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Scaling laws for breathing frequencies of solitary modes in the Zakharov equations
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~Received 27 July 2001; published 17 December 2001!

We analyze typical time scales resulting from the coupled dynamics of high- and low-frequency wave
components in solitary solutions of the Zakharov equations. Linear stability analysis around the solitary modes
suggests that adiabatic regimes may be obtained in the limit of high- and low-field intensities where the
disparity of eigenfrequencies is large. Full simulations, however, reveal that adiabaticity arising from oscilla-
tory motion can in fact be observed only over relatively short periods of time prior to noticeable radiation
emission.
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I. INTRODUCTION

The purpose of the present paper is to investigate t
scales associated with solitary wave dynamics of the
kharov equations@1#. The Zakharov equations are presen
recognized to provide one of the most complete models
scribing the coupling of high- and low-frequency waves
nonlinear environments. The model is particularly power
in plasma physics, where the high- and low-frequency mo
are, respectively, electron and ion acoustic waves@2#. The
Zakharov equations are known to support steady solitary
lutions that manifest themselves in the form of isolated
solitary lumps along the space. The set of equations is no
the integrable type and one cannot refer to the solitary lu
solutions as solitons@3,4#. However, likewise solitons, the
solitary modes can breath in the sense that if they are slig
displaced from their equilibrium shape, an oscillatory p
cess accompanied by radiation emission can be obse
around that equilibrium.

In more precise terms, the Zakharov equations desc
the two-wave interaction of the slowly varying envelope
the high-frequency mode with the full low-frequency mod
so one can expect two frequencies or time scales chara
izing the oscillatory process. In the appropriate limits, as
shall see, each frequency will be respectively associated
one of the interacting waves. In particular, this will help us
recover the known fact from plasma physics that when fi
amplitudes are sufficiently small, the low-frequency mo
has a relatively high natural frequency and becomes ensla
to the amplitude fluctuations of the high-frequency mo
which has a much lower natural frequency. Analysis of
gimes with high-field intensities will show somewhat simil
enslaving behavior.

If one wishes to calculate the frequency spectrum of
problem, perhaps the most direct way is to perform an an
sis based on a variational principle called the average
grangian. We substituteansatzsolutions with a small numbe
of dynamical variables in the full field Lagrangian, minimiz
the action with respect to these dynamical variables, and
tain a finite dimensional set of equations that can help
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obtain some information on the problem, such as oscillat
frequencies of stable equilibria, growth rates of unsta
equilibria, or other relevant quantities. Although several fe
tures are left aside by the procedure, such as radiative e
sion for instance, judicious care allows us to predict wh
will be seen in a full simulation.

The procedure has been used in a number of recent wo
some of which are of interest here. In some cases, the va
tional method was used in the context of the nonline
Schrödinger equation~NLS! alone and a single oscillator
frequency around equilibrium solitary solutions, compatib
with full numerical simulations of the problem, was obtain
@5,6#. More recently, the procedure was used in the cont
of the Zakharov equations@7#, but then the frequency spec
trum was not tested against full simulations. In any case
one examines Ref.@7#, one soon finds out that two frequen
cies are obtained as opposed to the single frequency obta
in the pure NLS case, which is a reasonable finding, but
both frequencies are always of the same order
magnitude—both proportional to the square of the hig
frequency field amplitude. Now we would expect to see
more distinctive difference between these frequencies, s
that one of them could become much smaller than the o
in the known regime of very low intensities as mention
above. One does not see that difference and this fact cla
for a more detailed investigation of the problem. Also, t
implications of distinct forms for both frequencies in regim
of high intensities should also be of relevance; we investig
the issue as well.

Given this framework, our plan is to rederive the simp
fied governing equations from an average Lagrangian p
ciple, see if we can obtain the correct scaling laws for
frequency spectrum, analyze what is likely to survive wh
radiation effects are considered, and compare the results
full simulations of the Zakharov equations.

In Sec. II, we define the model, obtain the averaged eq
tions, and determine scaling laws for the normal-mode f
quency spectrum; in Sec. III, we compare the results
tained with full simulations, and in Sec. IV, we conclude t
paper.

