
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

COMPUTER SCIENCE BACHELOR THESIS

CAROLINA PEREIRA NOGUEIRA

Benchmark Management of Option
Pricer Implementations with

Hardware Acceleration Based on the
Heston Model

Prof. Dr. Lisandro Zambenedetti Granville
Advisor

Dipl.-Ing. Christian de Schryver
Coadvisor

Kaiserslautern, July 2014

“You see things; and you say, ’Why?’ But I dream things that never were; and I say,
"Why not?"”

— George Bernard Shaw

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Dr. Lisandro Zam-
benedetti Granville and Dipl.-Ing. Christian de Schryver, my research supervisors,
for their patient guidance, enthusiastic encouragement and useful critiques of this
research work. I would also like to thank Prof. Dr.-Ing. Norbert Wehn, for receiving
students from the Federal University of Rio Grande do Sul (UFRGS) in the micro-
electronics research group of the Technical University of Kaiserslautern (TU-KL).
My grateful thanks are also extended to Prof. Dr. Taisy Weber by providing the
opportunity to participate on the exchange program between UFRGS and TU-KL.

I am also grateful for my colleagues and professors, who always encouraged me
to strive for knowledge and attempt new challenges. I would also like to extend
my thanks to the International School for Graduate Studies (ISGS) of TU-KL for
supporting all the students on arriving and helping to overcome bureaucratic issues.
In addition, I appreciate Dipl.-Ing. Thomas Fehmel suggestion on writing methods
and text structure, as well as MSc. Marcelo Antonio Marotta for his technical advices
and suggestions.

Last but not the least important, I owe more than thanks to my family for their
support and encouragement throughout my study. Specially to my parents for always
being an example of kindness and perseverance.

ABSTRACT

Modern financial market and its institutions currently have a need for faster
computation to asset price, specially options. To achieve fair prices, it is necessary
to create a realistic market model and this requires complex methods. Frequently
higher performance is strongly related with energy consumption. Hardware accel-
eration algorithms can perform faster computation with less energy consumption.
Benchmarks can compare the results of different implementations to help during
the decision process of which solution better attend the current demand. On this
context, the challenge of how to integrate, communicate and perform benchmarks
on heterogeneous hardware emerge. In this work, an integrated benchmark tool is
presented using a representational state transfer (ReST) architecture to overcome
this problem. Lower network and processing overhead compared to the existing
implementation is aimed. Using a Model-View-Controller model, our platform has
strong cohesion and modularity which provides flexibility and scalability for the
system.

Keywords: Benchmark, hardware acceleration, heuston model, management, monte
carlo, network, option pricer, ReST.

RESUMO

Gerenciamento de benchmarks para precificação de opções financeiras
com aceleração em hardware baseado no modelo Heston

Atualmente o mercado financeiro moderno e suas instituições tem a necessidade de
computação eficiente do preço dos ativos, especialmente opções. Para atingir preços
justos é preciso gerar um modelo de mercado realístico. Esse processo demanda
métodos complexos. Frequentemente alto desempenho está diretamente relacionado
com consumo de energia. Algoritmos de aceleração em hardware podem obter
alta performance com um consumo menor energético. Para ajudar no processo
decisivo sobre qual solução melhor atende a demanda atual, benchmarks permitem
comparar resultados de diferentes implementações. Nesse contexto surge o desafio de
como integrar, comunicar e executar benchmark em hardwares heterogêneos. Nós
desenvolvemos uma ferramenta integrada de benchmark usando uma arquitetura de
transferência de estado representativo (ReST) para resolver esse problema. Nosso
objetivo era obter um sistema com uma sobrecarga de rede e de processamento
reduzido em comparação com a plataforma existente. A alta coesão e modularidade do
sistema é obtida através do modelo model-view-controller, que introduz flexibilidade
e escalabilidade no sistema.

