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ABSTRACT

Apache Cassandra is a powerful NoSQL database. Its implementation provides a high
performance database, also aiming high scalability. In the same manner, the Hadoop
MapReduce framework provides a highly scalable API for parallel and distributed com-
putation. All in a transparent way to the programmer. Change Data Capture (CDC) so-
lutions are capable of speeding up services that track modifications in a source database,
passing the changes to a target database. In this context, we discuss in this thesis several
techniques for extracting data that has changed in a source database; later on, making the
changes available for use at a target database. The techniques use MapReduce to imple-
ment their logics and also to interact with the source database Apache Cassandra. The
same API stores the results in Hadoop Distributed File System (HDFS). All technologies
are for distributed and/or parallel environments, e.g., clusters. The proposed techniques
are designed to work in this scenario, with the best possible performance.

Keywords: Change Data Capture, Apache Cassandra, Hadoop MapReduce, HDFS, Big
Data.





RESUMO

Soluções de Change Data Capture para Apache Cassandra

O Apache Cassandra é um banco de dados NoSQL poderoso. Sua implementação
provê um banco de dados de alta performance, visando também alta escalabilidade. Da
mesma forma, o framework Hadoop MapReduce fornece uma API altamente escalável
para computação paralela e distribuída. Tudo de uma forma transparente para o progra-
mador. Soluções de Change Data Capture (CDC) são capazes de acelerar serviços que
monitoram modificações em um banco de dados fonte, passando as mudanças para um
banco de dados destino. Neste contexto, nesta tese discutimos diferentes técnicas para
extrair dados que foram alterados em um banco de dados fonte, posteriormente disponi-
bilizando as mudanças para uso em um banco de dados destino. As técnicas usam Ma-
pReduce para implementar suas lógicas e interagir com o banco de dados fonte Apache
Cassandra. A mesma API armazena os resultados no Sistema de Arquivos Distribuídos
do Hadoop (HDFS). Todas tecnologias são para ambientes distribuídos e/ou paralelos,
e.g., clusters. As técnicas propostas são projetadas para atuar neste cenário, com a melhor
performance possível.

Palavras-chave: Change Data Capture, Captura de Dados Alterados, Apache Cassandra,
HDFS, Hadoop MapReduce, Big Data.
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1 INTRODUCTION

This chapter gives an introduction for this work. This thesis has the objective of
designing, implementing and testing several different methods to capture changed data
in a specific source system. In the following sub-sections the motivation, objective and
outline of this document are given.

1.1 Motivation

The costs of maintaining and managing relational databases are high. Even on a small
scale, this is a very significant job, as stated in (RAMANATHAN; GOEL; ALAGU-
MALAI, 2011). To solve this issue, highly available databases at massive scales have
begun to be developed. These databases aim also at providing reliability, "because even
the slightest outage has significant financial consequences and impacts customer trust",
as extracted from (DECANDIA et al., 2007). One example of this type of database is
a solution proposed by Amazon called Dynamo (DECANDIA et al., 2007). Another
solution for distributed storage system, with a high-performance and high scalability is
Google’s BigTable (CHANG et al., 2006), which is also highly available, handling data
from several Google products. Inspired by these first research efforts, new databases have
emerged. One of them is Apache Cassandra, which is used in many companies, handles
large amounts of data every day and has a growing user base. Another relevant aspect is
that, differently from relational databases that are table oriented, Cassandra is a column
oriented storage solution.

This scenario is perfect to create and innovate. There are still concepts that can be
explored, with possibility of creation of new features on top of these databases. As ex-
ample, CDC techniques, which are already used in relational databases. Such mechanism
might also boost the performance of column oriented databases for several applications.
In particular, capturing changed data is a necessary basic feature. This feature is used to
maintain materialized views, keep data warehouses up to date and even to create complex
incremental applications as proposed by (SCHILDGEN; JöRG; DEßLOCH, 2013). Al-
though techniques for capturing changed data have been studied for several years in the
relational area, there are many barriers to be transposed while translating the same idea to
column oriented databases. There are many different column oriented databases currently
available, including MongoDB1, Apache HBase 2 and Apache Cassandra 3.

1http://www.mongodb.org/ accessed 22-June-2014
2http://hbase.apache.org/ accessed 22-June-2014
3http://cassandra.apache.org/ accessed 22-June-2014
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We chose to work with Cassandra because it is largely used, has an active and in-
creasing community and also is still being developed, with many new features added to
the system very frequently. Furthermore, as proposed by (HU; DESSLOCH, 2013), it is
possible to efficiently implement Change Data Capture solutions for NoSQL databases.
Undoubtedly, with such feature the use of these storage systems increases, mainly because
it will provide an improved service, covering more scenarios of possible use.

In the work presented in this thesis, the MapReduce framework is used to implement
the logic of the methods. This framework can integrate with Apache Cassandra, enabling
a transparent parallel computation, which is very powerful in multi-nodes clusters. HDFS
also integrates with MapReduce, creating an easy to use distributed file system. Both tech-
nologies are part of Apache Hadoop, which also has a column oriented database solution,
called HBase.

This thesis is based on the work proposed in (HU; DESSLOCH, 2013). The meth-
ods described here are derived from the last referenced paper, but applied specifically
in Apache Cassandra. To the best of our knowledge, there is no other attempt to create
change data capture solutions to Apache Cassandra. There are general models as de-
scribed in chapter 3, but no one is build to fit specifically the base system chosen for this
thesis.

1.2 Objective

The main objective of this work is to model and implement change data capture so-
lutions for Apache Cassandra. Although some solutions presented in this work already
exists for relational databases, they cannot be straightforwardly applied in this system.
The goal is to adapt these methods to match the details of the NoSQL database.

We want to build robust models, implementing and integrating them with Hadoop
MapReduce, HDFS and Cassandra. The models must take care of all details existent in
each technology, allowing them to work together in an efficient and simple way.

Furthermore, this work compares the methods, describing their pros and cons, consid-
ering also the performance observed while executing each of the methods in a given test
case. Finally, a conclusion outlines relevant aspects discussed in this document, summa-
rizing important information.

1.3 Contribution

The contributions of this thesis are:

• Create a delta model to Apache Cassandra. The deltas must be able to identify the
performed operation, as well as the location where the modification occurred.

• Build and describe different techniques of CDC, exploring several possibilities to
do so.

• Apply CDC approaches to the base system. For such, implementations of the dif-
ferent techniques with the ability to communicate with Cassandra and MapReduce
are required.
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• Compare the techniques. An evaluation of the techniques, comparing their func-
tionalities, performances and limitations.

1.4 Outline

In Chapter 2 the base environment is described, detailing important and relevant as-
pects that must be considered while implementing the change data capture methods. In
this part, necessary details of all the used systems are explained. In Chapter 3, models
applied to Cassandra data and working model are specified, taking care of the previ-
ously mentioned aspects, and giving all the details necessary for a good comprehension
of them. Chapter 4 lists the strengths and the weaknesses of the approaches, comparing
also their performances. Chapter 5 shows the existent methods, applied in RDBMS or in
other column oriented databases. Finally, Chapter 6 gives a conclusion for this document,
describing also possible future works.
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2 BACKGROUND: CASSANDRA, MAPREDUCE AND HDFS

This chapter aims to give the necessary background for a good understanding of the
work proposed. Most of the information presented here refers to characteristics of the
technologies used. In particular, we describe Cassandra, which is a NoSQL database so-
lution for large scale data volume. Further, we describe an API for parallel and distributed
data processing called MapReduce, which integrates with Cassandra and HDFS. Finally
we present HDFS, which is a distributed file system from the Apache Hadoop project that
integrates with MapReduce. Our goal is to show just the relevant aspects of these tools
for this work, without considering unnecessary details. Further details can be found in the
references provided.

2.1 Apache Cassandra, a NoSQL solution

To fulfill the requirements of increasingly high data volume systems, a new concept
of database called NoSQL has been proposed, being nowadays widely used for many
large-scale applications e.g, Facebook, Amazon and Google Earth. This new type of
database has not come to replace the popular RDBMS. Instead, it is intended to provide
different characteristics for applications that would take advantages of them, serving as a
complementary storage solution.

Apache Cassandra is one of the projects that follows this concepts of data storage, the
so called NoSQL - an abbreviation for Not Only SQL rather than No SQL as could be
interpreted. This term is designated for databases that do not follow the relational data
model and do not have a SQL language. Although there is no standardized definition
of a NoSQL database, it normally provides a key-value, highly available, schema free
and highly scalable storage system. These are the main characteristics that distinguish
NoSQL from RDBMS. Some programs that follow this structure are Google’s Big Table
(CHANG et al., 2006) and Amazon’s Dynamo (DECANDIA et al., 2007); in the open
source space we have HBase (GEORGE, 2011), MongoDB (CHODOROW; DIROLF,
2010) and Cassandra (HEWITT, 2011) as some of the most popular solutions.

2.1.1 Data Model

In order to build the data model, we must know how the data is structured into Cas-
sandra. The structure is divided in six different concepts: Keyspace, Column Family,
Super Column, Column, Key and Value. Each one will be explained in the following
paragraphs.
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The Keyspace has a similar meaning as a database in the RDBMS world. The goal
of this structure is to make it possible to have unrelated data stored in the same instance
of Cassandra without mixing them. Going one level deeper, we have the Column Family,
that acts as a Table in the RDBMS, storing correlated data; inside this structure we can
have Columns or Super Columns. The Columns - also named Standard Columns when
not under a Super Column - have the same meaning of columns in RDBMS, working as
a sort of label for the stored data. Super Columns are used as a container of columns,
used to bring closer columns with similar meanings, without any equivalent concept in
the relational databases; columns stored under a super column can be also named Sub
Columns. Cassandra’s key can be thought of as an ID, that identifies uniquely our data.
Finally, the value is the data itself. Notice that one Column Family in Cassandra can carry
data using standard column structure or super column with sub columns structure; these
two structures never appear together under the same column family. Figure 2.1 structures
all these concepts together.