II. THE MODEL, THE AVERAGE LAGRANGIAN, AND
INITIAL ESTIMATES

The set of Zakharov equations governing the nonlin
interaction of the envelope of high-frequency~HF! waves
©2001 The American Physical Society04-1
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with low-frequency~LF! modes@2# read

iEt1Exx12nE50, ~1!

ntt2nxx52~ uEu2!xx . ~2!

E(x,t) represents the envelope of the HF field andn(x,t) the
fluctuations associated with the LF mode. Note that, as m
tioned in the Introduction, while Eq.~1! is an amplitude
equation which no longer displays HF features, Eq.~2! is full
and provides the nonintegrable ingredients.

Equations~1! and~2! admit the following steady-state so
lution

Es~x,t !5h sech~hx!eih2t, ~3!

ns~x!5uEsu2, ~4!

with h as a positive but otherwise arbitrary amplitude para
eter. The average Lagrangian method crucially depends
well-done choice ofAnsatzsolutions. TheAnsatzsolutions
should attend the following demands: resemble Eqs.~3! and
~4! in the appropriate static limits; depend on a small num
of time-dependent parameters; and be analytically treata
In the present paper, we simply follow Ref.@7# and make the
choice

E~x,t !5AWe

a~ t !
e2x2/2a~ t !21 if~ t !1 ik~ t !x2

, ~5!

n~x,t !5
Wn

b~ t !
e2x2/b~ t !2

, ~6!

with k(t) as the chirp factor. ConstantsWe andWn are, re-
spectively, obtained from the conserved laws

We[
1

Ap
E

2`

1`

uE~x,t !u2dx, ~7!

Wn[
1

Ap
E

2`

1`

n~x,t !dx, ~8!

and are used to restrict the functional space over which
apply the method@7#. We also point out that from Eqs.~3!
and ~4! and from the properties of hyperbolic functions, t
following equalities hold in equilibrium:

We5Wn5
2h

Ap
, ~9!

a result to be used later. Note that the parameters

a~ t !,b~ t !,f~ t !,k~ t ! ~10!

may depend on time and define the reduced variational p
lem; i.e., those are the parameters whose dynamics we
to study with the average method.
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To obtain the appropriate governing equations, we fi
introduce the full Lagrangian controlling the coupled dyna
ics represented by Eqs.~1! and ~2!

L5E
2`

1`

L dx, ~11!

L[
i

2
~E* Et2EEt* !2uExu212uxuEu21ut

22ux
2. ~12!

i 2521, whereu(x,t) is an auxiliary variable defined ac
cording ton(x,t)5ux(x,t). Exact dynamical equations ar
to be obtained from

]

]t

]L
]gt

1
]

]x

]L
]gx

2
]L
]g

50, ~13!

with g5E(x,t), E(x,t)* , or u(x,t), and our approximate
form arises when we replace the exact fields with theAnsätz
~5!,~6!, integrate Eq.~12! along space, and obtain the Eule
Lagrange equations for the remaining parameters. A
some algebra, and focusing attention on the caseWe5Wn
[W, we arrive at the following integrated formL:

L52
W

2a~ t !22
W2

&b~ t !
1

2W2

Aa~ t !21b~ t !2
22Wa~ t !2k~ t !2

1
W2b~ t !2

4&b~ t !
2

Wa~ t !2k~ t !

2
2Wḟ~ t !. ~14!

Note that we have restricted the analysis to a situation wh
the constants of motionWe and Wn have the same magni
tude, a choice that does not affect the generic characte
our final conclusions. All terms of the average Lagrang
~14! are similar to Eq.~14! of Ref. @7# with the exception of
our term proportional to

ḃ~ t !2/b~ t !, ~15!

which appears in a form proportional to

b~ t !ḃ~ t !2 ~16!

there. We believe that our version agrees with some es
lished properties of Zakharov equations and the reason
comes in the following. We start by noting that to transfor
term ~15! into a quadratic derivative with no dependence
a ‘‘coordinate’’ such asb(t) so as to produce second temp
ral derivatives under the machinery of action principle, w
shall rescale the fieldb as b(t)→b(t)[b(t)1/2, which is
different than the rescaling used previously. As a direct c
sequence of this fact, our dynamical equations takes on
following aspect:

ä~ t !5
28Wa~ t !