Palavras-chave: benchmark, aceleração em hardware, gerenciamento, monte carlo,
redes, precificação de opções financeiras, ReST.

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface
ASN.1 Abstract Syntax Notation One
CRUD Create, Read, Update, Delete
DAL Database Abstraction Layer
DOM Document Object Model
GWT GWT Web Toolkit
IDE Integrated Development Environment
IETF Internet Engineering Task Force
MIB Management Information Base
MVC Model View Controller
OID Object Identifier
ReST Representational State Transfer
RFC Requests for Comments
ROA Resource Oriented Architecture
RPC Remote Procedure Call
SNMP Simple Network Management Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator

LIST OF FIGURES

2.1 Components of "Web Interface for Accessing Option Pricer Imple-
mentations Based on the Heston Model" (TEIXEIRA; SCHRYVER;
WIVES, 2013) . 15

3.1 SNMP architecture . 18

4.1 DOM-Based Translation . 23
4.2 HTTP-Based Translation . 23
4.3 SOAP-Based Translation . 24
4.4 Current Architecture - ReST-based web service 26

5.1 Simulation form layout . 34

A.1 Previous Database Schema . 38
A.2 Current Database Schema . 39

LIST OF TABLES

3.1 ReST Data Elements (FIELDING; TAYLOR, 2002) 20
3.2 ReST Connectors (FIELDING; TAYLOR, 2002) 20
3.3 ReST Components (FIELDING; TAYLOR, 2002) 21

LISTINGS

5.1 Example of database conection . 28
5.2 Example of table definition . 29
5.3 Menu definition . 29
5.4 Importing Libraries . 30
5.5 Restfull interface . 31
5.6 Add new simulation from existing benchmark 32
5.7 Structure of the file generic.json 34
5.8 Structure of the file add_simulation_from_benchmark.html 34
5.9 Enable scheduler . 35
5.10 New task definition . 35

CONTENTS

1 INTRODUCTION . 12

2 RELATED WORK . 14

3 BACKGROUND . 16
3.1 Terminology . 16
3.1.1 Architecture . 16
3.1.2 Distributed System . 16
3.1.3 Gateway . 16
3.1.4 Service . 16
3.2 Definitions . 17
3.2.1 Document Object Model . 17
3.2.2 Simple Network Management Protocol 17
3.2.3 Architecture elements of SNMP Management Frameworks 17
3.2.4 Client-Server Model . 18
3.2.5 Service Oriented Architecture . 18
3.2.6 Simple Object Access Protocol . 18
3.2.7 Resource Oriented Architecture . 18
3.2.8 Representational State Transfer . 19

4 DESIGN . 22
4.1 Protocol Gateway . 22
4.1.1 DOM-Based Translation . 22
4.1.2 HTTP-based Translation . 23
4.1.3 SOAP-Based Translation . 23
4.2 Web-Services Based Management 24
4.2.1 SOAP-Based Web Services . 24
4.2.2 ReST-Based Web Services . 25
4.3 Architectural Decisions . 25

5 IMPLEMENTATION . 27
5.1 Framework web2py . 27
5.2 MVC schema . 28
5.2.1 Model . 28
5.2.2 Controller . 30
5.2.3 ReST Application Programming Interface (API) 30
5.2.4 View . 34
5.3 Task Schedule . 35

6 CONCLUSION . 36

APPENDIXA. 38
A.1 Previous Database Schema . 38
A.2 Current Database Schema . 39

REFERENCES . 40

12

1 INTRODUCTION

On the modern financial market, asset prices change within several milliseconds,
along with all related financial product prices. The demand for fast and accurate
product pricing and risk computation is increasing (SCHMERKEN, 2011), as well
as the need to save energy resources (SCHRYVER; TORRUELLA; WEHN, 2013).
Numerical approaches are mandatory for some financial products, such as option
pricers, since there is a lack of closed-form solutions for them(SCHRYVER et al.,
2011). These methods have high computational complexity which leads to high
energy consumption.

