
PHYSICAL REVIEW E VOLUME 47, NUMBER 5 MAY 1993

Influence of wave dispersion on the self-consistent dynamics
of cyclotron-laser-type systems
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In this work, we make use of a Hamiltonian formalism to analyze the wave-particle dynamical
interaction that takes place in cyclotronic systems. It is shown that the usual model of test particles
moving in externally given wave 6elds is good only when the amplitude of the radiation is large
enough; otherwise, wave dynamics must be considered and the dynamics mentioned undergoes some
considerable changes. In this regard, the appearance of new Axed points and the saturation of the
autoresonance process are both analyzed as functions of the dispersion relation of the laser field.

PACS number(s): 41.75.Ht 41.60.—m

With the advent of radiation-generating systems such
as free-electron lasers, cyclotron autoresonance masers,
gyrotrons, ion-channel lasers, and others, a good deal
of effort has been directed toward the analysis of the
interaction of relativistic particles and large-amplitude
electromagnetic waves. In many cases, quantities of in-
terest such as energy gain are usually obtained by con-
sidering the electronic dynamics in given external wave
fields. This kind of approximation can be fairly justi-
fied if one considers either waves with large enough am-
plitudes or beams with very tenuous densities, so that
particles do not appreciably react back on the electro-
magnetic fluctuations. On the other hand, when these
conditions are not fulfilled, a self-consistent analysis is
necessary where particles and fields are to be simulta-
neously treated as a many-body dynamical system. In
fact, this self-consistent analysis has been carried out an-
alytically [1,2] and numerically [3—7], both for amplifier
and accelerator configurations. Among other results, it
has been shown how the finite amount of free electromag-
netic energy may act as a limiter for wave-particle energy
exchanges.

Besides wave dynamics, one should also consider dis-
persive effects connected with the electromagnetic modes
[5]. This appears to be the correct assumption because
of two interrelated aspects: (i) in usual physical configu-
rations, such as that of wave-guided systems, wave prop-
agation is indeed dispersive and (ii) dispersion detunes
the relative wave-particle phases, thereby becoming an-
other important factor in limiting the above-mentioned
energy-exchange processes.

With those points in mind, our purpose in the present
work is to investigate a cyclotron-laser-type system for
which both the finite amount of electromagnetic energy
and the dispersive characteristics of the electromagnetic
beam are simultaneously taken into consideration. We
intend to focus our attention on accelerator con6gura-
tions, highlighting the analysis of the autoresonance pro-
cess and the location of fixed points for the overall dv-

'8 = (1+ [P + ~p cos(fz —t+o)]
+[z+ P„—~p sin(fz —t + o.)]s + P2)i~z, (2)

with 'H/mc2 ~ 'R and P/mc ~ P. Denoting Bg Q Bs
the background. magnetic field, we assume the ressonance
condition w = k, vQ + ~e~B, , Q/moyQ to be operating at
least during the initial stages; besides we assume acceler-
ating particles with small values of the initial longitudinal
velocity V,Q and pQ 1.

The structure of the Hamiltonian can be made simpler
if one introduces canonical guiding-center variables. In
order to do that in the most convenient way, let us first
rewrite the Hamiltonian (2) as a power series of the small
quantity ~p, considering only the leading-order contribu-
tion:

namics. In order to do that, we shall make use of a canon-
ical technique where all the relevant equations for both
particles and wave may be derived from one generalized
Hamiltonian [2].

As a model, let us consider an electron beam and a
circularly polarized electromagnetic wave, copropagating
along the homogeneously magnetized z axis of the chosen
reference frame.

With the circularly polarized wave-vector potential
written as

8 1A—:——~pe' e' ' ') e +c.c.
SAC 2

where p and o have a slow time dependence, e is the
electron charge, e, = x+ iy, time and space have been
normalized to cu and cu/c with w and k as the wave
frequency and wave vector, respectively, and dispersive
properties of the wave are modeled in the generic form

~/(ck) = v 1+g2:—f i, with g as a factor accounting
for dispersion (it could be a factor connected with the
finite transverse dimensions of some guiding system), it
becomes possible to cast the Hamiltonian that governs
the electron dynamics in the form

~p [P cos(fz —t+ o) —(x+ P„) sin(fz —t + o)]'R = I'+ r (3)
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with

r = 1+ps+(z + p„)z+ pg.

Then, the following generating function:

PP = P„P — tg x' —y'P„—z'P„
'JJ (4)

with primes desi nating new variables, enables one to
write [5] P = 2I cosP and x+ P„= y 2I sing, with
I:—P' and P:—z'. With that, on dropping the primes
wherever they appear and making use of the additional
canonical transformation [5] P+fz t ~—P, P, —+ P, +fI,
and '8 —+ '8+ I, the Hamiltonian (3) can be rewritten as

2I
&d (~&in) ~2 e i[/+—fz(t) t]— (10)

where the resonant wave-particle phase P, + z, —t is a
variable depending only on the slow time scales.