@a~ t !21b~ t !4#3/21
4

a~ t !3 , ~17!

b̈~ t !5
1

b~ t !32
2&b~ t !3

@a~ t !21b~ t !4#3/2. ~18!
4-2
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a5b25&/W remains as the stable equilibrium, but th
normal-mode frequencies around it now read

v6
2 5

2@W2~2325W2!#6A224W61W4~2325W2!2

4
~19!

from which we can obtain simpler expressions in extre
limits

v15A3

2
W, v25W2, if W!1, ~20!

v15A5

2
W2, v25A3

5
W, if W@1. ~21!

We now point out that Eq.~1! relates a first-order time de
rivative with a second-order spatial derivative and that E
~2! relates time and space derivatives of the same orde
one associates the spatial derivative with the inverse siz
the solitary solution 1/Ls with Ls satisfyingLs;1/h;1/W,
then, if in addition one makes the replacements]/]t
→2 ive and 2 ivn in Eqs. ~1! and ~2!, respectively, one
arrives at the following estimates:

ve;W2 and vn;W. ~22!

Frequencies~22! are not rigorous results, of course, but th
nevertheless suggest that the linear and quadratic sca
obtained in Eqs.~20! and ~21! are indeed what should b
expected in terms of the general behavior associated
fieldsE andn, respectivel:ve , the frequency associated wit
oscillations of theE field, bears direct relationship with
v2(v1) when W!1 (W@1) whereasvn , the frequency
associated with oscillations of then field bears direct rela-
tionship with v1(v2) when W!1 (W@1). In particular,
one would obtain the correct limit ofvn@ve for low-
amplitude fields satisfyingW!1. We shall also see that i
regimes withW@1 the general scaling behavior can be a
observed.

III. FULL SIMULATIONS

This much we can tell with the help of the averaged
reduced system. One could proceed and simulate the dyn
ics generated by the pair~17! and ~18!, but this would not
provide much further insight on the problem. The fact is th
the averaged equations are to be used with care and re
tions since they do not contain any reference to wave ra
tion. It is not guaranteed that the oscillatory modes just fou
and represented in relations~19! really persist as time
evolves. Much to the contrary, one expects that at least s
of the modes be relatively short lived as a result of wa
radiation. However, the following is plausible. Consider t
caseW!1. The steady solitary solutionEs , Eq.~3!, contains
an exponential factor of the formeih2t. As explained in Ref.
@8#, this factor creates a gap of sizeh2 in the continuous
spectrum of the corresponding field such that direct deca
instabilities into the gap is not possible. According to o
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estimates, frequencyv2 approachesh2 when W!1 with
h2/v2;0.8, which, although smaller than the unity, ma
inhibit radiation into this channel. As for the LFn field, no
exponential factor is present inns , Eq. ~4!, and fluctuations
can freely decay into the continuum there. What we expec
see then is a rapid radiative decay of fluctuations associ
with the n field such that this LF field soon becomes e
slaved to the slower motion associated with the envelope
the HF fieldE. Slower fluctuations of theE field, however,
tend to be more persistent in view of the inhibited dire
decay into its continuum. Let us see if these features can
really captured in full simulations of set~1! and~2!. We take
a system of lengthL centered atx50 and extending from
x52L/2 to x51L/2. The solitary solution is also centere
at x50 and has a much smaller lengthLs!L—in the runs
we use L540Ls , Ls[2/h. Small dissipative terms are
added to bothE andn field equations and are turned on on
when uxu.10Ls in order to extinguish emitted radiation. W
use a finite difference method, and, independently,
Bulirsch-Stoer integrator combined with pseudospec
analysis; both techniques produce identical results. Our
cretization usesN5512 ~and 1024 to check convergenc!
grid positions and relative errors are inferior to a relati
factor of 1026. Finally, initial conditions are written down in
a form satisfying definitions~7! and ~8!

