic
gions@1#. The limits of the stochastic region area dependent
and have been established approximately as the follow
@1#:

Rmin5 n̄2Aa, Rmax5~4an̄!2/3~2/p!1/3.

For a52.0, the stochasticity therefore will fully occur i
the region 28.6,R,33.2. Fora54.0, in the region 28.0
,R,43.5, and fora56.0, in the region 27.5,R,69.0.
Therefore, for our choice of parameters, in the one-wa
case we may expect a small amount of stochasticity foa
52.0, for instance, since the range 50.0,R,57.4 is far
from the stochastic range, and an appreciable amount of
chasticity fora54.0, since the range 50.0,R,57.4 is close
to the stochastic range. On the other hand, for a larger w
amplitude, as in the case ofa56.0, for instance, one can
expect fully established stochasticity in the chosen ran
which will be completely immersed in the stochastic regio

A. The one-wave case

We start by considering the one-wave case, the situa
considered in Refs.@1# and @2#.

In order to illustrate the effect of the increase of the wa
intensity, we present in Fig. 2 the quantityA2I 2 vs
v2 (mod 2p), for the case of three particles and one wa
with a52.2, 3.0, 3.8, and 4.6, assumingI 1

051.253103, a0

5400, andn̄530.0. The sequence of panels illustrates
gradual modification of particle trajectories caused by
increase in the wave intensity. In Fig. 3 we present the sa
quantityA2I 2 vs v2 (mod 2p), for the case of 50 particles
anda52.0, using the same parameters and initial conditio
as for Fig. 2. We see the gradual appearance of the overla
particle orbits which has been shown to correspond to
chastic diffusion in velocity space@1,2#.

e

9-5
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B. The case of several waves with the same phase

We now consider the presence of more than one wa
with different frequencies, all with the same phase factor
the central wave (f̄50). For simplicity, we assume that a
waves have the same amplitude such thatr E5(nv)21/2. This
simple limiting case displays some of the effects due to
increase in the number of waves, to be compared with
more general case of a set of incoherent waves discuss
the end of the present section.

For instance, Fig. 4 shows the case ofA2I 2 vs
v2(mod 2p), considering three particles anda52.0 for sev-
eral values of the number of waves~1, 3, 5, and 7!, using
D51.031022 and the same parameters and initial con
tions as for Fig. 2. It is seen that the increase in the num
of waves produces modifications in the particle trajector
which are reminiscent of the modifications caused by
increase in the wave intensity, shown in Fig. 2.

The effect of the increase in the number of coher
waves on a larger number of particles is seen in Fig. 5, wh

FIG. 2. A2I 2 as a function ofv2(mod 2p) for three particles,

one wave,n̄530, and~a! a52.2, ~b! a53.0, ~c! a53.8, and~d!
a54.6.

FIG. 3. A2I 2 as a function ofv2(mod 2p), for 50 particles, one

wave, n̄530, and~a! a52.2, ~b! a53.0, ~c! a53.8, and~d! a
54.6.
05640
e,
f

e
e
at

-
er
s
e

t
re

we presentA2I 2 vs v2(mod 2p) for the case of 50 particles
anda52.0, for several values of the number of waves~1, 3,
5, and 7!. In this figure, we also use the same parameters
initial conditions used to obtain Fig. 4.

Looking for more information on the behavior of the sy
tem, we consider in Fig. 6 the case in which five waves
present in the system, considering several values of the w
amplitude (a50.25, 0.5, 1.0, and 2.0), andD51.0
31022. As in previous figures, Fig. 6 depictsA2I 2 as a
function of v2(mod 2p). The loading procedure and othe
parameters are also the same as in previous figures. It
confirmed the expectation that the presence of more than
wave is not sufficient to guarantee the occurrence of stoc
tic diffusion, but the threshold of wave intensity for the ons
of stochasticity is reduced as compared to the one-wave c
which occurs fora.2.2. Visually, this onset appears to o
cur between the case ofa50.5, where the particle orbits
obtained are similar to those appearing in the first pane
Fig. 5 ~one wave case witha52.0), and the case ofa

FIG. 4. A2I 2 as a function ofv2(mod 2p) for three particles

and coherent waves,a52.0, n̄530, D51.031022, and number of
waves~a! 1, ~b! 3, ~c! 5, and~d! 7.

