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Scaling laws for breathing frequencies of solitary modes in the Zakharov equations
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We analyze typical time scales resulting from the coupled dynamics of high- and low-frequency wave
components in solitary solutions of the Zakharov equations. Linear stability analysis around the solitary modes
suggests that adiabatic regimes may be obtained in the limit of high- and low-field intensities where the
disparity of eigenfrequencies is large. Full simulations, however, reveal that adiabaticity arising from oscilla-
tory motion can in fact be observed only over relatively short periods of time prior to noticeable radiation
emission.
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[. INTRODUCTION obtain some information on the problem, such as oscillatory

frequencies of stable equilibria, growth rates of unstable

The purpose of the present paper is to investigate tim@quilibria, or oth_er relevant quantities. Although sgve_ral fea.—
scales associated with solitary wave dynamics of the zatures are left aside by the procedure, such as radiative emis-

kharov equation§l]. The Zakharov equations are presently Sion for instance, judicious care allows us to predict what
recognized to provide one of the most complete models deX!ll b€ seen in a full simulation. -
The procedure has been used in a number of recent works,

scribing the coupling of high- and low-frequency waves insome of which are of interest here. In some cases, the varia-
nonlinear environments. The model is particularly powerful,[ional method was used in the context of the nonlinear

in plasma ph_y5|cs, where the h'g.h' and Iow_-frequency mOdeéchr"cdinger equation(NLS) alone and a single oscillatory
are, respectwely, electron and ion acoustic wal&s 'I_'he frequency around equilibrium solitary solutions, compatible
Zakharov equations are known to support steady solitary SQjith fyll numerical simulations of the problem, was obtained
lutions that manifest themselves in the form of isolated 0I5 6]. More recently, the procedure was used in the context
solitary lumps along the space. The set of equations is not Qi the zakharov equatior[d], but then the frequency spec-
the integrable type and one cannot refer to the solitary lumgrum was not tested against full simulations. In any case, as
solutions as soliton$3,4]. However, likewise solitons, the gne examines Ref7], one soon finds out that two frequen-
solitary modes can breath in the sense that if they are slightlgies are obtained as opposed to the single frequency obtained
displaced from their equilibrium shape, an oscillatory pro-in the pure NLS case, which is a reasonable finding, but that
cess accompanied by radiation emission can be observdmbth frequencies are always of the same order of
around that equilibrium. magnitude—both proportional to the square of the high-
In more precise terms, the Zakharov equations describffequency field amplitude. Now we would expect to see a
the two-wave interaction of the slowly varying envelope of more distinctive difference between these frequencies, such
the high-frequency mode with the full low-frequency mode,that one of them could become much smaller than the other
so one can expect two frequencies or time scales charactdp the known regime of very low intensities as mentioned
izing the oscillatory process. In the appropriate limits, as weabove. One does not see that difference and this fact claims
shall see, each frequency will be respectively associated witfp" @ more detailed investigation of the problem. Also, the
one of the interacting waves. In particular, this will help us toimplications of distinct forms for both frequencies in regimes

recover the known fact from plasma physics that when fielPf high intensities should also be of relevance; we investigate

amplitudes are sufficiently small, the low-frequency modetN€ issue as well.

has a relatively high natural frequency and becomes ensIth?d éBlven th|.s framew_ork, cf)ur plan is to redelilve the _S|mpI|.-
to the amplitude fluctuations of the high-frequency mode!'€¢ 9overning equations from an average Lagrangian prin-

which has a much lower natural frequency. Analysis of re_ciple, see if we can obtain the correct scaling laws for the

gimes with high-field intensities will show somewhat similar freq_ue_ncy spectrum, ana_lyze what is likely to survive Whef‘
enslaving behavior. radiation effects are considered, and compare the results with