E~x,t50!5AWp1/2

2ao
sechS x

ao
D , ~23!

n~x,t50!5
Wp1/2

2bo
sech2S x

bo
D , ~24!

where parametersao and bo are adjusted independently.ao
5bo52/(p1/2W)51/h corresponds to equilibrium and w
will be using ao51/h31.2 andbo5ao/1.2 for all initial
conditions, so as to create an initial difference betweenE and
n.

In Fig. 1, we begin with the numerical analysis for sm
values ofW!1. Let us first takeW50.1 in panel~a! where
time series foruE(x50,t)u2 andn(x50,t) are compared us
ing a logarithmic scale for the time axis so as to comprise
relevant temporal scales of the problem in this one figure.
compute both fields right at the center of the breathing s
tary waves and readily note the oscillatory pattern and
natural tendency of both fields to equalize after a short tr
sient. The oscillatory pattern outliving the short transient
reasonably approximated by the smallest frequencyv2

5W2;ve in this regimeW!1 and corresponds to oscilla
tions of theE field. We run the simulation up toW2t/(2p)
55 and see approximately four oscillations in theE compo-
nent, which roughly means that as far as fluctuations in thE
field are concerned,v2;W2;1.2ve,sim. . More finely tuned
approximations obtained with the help of inverse scatter
techniques improve the agreement between analytical
mates and simulations diminishing the factor of 1.2 in t
relation above@6#. Then field is largely over damped and th
period of its existence as an independent entity actually
4-3
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FIG. 1. uE(x50,t)u2 and n(x
50,t) versus time in panel~a!,
contour levels ofn(x,t) in ~b!,
and contour levels ofuE(x,t)u2 in
~c!; all cases withW50.1 and j
[N(x/L).
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fines what we call transient here. During equalization, rad
tion is emitted mostly into then field, as comparison o
panels~b! @contour levels ofn(x,t)# and ~c! @contour levels
of uE(x,t)u2# shows; the lateral wings in panel~b! represent
the emitted radiation and similar wings are absent in pa
~c!. Contour levels in both panels are drawn for field lev
uE(x,t)u2, n(x,t) satisfying 0.1W2*uEu2;n*0.0001W2 so
as to focus on the largest amplitude radiation emitted. At
point, we can be a little more emphatic and once again
serve that equalization and radiation emission actually oc
as n(x,t) accommodates to the dynamics ofuE(x,t)u2.
Therefore,n does not keep oscillating as the average met
predicts, but rapidly emits radiation into the continuum un
the differenceuEu22n reduces substantially within the cen
tral region occupied by the solitary wave-subsequent osc
tions are exclusively due to the dynamics of theE field and
are approximately governed by the NLS; all of this is rep
sented in panels~a!–~c!. Thus, there is not actually muc
sense in speaking about a well-established frequencyvn
;v1 here since then field is clearly over damped, but
much more reasonable feature to be measured is the sc
behavior determined earlier. Let us define the scaled timt
[Wt and perform two runs forW!1 so as to allow for the
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use of relations~20!; one for W50.01 and another for a
larger valueW50.1. Given that the theoretically estimate
fastest time scale@the period, as determined from Eq.~20!# is
proportional to 1/W, if our scaling laws are correct, we ex
pect to see similar figures in both cases since the horizo
axis already represents the scale-independent quantij
[N(x/L) ~let us recall that in our simulations, coordinat
scale with the solitary lump length;1/W!. This will suggest
that although we cannot define a proper frequency for
fast time scale, the quantityv1;W from Eq. ~20! may still
be helpful, but now as a factor measuring the size of this
temporal scale. The comparison can be seen in panels~a! and
~b! of Fig. 2 from which, as predicted, the figures turn out
be quite similar.

When W@1, the situation undergoes some significa
changes as displayed in Fig. 3. In terms of order-
magnitude, the roles of frequenciesve andvn are reversed
and nowve@vn . Figure 3~a!, where we takeW510, con-
firms what we expect: theE field rapidly oscillates about a
slowly varying background determined by the relatively slo
dynamics of then field; similarly to panel~a! of Fig. 1, we
compare both fields evaluated atx50, with time again rep-
4-4
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FIG. 2. Contour levels of
n(x,t) for two small values ofW;
W50.01 in~a! andW50.1 in ~b!.
Again, j [N(x/L) and now t
[Wt.