FIG. 5. A2I 2 as a function ofv2(mod 2p) for 50 particles and
coherent waves,a52.0, D51.031022, and number of waves~a!
1, ~b! 3, ~c! 5, and~d! 7.
9-6
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51.0. This is in agreement with Eq.~21!, which predictsa
5a1wave /(nv)1/2 ~which in the present case is 2.2/(5)1/2

.0.98).

C. The case of several waves with random phases

We now consider the presence of more than one wa
with different frequencies and random phases, with the ph
of the central wave assumed to be zero (f̄50). The random
phases are obtained from a random number generator
starts from a numerical seed. All the results that follow, u
less explicitly stated otherwise, are generated using s
seed for the random number generator. Regarding the am
tudes in the set of waves, we assume that they are all eq
such thatr E5(nv)21/2.

For instance, Fig. 7 shows the case ofA2I 2 vs
v2(mod 2p), considering three particles anda52.0, for
several values of the number of waves~1, 3, 5, and 7!, using
D51.031022 and the other parameters as in Fig. 2. Exc

FIG. 6. A2I 2 as a function ofv2(mod 2p) for 50 particles and
coherent waves,D51.031022, nv55, and ~a! a50.25, ~b! a
50.5, ~c! a51.0, and~d! a52.0.

FIG. 7. A2I 2 as a function ofv2(mod 2p) for three particles

and waves with random phases,a52.0, n̄530, D51.031022, and
number of waves~a! 1, ~b! 3, ~c! 5, and~d! 7.
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for the random phases, these are exactly the same condi
used to generate Fig. 4. The modifications in the part
trajectories are similar but more impressive than tho
caused by coherent waves, seen in Fig. 4.

The effect of the increase in the number of incoher
waves on a larger number of particles is seen in Fig. 8, wh
we presentA2I 2 vs v2(mod 2p) for the case of 50 particles
anda52.0, for several values of the number of waves~1, 3,
5, and 7!. In this figure, we also use the same paramet
used to obtain Fig. 7. Figure 8 clearly shows that the pr
ence of the waves with random phases causes the com
spreading of the particle orbits that are present in the cas
only one wave, for the same value ofa.

As in the case of coherent waves, with results shown
Fig. 6, in Fig. 9 we showA2I 2 as a function ofv2(mod 2p)
for the case in which five waves are present in the syst
considering several values of the wave amplitudea
50.25, 0.5, 1.0, and 2.0), andD51.031022, and waves
with random phases. The loading procedure and other

FIG. 8. A2I 2 as a function ofv2(mod 2p), for 50 particles and
waves with random phases,a52.0, D51.031022, and number of
waves~a! 1, ~b! 3, ~c! 5, and~d! 7.

FIG. 9. A2I 2 as a function ofv2(mod 2p) for 50 particles and
waves with random phases,D51.031022, nv55, and ~a! a
50.25, ~b! a50.5, ~c! a51.0, and~d! a52.0.
9-7
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L. M. TOZAWA AND L. F. ZIEBELL PHYSICAL REVIEW E 66, 056409 ~2002!
rameters are also the same as in previous figures. We obs
that the amount of stochastic diffusion, for the same num
of iterations, gradually decreases when the wave energ
reduced, but even in the case ofa50.25 the degree of sto
chasticity is larger than that obtained in the one-wave c
anda52.0, as seen in the first panel of Fig. 5 and in the fi
panel of Fig. 8. However, while in the case of cohere
waves we can use Eq.~21! in order to relate the amplitud
required for the onset of stochasticity with the amplitu
required to produce a similar effect in the one-wave case,
have not developed an equivalent theoretical approach
the case of waves with random phases.

Figure 9~a! also shows a higher degree of stochastic
than Fig. 6~a!, with the only difference being that Fig. 9~a!
was obtained assuming waves with random phases, w
Fig. 6~a! was obtained assuming all waves possess the s
phase (f50). In the analysis that appears in the followin
section, we will similarly observe more pronounced lon
term diffusive behavior in the case of waves with rando
phases than in the case of waves with the same phase.
section

D. Comparative analysis of the one-wave case and the cases
with several waves, coherent and incoherent

The presence of stochastic behavior can also be inv
gated by following the time behavior of the following qua
tities:

~dI j ! t5H 1

np21 (
i 51

np

@ I j~ t !2I j~0!#2J 1/2

, ~23!

wherej 51,2. In a plot of (dI j ) t vs t, the inclination of (dI j ) t
relative to thet axis is a measure of the diffusion coefficie
in velocity space@11#.