If one wishes to calculate the frequency spectrum of thdll simulations of the Zakharov equations.
problem, perhaps the most direct way is to perform an analy-, In Sec. II, we dgfme thg model, obtain the averaged equa-
sis based on a variational principle called the average Lat-'ons’ and determln.e scaling laws for the normal-mode fre-
grangian. We substitutensatzsolutions with a small number quency spectrum; in _Sec. i, we compare the results ob-
of dynamical variables in the full field Lagrangian, minimize t@ined with full simulations, and in Sec. IV, we conclude the

the action with respect to these dynamical variables, and og2aper.
tain a finite dimensional set of equations that can help to Il. THE MODEL, THE AVERAGE LAGRANGIAN, AND
INITIAL ESTIMATES

*Email address: rizzato@if.ufrgs.br; tet55 51 33166470; The set of Zakharov equations governing the nonlinear
fax:+55 51 33167286 interaction of the envelope of high-frequen@F) waves
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with low-frequency(LF) modes[2] read
iE + Ey+2nE=0, (1)
Ne= = = (| E[?) - 2

E(x,t) represents the envelope of the HF field auia,t) the
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To obtain the appropriate governing equations, we first
introduce the full Lagrangian controlling the coupled dynam-
ics represented by Eqél) and (2)

+ oo
L=f Ldx,

—co0

(11)

fluctuations associated with the LF mode. Note that, as men- i

tioned in the Introduction, while Eq(l) is an amplitude

equation which no longer displays HF features, &jis full
and provides the nonintegrable ingredients.

L=~ (E*E\— EEF)—|E?+2uE|>+u?-u2. (12

E(

i2=—1, whereu(x,t) is an auxiliary variable defined ac-

Equations(1) and(2) admit the following steady-state so- cording ton(x,t) =u,(x,t). Exact dynamical equations are

lution
EJ(x,t) = 7 secli px)e 7, 3

ns(x)=|Eqf%,

to be obtained from

d aL

d L oL
R — + —
at ag,

ox dgy dg 0 (13

with g=E(x,t), E(x,t)*, or u(x,t), and our approximate

with 7 as a positive but otherwise arbitrary amplitude paramform arises when we replace the exact fields withAneaz
eter. The average Lagrangian method crucially depends on(®),(6), integrate Eq(12) along space, and obtain the Euler-

well-done choice ofAnsatzsolutions. TheAnsatzsolutions
should attend the following demands: resemble E8jsand

Lagrange equations for the remaining parameters. After
some algebra, and focusing attention on the dase W,

(4) in the appropriate static limits; depend on a small number=W, we arrive at the following integrated forin
of time-dependent parameters; and be analytically treatable.

In the present paper, we simply follow RET)] and make the

choice

| W o
E(x,t)= Fte)e7x2/2a(t)2+|¢(t)+|k(t)x2, 5)

W,
n(x,t)= —0 g X767 (6)

b(t)

with k(t) as the chirp factor. Constant¥, and W, are, re-
spectively, obtained from the conserved laws

1 [+
—_ 2
W= \/;fx |[E(x,t)]“dX, (7)
W, =if+wn( t)d (8)
n— \/; e Xa Xl

W W2 2W?

=— - —2Wa(t)?k(t)?
2807 vab(t)  VamZibE o oW
2 2 2
L WBO?_ Walkn) "

4v2b(t) 2

Note that we have restricted the analysis to a situation where
the constants of motiolV, and W,, have the same magni-
tude, a choice that does not affect the generic character of
our final conclusions. All terms of the average Lagrangian
(14) are similar to Eq(14) of Ref.[7] with the exception of

our term proportional to

b(t)%/b(t), (15)
which appears in a form proportional to
b(t)b(t)? (16)

there. We believe that our version agrees with some estab-

and are used to restrict the functional space over which wéished properties of Zakharov equations and the reasoning

apply the method7]. We also point out that from Eq$3)

comes in the following. We start by noting that to transform

and(4) and from the properties of hyperbolic functions, the term (15) into a quadratic derivative with no dependence on

following equalities hold in equilibrium:

2
We=W,=2 )

N

a result to be used later. Note that the parameters

a “coordinate” such ad(t) so as to produce second tempo-
ral derivatives under the machinery of action principle, we
shall rescale the fieldd as b(t)— B(t)=b(t)*?, which is
different than the rescaling used previously. As a direct con-
sequence of this fact, our dynamical equations takes on the
following aspect:

—8Wa(t) 4
a(t),b(t), d(t),k(t 10 a(t)=
may depend on time and define the reduced variational prob- 3
lem; i.e., those are the parameters whose dynamics we wish B(t) = 1 2V23(1) (19)

to study with the average method.