To achieve fast execution of market simulations, researchers have been working on
hardware acceleration algorithms (SCHRYVER et al., 2011) (JIN; LUK; THOMAS,
2011). However, that may not be a feasible solution if an algorithm wastes a lot
of additional energy just to finish few milliseconds faster than a previous one. It
is necessary to observe the compensation curve to decide in which situation the
replacement of algorithms is worthwhile. To compare solutions, benchmarking is a
powerful tool. A single benchmark platform allows to see many simulation results
comparatively and integrates sets of tests for different metrics. Observing the results,
it is possible to assert which solution is better used in different contexts. Standardized
benchmarks are already widely accepted for performance evaluation in many domains,
wherefore researchers also want to introduce it for financial mathematics problems
(SCHRYVER et al., 2011).

Some challenges arise when trying to integrate heterogeneous hardware with
different implementations of algorithms on the same system. The platform itself
should not have an impact on the final result. Some requirements are necessary to
achieve this goal, such as minimum network and processing overhead. Furthermore,
the benchmark tool should also be as flexible as possible to permit the integration of
new implementations with minimal effort as well as supporting many users at same
time.

There are few published works related to benchmark integration of financial
market simulation on heterogeneous hardware currently. It is an interdisciplinary
work that needs communication between people with different background on fields
such as Computer Science, Electrical and Information Engineering, Mathematics,
and Economics.

A benchmark platform was created on this work to integrate algorithm implemen-
tations for different approximation methods with hardware acceleration changing the
architectural style of previous problem approaches, reducing coupling and increasing
cohesion, which makes it possible to improve the system’s scalability.

The overall structure of this study takes the form of six chapters, including this

13

introductory chapter. This work is composed of four themed chapters. On the next
chapter are presented the related work which contributes to achieve the proposed goals.
Then, on chapter 3, the terminology and basic concepts to understand the content of
this work is presented. The fourth chapter is concerned with the methodology used
for this study. Chapter 5 looks at how the implementation methodology defined on
previous chapter was implemented. Finally, the conclusion gives a brief summary
and critique of the solution, and areas for further research are identified.

14

2 RELATED WORK

In 2011, the first hardware accelerator for option prices with the Heston model
was published (SCHRYVER et al., 2011). The Black-Scholes model was widely used
to simulate option market because it provides explicit closed-form solutions for the
values of certain (European) call and put options (LAI; SPANIER, 1998). Researches
started to use differential methods in order to have a more accurate and general
result. Those methods have high complexity and demand more resources to execute
in a feasible time. Usually, this is directly related to energy consumption, which is a
serious global concern. It is necessary to compare financial option pricers solvers.
An integrated benchmark tool interconnecting the implementation is a good solution
to centralize the results, comparing performance and energy consumption for further
analysis.

There is some work that aims to compare FPGA implementations (JIN; LUK;
THOMAS, 2011), but there are many other solvers implemented on distinct hardware
types, such as GPU and CPU, for example. The microelectronics research group
from the Technical University of Kaiserslautern (EIT/TU-KL), associated with the
Institute of Informatics of the Federal University of Rio Grande do Sul (INF-UFRGS)
developed a "Web Interface for Accessing Option Pricer Implementations Based on
the Heston Model" (TEIXEIRA; SCHRYVER; WIVES, 2013). This is an interface
to run benchmarks on different hardware implementations using a client-server
architecture. Figure 2.1 shows the components of such implementation and how they
communicate with one another. Some parts have the same protocol, but mostly the
system components do not have a homogeneous way to exchange information. Also,
some of them use proprietary protocols as well: for example, GWT-RPC to connect
different system elements. Nonstandard protocols are problematic regarding to
changes. If the technology of a component will be modified on future, it is necessary
to verify connection and compatibility with other parts of the system. When a
standard protocol is used, the probability of having this kind of problems decreases.
Regarding those concerns, new requirements arise, such as increase scalability and
cohesion, as well as reduced coupling and technology dependence.