In Fig. 10 we show (dI 2) t as a function of normalized
time for the one-wave case (nv51), I 1

051.253103, a0

5400, n̄530.0, anda52.0, 4.0, and 6.0. Panel~a! of Fig.
10 shows the evolution up to normalizedt.120, and panel
~b! shows the extended evolution, up tot.1200. For this
figure, we have considerednp51000, which results in much
better statistics than obtained withnp550. The Poincare´
plots presented in Figs. 2–8, on the other hand, were
tained withnp550 because with a larger number of particl
it becomes very difficult to see any structure in the plots, d
to the proximity of the dots that represent successive p

FIG. 10. (dI 2) t as a function of normalized time fornv51, I 1
0

51.253103, a05400, n̄530.0, anda52.0 ~full line!, 4.0 ~broken
line!, and 6.0~dotted line!. ~a! Short-term evolution;~b! long-term
evolution.
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sages of particles by the Poincare´ section. Figure 10 clearly
shows that long-term diffusive behavior, measured by
inclination of the curve relative to thet axis, is absent in the
case ofa52.0 but is already present in the case ofa54.0,
and is more impressive in the case ofa56.0 @1,2#.

In Fig. 11 we show (dI 2) t as a function of normalized
time for I 1

051.253103, a05400, n̄530.0, anda52.0, for
nv51, 5, and 9, for the case of coherent waves. Panel~a!
shows the evolution up tot.120, while panel~b! shows the
evolution up tot.1200. Figure 11 also shows the progre
sive appearing of diffusion in the system, but the curves t
display the growth of (dI 2) t with time exhibit smaller aver-
age inclination than in the case corresponding to one w
and a52.0, appearing in Fig. 10. It is also noticeable t
alternance of regions where the curve describing (dI 2) t
grows with time and regions where it is nearly constant a
parallel to the horizontal axis. This sequence of steps is
noticeable in the one-wave case in Fig. 10.

In Fig. 12 we show (dI 2) t as a function of normalized
time for I 1

051.253103, a05400, n̄530.0, anda52.0, for
nv51, 5, and 9, for the case of waves with random phas
As in Fig. 11, panel~a! shows the evolution up tot.120,
while panel~b! shows the evolution up tot.1200. Accord-
ing to Fig. 12, the initial evolution of (dI 2) t displays smaller
inclination toward thet axis than in the corresponding cas
for coherent waves appearing in Fig. 11. But the long-te
evolution appearing in Fig. 12~b! shows continued diffusion
without the conspicuous ‘‘steps’’ appearing in Fig. 11, in t
case of coherent waves, resulting that the quantity (dI j ) t
attains larger values in the case of Fig. 12~b! than in the case
appearing in Fig. 11~b!. Another interesting feature appearin
in Fig. 12~b! is that the cases ofnwave55 andnwave59 with

FIG. 11. (dI 2) t as a function of normalized time for the case

coherent waves, forI 1
051.253103, a05400, n̄530.0, and a

52.0, fornv51 ~full line!, 5 ~broken line!, and 9~dotted line!. ~a!
Short-term evolution;~b! long-term evolution.

FIG. 12. (dI 2) t as a function of normalized time for the case

waves with random phases, forI 1
051.253103, a05400, n̄530.0,

and a52.0, for nv51 ~full line!, 5 ~broken line!, and 9 ~dotted
line!. ~a! Short-term evolution;~b! long-term evolution.
9-8
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STOCHASTIC DIFFUSION OF IONS DUE TO A FINITE SET OF . . . PHYSICAL REVIEW E66, 056409 ~2002!
random phases exhibit similar long-term behavior of (dI 2) t ,
different from the behavior appearing in Fig. 11 for the ca
of coherent waves.