BL® [at)?+ B
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a=pB%=v2/W remains as the stable equilibrium, but the estimates, frequency_ approaches;” when W<1 with
normal-mode frequencies around it now read 7’lw_~0.8, which, although smaller than the unity, may
inhibit radiation into this channel. As for the Lifield, no

—[W2(—3—=5W?)]= - 24W°P + W*(— 3—5W?)? exponential factor is present im;, Eq. (4), and fluctuations
= 4 can freely decay into the continuum there. What we expect to
(19) see then is a rapid radiative decay of fluctuations associated
with the n field such that this LF field soon becomes en-
from which we can obtain simpler expressions in extremeslaved to the slower motion associated with the envelope of
limits the HF fieldE. Slower fluctuations of th& field, however,
tend to be more persistent in view of the inhibited direct
\F 2 . decay into its continuum. Let us see if these features can be
W= EW' w-=W? if W<, (20 really captured in full simulations of sét) and(2). We take
a system of length. centered ak=0 and extending from
5 3 x=—L/2 tox=+L/2. The solitary solution is also centered
w,= \[EWZ, w_= \[gw, if W>1. (21)  atx=0 and has a much smaller length<L—in the runs
we uselL=40Lg, L,=2/». Small dissipative terms are
We now point out that Eq(1) relates a first-order time de- @dded to bottE andn field equations and are turned on only
rivative with a second-order spatial derivative and that EqWhen|X|>10L in order to extinguish emitted radiation. We
(2) relates time and space derivatives of the same order. {{S€ @ finite difference method, and, independently, a
one associates the spatial derivative with the inverse size @ulirsch-Stoer integrator combined with pseudospectral
the solitary solution 1/, with L, satisfyingL~ 1/~ 1AW, ana!y3|§; both techniques produce identical results. Our dis-
then, if in additon one makes the replacememtgt ~ Crétization usesN=512 (and 1024 to check convergence
— —iw, and —iw, in Egs. (1) and (2), respectively, one grid positions a.nd relgt}ye errors are |nfer|o_r to a rela_tlve
arrives at the following estimates: factor of 10 ®. Finally, initial conditions are written down in
a form satisfying definition$7) and (8)

w?

we~W? and w,~W. (22

. . Wt X
Frequencie$22) are not rigorous results, of course, but they E(x,t=0)= / seCyE_ , (23
nevertheless suggest that the linear and quadratic scalings 2a, Qo
obtained in Eqs(20) and (21) are indeed what should be
expected in terms of the general behavior associated with 12 X
fieldsE andn, respectivelw,, the frequency associated with n(x,t=0)= b sech b—), (24
oscillations of theE field, bears direct relationship with ° °

o_(wy) whenW<1 (W>1) whereasw,, the frequency
associated with oscillations of thefield bears direct rela- where parametera, andb, are adjusted independently,
tionship with w, (w_) whenW<1 (Ws1). In particular, =b,=2/(7Y2W)=1/7 corresponds to equilibrium and we
one would obtain the correct limit ofv,>w. for low-  will be using a,=1/7x1.2 andb,=a./1.2 for all initial
amplitude fields satisfyingy<1. We shall also see that in conditions, so as to create an initial difference betweamnd
regimes withW>1 the general scaling behavior can be alson.
observed. In Fig. 1, we begin with the numerical analysis for small
values ofW<1. Let us first takeNV=0.1 in panel(a) where
IIl. FULL SIMULATIONS time series folE(x=0,)|?> andn(x=0,) are compared us-
ing a logarithmic scale for the time axis so as to comprise all
This much we can tell with the help of the averaged orrelevant temporal scales of the problem in this one figure. We
reduced system. One could proceed and simulate the dynamompute both fields right at the center of the breathing soli-
ics generated by the paffl7) and (18), but this would not  tary waves and readily note the oscillatory pattern and the
provide much further insight on the problem. The fact is thathatural tendency of both fields to equalize after a short tran-
the averaged equations are to be used with care and restrigient. The oscillatory pattern outliving the short transient is
tions since they do not contain any reference to wave radigreasonably approximated by the smallest frequency
tion. Itis not guaranteed that the oscillatory modes just found=\?2~ o, in this regimeW<1 and corresponds to oscilla-
and represented in relationd9) really persist as time tions of theE field. We run the simulation up t@v2t/(2)
evolves. Much to the Contrary, one eXpeCtS that at least SOMe§5 gnd see approximate|y four oscillations in Eeompo_