Figure 2.1: Column Family structure for Super and Standard Column family

In the following, we illustrate an example of data structure using the aforementioned
data model. Suppose one is interested in storing information of some school, so a generic
name for our keyspace would be ‘School’. For a particular school, it is necessary to store
the grades for all the students, therefore we can create a column family named ‘Grades’
that will have super columns to distinguish semesters and sub columns to separate the
grades of different courses. Considering we will never have more than one student with
the same name, we can use the students names as column family keys. Figure 2.2 shows
in a better fashion the modeled data.

Notice that this abstraction of ‘table’ is not entirely compatible with Cassandra’s data
model. The reason for this is because if we do not have any data in a specific column
we also do not have the column structure; differently from relational databases where we
will have the column structure anyway with some null value under it. For instance, in a
relational database for certain table there will be the same column structures for all keys
stored in a given table. But Cassandra’s schema free data model allows keys under the
same column family (similar to a table) with different column structures for each key or
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Figure 2.2: Cassandra Table Example

even without the column structure for a specific column and a certain key. Because of
this very same reason, every time we mention some similarity with the relational world,
it does not mean both concepts are equal, but that they share some of the main ideas.

Finally, in Cassandra the timestamp is uniquely used to resolve data conflicts when
reading the data rather than keeping multiple data versions, like other NoSQL systems
such as HBase.

2.1.2 Operational Model

As extracted from (HEWITT, 2011), we can briefly describe Cassandra as a NoSQL,
key-value, schema free, highly available, peer-to-peer distributed, no single point of fail-
ure, with customized consistency levels storage solution. In this section we will explain
all the necessary and important details of Cassandra Operational Model. The aspects that
will be further explained have impacts in the way our change data capture approaches will
take place, some of them being definitive for the choice of one or other way to develop
the methods.

A data center with Cassandra is normally constituted by several computers, called
nodes, that are connected to each other in a ring structure, where all nodes have equal
behavior and all of them can handle any read or write request. Each node of the ring is
responsible for keeping the data of a range of keys. These keys can be translated with a
hash map function, e.g MD5 that guarantees the nodes will be well balanced, or defined by
the system administrator with specific configuration. Cassandra also implements solutions
called Anti-Entropy, Hinted Handoff and Read Repair, responsible for avoiding different
data versions across the ring and for recovering and maintaining data in case of node crash
or failure. These aspects will not be further explored because they are not relevant in the
context of this work.

Tunable consistency level is an aspect that deserves further discussion. This param-
eter must be set when either a write or a read operation is performed in the system, in
each case with a different meaning. As expected, it defines in how many nodes the data
must be read or written; the possible values are: One, Two, Three, All, Any and Quorum,
such parameters are also discussed at (COULOURIS et al., 2011). Table 2.1, modified
from cassandra documentation (HEWITT, 2011), gives further details for a better under-
standing of the differences between each of them in both possible data operations. For
the CDC approaches, the read consistency is more important: the weaker the consistency
level used is, the higher is the possibility of processing old data. The choice of which
level of consistency to use is up to the application and its system administrator.

Cassandra supports different mechanisms to retrieve and manipulate data, which are
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Level Description:Read Description: Write
ANY Not possible. Data must be written to at least

one node. If the nodes responsible
for the key are down, the write can
still succeed once a hinted hand-
off has been written. If nodes
down, the data is unreadable un-
til the nodes have recovered.

ONE Return a response from the closest
replica.

Data must be written to at least
one replica node.

TWO Return the most recent data from
two of the closest replicas.

Data must be written to at least
two replica nodes.

THREE Return the most recent data from
three of the closest replicas.

Data must be written to at least
three replica nodes.

QUORUM Returns the most recent data af-
ter a quorum of replicas has re-
sponded.

Data must be written to at least the
most of the replica nodes.

ALL Returns the most recent data after
all replicas has responded. It fails
if a replica does not respond.

Data must be written to at least all
replica nodes for the row key.

Table 2.1: Cassandra Consistency Levels

the Client API, Thrift API, Avro, MapReduce and some higher level API’s. For our pur-
poses the Thrift API and MapReduce are the desirables ways of interaction: the MapRe-
duce framework is used mainly for reading data from Cassandra and the Thrift API is
used either to read and write data from the database.

In the following we detail the possible operations to be performed in the database.
In a developer side we have create and drop, performed under keyspaces and column
families. These operations are not relevant to the work presented in this document, and
their meanings are self-explanatory, therefore we will look at the client side operations.
Data manipulation and retrieve are performed using get, del and set commands. The first
two are applicable in any desirable granularity, namely key, column or super column; the
second, just in column granularity. In these operations we need also to set as a mandatory
parameter the consistency level. This one is preferable to be set to ALL when reading
data for analysis, so the system guarantees that we are reading the latest data version.

The trigger concept will also be used. Cassandra’s community is currently investigat-
ing how to add triggers to the system. However, what is currently available is either an
unstable patch for an older version of Cassandra or a trigger implementation in Cassandra
version 2.0.X, which is also not stable and not in its final version. Both implement an
asynchronous trigger, which is similar to an after trigger of the relational databases, as
covered in (GROFF; WEINBERG, 2010). The main difference is on the characteristic of
being asynchronous, i.e without being performed straight after the event that makes it be
fired. Even though triggers are not in its final and stable version, it is at least usable for
research purposes, also helping to find errors and bugs. Because of its usability, this fea-
ture will be certainly added to the system in the future. Furthermore, for real applications
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it is not recommended the use of this patch precisely because of its instability.

Although Cassandra has several other complex mechanisms to keep the system healthy
and working and also some other important details of its architecture, we will not discuss
them in further details because they are not mandatory for the work presented in this
document.

2.2 Introduction to MapReduce

As described in (DEAN; GHEMAWAT, 2004), "MapReduce is a programming model
and an associated implementation for processing and generating large data sets.". The
provided API that implements such model is supported by Cassandra, and it is a good
choice of use while processing large data sets because of its facility of use and scalability.
In the very same paper, a better definition of what the model actually does is provided,
i.e "Users specify a map function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that merges all intermediate values
associated with the same intermediate key".

We chose this model for two reasons: it is a largely used distributed way of compu-
tation and it has an API fittable into Cassandra. As described in the last paragraph, we
have map and reduce functions, those functions run in parallel and distributed across the
cluster. This can normally be used to speed up the processing of large amounts of data.
Implementation details are not relevant for this work. However, it is important to know
that MapReduce is a parallel and efficient way of processing data and for this reason we
chose it.

2.3 Introduction to HDFS

HBase, which is also a NoSQL database, is build on top of HDFS1. As the MapReduce
framework, it is also a part of the Apache Hadoop project, which offers many solutions
for distributed storage and computation systems. Because of the easy way to use this file
system and also the integration with the MapReduce framework, we chose it to store the
output deltas or intermediary results in the approaches. However, it is not necessary to
use this very same file system when building one of the methods for a real application.
Further, HDFS can run in the same base system that our Cassandra instance is running,
without causing any incompatibility problem. Finally, it is also an open source project
like Cassandra.

Given that we are dealing with a distributed database, it is reasonable to use also a dis-
tributed file system to store outputs. Another remarkable detail is the integration with the
MapReduce framework, supporting an easy interaction between them. Figure 2.3 shows
the data flow between the technologies described in Chapter 2. When a reducer phase is
not present in the described technique, the mapper is who sends the data to HDFS. For
the Snapshot Differential technique described in Section 3.4.3, in the differential phase,
the input data is taken from HDFS rather than from Apache Cassandra. Finally, for the
Log Based technique presented in Section 3.4.4 the input data is the commit log.

1 http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html accessed 22-June-2014
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Figure 2.3: Data Flow between Cassandra, MapReduce and HDFS
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3 CHANGE DATA CAPTURE OVER CASSANDRA

After describing the important characteristics of the base system in sufficient detail,
the following presents the change data capture methods.

3.1 Introduction

Known as CDC, change data capture is the process of detecting the data that has been
changed in a source system and sending the modifications to a target system. The goal is
to reduce the costs of such operation by using just the necessary data instead of the entire
source system data to keep both of them consistent. This is a widely used technique in
data warehousing because of the performance improvements that it offers, implemented
commonly in SQL databases as SQL Server (MICROSOFT, 2008). As in (KIMBALL;
CASERTA, 2004), there are many techniques for extracting data from a source system to
deliver them to a data warehouse. This work shows some ways of achieving it.

The core idea is to lay aside unnecessary and no effect transactions between systems,
decreasing the data volume to be transmitted, copied or computed. To picture a scenario
where this technique shows its efficiency, lets use a data warehouse that keeps a copy of
a specific table as example. In this case, we will have the source system as the production
database and the target system as the data warehouse - that will be another database.
Assume that initially both are equal, in other words, they have exactly the same data (rows
and values). When one row from the source table gets an update, we need to reflect this
operation also in the target table, therefore we have two possibilities: rescan all the source
table and store everything again or detect and store just the changed data. Indeed the
second option seems to be more reasonable. For example, in the case of a table with one
thousand tuples, if the changed data were just five hundred tuples, the difference between
rescanning all the source table and capturing the changed data will be fifty percent less
tuples in the second case. This means it is possible to cut by half the volume of data to
be processed and transmitted and, in the best case scenario, also the time necessary to
keep both systems up to date. Keeping in mind that data warehouses can typically store
large amounts of data, in the scale of tera and petabytes, this improvement can determine
weather the system is practical and efficient or not. Figure 3.1 illustrates the idea of the
CDC.