The very early stages of the time evolution are shown
Fig. 13 that displays (dI 2) t vs normalized time for the case
nv51 anda56.0, nv59 anda52.0 for coherent waves
and nv59 anda52.0 for waves with random phases, a
suming I 1

051.253103, a05400, andn̄530.0, andt up to
20. According to Eqs.~21!, the two former cases should fea
ture similar initial diffusion rates, a prediction which is co
roborated by the results shown in Fig. 13. Regarding
results featured in the case of random waves, at least fo
set of random phases utilized, the early inclination of
curve for (dI 2) t is smaller than in the case of the set
coherent waves, although we observe continued and m
significant diffusion for long-time evolution according to th
comparison between Figs. 11 and 12.

The results shown in Figs. 10, 11, and 13 show that
stochastic diffusion caused for several coherent waves
deed starts at the wave level predicted by using Eq.~21!, but
proceeds at a smaller average pace than the correspon
case with only one wave. These results can be understoo
considering some features of the equations of motion. Le
consider, for instance, the fourth equation of motion appe
ing in Eqs.~16! and ~17!, averaged for all particles,

j2[
1

np
(
j 51

np

İ 252
1

np
(
j 51

np

(
i

r Ei
@cos~ iD8u!cos~u2f i !

2sin~ iD8u!sin~u2f i !#, ~24!

which can be taken as representative of the behavior of
system. In Fig. 14 we plotj2 vs normalized time fora
52.0 andnv51, 5, and 9, assuming coherent waves,I 1

0

51.253103, a05400, andn̄530.0. The curves appearin
in the left three panels of Fig. 14 should be compared w

FIG. 13. Early stages of the evolution of (dI 2) t as a function of
normalized time fornv51 anda56.0 ~full line!, for nv59 and
a52.0, coherent waves~broken line!, and fornv59 anda52.0,
waves with random phases~dotted line!, assumingI 1

051.253103,

a05400, andn̄530.0.
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the curves appearing in the corresponding right panels
Fig. 14, where we plot the auxiliary quantity

~j2!aux[2
1

np
(
j 51

np

aF(
i

r EiGcos~u!, ~25!

which is simply the average of the equation of motion th
would rule the evolution ofI 2 if Du could be considered
very small along all the time interval shown in the figure.
that case, the stochasticity would occur as in the one-w
case, withae f f5a( i r Ei

.
The comparison between the corresponding left and r

panels of Figs. 14 shows that the quantity@j2#aux is a fluc-
tuating quantity with a significant amplitude along the tim
evolution, whilej2 for coherent waves is a fluctuating qua
tity that in the case ofnp.1 features a much smaller ampl
tude along most of the time span considered in the calc
tions, with periodic bursts of amplitude. The modulation
the time evolution of the quantityj2, which occurs due to
the factors cos(iD8u) appearing in the equation of motion
explains the smaller amount of diffusion in velocity spa
when compared with the diffusion that would occur witho
the presence of the modulation, for the same parameters

The maxima of the quantityj2, which appear periodically
in Fig. 14, may be easily explained as follows. The perio
icity originates from the factor( i r Ei

cos(iD8u), which in the
case of equal amplitude waves may be written as

FIG. 14. Left panels: the quantityj2 as a function of normalized
time, in the case of coherent waves, fora52.0 and~a! nv51, ~b!

nv55, and ~c! nv59, assumingI 1
051.253103, a05400, andn̄

530.0. Right panels: the quantity@j2#aux as a function of normal-
ized time for the same parameters as in the left panels.~d! nv51,
~e! nv55, and~f! nv59.
9-9
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(
i 52ni

ni

r Ei
cos~ iD8u!5r E0 (

i 52ni

ni

cos~ iD8u!

5r E0

sinS nvDu

nv21D
sinS Du

nv21D .

The maxima of this quantity fornv.1 are located at
uuu5(kp/D)(nv21), wherek is a positive integer. Sinceu
averaged for all particles isu.2 n̄t, that means that the
maxima occur att.kp(nv21)/(n̄D). For our parameters
the first maxima therefore occurs fort.40 and t.80, re-
spectively, fornv55 and 9. The following maxima occur a
multiples of these values. These features are seen in Fig
and explain the sequence of diffusive steps exhibited in F
11. A consequence of this bursty diffusive behavior is th
although the threshold for the onset of stochastic diffusio
decreased by the presence of a set of coherent waves
close frequencies, if compared to the one-wave case, as
dicted by Eq.~21!, the overall diffusion is limited by the time
interval between the diffusive episodes, which becomes
creasingly large with the increase in the number of wave