FIG. 3. The same set of pane
as in Fig. 1, but now forW510.
016604-5
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G. I. de OLIVEIRA AND F. B. RIZZATO PHYSICAL REVIEW E65 016604
resented on a logarithmic scale. Within a small number
oscillations, certainly much smaller than the number of
cillations executed by theE field either here or in the previ
ous caseW!1, n decays into an equilibrium state. Agai
emission into the continuum ofE is much weaker than emis
sion into the continuum ofn. This is once more reveale
when contour levels ofn(x,t) anduE(x,t)u2 are compared in
panels~b! and~c!. Lateral wings, i.e., radiation, may be se
only in panel~b!. The much larger number of oscillates
theE field of panel~a! already suggested this kind of beha
ior; in other words, theE field can once more be seen as
persistent oscillator similar to an internal mode of the so
ton. For larger values ofW such asW510 investigated here
and examining the dynamics ofE, disagreement involving
simulations and analytical predictions becomes more p
nounciated than in theW!1 case. In our caseW510 we
observe that in regard to oscillations of theE field, v1

;A5/2W2;1.5ve,sim. . On the other hand, now then field
does not decay as fast as in the case of small ampli
modes—this is suggested by Fig. 3~a!—and we can run ad
ditional simulations to have the following estimatev2

;A3/5W;1.05vn,sim. , which reveals a much better agre
ment; we do not show it here, but scaling laws inspired
Eqs.~21! still prevail.

We finally analyze the caseve;vn taking W51.
Now the dynamics is highly nonadiabatic in the sense t
there is no slow and fast time scales. Then field still dissi-
pates much more radiation than theE field, but now, due to
the increased resonance in the interaction,n takes longer to
settle down and reach the equilibrium. Figure 4 actua

FIG. 4. Contour levels ofn(x,t) now for an intermediary value
of W, W51; again,j [N(x/L).
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shows that radiation is emitted from then solitary wave not
as single pulse as before, but as a continued collection
pulses. Further simulations show once again radiative wi
cannot be observed in association with theE field.

Final conclusions

In the present paper, we investigate how the solit
wave dynamics generated by the Zakharov equati
behaves as a function of the system energy. Follow
an average Lagrangian approach, then and E component
of the solitary wave are let to vary independently, fro
which we extract two frequencies characterizing fluctuatio
around the static solitary equilibrium. The frequencies sc
with energy in a different fashion than previous results p
dict, which allows us to reach adiabatic regimes both
small and large energy cases; previous works predict e
scaling laws for the two frequencies, and hence, the abse
of adiabaticity. Then, as we perform full simulations of th
nonlinear system, we note that the frequency associated
the n field does not survive long; the respective fluctuatio
rapidly decay into the radiative continuum and do not rem
confined within the solitary wave region. This means th
this frequency cannot be seen as an internal mode of
solitary wave and must be reinterpreted. It is reasonable
see it as a quantity yielding a measure of the respective t
scale. In the small energy caseW!1, we confirm that the
emission process behaves in agreement with the time s
defined byvn . In addition, once then component of the
solitary wave radiates, it simply accompanies the fluctuati
of the E field and this is exactly what is to be expected
such a subsonic regime approximately described by a N
equation.

In cases of large energies withW@1, the situation is par-
tially reversed: now the typical frequencies satisfyvn!ve ,
although radiation emission from then component into the
continuum remains larger. We again note that oscillations
the E field can be approximately seen as a normal inter
mode, while oscillations in then field are damped in a faste
way.

In intermediary casesW;1, adiabaticity is lost. The
key result of the increased resonant interaction betw
n and E fields is the larger number of oscillates ofn.
Radiation in this case is not confined to a single pulse,
is more uniformly distributed along the temporal axis
seen in Fig. 4 where we consider specificallyW51.
Relaxation takes longer to happen here.E is still weakly
radiating andn radiates more persistently than in adiaba
regimes.
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