As a requirement, this method must efficiently detect all the possible operations in the
source system and make them available to the target system, which will handle them and
perform the necessary operations based on the given results. Relational database systems,
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Figure 3.1: CDC Strcuture

as we commonly know, have already explored this area and have successfully built some
solutions to capture the changed data, some of them are the snapshot differential, log
based, trigger based and the table scan as techniques cited in (VASSILIADIS, 2011) for
data extraction. Further details for them are given in the following sections.

3.2 Delta Model

The most important detail when capturing the change data is the delta model. This
model must identify correctly the performed operation that was captured and also the
row where it happened. One delta will be the union of operation and row, representing
uniquely one modification in the database.

The operations can be deletion, insertion and update - which is actually an insertion of
an existing column. We can also add here the concept of upsertion, which is exactly the
idea of inserting again one existing column resulting in an update. In some approaches
we will not be able to distinguish between insertion and update because of this peculiarity
of the system. In these cases we can correctly name the operation as upsert.

In order to identify the row where an operation has been performed and which opera-
tion was performed, we present a generic structure for the deltas. Merging the data model
structures of the base system allows us to specify which row was modified. Remember-
ing, Cassandra has Keyspace, Column Family, Super Column, Column and Key as layers
of data structure. If we add the operation and the value to this information, we build a
generic model as:

• Operation/Keyspace/ColumnFamily/Key/SuperColumn/Column:Value.

This single string is able to identify uniquely any cell stored in the database, as well as
any possible operation. Optionally, we can append the timestamps of the operation, that
could be in the end of the delta, creating a delta standard as:

• Operation/Keyspace/ColumnFamily/Key/SuperColumn/Column:Value-Timestamp.

It is possible to use different name separator instead of slash (‘/’) in the application,
however it is important to have some for parsing reasons when applying these deltas in our



29

target system. A distinct separator for the value and the timestamp will also help in this
manner. The choice of which delta to use is up to the application and its requirements.
The biggest difference is in the case of one operation being performed twice with the
same value, e.g two sequential updates. If we use also the timestamp, both deltas will
be different, if we do not, they will be identical. The following lines exemplify possible
deltas for each of the operations listed before, using the example of data structure given
in Section 2.1.1.

• Insert: ins/School/Grades/Carol/SecondSemester/Mathematic:89

• Update: upd/School/Grades/Carol/SecondSemester/Mathematic:89

• Upsert: ups/School/Grades/Carol/SecondSemester/Mathematic:89

• Column deletion: del/School/Grades/Carol/SecondSemester/Mathematic

• Super column deletion: del/School/Grades/Carol/SecondSemester

• Key deletion: del/School/Grades/Carol

These are examples for a super column family but we can also have deltas for stan-
dard column families. In this case, we can choose either to suppress the super column
information or just insert something that shows that there is no super column, e.g ‘null’.
Notice that we have different deletion granularities. Depending on the approach, there is
no way to change this granularity when generating the delta. Thus, it is up to the appli-
cation to handle such operations when necessary or the case must be ignored, creating a
new limitation in the approach.

3.3 Net Effect Operations

Some of the CDC approaches are not able to output all modifications applied to Cas-
sandra or sometimes they output a delta different from the last operation. Such situations
are named net effect operations. There are common possibilities of net effect operations.
In this Section, we name the net effect operations, describe what it represents and give a
brief description of the scenario where it might happen. Later, while enumerating the net
effect operations in the techniques, the names referred in this Section are given.

Beginning with a simple case, some of the approaches are not able to detect deletion
operations. In this text such limitation is named Deletion while enumerating net effect
operations of methods. Normally, the reason for inability to detect deletions is because a
scan is performed at the source column family. Consequently, it is not possible to retrieve
any deleted column.

Other recurrent situation is the Multiple Updates net effect operation. When multiple
updates are performed within a column between two CDC cycles, sometimes it is only
possible to retrieve the last updated value. The reason for it is because Cassandra over-
write the previous data when performing an update (i.e., a set command performed in
an existing column). The same reason introduces the Update(s) after Insertion net effect
operation. In this situation, the output is an insertion but with an updated value. It is
possible also to have Deletion after Insertion, which is the deletion of a value inserted
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after the last CDC. This is a special case of Deletion net effect operation. To summarize,
Table 3.1 relates net effect operations with their names and results in the approaches.

Name Description Output
Deletion Inability to detect deletions No output
Update after In-
sertion

Overwrite of value inserted after the
last CDC cycle

Insertion with updated
value

Multiple Updates Overwrite of updated value. Can
occur several times consecutively

Update with last up-
dated value

Deletion after In-
sertion

Deletions of value inserted after the
last CDC cycle

No output

Table 3.1: Net Effect Operations

As cited in (HU; DESSLOCH, 2013), the notion of net-effect change data is utilized
to appraise the quality of change data set. It represents the change data has no “noisy
data”. “noisy data” denotes the change data set which has no dedication to the target
data set. In this work, net effect operations are limitations perceived in several methods,
rather than noisy data useless to the target data set. Nevertheless, the result is also a lack
of output for specific scenarios. In the end, such limitations must be considered while
choosing which approach to implement in a given system.

3.4 Approaches

Given the previous background, we build several CDC approaches. Each method has
its mechanisms detailed in the following sections. For all of them, the delta model built
previously is used as the output pattern and the net effect operations are listed in each
case. The MapReduce framework is used to implement the logic of the approaches and
the HDFS is the distributed storage facility used as repository to the outputs.

3.4.1 Audit Column

The audit column technique is borrowed from RDBMS. The main idea is simple:
when we insert at first a row we also insert at the same time an additional column with its
insertion timestamp or the inserted value. The addition of this new column can be either
controlled by the application or by a trigger.

As explained in Section 2.1.2, triggers are not currently well supported, therefore in
real applications if this approach is chosen, the audit column is added and controlled by
the application rather than by trigger. However, the expected behavior of the additional
column can be easily translated to a trigger when it becomes stable and available.

Controlling the additional column is an easy task, as it is just necessary to distinguish
between insertions and updates. This is done by trying to retrieve some value from the
audit column of the inserting column. If data exists under the audit column, the operation
performed in the column is an update, if it does not, the operation is an insertion. After
ensuring that the operation is an insertion, it is necessary to insert the data or the value
also in the audit column. As expected, it is not possible to use the same column name in
the base column and in the audit column, otherwise we will overwrite data. In order to
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solve this issue, a new column name is used, which can be ‘audit’ plus the base column
name that it belongs, e.g ‘audit-Math’ for the base column ‘Math’. Notice that a separator
as hyphen is desirable for parsing reasons. On the other hand, if an update is being per-
formed, it is just necessary to update the base column without changing its audit column.
With respect to delete operation, because key and super column deletions will also delete
audit columns, it is better if the application or the trigger also deletes the audit column if
a column deletion is performed. This makes the operational logic clearer and consistent.

Choosing between storing the operation timestamp or the modified value is up to the
requirements of the application. If it stores the timestamp, no further detail besides the
previously explained is needed. In case of storing the inserted data, we gain the possibility
to catch the old analyzed value. However, it is necessary to maintain the additional column
every time a change data capture cycle is performed, storing the updated value in case of
a performed update, thus keeping the logic of this method.

3.4.1.1 Extracting Deltas

Knowing the structure of this method, it is possible to extract the changed data in a
simple way. First the CDC for audit columns storing the insertion timestamp is shown,
later on the differences for audit columns with the inserted value are explained.

To extract the changed data, we scan all the rows of the desired column family.
Columns with timestamp greater than the last CDC cycle are the ones to be processed.
To distinguish between update and insertion, it is just necessary to compare the times-
tamps from the column and the stored timestamp in its audit column. The pseudo-code in
Figure 3.2 shows the logic that must be implemented.

if (Column Timestamp == Audit Timestamp
&& Both > Last CDC Cycle)
Operation: insertion;

else if (Column Timestamp != Audit Timestamp
&& Both > Last CDC Cycle)
Operation: insertion;

else if (Column Timestamp != Audit Timestamp
&& Column Timestamp > Last CDC Cycle
&& Audit Timestamp < Last CDC Cycle)
Operation: update;

Figure 3.2: Audit Column Pseudo-code

When storing the value in the audit column instead of the timestamp, the pseudo
code will not be different. The only change is that the timestamp taken is the one of the
audit column itself. The goal of storing the value is to be able to output the old updated
or inserted value. Therefore, we must also maintain this column while extracting the
changed data. To do so, it is just necessary to perform some maintenance process if an
update is detected. In this case, we must store the updated value in the audit column using
the same timestamp as the source column.

Enough information to generate deltas is provided in the end of the analysis of each
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if (Operation == Update)
Audit Value = Column Value;
Audit Timestamp = Column Timestamp;

Figure 3.3: Audit Column Maintenance

row. Our implementation always uses the HDFS to store the outputs, however it is possi-
ble to store the outputs wherever is more convenient to the application.

3.4.1.2 Net Effect Operations

For this method there are many operations and sequence of operations that cannot be
extracted or generate some output different from the real last one. These are the Multiple
Updates, Update after Insertion and Deletions. The reason for each of them is as follows:
for the multiple updates, the problem is the overwrite of the previous data, without being
able to capture all the performed operations; for the very same reason, we have in this
approach the Update after Insertion issue. In the concerning of deletion, it is not possible
to retrieve any row when scanning the column family if the row was deleted.

3.4.2 Column Family Scan

This approach is similar to the previous one. The difference is on the use of the column
timestamp instead of one additional column just to store it. As can be seen, it is much
simpler to use this method, but there are several limitation.

3.4.2.1 Extracting Deltas

Column family scan performs a scan in the column family to retrieve all the stored
rows. Later on a simple comparison between timestamps of this columns decides if they
were modified since the last change data capture cycle or not. To do so, it is necessary a
simple comparison between the last CDC time and the column timestamp. If the column
has a timestamp greater than the last CDC cycle, than its data was modified, thus allowing
the output of a delta. The outputs are limited to upserts, since it is not possible to distin-
guish between insertions and updates. Furthermore, deletions are also not caught using
this method. Figure 3.4 illustrates this method.

if (Column Timestamp > Last CDC Cycle)
Operation: upsertion;

else
No output;

Figure 3.4: Column Family Scan Pseudo-code

One of the most remarkable advantages of this method is that it can be applied in
production systems. No further data structure or any sort of change in the database is
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required.