In order to perform the summation indicated in the
above equation, one makes use of the so-called macropar-
ticle approximation. It is known that phase bunching
occurs in this kind of system in conjunction with wave
amplification [5,8], and the macroparticle approximation
goes further in the sense that it assumes an extreme
bunching condition for which the wave-particle relative
phase P;+ z, —t is the same for all particles [1,2,5,8—10].
With that, one can write for the wave field

py 2I
'H = I + I'—+ cos(P+ o),I'

where now one shall consider

(5)
where

4vre~N
Ldp—

r = +1+2I+(P, +yI)&.

Were our interest to study the dynamics of electrons in
given electromagnetic fields, we could stop with the cal-
culations at the present stage. However, as said before,
we wish to understand what happens when the dynamics
of the Huctuating wave field is taken into consideration.
In order to do that one has to derive the equations for
the fields and then to analyze the whole set of dynam-
ical laws on the same basis. So, let us proceed to see
what can be done with those fields and how to derive
all the relevant dynamical equations from a generalized
Hamiltonian principle.

The slow-time dimensional dynamics for the complex
amplitude of the electromagnetic field is readily derived
from Maxwel's equation for the vector potential A as

iud& (~pe' ) = J~ e', e '["' ')d r'dt',
mcVT

with N as the total number of particles present in the
system. Splitting Eq. (10) into real and imaginary parts
and noticing that the factor P+ fz(t) —t is to be consid-
ered as the new canonical P coordinate leads to

dip = —2cu„~p sin(P+ cr)2I' (12)

and

, /2I
dier = —cu„cos(P+ cr).2I' p

(13)

Now, if one rescales p according to

p= Ap', A =—2~„,

the interesting and final conclusion is that all the relevant
dynamical equations for both particles and fields can be
derived from one generalized Hamiltonian given by

where we have performed an inverse discrete Fourier
transform over the fast (primed) variables, introducing
the volume V, the period T, and di = d/dt. The quan-
tity J~ is the current density on the (x,y) plane, written
as

J~ = ) e vg, (t') 6(r' —r, (t')),

21"

where p' is the "momentum" corresponding to the wave
field and cr' (= —o) is the canonically conjugated coor-
dinate. If one drops the primes once again, the following
canonical transformation:

with the subscripts i labeling the particles present in
the system, v~;(t') denoting the perpendicular (to the z
axis) component of their velocities, and r, (t') represent-
ing their instantaneous positions.

Now, on writing the velocity v~, in terms of the nondi-
mensional canonical variables and assuming again the
densities to be so low that dielectric eKects can be disre-
garded, it becomes possible to cast Eq. (7) in the form

reduces the degrees of freedom [p is now a constant of rno-
tion that in virtue of the scaling relations below Eqs. (12)
and (13) can be thought of as the initial electromagnetic
energy content available per particle; it is a normalized
energy density divided by particle density] and allows us
to write a final effective canonical system as

QA(p —I)~BI

2' 6 —i[/, (t)+z, (t) —t]
'C 0I=—
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(17)

Let us first investigate the inHuence of wave dynamics
and wave dispersion on the autoresonance process. In or-
der to do that, we recall that the autoresonance process
takes place when we set f = 1, p —I ~ p, and P, = 0
in Eq. (15) with P(t = 0) = (2m + 1/2) m, which means
an approximation of large-amplitude dispersionless laser
waves, energizing both the transverse and longitudinal
particle dynamics (observe that, although the canonical
transformed P~ is zero, the physical P, grows propor-
tionally to I). Under such circumstances, the canonical
equations for I and P imply the constancy of the angular
variable and the unlimited growth of the momentum I.
On the other hand, when wave dynamics is taken into
account with f = 1 and the previous initial condition for
P, the canonical equations indicate that the energization
process proceeds without variations of P(t), up to a rnax-
imum value for I, readily evaluated as I~~„= p, where
it can be shown that the initial electromagnetic energy
is totally converted into the particle energy I'. To evalu-
ate I ~„ in the generic situation f ( 1, it is convenient
to combine our canonical equations (15)—(17) in order to
obtain a closed equation for I in the form
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ln the equation above, V(I) is an effective 'potential driv-
ing I excursions. It is written as

0.80 0.84 0.88 0.92 0.96 1.00

with h as the numerical (and constant) value of 'M. The
quantity I ~„shall be sought for as the first zero of the
function V(I). In Fig. 1 we plot I „vs f in the case
where wave dynamics is not included [curve (a)] and the
case where it is [curve (6)]. It is seen that wave dy-
namics reduces the numerical value of I ~„ for all f's;
this reduction is even dramatic when one gets close to
f = 1 where, as said before, wave dynamics limits an
otherwise unbounded growth of I. Apart from that, one
may observe that the larger the factor p, the stronger the
tendency of curves (a) and (b) to stay together; in fully
relativistic situations where p & 1 (interesting to note is
that the momentum I is bounded by p and not by the
small "physical" field Ap; therefore it can become a fully
relativistic variable), any noticeable difFerences between
curves (a) and (6) come just from that region extremely
close to f = 1.