Analogous problems were analysed to complement the research basis for this
problem due to a lack of domain-specific research fulfilling the mentioned requirements.
Mobile hosts are very similar to many of the target devices concerning processing
and memory constrains. Some researches related to mobile and to Internet of
Things management architectures were used, as well as works related to web services
performance on mobile hosts.

To catch and process the benchmark results, it is better to use a different device,
for example a gateway, so the target device can perform dedicated tasks, avoiding

15

Figure 2.1: Components of "Web Interface for Accessing Option Pricer Implementa-
tions Based on the Heston Model" (TEIXEIRA; SCHRYVER; WIVES, 2013)

processing overload and tasks schedulability problems. In addition to that, it is
important to pay attention to the network overload, avoiding unnecessary data traffic
on the infrastructure. To use a gateway to process the benchmark results, it is
necessary to send requests to the target hosts, monitor job status, wait for reply,
process the final result, and display it to a human-readable format. This could
be considered as a service/network monitoring system because of its structure and
functionality. Given the presented reason, this research was based in some of those
works (SANCHEZ; ALVARADO-NAVA; MARTINEZ, 2012)(GRANVILLE et al.,
2009).

Given the context described before, it is possible to verify the high importance of
the comparison between energy consumption versus fast processing of option price
solvers. Unfortunately, there is a lack of research work aiming to solve this problem.
This affects directly several areas, such as economics, mathematics, electronics, and
informatics. This work analyses and presents a solution to perform benchmarks
according to the described and previously mentioned constrains and requirements,
filling out this gap.

16

3 BACKGROUND

Some knowledge and concepts are required in order to understand the problem
approach. This chapter aims to briefly introduce the necessary information to follow
the solution steps trough this work. More explained details of those considerations
can be found on the respective references.

3.1 Terminology
3.1.1 Architecture

When the term "architecture" is used along this work, it refers to Fielding’s
definition: “"An architecture determines how system elements are identified and
allocated, how the elements interact to form a system, the amount and granular-
ity of communication needed for interaction, and the interface protocols used for
communication."” (FIELDING; TAYLOR, 2002)

3.1.2 Distributed System

A distributed system is a collection of autonomous systems that communicate
with one another through a network making use of a distributed middleware. Those
proprieties enable system resources sharing and allow them to coordinate their
activities. From the user point of view, it results in a single system with integrated
computing facility.

3.1.3 Gateway
According to RFC 2616:

"[A gateway is] a server which acts as an intermediary for some
other server. Unlike a proxy, a gateway receives requests as if it
were the origin server for the requested resource; the requesting
client may not be aware that it is communicating with a gateway."
(FIELDING et al., 1999)

This definition is going to be used along this work.

3.1.4 Service
According to W3:

"A service is an abstract resource that represents a capability of
performing tasks that represents a coherent functionality from the
point of view of provider entities and requester entities. To be

17

used, a service must be realized by a concrete provider agent."
(D. BOOTH H. HAAS, 2004)

It is a resource that performs one or more tasks. Service has a description, an
identifier and an interface. Also, it is used by a requester agent and provided by a
person or organization.

3.2 Definitions
3.2.1 Document Object Model

"The Document Object Model (DOM) is an application program-
ming interface (API) for HTML and XML documents. It defines
the logical structure of documents and the way a document is
accessed and manipulated. In the DOM specification, the term
"document" is used in the broad sense - increasingly, XML is being
used as a way of representing many different kinds of information
that may be stored in diverse systems, and much of this would tra-
ditionally be seen as data rather than as documents. Nevertheless,
XML presents this data as documents, and the DOM may be used
to manage this data." (WOOD et al., 1998)

3.2.2 Simple Network Management Protocol
Simple Network Management Protocol (SNMP) is a widely used protocol for

network management (STALLINGS, 1999). Most devices support it natively. It
is a standard protocol defined by Internet Engineering Task Force (IETF) on the
Requests for Comments (RFC) 1157 (CASE et al., 1990). There are many others
specific RFCs that refers to different versions of this protocol, each one with their
particularities.