3.4.2.2 Net Effect Operations

As previously mentioned, this approach presents several limitations. In this case, all
the possibilities of net effect operations may occur, Multiple Updates, Update after In-
sertion and Deletion. The biggest difference and limitation compared to the audit column
technique is that it is not able to distinguish between insertion and updates, with upserts
as the only possibility of output.

3.4.3 Snapshot Differential

Borrowed from the Extract, Transform, Load (ETL) area, this approach obtains the
changed data by generating snapshots and comparing them, as discussed in (LABIO;
GARCIA-MOLINA, 1996). One snapshot is a copy of the database, with all latest version
of rows and tables, reflecting the current state of the system. To extract the changed data
using this method, it is necessary first to have at least two snapshots, taken in two different
time points. These create pictures of the data in two different states. The time difference
between two snapshots depends on the application and how often it demands to be kept
up to date. After snapshotting, it is necessary to compare them using a simple logic in
order to extract the changed data. Further details of this process will be described later.

Figure 3.5 summarizes the general idea behind this method and all stages that compose
it.

Figure 3.5: Snapshot Differential Cycle

3.4.3.1 Snapshotting

To create the snapshots, it is necessary to define where and how to store the data.
Furthermore, the snapshot rows must uniquely identify the rows of the source database.
Our implementation stores these results into HDFS and uses a row structure for each value
as described in the next paragraph.

The data model can be used to uniquely identify each value of the source database.
Similarly as when defining generic deltas in Section 4.2, in Cassandra a merge of the
names of the Keyspace, Column Family, Super Column, Column and Key structures iden-
tifies uniquely a row. The value must be appended to the previous structure, and optionally
also the timestamp. A generic row of a snapshot is as:
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• Keyspace/ColumnFamily/Key/SuperColumn/Column:Value-Timestamp.

For snapshots of standard column family, it is possible either to suppress the super
column information or add a mark in its place. Our implementation adds the ‘null’ string
as a mark, which makes the process more general, being consistent either working with
standard or super column families. It is possible to choose other separator rather than
slash (‘/’), but it is important to have some for parsing reasons. It is also preferable to
have a different separator to the timestamp. When creating deltas and sending them to
target systems, these separators will be useful. As we are in a distributed ambient, we
can use the MapReduce framework to take all advantages of the base architecture while
implementing the snapshotting program. Our implementation consists of only a mapper
phase, with no need of reducer. Its pseudo-code is presented in Figure 3.6.

for (Columns into Column Family) {
Create Key:

Keyspace/ColumnFamily/Key/SuperColumn/Column;
Create Value:

Current Database Value-Timestamp;
Store Key and Value;

}

Figure 3.6: Snapshot Mapper

Notice that it is important to follow the defined row structure and store them in some
reachable place.

3.4.3.2 Extracting Deltas

After snapshotting at least twice the source system, it is possible to extract the changed
data. To do so, a comparison between snapshots is done, outputting also the operation
that was performed in the row. Suppose one has an old snapshot ’OS’, a snapshot row
’r’ with value ’v’ and a new snapshot ’NS’. Table 3.2 shows the possible situation during
comparisons in this scenario and how to interpret them. The ‘X’ in the cell indicates that
the condition is satisfied.
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r1 ∈ OS r2 ∈ NS (v1 ∈ r1)&&(v2 ∈ r2)&&(v1 == v2) PerformedOperation

X X X No Change.

X Row Deleted.

X Row Inserted.

X X Row Updated.

Table 3.2: Delta Extraction from Snapshots

The granularity of the comparison and the outputs are always the column granularity,
even if the operation was of key or super column granularity.

To implement this logic using the MapReduce framework, a reducer side join is re-
quired. This uses mappers to tag and join values of different snapshots in the same list.
It is necessary to have multiple inputs, defining which mapper receives each snapshot.
Later a reducer phase is used to compare the mapper output list and extract deltas. The
key outputted from the mapper to the reducer must have the Cassandra’s meta data infor-
mation, thus each reducer will be able to extract a delta for one row. A pseudo-code for
the mapper phase is as in Figure 3.7.

for (all Key-Values) {
Create Key = Keyspace/ColumnFamily/Key/SuperColumn/Column;
Tag value with snapshot number;
Send Key and Value to reducer;

}

Figure 3.7: Differential Mapper

When the mapper phase is complete, the tagged data for both snapshots are send to
the same reducer, where the comparison logic is implemented as in the pseudo-code in
Figure 3.8.
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if (Value Tag 1 == Value Tag 2)
No Change, No Output;

else if (Value Tag 1 == null)
Output: inserted Value Tag 2;

else if (Value Tag 2 == null)
Output: deleted Value Tag 1;

else if (Value Tag 2 != Value Tag 2)
Output: updated to Value Tag 2;

Figure 3.8: Differential Reducer

3.4.3.3 Net Effect Operations

The Snapshot Differential method has the following two net effect operations: Mul-
tiple Updates and Update(s) after Insertion. The reason for the existence of both is the
overwrite of data when performing an update. There is also another possibility of net
effect operation not explained previously in this document. It is not possible to detect
different deletion granularities. The output deltas for such manipulation will be always in
the column granularity, even if a key or super column deletion was performed instead.

3.4.4 Log Based

Capturing the changed data would be better if using something already provided by the
system instead of creating new structures, storing new row replicas or adding complexity
to the database. For this reason, the use of the existent commit log seems to lead to a less
invasive solution, with the best possible performance without interfering too much in the
existing system.

This method performs the extraction of changed data by reading and interpreting the
log, specifically the commit log. This log keeps track of all operations performed in the
database and can be used to restore data after a system crash or for durability purpose. The
first place where an operation is registered is in the commit log. If it fails, the operation is
not validated and must be repeated. There are three basic requirements to implement the
CDC in this scenario, they are:

1. Knowledge of the log structure, being able to interpret the different operations for
each log row. In Cassandra it is not straightforward.

2. Ability to have a certain level of control of the log, avoiding deletion of rows not
analyzed, that would possibly discard significant data.

3. Use of the log without interfering in the system, neither performance nor consis-
tency.

The complexity of an implementation that fulfills these requirements relies on the
structure and control of the log. After understanding these elements and knowing the
output structure, the following steps are straight forward. A study of a log based method
applied in a real-time data warehousing is proposed in (SHI et al., 2008).
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3.4.4.1 All About the Commit Log

As cited above, the commit log is the first place where data is written. It has a signif-
icant importance to the system, since losing data is not an option, therefore the register
of every operation performed in the database must be done. As explained in (HEWITT,
2011) "All writes to all column families will go into the same commit log..." and "...only
one commit log is ever being written to across the entire server", these are main notions
to understand the Cassandra’s commit log handling.

Our application is data sensitive, that is why a fine tuning between Cassandra’s con-
figuration and the Log Based approach is desirable. There are several options to setup
the log handling in Cassandra. It is possible to choose its synchronization between batch
and period, where the first is to write mutations to commit log after a defined number of
operations and the second option makes the log writes be done after a specified time win-
dow. Both can be seen as the number of database changes that we accept to lose in case
of a system fail, e.g., if the synchronization period is of 1 minute and after 30 seconds the
last sync the system crashes, all the operations done in this time frame will be lost. Some
would want to set the maximum size for the commit log, which is also tunable. These
setups among others are made at "conf/cassandra.yaml", the main Cassandra’s configura-
tion file. To set the previous explained properties there are the following parameters:

• commitlog_sync: the way how the log must be synchronized.

• commitlog_sync_period_in_ms: time threshold to synchronize.

• commitlog_total_space_in_mb: maximum size of log.

These are sufficient parameters to guarantee not losing relevant logged operations.
We use the default synchronization type periodic, with a short period of time to sync the
mutations into the commit log (e.g., 10ms) and a maximum log size large enough to bear
the used amount of data in our implementation.

It is also necessary to know how is the inner structure of the commit log. The log
is composed of serialized log rows, each one related to one mutation. The structure of
each log row depends on which operation was performed (we are interested in set and
del) and in which kind of column family the manipulation was performed (i.e., Standard
Column Family or Super Column Family). After performing a reverse engineering of
Cassandra’s source code, it was possible to figure out the general structure of the commit
log. The main data structures of the commit log are described in detail in Appendix A.
The structures refers to Cassandra version 1.0.9, for other versions the commit log might
be different.

In order to retrieve the serialized information, it is important to know the fields types.
Otherwise, it is not possible to read correctly every provided information. Cassandra’s
implementation is in Java as well as our programs, so we listed the Java types related
to each serialized field. Notice that the serialization flag is an integer. Appendix A also
presents the relationship between flags and their serialized numbers.

All explained above is what is necessary to build and implement programs capable of
interpreting and extracting intelligible information from Cassandra’s commit log. To ex-
emplify, there are two serialized log rows representing an operation at a standard column
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family as in Figure 3.9 and a mutation at a column under a super column family as in
Figure 3.10. These examples are related to a set operation performed into the database,
which can either represent an insertion or an update.

(School)(Stephanie)(1)
(1018)(true)(1018)(-2147483648)(-9223372036854775808)(1)
(Mathematic)(0)(1349430004096)(5)

Figure 3.9: Log Row Standard Column Insertion Example

(School)(ELucile)(1)
(1021)(true)(1021)(-2147483648)(-9223372036854775808)(1)
(Employees)(-2147483648)(-9223372036854775808)(1)
(Bonus)(0)(1349942428550)(150)

Figure 3.10: Log Row Super Column Insertion Example

Because the operation is a set, the deletion timestamps are negatives, signalizing that
there was no deletion performed. The numbers used for such operations are always the
same as in Figures 3.9 and 3.10. Furthermore, the column family ID is an internal ID
used by Cassandra. It is up to the system administrator to establish the relation between
the column family ID and its name. A way to do so, is by inserting a specific key into
the desired column family and deserialize the log searching for the key. When the key is
found, the relation between the internal ID and its column family name can be established.
This process is done just once, since this ID will not change unless the entire column
family is dropped and a new one is created.