In Fig. 15, on the other hand, we plotj2 vs normalized
time for a52.0 andnv51, 5, and 9, assuming waves wit
random phases,I 1

051.253103, a05400, andn̄530.0. As in
the case of Fig. 14, the curves appearing in the left th

FIG. 15. Left panels: the quantityj2 as a function of normalized
time, in the case of waves with random phases, fora52.0 and~a!
nv51, ~b! nv55, and ~c! nv59, assumingI 1

051.253103, a0

5400, andn̄530.0. Right panels: the quantity@j2#aux as a function
of normalized time for the same parameters as in the left panels~d!
nv51, ~e! nv55, and~f! nv59.
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panels of Fig. 15 should be compared with the curves
pearing in the corresponding right panels of Fig. 15, wh
the auxiliary quantity@j2#aux is plotted as a function of nor
malized time.

The comparison between the corresponding left and r
panels of Figs. 15 shows that the quantity@j2#aux is a fluc-
tuating quantity whose amplitude along the time evoluti
depends on the phase of the waves composing the w
packet in thek space. For the seed used in the generation
the random phases, we observe that the amplitude of@j2#aux
in the case ofnwave55 is smaller than in the case ofnwave
51 or 9, while j2 is a fluctuating quantity that does no
show the regular appearance of maxima and minima that
have seen in Fig. 14, in the case of coherent waves.
absence of that regular modulation in the case of waves w
random phases explains the absence of the diffusive s
that occurs for coherent waves, and explains the relativ
regular and continued diffusion caused for waves with r
dom phases as seen in Fig. 12~b!.

The influence of the random phases in the case of a fi
number of waves is illustrated in Fig. 16, which shows t
quantitiesj2 and@j2#aux for the case ofnwave55, with other
parameters as in Fig. 15, and three different sets of rand
phases, generated with three different numerical seeds fo
random number generator. Panel~a! of Fig. 16 corresponds
to the case of panel~b! of Fig. 15. The right hand panel
show different amplitudes for the quantity@j2#aux, which
illustrate the dependence on the phases. The left hand pa

FIG. 16. Left panels: the quantityj2 as a function of normalized
time, in the case of waves with random phases, fornv55 anda
52.0, with three different sets of random phases, obtained w
different seeds for the numerical evaluation of the phases, assu

I 1
051.253103, a05400, andn̄530.0. Right panels: the quantit

@j2#aux as a function of normalized time for the same parameter
in the left panels.
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STOCHASTIC DIFFUSION OF IONS DUE TO A FINITE SET OF . . . PHYSICAL REVIEW E66, 056409 ~2002!
on the other hand, exhibit the difference but have in comm
the irregular appearance of maxima and minima of sim
amplitudes in all three cases shown. As a consequence
diffusive behavior caused by the waves is roughly similar
the three cases, as shown in Fig. 17, which displays
short-term behavior of (dI 2) t , for the three cases of differen
sets of random phases used to obtain Fig. 16. In spite of
obvious differences between the three curves obtained,
inclination relative to thet axis is approximately the same i
the three cases, indicating similar average diffusive behav
A more exhaustive investigation would require very inte
sive use of numerical calculations, considering a large nu
ber of sets of random phases, which we believe will n
bring any significant modification to the general trend e
posed in Fig. 17. It is expected that the average beha
obtained with different sets of random phases would tend
become more and more similar for increasing number
waves, so that in the limit of infinite wave number the d
fusion caused by the waves would be independent of
particular set of random phases utilized in the calculation

E. An example with different initial conditions

The regularity of the initial conditions utilized for the pa
ticles to obtain the results presented up to this point in
present section has been useful in order to generate re
Poincare´ plots as those appearing for instance in Figs. 3~a!,
5~a!, and 8~a!. However, it is necessary to investiga
whether results similar to those obtained up to this point m
be found also under different initial conditions or wheth
they are peculiar to the conditions assumed at the begin
of the section. We therefore consider here another exam
which assumes for the particlesI 1 values randomly distrib-
uted betweenI 1

0 andI 1
01a0, andv1 andv2 values randomly

distributed between 0 and 2p, with the quantityI 2 evaluated
according to Eq.~22!, under the condition that the Hami
tonian value~H! is the same for all particles.