3.2.3 Architecture elements of SNMP Management Frameworks
The terms used in this research to refer this architecture’s components are ac-

cording to RFC 3411. It "defines a vocabulary for describing SNMP Management
Frameworks, and an architecture for describing the major portions of SNMP Man-
agement Frameworks." (HARRINGTON; PRESUHN; WIJNEN, 2002) This kind of
architecture has two main entities:

• Agent: An SNMP entity containing one or more command responder and/or
notification originator applications (along with their associated SNMP engine).

• Manager: An SNMP entity containing one or more command generator
and/or notification receiver applications (along with their associated SNMP
engine).

Management Information Base (MIB) is used by the agent to store the col-
lected data and the response for manager’s requests. It is a text file following the
Abstract Syntax Notation One (ASN.1) standard. The RFC 1155 (ROSE; MC-
CLOGHRIE, 1990) defines writing rules of the MIB file in SMI V1 and the RFC
1213 (MCCLOGHRIE; ROSE, 1991), contains the object definition that should
be implemented in an agent. Figure 3.1 shows an example of SNMP management
framework architecture.

18

Figure 3.1: SNMP architecture

3.2.4 Client-Server Model

Client-server model is a distributed architecture design where tasks or workloads
are partitioned between providers of a resource or service (server) and their requesters
(client). Data storage concerns and user interface concerns are divided on this
architecture.

3.2.5 Service Oriented Architecture

This kind of architecture is a form of distributed system architecture. In this
context, a service is a logical view of system components defined in terms of their
functionality, typically carrying out a business-level operation. It is formally defined
in terms of messages exchanged between provider agents and requester agents, and
not the properties of the agents themselves. Their internal structures are abstracted
away providing the benefit to incorporate any software component or application that
can be "wrapped" in message handling code that allows it to adhere to the formal
service definition. A service is described by machine processable meta data and only
those details are exposed and have importance to the public. This description should
document the services semantics. Usually systems designed using SOA are platform
neutral, which means that messages are sent in a standardized format delivered
trough the interfaces. Services under this architecture tends to use small number of
operations with relatively large an complex messages and to be oriented toward use
over a network, though this is not an absolute requirement. trough

3.2.6 Simple Object Access Protocol

Simple Object Access Protocol (SOAP) "is a lightweight protocol intended for
exchanging structured information in a decentralized, distributed environment."
(HADLEY et al., 2007). Simplicity and extensibility are the main design goals of
this protocol.

3.2.7 Resource Oriented Architecture

"Resource Oriented Architecture (ROA) defines a specific set of web-based system
design principles derived from the implementation of the REST architecture." (DUAN

19

et al., 2012) This architecture is a loosely coupled approach to client-server model,
using a URI to directly access the resources of the devices (MAROTTA M. A., 2014).

3.2.8 Representational State Transfer

"[Representational State Transfer (ReST)] is a coordinated set
of architectural constraints that attempts to minimize latency
and network communication, while at the same time maximizing
the independence and scalability of component implementations."
(FIELDING; TAYLOR, 2002)

A rough explanation of the main ones used to derive this style is given:

• Client-server: separated roles on this schema allows the components to
evolve independently, improving portability of the user interface across multiple
platforms and also increases scalability, simplifying the server components.

• Stateless: each request from the client to the server must contain all the needed
information to understand the request. This constrain restricts the possibility
to store context on the server. The state of the transactions are completely
kept on the client side, improving visibility, reliability, and scalability. On the
other hand, it may decrease network performance and reduce server’s control
over consistent application behaviour. (FIELDING, 2000)

• Cache: data within a response to a request should receive, in an implicit
or explicit way, a label saying if it is cacheable or non-cacheable. When the
response is cacheable, the right to reuse that response data for later and
may partially or completely eliminate some interactions is given to the client,
improving efficiency, scalability, and user-perceived performance. However
it can decrease the reliability if the stored cache data differs from the ones
obtained when requested directly to the server.