3.4.4.2 Extracting Deltas

There are two main ways to get deltas using this technique, which may lead to one or
another situation: using a partial log or using the entire log. If a set of the log is used, it
is simpler to extract information but the method has more limitations. On the other hand,
if the entire commit log is analyzed, it is possible to find any database mutation, but with
the cost of a more complex and cumbersome data processing.

Beginning with the simple case, it is necessary first to define which part of the log to
keep. An easy and effective choice is to always preserve mutations occurred after the last
CDC cycle. This ensures that any performed operation is analyzed. One advantage of this
partitioning of the log is the simple logic that must be implemented to keep the method
consistent. It is required just to keep and process log rows added in between two CDC
cycles. Before starting to capture the changed data, it is necessary to ’cut’ the log until the
current time. Meanwhile, new mutations are registered in a new cut of the log. By the end
of the analysis, the method discards the analyzed log rows and waits as long as necessary
to start processing new rows. With this simple logic to keep the log, it is possible to build
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the CDC process. Therefore, there are a mapper and a reducer in Figure 3.11 with a logic
capable of extracting deltas of a partial log processing.

Mapper

for (Log Rows) {
send Log Rows of each RowKey
together to reducer;

}

Reducer

for (All Mutations) {
Generate delta based on mutations;
Output: delta;

}

Figure 3.11: Partial Log Map-Reduce Program

In a real application, it is possible to choose to build a more complex reducer, for ex-
ample, one that outputs just the last operation for a given key. In this case, it is necessary
to take care of deletions of bigger granularity, which may delete previous insertions or
updates of smaller granularity. Unlike the previous methods that output deltas of column
level operations, the log based approach generates outputs with several different granu-
larities, which depends on the performed operation.

In the following we build the log based method using the entire log. Notice that it is
mandatory to have the full commit log in order to have this model working consistently.
If it is not possible to handle such amount of data for the entire database, one can save log
entries just for the column families that are necessary to keep track. One way to do so, is
creating a new log using triggers or, a more suitable approach for databases that does not
support triggers, constantly process the commit log and copy new log rows of the desired
column family somewhere else.

Despite the cumbersome prerequisite, for some applications this might be the only
desired method. If one wants to retrieve deltas for any operation applied into the database
in any given time or desires to retrieve any kind of operation in any granularity, this is
the method to be considered. Outputs of the log based technique with the entire commit
log are in several different granularities as in the partial log, e.g., key, column or super
column. One advantage of using the whole log is the ability to transform deletions of
bigger granularity into a smaller granularity. For instance, one might want to transform
super columns deletions into columns deletions. Therefore, it is necessary to analyze
the previous insertions under the given super column. The same idea is applied for key
deletions. Furthermore, using the full log enables us to distinguish between insertions
and updates, while the partial log is capable just to output upserts because both logical
operations are registered identically in the commit log. With the full log, it is possible to
make a back-trace of mutations performed in the same column to discover if a specific
mutation was an insertion or an update.
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In our implementation we use the same mapper as in the partial log from Figure 3.11
to send log rows to same reducer. Later on a reducer as in Figure 3.12 outputs all ana-
lyzed operation in the registered granularity. Insertions and updates are distinguished by
including in the process all previous mutations of the key, as can be seen in the referred
pseudo-code.

List<OldLogRows>
List<NewLogRows>
for (Key of NewLogRows) {

if (Key == Deleted)
Output: LogRow key deleted;

else {
if (Key == Inserted && OldLogRows contains Key)

Output: LogRow key update;
else

Output: LogRow key inserted;
}

}

Figure 3.12: Full Log Reducer

The provided model can be changed to fit the application requirements and expec-
tations. Also, it is possible to create an operations log, maintained by a trigger or the
application itself. The disadvantage then are the higher processing overhead added that
will affect the performance of the system and the increase in the amount of stored data.

3.4.4.3 Net Effect Operations

This method has the advantage of not having any net effect operation. The reason is
because all performed operation are analyzed and can be handled as desired. This means,
basically, that the technique is able to see and process all the operations performed within
the database. Also, another reason for the lack of net effect operations is that there is no
data overwrite, so no data are lost.

For instance, in the common scenario of Update after Insertion, the techniques are
not able to detect the previous insertion because its previous value is overwritten by the
updated value. On the other hand, the log have an entry for the insertion operation and
another log row for the update operation, thus avoiding the mentioned net effect operation.

3.4.5 Trigger Based

In (VASSILIADIS, 2011), trigger based techniques are "non-traditional, rarely used"
techniques for data warehousing. Mainly because they "require the modification of the
source applications to inform the warehouse on the performed alterations at the source,
or, the usage of triggers at the source side". Nevertheless, in the following it is presented
an alternative of such technique to Cassandra.

Deltas are obtained in this method by tracking all the operations performed in the
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system and storing them in a specialized table. Such table can be called ‘tracking table’
and it must be capable to output all kinds of possible operations provided by the source
database.

The model of the tracking table must be capable to uniquely identify one operation of
a row and also to distinguish between the different operations possibilities. It is required
an algorithm to fill the tracking table when data manipulation is performed in the source
system, as well as a logic to extract the operations and rows when scanning this table.
To achieve these requirements, it is possible to create a trigger, which is fired for every
single row mutation in the database and is capable to enforce and maintain the logic of
the tracking table. Later on, a mechanism to read the tracking table extracting deltas
and refresh it is executed. This mechanism must change the table to a state where the
trigger can successfully identify which changed data was already analyzed, thus keeping
the tracking logic immutable. The next subsections cover the creation and analysis of
such a tracking table.

3.4.5.1 Tracking Table

This section explains how to implement a tracking table logic using triggers. In the
following, we build an approach to get the last performed operation. Basically, the track-
ing table stores columns under super columns, the first representing where the mutation
occurred and the second represents which kind of mutation was executed. It is also impor-
tant to save the last extracted value, in order to distinguish between insertions and updates.
Therefore, it is possible to fix the names of such super columns as: Old Value, Insertion,
Update and Deletion. Each of these super column have names closely related to the op-
erations that they keep track. Under them, the changed columns or super columns will
be stored. To store other super columns in the tracking table, it is necessary to merge the
super column name with its standard column name. Thus, a column uniquely identifies
where the change happened, e.g., an insertion of standard column Math under super col-
umn 1oSemester will be stored under super column Insertion as column 1oSemester/Math
in the tracking table.

A robust logic is build if the recorded operations are in the same granularity, e.i., in
the column granularity. This specific granularity is used because it is the only possible
one when performing set operations, which are very important to this work. Deletions can
have several different granularities, so it is necessary to change them in order to build a
cleaner approach. To do so, the pseudo-code in Figure 3.13 is merged to the trigger, which
will then identify any deletion of any other granularity rather than column and translate it
into columns operations.

if (Deletion of Super Column)
for (All Standard Column under Super Column)

Delete Column;
else if (Deletion of Key)

for (all Columns or Super Columns under Key)
Delete Column;

Figure 3.13: Changing to Column Granularity



42

The trigger is built easily after the first processing phase previously described, mainly
because it deals with a more uniform possibility of operations. Figure 3.14 represents the
trigger logic built on top of the previous computation.

if (Operation == Del)
if (Column under Old Value Super Column)

Copy Old "value:timestamp" to Delete Super Column;
Delete Column from Insertion and Update Super Columns;

else
Delete Column from Insertion and Update Super Columns;

else if (Operation == Set)
if (Column under Insertion Super Column)

Overwrite "value:timestamp" for Colum under Insertion Super Column;
else if (Column under Old Value Super Column)

Overwrite "value:timestamp" for Column under Update Super Column;
else

Insert "value:timestamp" for Column under Insertion Super Column;

if (Column under Deletion Super Column)
Delete Column under Deletion Super Column;

Figure 3.14: Trigger Logic

Some applications might not need the first processing step. That is why the trigger
and the changing granularity algorithm are described separately. Real implementations
might need to merge both mechanisms.

3.4.5.2 Extracting Deltas

In the following we present an implementation of a MapReduce program to extract
deltas from a tracking table and maintain it. Figure 3.15 describes how a program with
just a mapper phase successfully extracts deltas and maintain a tracking table, outputting
the last performed operations of columns. Notice that each mapper has a key and all
columns of the particular key as inputs.

3.4.5.3 Net Effect Operations

In this method the net effect operations are: update after insertion, update after up-
date and deletion after insertion. They are all related to the triggers logic, which over-
writes data not yet maintained. This is the reason for the first and second listed net effect
operations. The deletion after insertion happens because the triggers delete data under
’Insertion Super Column’ if the inserted column is deleted before a CDC cycle.
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for (All Super Columns)
for (Each Column)

if (Last CDC timestamp < Column timestamp < Current CDC timestamp)
if (Column under Insertion Super Column)

Output insertion of Sub Column;
Move Column under Insertion to Old Value;

else if (Column under Update Super Column)
Output update of columns;
Move Column under Update to Old Value;

else if (Column under Deletion Super Column)
Output deletion of Column;
Delete Column from Deletion and Old Value Super Columns if exists;

Figure 3.15: Trigger Based Mapper
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4 IMPLEMENTATION AND EVALUATION

This chapter aims to evaluate functionally the implementations as well as their perfor-
mance. Furthermore, a summary of the important aspects previously discussed are stated
here. The goal is to give an overview of relevant details covered in this document.