of the modes be relatively short lived as a result of wavenent, which roughly means that as far as fluctuations irEthe
radiation. However, the following is plausible. Consider thefield are concernedy_ ~W2~1.2w, ¢ . More finely tuned
caseW<1. The steady solitary sqlgtidﬁs, Eq.(3), contains  approximations obtained with the help of inverse scattering
an exponential factor of the forel 7. As explained in Ref. techniques improve the agreement between analytical esti-
[8], this factor creates a gap of siz# in the continuous mates and simulations diminishing the factor of 1.2 in the
spectrum of the corresponding field such that direct decay afelation abové6]. Then field is largely over damped and the
instabilities into the gap is not possible. According to ourperiod of its existence as an independent entity actually de-
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FIG. 1. |[E(x=0)|? and n(x
=0,t) versus time in panela),
L i contour levels ofn(x,t) in (b),
4000 - and contour levels ofE(x,t)]? in
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fines what we call transient here. During equalization, radiause of relations(20); one for W=0.01 and another for a
tion is emitted mostly into then field, as comparison of |arger valuew=0.1. Given that the theoretically estimated
panels(b) [contour levels of(x,t)] and(c) [contour levels  fastest time scalfthe period, as determined from E&0)] is

of |E(x,t)|?] shows; the lateral wings in pani) represent proportional to W, if our scaling laws are correct, we ex-
the emitted radiation and similar wings are absent in pan&hat to see similar figures in both cases since the horizontal

(E). Cor12tour levels in both ga;vgli aEre2 dralvg goorogillg levels,yis already represents the scale-independent quaptity
[E(x,D)I% n(x.t) satisfying 0.W"=|E[*~n=0. SO =N(x/L) (let us recall that in our simulations, coordinates

as to focus on the largest amplitude radiation emitted. At thisscale with the solitary lump length 1/W). This will suggest
point, we can be a little more emphatic and once again ob; '

serve that equalization and radiation emission actually occ hat glthough we cannot_defme a proper frequency fpr the
as n(x,t) accommodates to the dynamics HE(x,t)|2. ast time scale, the quant|ty+~Wfrom Eq.(20)_ may Stl"
Thereforen does not keep oscillating as the average method€ N€lPful, but now as a factor measuring the size of this fast
predicts, but rapidly emits radiation into the continuum until €MPoral scale. The comparison can be seen in péasd

the differencelE|2—n reduces substantially within the cen- (b) of Fig. 2 from which, as predicted, the figures turn out to
tral region occupied by the solitary wave-subsequent oscillab€ quite similar. o o
tions are exclusively due to the dynamics of thdield and When W>1, the situation undergoes some significant
are approximately governed by the NLS; all of this is repre-changes as displayed in Fig. 3. In terms of order-of-
sented in panel§a)—(c). Thus, there is not actually much magnitude, the roles of frequencies and w, are reversed
sense in speaking about a well-established frequangy and nowws>w,. Figure 3a), where we takéV= 10, con-
~w, here since then field is clearly over damped, but a firms what we expect: th& field rapidly oscillates about a
much more reasonable feature to be measured is the scalistpwly varying background determined by the relatively slow
behavior determined earlier. Let us define the scaled time dynamics of then field; similarly to panel(a of Fig. 1, we
=Wt and perform two runs fow<1 so as to allow for the compare both fields evaluated»t 0, with time again rep-
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(a)
—