FIG. 17. Short-term evolution of (dI 2) t as a function of normal-
ized time, in the case of waves with random phases, fornv55 and
a52.0, with three different sets of random phases, obtained w
different seeds for the numerical evaluation of the phases, assu

I 1
051.253103, a05400, andn̄530.0.
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The randomness of the initial conditions in this case c
be appreciated in Fig. 18, where we show the initial value
Du for np51000 particles, assumingI 151.253103, a0
5400, andD51.031022. As in Fig. 1, it is seen that the
quantityDu is indeed smaller than unity for all particles.

In Fig. 19 we present for these initial conditions the qua
tity (dI 2) t as a function of normalized time for the one-wa
case (nv51), I 1

051.253103, a05400, n̄530.0, and a
52.0, 4.0, and 6.0, consideringnp51000. Panel~a! of Fig.
19 shows the evolution up to normalizedt.120, and panel
~b! shows the extended evolution, up tot.1200. Similarly
to what we obtained in Fig. 10 for the case of the mo
regular set of initial conditions, Fig. 19 clearly shows th
long-term diffusive behavior is absent in the case ofa
52.0, but is already present in the case ofa54.0, and is
more impressive in the case ofa56.0 @1,2#.

In Fig. 20, we show (dI 2) t as a function of normalized
time for I 1

051.253103, a05400, n̄530.0, anda52.0, for
nv51, 5, and 9, for the case of coherent waves. Panel~a!
shows the evolution up tot.120, while panel~b! shows the

h
ing

FIG. 18. Initial values ofDu vs particle indexi for np51000
particles, assumingI 151.253103, a05400, andD51.031022.
The initial conditions for the particles are randomly attributed, su
that v1 and v2 are between 0 and 2p and I 1 is betweenI 1

0 and
I 1

01a0, with I 2 evaluated under the restriction that all particles ha
the same value of the Hamiltonian (H).

FIG. 19. (dI 2) t as a function of normalized time fornv51, I 1
0

51.253103, a05400, n̄530.0, anda52.0 ~full line!, 4.0 ~broken
line!, and 6.0~dotted line!. ~a! Short-term evolution;~b! long-term
evolution. The initial conditions for the particles are randomly
tributed, such thatv1 and v2 are between 0 and 2p and I 1 is
betweenI 1

0 and I 1
01a0, with I 2 evaluated under the restriction tha

all particles have the same value of the Hamiltonian (H).
9-11
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L. M. TOZAWA AND L. F. ZIEBELL PHYSICAL REVIEW E 66, 056409 ~2002!
evolution up tot.1200. Figure 20 also shows the progre
sive appearing of diffusion in the system, but the curves t
display the growth of (dI 2) t with time exhibit smaller aver-
age inclination than in the case corresponding to one w
anda52.0, appearing in Fig. 19. The alternance of regio
is also noticeable, regions where the curve describing (dI 2) t
grows with time and regions where it is nearly constant a
parallel to the horizontal axis. This sequence of steps is
noticeable in the one-wave case in Fig. 19.

In Fig. 21, we show (dI 2) t as a function of normalized
time for I 1

051.253103, a05400, n̄530.0, anda52.0, for
nv51, 5, and 9, for the case of waves with random phas
As in Fig. 20, panel~a! of Fig. 21 shows the evolution up t
t.120, while panel~b! shows the evolution up tot.1200.
According to Fig. 21, the initial evolution of (dI 2) t displays
smaller inclination toward thet axis than in the correspond
ing cases for coherent waves appearing in Fig. 20. But
long-term evolution appearing in Fig. 21~b! shows continued
diffusion, without the conspicuous ‘‘steps’’ appearing in F
20, in the case of coherent waves, resulting that the qua
(dI j ) t attains larger values in the case of Fig. 21~b! than in
the case appearing in Fig. 20~b!. Another interesting feature
appearing in Fig. 21~b! is that the cases ofnwave55 and
nwave59 with random phases exhibit similar long-term b
havior of (dI 2) t , different from the behavior appearing i
Fig. 20 for the case of coherent waves.

The results appearing in Figs. 19–21 are qualitativ
very similar to those displayed in Figs. 10–12, indicati
that the results obtained in Sec. III were not peculiar to
particular set of initial conditions for the particle coordinat
utilized in that section.