4.1 Implementation

We implemented the techniques for CDC described in Chapter 3 in Java, with Cassan-
dra version 1.0.9 and MapReduce framework version 1.0.4 in a Unix environment. Other
versions are also supported, as MapReduce 0.20.2. Finally, porting the code to the latest
version of Cassandra and MapReduce was attempted, unfortunately without success.

The implementation supports all the described approaches. It is possible to use input
arguments to choose between algorithms, as well as run performance tests and create
or maintain tracking tables or audit columns. A property file is used by the API to set
necessary parameters to interact with the source database. Such a file can also be passed
to the API as an argument. A fine configuration of the CDC techniques is achieved by
changing parameters of the property file. Finally, the structure presented in Figure 2.3 is
used to guide our implementation.

With the plugin EclipseAid for Eclipse, it is possible to create class diagrams which
represent the implementations. In the following sections, we present class diagrams of
each implemented package. These packages are integrated in a main function, used as the
front end of the API.

4.1.1 Audit Column

Figure 4.1 shows the four classes implemented in this technique. The Java class Au-
ditColumn is the main class, which calls and runs classes implementing map and reduce
functions. There are two different mapper classes: one to handle standard column fami-
lies and other to handle super column families. These mappers are responsible to process
and send column and audit column together to the reducer, which is implemented by the
AnalysisReducer class.
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Figure 4.1: Audit Column Class Diagram

4.1.2 Column Family Scan

This is the simplest implementation. There is a main class TableScan, which starts the
MapReduce computation. The mappers scan an entire column family, detect deltas and
output them to HDFS. Each mapper is responsible to process data from different column
families, i.e., standard and super column family. Figure 4.2 shows the class diagram for
such classes.

Figure 4.2: Column Family Scan Class Diagram
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4.1.3 Snapshot Differential

This package has separated implementations for each phase of this technique. The
snapshot phase has the class Snapshot as the main class, which starts the MapReduce
framework with mappers as the classes SuperColumnStoreMapper or StandardColumn-
StoreMapper, depending on the column family type being processed.

The class Differential executes the second phase of the CDC solution. Two different
mapper tag the input data with their source and send them together to DifferentialReducer,
which processes the data and outputs deltas to HDFS. Figure 4.3 shows a class diagram
for both phases.

Figure 4.3: Snapshot Differential Class Diagram

In the utils package, there are three important classes for this technique. These classes
implement a TextPair input format to MapReduce framework; they are required in order
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to tag the input data. Furthermore, it is necessary to implement comparators used to
distribute the input data across mappers, as seen in the class diagram in Figure 4.4.

Figure 4.4: Utils Class Diagram

4.1.4 Log Based

The log based approach uses log rows objects to represent serialized log rows. Figure
4.5 describes the object with all its methods and attributes.

Figure 4.6 shows the class diagram for the log based approach itself. There are several
classes, the LogBased is the main class, which runs the MapReduce framework with the
mapper as ReadSegmentsMapper and the reducer as AnalysisReducer. Both use the class
KeyValueGenerator to generate key-value pairs based on the deserialized data, which are
used as the output from mapper to reducer and from reducer to HDFS. Class SegmentIn-
putFormat tells MapReduce framework how it must handle the given input, using Muta-
tionRecordReader. The other classes have self-explaining names.
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Figure 4.5: Log Row Objects Class Diagram
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Figure 4.6: Log Based Class Diagram
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4.1.5 Trigger Based

This technique has a main class TrackingTableMapRed, which tells the MapReduce
framework to run the mapper TrackingTableMapper. The mapper outputs data to HDFS
and also maintains tracking tables.

Figure 4.7: Tracking Table Class Diagram

4.2 Evaluation

The goal of this section is to present an evaluation of the implemented techniques. In
the following we show a functional evaluation, due to different limitations presented by
each approach. Later, a performance evaluation comparing the algorithms is given.

4.2.1 Functional Evaluation

As aforementioned, all the methods implemented have net effect operations or some
limitations, which must be considered while choosing which approach to use in a real
application. To give a better view of the complete scenario, Table 4.1 summarizes the
detectable operations related to the presented approaches. These are the first details to
be analyzed by the developer. For some applications, the performance is irrelevant if the
solution used is not able to deliver the required data, thus making the approach useless.
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Prev Val Update Insert Delete Upsert History
Audit Column
Table Scan
Snapshot Differential
Partial Log
Full Log
Tracking Table

Table 4.1: CDC Detectable Operations

In Table 4.1, the techniques developed in this work are listed. The columns of the
referred table represent which operations each technique is able to extract. Columns Up-
date, Insert, Delete and Upsert are self-explanatory. The column Prev Val is related to the
ability of the approach to deliver the value of the previously extracted delta for a deter-
mined Cassandra’s column. The column History refers to the ability of the technique to
extract historic changes for a specific Cassandra’s column, e.g., in a given time window,
output all the modifications of column ’Math’ for key ’Tom’.

The symbol ’ ’ indicates that the technique is not able to detect the operation of the
referred column. On the other hand, the symbol ’ ’ indicates that the approach has the
ability to do it. Finally, the symbol ’ ’ is used when the technique is able to detect the
referred operation but in a limited way.

4.2.2 Experimental Setup

We used the open source tool called YCSB, described in (COOPER, 2010) capable to
run tunable workloads in several databases - one of them is Apache Cassandra. Although
this tool does not perform deletions within the database, the ability to run insertions,
reads and updates is sufficient to characterize how the techniques behave when they are
required to process the same amount of data. The following command lines are examples
of loading and running a workload, setting also the number of operations and records to
be manipulated. These are the commands used to run our tests:

• Load: $bin/ycsb load cassandra-10 -P workloads/workloada -p insertorder=ordered
-p recordcount=1000000 -p operationcount=1000000

• Run: $bin/ycsb run cassandra-10 -P workloads/workloada -p insertorder=ordered
-p recordcount=1000000 -p operationcount=1000000

As previously discussed, Cassandra with triggers is unstable. To test the performance
of approaches that require triggers, it is possible to generate artificially the necessary
data and structures. In Audit Column approach for instance, after loading and updating or
inserting data into the source database, a simple program is executed to create all the audit
columns. Figure 4.8 describes such algorithm, which simulated the behavior of a trigger
maintaining audit columns of a specific column family. Notice that the performance test
does not cover the overhead added by using a trigger.
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for (all Columns in Source Column Family)
if (Insertion Workload)

if (Column Timestamp < Workload Run Phase Timestamp)
Create Audit Column with Timestamp < Workload Run Phase Timestamp

else
Create Audit Column with Timestamp == Column Timestamp

else if (Update Workload)
if (Column Timestamp < Workload Run Phase Timestamp)

Create Audit Column with Timestamp == Column Timestamp
else

Create Audit Column with Timestamp < Workload Run Phase Timestamp

Figure 4.8: Audit Columns Creation

Another trigger based method is the tracking table. In this case, is also possible to
synthesize the necessary data using an algorithm to maintain a tracking table. Figure 4.9
shows how such algorithm must be implemented. Notice that the algorithm scans a source
column family and inserts data into a tracking table, which is a different column family.

for (all Columns in Source Column Family)
if (Insertion Workload)

if (Column Timestamp > Workload Run Phase Timestamp)
Insert Column under ’Old Value’ and ’Insertion’ Super Columns

else
Insert Column under ’Old Value’ Super Column

else if (Update Workload)
if (Column Timestamp > Workload Run Phase Timestamp)

Insert Column under ’Old Value’ and ’Update’ Super Columns
else

Insert Column under ’Old Value’ Super Column

Figure 4.9: Maintaining a Tracking Table

After detailing the logic of algorithms to simulate the behavior of the necessary trig-
gers, it is possible to prepare the test scenarios. Therefore, it is necessary to do the fol-
lowing steps, in the same described order:

1. Load the workload with the base data

2. Save timestamp

3. Run the worload, changing the initial state of the database

4. Maintain Audit Columns and Tracking Table
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It is fundamental to have a timestamp marking the initial state of the database, oth-
erwise the methods interpret all performed operations as insertion even though updates
were performed.

The system used to test our implementation is a cluster composed by 12 nodes. The
cluster has 9 processors Intel Pentium 4 HT @ 2.8Ghz, 3 Intel Pentium 4 @ 2.8Ghz, a total
RAM memory of 24.25GB and a total storage size of 10.2TB. The nodes are connected
with each other with 1000Mbps ethernet cables. The cluster runs Hadoop version 1.0.4
(for both MapReduce and HDFS services), as well as Apache Cassandra version 1.0.9.
The Java used is version 1.6.

We used YCSB (COOPER, 2010) to generate the workloads in different data volumes
and data operations. The tests use a variation from 25%, 50% and 75% of data manipu-
lation, either for insertions or for updates. Each one performed in a separated workload.
Also, two different amounts of data are used: 500 thousand rows keys and 1 million
row keys. In the load phase, this workload inserts the base data, representing the initial
state of the database. In the run phase, the workload updates the previously loaded data,
with insertions or update operations. Due to technical problems and time limitations, the
workloads using 500 thousand row keys for the insertion workload are not presented in
this document, as well as the 50% insertion workload for 1 million row keys initial data
set. One operation in a workload is responsible for manipulating 10 columns of a key and
each column contains 1KB of data. As we set the number of operations to 1 million, the
total amount of data inserted into the database is around 9.6GB - 1 million x 10 x 1KB.
In the case of 500 thousand keys, the amount of data loaded into the database is around
4.8GB.