• Uniform Interface: all the components must communicate using a uniform
interface. This way, the overall system architecture is simplified and the
visibility of interactions is improved, decreasing system’s coupling. Although it
allows independent evolution of each component, uniform interface degrades
efficiency because the data is standardized and is necessary to process it,
adjusting the format to the specific application’s needs.

• Layered System: the main goal of this constrain is to promote substrate
independence. The layered system trade off is the overhead addition and
latency to data processing, reducing user-perceived performance (CLARK;
TENNENHOUSE, 1990), but it can be offset by caches.

• Code on demand: permits client extensibility, allowing codes to be down-
loaded and executed as applets or scripts after deployment, (FUGGETTA;
PICCO; VIGNA, 1998) however it reduces system visibility, and thus is only
an optional constraint within ReST.

3.2.8.1 Architectural Elements
ReST defines three different architectural elements: data elements, connectors

and components. An overview of each one of them is given.

20

• Data Elements: on distributed object style, all data is encapsulated and
hidden by the processing components. On ReST architectural style, information
is moved from the location where it is stored to the location where it will
be used by, which means that the data is moved to the processor, instead of
to move the "processing agent" (e.g., mobile code, stored procedure, search
expression, etc.) to the data (FIELDING; TAYLOR, 2002). It provides a
hybrid of the three options that a distributed hypermedia architect has, focusing
on a shared understanding of data types with meta-data and limiting the scope
of what is revealed to a standardized interface. Resource, resource identifier,
representation, representation meta-data, resource meta-data, and control data
comprise ReST’s data elements. The table 3.1 shows a relation between those
elements and the modern web as is known.

Data Element Modern Web Examples
resource the intended conceptual target of a hypertext reference
resource identifier URL, URN
representation HTML document, JPEG image
representation meta-data media type, last-modified time
resource metadata source link, alternates, vary
control data if-modified-since, cache-control

Table 3.1: ReST Data Elements (FIELDING; TAYLOR, 2002)

• Connectors: used to encapsulate the activities of accessing resources and
transferring resource representations, presenting an abstract interface for com-
ponent communication. They simplify the information exchange process and
enables substitutability because of the generality of the interface. As already
was mentioned, all ReST interactions are stateless, so each request contains
all of the information necessary for a connector to understand the request,
independent of any requests that may have preceded it (FIELDING; TAYLOR,
2002). It leads to reduced consumption of physical resources and improvement
of system’s scalability, and it enables the analysis of isolated requests, allowing
to rearrange the services dynamically. There are four different types of connec-
tors: client, server, cache, resolver and tunnel. Table 3.1 relates each one to
the modern web connectors.

Connector Modern Web Examples
client libwww, libwww-perl
server libwww, Apache API, NSAPI
cache browser cache, Akamai cache network
resolver bind (DNS lookup library)
tunnel SOCKS, SSL after HTTP CONNECT

Table 3.2: ReST Connectors (FIELDING; TAYLOR, 2002)

21

• Components: are defined according to their roles in an overall application
action, and there are four different types: origin server, gateway, proxy and
user agent.

"Origin server uses a server connector to govern the name
space for a requested resource. [...] A user agent uses a client
connector to initiate a request and becomes the ultimate
recipient of the response. [...] Intermediary components
act as both a client and a server in order to forward, with
possible translation, requests and responses. A proxy com-
ponent is an intermediary selected by a client to provide
interface encapsulation of other services, data translation,
performance enhancement, or security protection. A gate-
way (a.k.a., reverse proxy) component is an intermediary
imposed by the network or origin server to provide an in-
terface encapsulation of other services, for data translation,
performance enhancement, or security enforcement. Note
that the difference between a proxy and a gateway is that
a client determines when it will use a proxy." (FIELDING;
TAYLOR, 2002)

Table 3.3 shows a comparison between ReST components and the modern web.