As for the topology on the phase space, let us focus
our attention on the behavior of the fixed points for the
considered dynamics. These fixed points are obtained as
the solutions of the coupled set

FIG. 1. I,„vs f for (a) A = 0.01, h = 1.0, p = O. l and
(b) p = 5.0. In curve (a) wave dynamics is not included and
in (b) it is.

that at these points, the phase angles are such that

cos(QFP)—:S = +1, (22)

IFp(S =+1)~—2 p
31+2p (23)

and from the second, Eq. (21), one is able to calculate
IFp. When one takes f = 1, it is readily determined
that both classes of fixed points, the one corresponding
to S = +1 and the one corresponding to S = —j. , occur at
a same value along the I axis, IFp = p/(2+ p). However,
in the case of arbitrary values of f, each class has its own
IFp. A good approximation indicates that as we take
f —+ 0 one gets

IFP = (IFP 4'FP) = 0 (2o)
IFp(S = —1) —+ p 1 ——

8 (gl + 2p —l)2) (24)

O'Fp = (IFP 4'Fp)OI (21)

From the first of these equations, Eq. (20), one finds out

Prom these equations, it is not dificult to see that while
the 8 = +1 fixed points are displaced toward lower val-
ues of I for f ( 1, the S = —1 ones come to a situation
where IFp = p. In Figs. 2(a) and 2(b) we plot the tra-
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FIG. 3. The same as in Fig. 2 but for f = 0.8.
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1+2I+(P, + fI)' (25)
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FIG. 2. Phase-space trajectories for f = 1. In (a) wave

dynamics is not included and in (b) it is. We consider p = 1.0,
h= 1, and A=001.

jectories in the phase space for f = 1. It can be observed
that the upwardly open curves of Fig. 1, where wave dy-
namics is disregarded (p —I —+ p), are closed in Fig. 2,
where wave dynamics is taken into account. In Fig. 3 one
considers the situation f = 0.8 with wave dynamics in-
cluded. There one notices that, much in accordance with
our analytical estimates, relocation of the two classes of
fixed points is already observable.

Interesting to mention is that the sequence of all canon-
ical transformations applied so far allows one to obtain
the following relation for the particle normalized perpen-
dicular velocity:

For f = 1 and P, = 0, such a relation indicates that,
regardless of the form of the act;ual dynamics, transverse
acceleration must be a bounded process, because, as al-
ready noticed in Ref. [1j, the maximum of the function
represented by Eq. (25) is given by v&~ „——0.5. On the
other hand, as we allow for smaller values of f, this up-
per bound increases; in the limit f (( 1, relation (25) sets
no upper bounds on v~ besides the natural one e&~ & 1.
The accessibility of such a kind of large velocity seems
to be a relevant point for discussion. Nevertheless, it
is a complicated matter and should be left for a future
publication.

To summarize, we have performed an analysis of the
wave-particle self-consistent dynamical interaction that
takes place in a generic cyclotron-laser system. By means
of a canonical procedure we have been able to determine
two basic characteristics for this kind of device: (i) up-
per bounds for particle energization processes and (ii)
the presence and location of fixed points for the overall
dynamics. In specific terms, we have shown how wave
dispersion and the usually discarded wave dynamics act
as limiters for energization processes; in particular, it has
highlighted the importance of the finite amount of elec-
tromagnetic energy for those situations where the elec-
tromagnetic wave propagates without dispersion.

This work was partially supported by Financiadora
de Estudos e Projetos (FINEP) and Conselho Nacional
de Desenvolvimento Cientifico e Tecnologico (CNPq),
Brazil.

[1] S. P. Kuo and G. Schmidt, J. Appl. Phys. 58, 3646
(1985).

[2] F. B. Rizzato, Phys. Scr. 46, 173 (1992).
[3] P. Sprangle and A. T. Drobot, IEEE Trans. Microwave

Theory Tech. MTT-25, 528 (1977).
[4] K. R. Chu, A. T. Drobot, H. H. Szu, and P. Spran-

gle, IEEE Trans. Microwave Theory Tech. MTT-28, 313
(1980).

[5] C. Chen, Phys. Fluids B 3, 2933 (1991).

[6] K. D. Pendergast, B. G. Danly, R. J. Temkin, and J. S.
Wurtele, IEEE Trans. Plasma Science P-16, 122 (1988).

[7] J. K. Lee, W. D. Bard, S. C. Chiu, R. C. Davidson, and
R. R. Goforth, Phys. Fluids 31, 1824 (1988).

[8] K. R. Chen, J. M. Dawson, A. T. Lin, and T. Katsouleas,
Phys. Fluids B 3, 1270 (1991).

[9] F. B. Rizzato, Phys. Rev. A 41, 1629 (1990).
[10] T. M. Antonsen, Jr. and G. Laval, Phys. Fluids B 1, 1721

(1989).