4.2.3 Performance Evaluation

The tests presented in the following are for the extraction of deltas. The additional
overhead of using triggers is not measured; also, the maintaining time of tracking table
or audit columns are not considered. The total amount of time necessary to complete the
execution of each of the presented techniques are as follows:

• Audit Column:

– create audit column + extract delta + delete audit columns

• Column Family Scan:

– extract delta

• Snapshot Differential:

– create snapshots + extract deltas + maintain snapshots

• Log Based:

– extract deltas

• Log Based (with trigger):
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– create the log + extract deltas + maintain the log

• Trigger Based:

– create the tracking table + extract deltas + maintain the tracking table

As presented at (JAIN, 1991), in order to have a significant performance comparison,
it is required to run at least 30 times each test for each method. After collecting all this
data, it is possible to calculate the 95th and the 99th percentile, meaning that in ninety five
and ninety nine percent of the our test cases the algorithm completes under the related
times respectively. Further, the mean of the processing time is calculated, presenting
also confidence intervals for confidence levels of 95% and 99%. These statistics data are
summarized in the following tables.

Method Mean (s) 95% Confidence 99% Confidence
Tracking Table 284 ±2.27 ±2.99
Column Family Scan 279 ±1.32 ±1.73
Differential 460 ±0.47 ±0.62
Snapshot 489 ±0.73 ±0.96
Audit Column 661 ±2.48 ±3.26

Table 4.2: 9.6GB Data Set 25% Update Workload Confidence Intervals

Method 95 Percentile (s) 99 Percentile (s)
Tracking Table 300 306
Column Family Scan 287 289
Differential 463 463
Snapshot 492 494
Audit Column 672 687

Table 4.3: 9.6GB Data Set 25% Update Workload Percentiles

Method Mean (s) 95% Confidence 99% Confidence
Tracking Table 264 ±0.73 ±0.97
Column Family Scan 265 ±0.83 ±1.08
Differential 460 ±0.49 ±0.64
Snapshot 484 ±1.41 ±1.86
Audit Column 646 ±1.84 ±2.41

Table 4.4: 9.6GB Data Set 50% Update Workload Confidence Intervals



56

Method 95 Percentile (s) 99 Percentile (s)
Tracking Table 267 273
Column Family Scan 270 270
Differential 463 463
Snapshot 489 492
Audit Column 653 662

Table 4.5: 9.6GB Data Set 50% Update Workload Percentiles

Method Mean (s) 95% Confidence 99% Confidence
Tracking Table 288 ±6.18 ±8.12
Column Family Scan 289 ±0.92 ±1.2
Differential 460 ±0.51 ±0.67
Snapshot 489 ±1.43 ±1.87
Audit Column 665 ±2.17 ±2.85

Table 4.6: 9.6GB Data Set 75% Update Workload Confidence Intervals

Method 95 Percentile (s) 99 Percentile (s)
Tracking Table 297 303
Column Family Scan 297 297
Differential 463 463
Snapshot 492 494
Audit Column 672 753

Table 4.7: 9.6GB Data Set 75% Update Workload Percentiles

Method Mean (s) 95% Confidence 99% Confidence
Tracking Table 150 ±3.57 ±4.7
Column Family Scan 152 ±0.4 ±0.53
Differential 229 ±0.45 ±0.59
Snapshot 265 ±0.56 ±0.74
Audit Column 311 ±1.02 ±1.34

Table 4.8: 4.8GB Data Set 25% Update Workload Confidence Intervals

Method 95 Percentile (s) 99 Percentile (s)
Tracking Table 155 156
Column Family Scan 155 155
Differential 230 231
Snapshot 267 267
Audit Column 315 321

Table 4.9: 4.8GB Data Set 25% Update Workload Percentiles
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Method Mean (s) 95% Confidence 99% Confidence
Tracking Table 152 ±0.28 ±0.37
Column Family Scan 152 ±0.32 ±0.42
Differential 229 ±0.51 ±0.67
Snapshot 264 ±0.57 ±0.74
Audit Column 310 ±1.39 ±1.79

Table 4.10: 4.8GB Data Set 50% Update Workload Confidence Intervals

Method 95 Percentile (s) 99 Percentile (s)
Tracking Table 155 155
Column Family Scan 155 155
Differential 231 231
Snapshot 267 267
Audit Column 315 323

Table 4.11: 4.8GB Data Set 50% Update Workload Percentiles

Method Mean (s) 95% Confidence 99% Confidence
Tracking Table 152 ±0.18 ±0.24
Column Family Scan 152 ±0.27 ±0.36
Differential 230 ±0.3 ±0.4
Snapshot 265 ±0.7 ±0.91
Audit Column 310 ±0.86 ±1.12

Table 4.12: 4.8GB Data Set 75% Update Workload Confidence Intervals

Method 95 Percentile (s) 99 Percentile (s)
Tracking Table 153 154
Column Family Scan 155 155
Differential 230 231
Snapshot 267 270
Audit Column 315 315

Table 4.13: 4.8GB Data Set 75% Update Workload Percentiles

Method Mean (s) 95% Confidence 99% Confidence
Tracking Table 405 ±0.88 ±1.15
Column Family Scan 374 ±1.11 ±1.46
Differential 535 ±0.51 ±0.68
Snapshot 606 ±2.05 ±2.69
Audit Column 848 ±3.55 ±4.66

Table 4.14: 9.6GB Data Set 25% Insertion Workload Confidence Intervals
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Method 95 Percentile (s) 99 Percentile (s)
Tracking Table 408 410
Column Family Scan 378 387
Differential 538 538
Snapshot 617 620
Audit Column 865 889

Table 4.15: 9.6GB Data Set 25% Insertion Workload Percentiles

Method Mean (s) 95% Confidence 99% Confidence
Tracking Table 719 ±2.48 ±3.26
Column Family Scan 632 ±1.57 ±2.06
Differential 681 ±0.68 ±0.89
Snapshot 931 ±2.24 ±2.94
Audit Column 1278 ±2.23 ±2.93

Table 4.16: 9.6GB Data Set 75% Insertion Workload Confidence Intervals

Method 95 Percentile (s) 99 Percentile (s)
Tracking Table 739 743
Column Family Scan 636 651
Differential 684 685
Snapshot 943 946
Audit Column 1289 1291

Table 4.17: 9.6GB Data Set 75% Insertion Workload Percentiles

Notice that the snapshot differential technique has separated measurements. To extract
deltas with this method, it is necessary to have at least two snapshots in order to run the
differential phase, so the necessary time to execute it is twice the time of snapshot plus
the necessary time o calculate the differential.

Finally, using the 95 percentiles values of each technique in the different presented
update workloads, it is possible to generate the graphics presented in Figures 4.10 and
4.11. It is possible to see that the different update workloads does not affect significantly
the time necessary to process the data.
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Figure 4.10: 4.8GB Data Set Update Workloads

Figure 4.11: 9.6GB Data Set Update Workloads

On the other hand, Figures 4.12, 4.13 and 4.14 represent graphically the difference
of time necessary to process the different update workloads for initial data sets of 4.8GB
and 9.6GB. These figures show that the processing time is more sensitive to the input data
volume rather than to the amount of deltas extracted.
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Figure 4.12: 25% Update Workload

Figure 4.13: 50% Update Workload
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Figure 4.14: 75% Update Workload

With an initial data set of around 9.6GB, there are differences in the required process-
ing time to the workloads of 25% and 75% of insertion operations, as presented in Figure
4.15. The difference is again related to the amount of data analyzed. In the first workload
there are 25% more data than the initial database state and, in the second, the amount of
data is 75% larger than the same initial state.

Figure 4.15: 9.6GB Initial Data Set Insertion Workloads
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The presented results reflects the expected result based on the implemented logic of
each presented logic. With an equal data set, there should not be significant processing
time differences for the several possibilities of generated deltas. The reason is because the
logic is basically a sequence of chained if ’s, which have a constant complexity. On the
other hand, the analyzed amount of data dictates how many times the implemented logic
must be executed. Thus, changing the perceived performance more significantly.

The perceived difference of performance for each presented approach are due to the
complexity of each of them. The column scan and tracking table extracts deltas simple by
scanning a column family, which makes them the less time consumption of the techniques.
The snapshot differential has the disadvantage of requiring the double amount of data
to process its differential phase, which make it takes almost the double amount of time
for extract the deltas compared to tracking table of column family scan. The less time
effective technique audit column is so because it analyzes the double amount of columns,
specifically the audit columns.
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5 DISCUSSION AND RELATED WORK

This chapter shows some of the state of the art related to this work. As mentioned,
the techniques presented in this document are already implemented for data warehousing
in relational databases. There are many textbooks and papers related to data warehousing
area discussing about extracting changed data of SQL databases. However, such ideas are
not largely studied in the field of NoSQL storage solutions.

Current data warehousing use all of the methods presented in Chapter 3. Normally, the
most desirable techniques are those which do not interfere in the source database. With
respect to this, it is possible to highlight snapshot differential and log based approaches.
Trigger based methods are not so common because they require a modification in the
source database, which possibly downgrades the efficiency and performance of services
and applications using the database to store data. Furthermore, if it is necessary to do
some modification in the source system, in many scenarios the trigger will need also to
be maintained in order to handle such modifications.

In the following subsections, existing approaches for relational and column oriented
databases are presented. The focus then is to give a short description of techniques related
to the ones presented in this thesis.

5.1 Existing Approaches for Relational Databases

There are several CDC techniques implemented in different ETL tools as in (JöRG;
DEßLOCH, 2011) and (KIMBALL; CASERTA, 2004). Relational databases normally
keep a log containing all operations performed within it. An approach to extract changed
data is to analyze the transactional log and extract deltas from it. Such method applied to
relational databases can be named Database Log Scraping. Other very common technique
is to create snapshots of the source database in different time points. With a comparison
between snapshots, it is possible to define which data was altered and which was not.
Finally, other commonly used approach is to append an additional column in the end of
each table, storing the data modification date. This technique is named Audit Column
and the additional column is normally maintained by a trigger. These are techniques
commonly implemented in relational databases for data warehousing.