Component Modern Web Examples
origin server Apache httpd, Microsoft IIS
gateway Squid, CGI, Reverse Proxy
proxy CERN Proxy, Netscape Proxy, Gauntlet
user agent Netscape Navigator, Lynx, MOMspider

Table 3.3: ReST Components (FIELDING; TAYLOR, 2002)

22

4 DESIGN

A "Web Interface for Accessing Option Pricer Implementations Based on the
Heston Model" (TEIXEIRA; SCHRYVER; WIVES, 2013) was developed based on
client-server model. The mentioned work implements Remote Procedure Calls (RPC)
to start the simulations on the target-devices. It uses different protocols to connect
the system’s components, some of them are proprietary (GWT-RPC, for instance)
and it might be a restriction, if the technology of infrastructure’s components must
change in a near future. A central platform is needed to measure the performance
(energy consumption and execution time) of the hardware acceleration finance
algorithms. It is possible then to make a parallel between network management tool
and this benchmark tool. Solutions of how to make use of currently wide spread
network management protocols were investigated, aiming to use standard protocols
to exchange data trough the architecture’s elements, avoiding compatibility problems
when a new device joins the topology. The Simple Network Management Protocol
(SNMP) is currently the most used protocol for network management solutions.
Most devices support natively SNMP either version 1, 2 or 3. It is not difficult to
implement this protocol on the ones that are not supporting it natively. Which
means that, if the benchmark tool uses SNMP instead of a customized protocol, less
effort is demanded during implementation, integration, support and maintenance
phases. In order to achieve this goal, the first idea that stands out is to implement a
gateway protocol to translate the XML data from the web interface to SNMP for
the back end to process it.

4.1 Protocol Gateway

Web services are newer than the SNMP protocol on the network management
field. Many research have been performed to measure whether they are more efficient
or not, for example (GRANVILLE et al., 2009), (NEISSE et al., 2004), (Sloten;
Pras; Sinderen, 2004) and (PAVLOU et al., 2004). The main focus of those works
is to compare bandwidth consumption, response time, memory consumption and
processing time. Three different translation methods were analysed: Document
Object Model-based, HTTP-based and SOAP-based translations.

4.1.1 DOM-Based Translation

DOM-Based Translation infrastructure must have a component that handles the
manager requests and translates them from XML to SNMP and the other way around.
Therefore, the target devices can communicate with the manager with a standard

23

protocol.The manager has no need to understand SNMP. It adds an abstraction layer
on the top of communication level between the existing components. If a DOM-based
translation would be implemented on the existing infrastructure (figure 2.1), the
XML-based manager will correspond to the union of web-back end servlet with the
client socket and the server socket, and the gateway will be the libHeuston library.
Figure 4.1 illustrates the data flow through this infrastructure.

Figure 4.1: DOM-Based Translation

4.1.2 HTTP-based Translation

HTTP-based translation is a method which also uses a gateway to translate from
XML to SNMP. The difference between the DOM-based translation is that, instead of
using a DOM Interface that receives and handles raw XML, the workload to translate
is shared between XML-Manager and the gateway itself. The gateway receives Xpath
or Xquery to translate into SNMP requests. On the existing architecture, the relation
between the elements of this translation is identical to the DOM-based translation, as
the main difference is on the communication between the manager and the gateway.
On the benchmark tool, this method is recommended since the translations are the
main working load, so if it could be shared, probably the performance will be better.