FIG. 20. (dI 2) t as a function of normalized time, in the case

coherent waves, forI 1
051.253103, a05400, n̄530.0, and a

52.0, fornv51 ~full line!, 5 ~broken line!, and 9~dotted line!. ~a!
Short-term evolution;~b! long-term evolution. The initial conditions
for the particles are attributed as in Fig. 18.

FIG. 21. (dI 2) t as a function of normalized time for the case

waves with random phases, forI 1
051.253103, a05400, n̄530.0,

and a52.0, for nv51 ~full line!, 5 ~broken line!, and 9 ~dotted
line!. ~a! Short-term evolution;~b! long-term evolution. The initial
conditions for the particles are attributed as in Fig. 18.
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Finally, Fig. 22~a! displays the short-term evolution of th
quantity (dI 2) t , for three different sets of random phases,
nv55, I 1

051.253103, a05400, andn̄530.0. As in Fig. 17,
we observe that, although there are differences between
three curves, the behavior is qualitatively the same in
three cases. Figure 22~b! displays the long-term evolution fo
the same set of parameters. The inclination of the (dI 2) t
curve is similar in the three cases, indicating that they m
be representative of the average behavior to be obtained
ensemble average is made considering a large number of
of initial phases. Figure 22~b! also shows the curve obtaine
for the case of five waves with the same phase (f50),
which displays smaller inclination toward the horizont
axis, and therefore indicates less pronounced long-term
fusive behavior.

IV. FINAL REMARKS

We have generalized the discussion on stochastic di
sion of energetic ions by lower hybrid waves by consider
a case where a set of waves with similar frequencies
present in the system. The task has been accomplishe
generalizing the approach utilized in Refs.@1,2#, restricting
the analysis to the case of sufficiently narrow spectra, s
that the phase velocity of the waves present in the system
be considered to be constant. The formulation utilized ta
into account that each wave may have a random phase,
the case of coherent waves as a particular case.

The theoretical analysis of the system has shown that
initial stages of the time evolution in the case of coher
waves are ruled by a Hamiltonian similar to that appearing
Refs.@1,2#, but with a threshold for stochastic behavior at t
initial stages of the evolution that is smaller than the cor
sponding threshold obtained for the case of a single wave
the limiting case of a continuous spectrum, with an infin
number of coherent waves, our analysis has shown that
threshold goes to zero and that the stochastic behavior a
initial stages should occur for any value of wave intensity

When comparing the case with a single wave and the c
with a finite number of coherent waves, for similar initi
diffusion rate, we have shown that in the multiple-wave ca
the diffusion occurs in periodic bursts, which reduce t

FIG. 22. (dI 2) t as a function of normalized time in the case
waves with random phases fornv55 anda52.0 with three differ-
ent sets of random phases, obtained with different seeds for
numerical evaluation of the phases, assumingI 1

051.253103, a0

5400, andn̄530.0. ~a! Short-term evolution;~b! long-term evolu-
tion. In panel~b!, below the other three curves, the correspond
curve for the case of coherent waves is also seen. The initial c
ditions for the particles are attributed as in Fig. 18.
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STOCHASTIC DIFFUSION OF IONS DUE TO A FINITE SET OF . . . PHYSICAL REVIEW E66, 056409 ~2002!
overall efficiency of the diffusive process.
When considering the more general situation in which

waves have random phases relative to each other, the l
term diffusion obtained has been shown to be more sign
cant than in the case of coherent waves for the same num
of waves. While in the case of coherent waves the diffus
behavior occurs in periodic bursts, the diffusive behavior
tained in the case of random phases occurs continuo
along the time evolution. This result is of particular intere
since the case of waves with random phases is more re
sentative from the point of view of investigating, with a fini
set of waves, the effect of a finite-width wave packet,
found in actual experiments of wave-particle interaction
tokamaks. Closer representation would be obtained by
application of an ensemble average over the initial set
random phases, a procedure that would be very costly f
the point of view of numerical resources, and do not app
to be necessary in order to obtain the general features o
m

05640
e
g-
-
er

e
-
ly
,
re-
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e
f
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diffusive behavior that can be the outcome of the wa
particle interaction.

Finally we remark that the reduction of the stochastic
threshold with the increase in the number of waves, which
predicted by the present analysis, has also been obtaine
different situations. For instance, for a case with two wav
propagating obliquely to the ambient magnetic field@8#, or
for a case in which a modulation occurs in the wave f
quency@12#.
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