FIG. 2. Contour levels of
n(x,t) for two small values ofV,
W=0.01 in(a) andW=0.1 in (b).
Again, j=N(x/L) and now 7
=Wt.
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50 shows that radiation is emitted from tinesolitary wave not

as single pulse as before, but as a continued collection of

pulses. Further simulations show once again radiative wings

cannot be observed in association with théeld.

40

Final conclusions

In the present paper, we investigate how the solitary
wave dynamics generated by the Zakharov equations
| behaves as a function of the system energy. Following
. an average Lagrangian approach, thend E component
1 of the solitary wave are let to vary independently, from
1 which we extract two frequencies characterizing fluctuations
around the static solitary equilibrium. The frequencies scale
with energy in a different fashion than previous results pre-
) dict, which allows us to reach adiabatic regimes both in
Ny small and large energy cases; previous works predict equal
. scaling laws for the two frequencies, and hence, the absence
] of adiabaticity. Then, as we perform full simulations of the
nonlinear system, we note that the frequency associated with
then field does not survive long; the respective fluctuations
| T rapidly decay into the radiative continuum and do not remain

—256-192-128 —64 ‘j’ 64 128 192 256 confined within the solitary wave region. This means that
this frequency cannot be seen as an internal mode of the

FIG. 4. Contour levels ofi(x,t) now for an intermediary value solitary wave and must be reinterpreted. It is reasonable to
of W, W=1; again,j =N(x/L). see it as a quantity yielding a measure of the respective time

scale. In the small energy ca¥é<1, we confirm that the
N - mission process behaves in agreement with the time scale
resented on a logarithmic scale. Within a small number o

oscillations, certainly much smaller than the number of os efined byw,. In addition, once th& component of the
cillations executed by thE field either here or in the previ- solitary wave radiates, it simply accompanies the fluctuations

. S . of the E field and this is exactly what is to be expected in
ous caséWN<1, n decays into an equilibrium state. Again, . . . .
emission into the continuum & is much weaker than emis- such a subsonic regime approximately described by a NLS
sion into the continuum of. This is once more revealed Sdvation. . o
when contour levels afi(x,t) and|E(x,t)|? are compared in In cases of large energies withi> 1, thg S|tuat_|on is par-
panels(b) and(c). Lateral wings, i.e., radiation, may be seen tially reversed: now the typical frequencies satisfy<w,,
only in panel(b). The much larger number of oscillates of @lthough radiation emission from threcomponent into the
the E field of panel(a) already suggested this kind of behay- continuum remains larger. We again note that oscillations in
ior; in other words, theE field can once more be seen as athe E field can be approximately seen as a normal internal
persistent oscillator similar to an internal mode of the soli-mode, while oscillations in the field are damped in a faster
ton. For larger values oV such asV= 10 investigated here, way.
and examining the dynamics &, disagreement involving In intermediary casedN~1, adiabaticity is lost. The
simulations and analytical predictions becomes more prokey result of the increased resonant interaction between
nounciated than in th&/<1 case. In our cas&/=10 we n and E fields is the larger number of oscillates of
observe that in regard to oscillations of tiiefield, o, Radiation in this case is not confined to a single pulse, but
~\/§2\N2~1.5weysim.. On the other hand, now the field is more uniformly distributed along the temporal axis as
does not decay as fast as in the case of small amplitudseen in Fig. 4 where we consider specificaly=1.
modes—this is suggested by FigaB—and we can run ad- Relaxation takes longer to happen hekeis still weakly
ditional simulations to have the following estimate_  radiating andn radiates more persistently than in adiabatic
~/3/5W~1.050, 5im., Which reveals a much better agree- regimes.
ment; we do not show it here, but scaling laws inspired in
Eq5(21) still prevail. . ACKNOWLEDGMENTS
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