As extracted from (KIMBALL; CASERTA, 2004), Database Log Scraping technique
"takes a snapshot of the database redo log at a scheduled point in time (usually midnight)
and scours it for transactions that affect the tables you care about for your ETL load".
Also, in the same book is stated a similar technique called Database Log Sniffing, which
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has the same functionality but extracting transactions by sniffing the redo log while it is
being modified. The Log Based approach presented in this document is related to the last
described approach; more specifically related to Database Log Scraping, since we suggest
to capture the transactions by reading the log entirely rather than in an interactive way.

In the same book, the technique Timed Extracts is used to take changed data based on
the modification date, similarly to the technique Column Family Scan presented in this
thesis. Although this is a very simple technique, there are some considerations about the
reliability of this approach in case of a crash while extracting changed data. As stated in
the same work, "manual intervention and data cleanup is required if the process fails for
any reason".

Furthermore, an approach with the same name used here is described for relational
databases: Audit Column. In (KIMBALL; CASERTA, 2004), a short description of this
technique is given: "Audit columns are usually populated via database triggers fired off
automatically as records are inserted or updated. Some-times, for performance rea-
sons, the columns are populated by the front-end application instead of database trig-
gers. When these fields are loaded by any means other than database triggers, you must
pay special attention to their integrity." Such description fits also on the technique when
applied to NoSQL databases.

Finally, Process of Elimination is a technique equivalent to Snapshot Differential.
Also in relational databases, this approach "has the advantage that rows deleted from the
source can be detected". Although not the more efficient, this approach is described as the
most reliable among others. One advantage is "because the process makes a row-by-row
comparison, looking for changes, it’s virtually impossible to Extracting miss any data",
as stated in (KIMBALL; CASERTA, 2004). All the techniques above are described in
Chapter 3 of the related book, specifically in Part 3:Extracting Changed Data.

5.2 Existing Approaches for Column Oriented Databases

There are few studies that investigate how to extract changed data from column ori-
ented databases. In (HU; DESSLOCH, 2013) the notion of a delta is defined. As in our
work, a delta identifies uniquely where the change occurs and what kind of modification
was performed. As extracted from the last cited work, a delta has the following structure:

• OPts/Metadata/Identifier/Operation

Where:

• OPts = date of the operation

• Metadata = metadata of source column family (e.g., column family name, column
name

• Identifier = row key

• Operation = performed operation
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A Timestamp-Based approach is also defined, which consist of scanning an entire
table and extracting deltas for columns modified after determined time constraints. This
is possible due to having modification date information as attribute of a column. The same
concept is used in this thesis to create the Column Family Scan technique.

In this work, the approach Audit Column is an improvement of the Column Family
Scan technique. Its goal is "to address some drawbacks" of Column Family scan, as in
(HU; DESSLOCH, 2013) and the Audit Column and Timestamp-Based approaches. As
previously described, with an additional column controlled by a trigger or the application
used to store the insertion date, it is possible to distinguish between insertions and updates.

The techniques Log Based, Snapshot Differential and Trigger Based are described in
the previously cited work and in (HU; QU, 2013). The main difference between these
works and the work presented in this document is that here we build the models to fit
the specifications of Apache Cassandra rather than Apache HBase. Another detail to be
considered is that, because the cited works use HBase as the source system, they could
successfully implement a full Trigger Based approach, due to the triggers support present
in HBase. Such method uses triggers to maintain a tracking table, which will keep neces-
sary modification information for later extraction of deltas.

Furthermore, the Log Based technique presented in the cited works extracts deltas by
processing the write-ahead log (WAL) of HBase. In this work, we do the same, but by
a deserialization of Cassandra’s commitlog. Finally, the Snapshot Differential approach
implemented either in the previously mentioned works or in this thesis, extracts deltas by
creating snapshots of the desired source column family in different time points. Later on,
the snapshots are compared, outputting all the detected deltas.

To conclude, the general ideas behind each of the previously cited techniques are very
similar to the ones used in this document, with important modifications necessary to fit
the models to Apache Cassandra.
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6 CONCLUSIONS AND FUTURE WORK

This thesis presented all the important aspects of CDC solutions for Apache Cassan-
dra. As depicted along this document, it is possible to generate several different models
of CDC techniques and apply them on the proposed base systems. For all of the imple-
mentations, is is necessary to consider not just the performance observed while extracting
changed data from a source database, but also overheads caused by the use of triggers.
These overheads can be due to processing time or storing data.

Some techniques do not need modifications in the source database, e.g., column fam-
ily scan, requiring just processing time to extract deltas. On the other hand, the trigger
based approach for instance, needs a trigger added to the source system, which will keep
a tracking table. Such technique requires not just processing time but also storage capac-
ity. Furthermore, the presented solutions have limitations that must be also considered.
Finally, each solution is capable of extracting specific types of deltas.

Given all explained before, it is not possible to take one CDC approach as the best.
Depending on the application and its requirements, one solution might fit better than the
others. In the end, it is up to the developer the choice of which technique to use, taking
into account all the limitations and capacities of each solution given in this document.

Finally, as presented in Chapter 5, there is few work for CDC and NoSQL databases.
None of them are applied to Apache Cassandra. The contribution of this work is to give
different models of CDC techniques applied to Apache Cassandra, also evaluating their
functions and their performances in different workload scenarios.

6.1 Future Work

Because nowadays Apache Cassandra does not support a reliable and final trigger
model, it is necessary to wait the release of version 2.1 of this database. This release will
support triggers in its final state, so it will be possible to integrate our implementations
with triggers. Therefore, it will be necessary to port all the code to the newer database
version. Furthermore, there is a newer version of the Map Reduce framework, which
could also be supported. With this new version, we can program the algorithms and
integrate them into a single API. This API could even be part of the Apache Cassandra in
the future.

Sometimes we used the Cassandra Thrift API to interact with the database, which
is discouraged because the API reveals a lot of the internals of the system. This API
will be changed to Cassandra Query Language (CQL), which will probably open new
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possibilities that could be explored.

Furthermore, there are other structures in Apache Cassandra that this thesis does not
cover, for example counter columns and expiration columns. The presented models can
be extended to also take care of such structures. Moreover, it would be interesting to have
different models for different target systems, e.g., relational databases and column ori-
ented databases. In this work we considered Apache Cassandra also as the target system
which will handle the extracted deltas. For other target systems, it is probably necessary
to modify the techniques presented in this work in order to satisfy the target system’s
requirements.

Finally, performance tests for different operations can be performed to further analyze
the behavior of the techniques in several distinct workloads.
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AppendixA

A.1 Commit Log Structures

(Keyspace)(Key)(ModificationSize)
[(ColumnFamilyID)(isNotNull)(ColumnFamilyID)
(LocalDeletiontime)(MarketForDeletionAt)
(NumColumns)(ColumnName)
(SerializationFlag)(?)(Timestamp)
(Value)]nc

nc = NumColumns

case (SerializationFlag):
COUNTER_MASK: ? = (timestampOfLastDelete)
EXPIRATION_MASK: ? = (ttl)(expiration)
COUNTER_UPDATE_MASK || DELETION_MASK: ? = empty

Figure A.1: Standard Column Log Row Structure
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(Keyspace)(Key)(ModificationSize)
{(ColumnFamilyID)(isNotNull)(ColumnFamilyID)
(LocalDeletiontime)(MarketForDeletionAt)
(NumSuperColumns)(SuperColumnName)
(LocalDeletiontime)(MarketForDeletionAt)
(NumColumns)[(ColumnName)
(SerializationFlag)(?)(Timestamp)
(Value)]nc}nsc

nc = NumColumns
nsc = NumSuperColumns

case (SerializationFlag):
COUNTER_MASK: ? = (timestampOfLastDelete)
EXPIRATION_MASK: ? = (ttl)(expiration)
COUNTER_UPDATE_MASK || DELETION_MASK: ? = empty

Figure A.2: Super Column Log Row Structure
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CommitLogHeader:
HashMap<ColumnFamilyID, FilePosition>

Followed by:
(Length)(ChecksumLenght)
(SerializedRowMutation)(ChecksumRowMutation)

Serialized Row Mutations:
(KeyspaceName)(Key)(ModificationsSize)
{(ColumnFamilyID)(SerializedColumnFamily)}n

Serialized Column Family:
(HasColumns?)(ColumnFamilyID)(LocalDeletionTime)
(MarketForDeleteAt)(NumColumns)
{(SerializedStandardOrSuperColumn)}n

Serialized Super Column:
(SuperColumnName)(LocalDeletionTime)
(MarketForDeletedAt)(NumberSubColumns)
(SerializedStandardColumns)

Serialized Standard Column:
(Name)(SerializationFlag)( 0 || 1 || 2 )(Timestamp)Value)

0 = Column: ()
1 = CounterColumn: (TimestampOfLastDelete)
2 = ExpiringColumn: (TimeToLive)(LocalDeletionTime)

Serialization Flags:
0x01: DELETION_MASK (DeletedColumn)
0x02: EXPIRATION_MASK
0x04: COUNTER_MASK (CounterColumn)
0x08: COUNTER_UPDATE_MASK (CounterUpdateColumn)

Figure A.3: Commit Log General Pattern
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(Keyspace) = String (UTF-8)
(Key) = ByteBuffer
(ModificationSize) = int
(ColumnFamilyID) = int
(isNotNull) = boolean
(LocalDeletiontime) = int
(MarketForDeletionAt) = long
(NumSuperColumns) = int
(SuperColumnName) = ByteBuffer
(NumColumns) = int
(ColumnName) = ByteBuffer
(SerializationFlag) = unsigned int
(timestampOfLastDelete) = long
(ttl) = int
(expiration) = int
(timestamp) = long
(value) = ByteBuffer

Figure A.4: Fields Java Types

DELETION_MASK = 0x01
EXPIRATION_MASK = 0x02
COUNTER_MASK = 0x04
COUNTER_UPDATE_MASK = 0x08

Figure A.5: Serialization Flags
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