Figure 4.2: HTTP-Based Translation

4.1.3 SOAP-Based Translation
The Simple Object Access Protocol (SOAP) defines a standard method to transfer

XML-encoded messages over HTTP. In other words:

"it provides a better solution than a proprietary XML/HTTP
because it is an open standard with a growing body of developers
and vendors supporting it. SOAP defines a standard vocabulary
and a structure for messages between communication peers, which
eliminates an overhead of parsing and processing messages by a
proprietary method in each gateway." (OH et al., 2002)

Many devices comes natively with SOAP support. On this case not only the link
between gateway and target devices will be using a standardized protocol, likewise
the communication between manager and gateway. The used protocols for a possible
solution are shown in figure 4.3. This approach maps SNMP messages directly to
SOAP operations.

24

Figure 4.3: SOAP-Based Translation

The main advantage of this solution is that there is no need of maintenance
procedure on the gateway side to implement new operations. On the other hand,
it is not easy for the manager to handle the requests and responses. It needs
effort to implement new operations and all of them are exposed in a way that the
manager should be aware of all the small details of SNMP information, increasing
its complexity.

4.2 Web-Services Based Management

4.2.1 SOAP-Based Web Services

In the study "On the Management Performance of Networked Environments
Using Web Services Technologies" (GRANVILLE et al., 2009) SOAP-based web
services gateways are proposed and analysed. They present three different approaches:
protocol-level gateway, object-level gateway and service-level gateway. It was already
mentioned in last section the protocol-based gateway details. In this subsection is
presented a brief explanation of the other two approaches, analysing their advantages
and disadvantages.

Object-level Gateways map management information to a web service operation.
For example, just one request is sent to get the name of the available scripts on
determined device. When using SNMP, it requires many requests and responses. For
example, suppose that one of the target devices has four scripts available. Then,
when SNMP is used directly, five requests are needed: four to retrieve the script
names and the last one will request another name, and will get a response that there
are no more scripts available. It also receives the same number of responses. This is
an improvement comparing to the protocol gateway, because the web service does not
deal any more directly with the OIDs, so the gateway controls the interaction with
the SNMP agent. One disadvantage may be the need to update it as soon as new
information is available on the target devices MIB that must be very well defined.

Service-level gateways are those that map the management services of a MIB
module. Usually it is difficult to define the services exposed by this module, as there
is no concrete element that formally defines it. One operation mapped could be the
association of the download request, checking and execution of a management script
operation on the object-level, for example. This implementation hides SNMP details
as well as all the steps to get a meaningful response, but it also implies that for each
new MIB module, one new service must be implemented.

On their results was shown that usually a service-level gateway consumes less
bandwidth as SNMP pure management system, once it aggregates SNMP information
into a single SOAP request-reply interaction. Also, the perceived execution time is
as good as the approach without web services and they are really easy to use because
service details are hidden from the manager. On the other hand, they are difficult to
maintain and require human interpretation of MIB services.

25

4.2.2 ReST-Based Web Services

As mentioned, ReST provides a loosely coupled approach to client-server model.
This proposal aims to maximize the independence and scalability of the architecture
components, and also to minimize latency and network communication. Those
characteristics attend the requirements which the other approaches could not fulfil.
Each resource has a URI as interface and HTTP is the supported protocol on
transport layer. Also, instead of using web services description language (WSDL) to
describe the web services, it uses Web Application Description Language (WADL).
WADL is a machine-readable XML description of HTTP-based web applications,
typically for ReST Web Services (HADLE, 2009). Data types supported on this
approach are directly supported, without need to parse. The used standards are the
web standards, for instance URL, HTTP methods, XML and mime types.

In the literature exist many studies comparing service oriented architecture
and resource oriented architecture solutions for mobile hosts, mainly estimating
SOAP and ReST approaches. The architectural decision were based on their results,
since the target devices of this work have many similarities related to processing
and network constrains. ReST proved to be more suitable on mobile hosts. The
parameters used to achieve that result are very important to this research, since
those are the main concern.

Al Shahwan and Moessner (ALSHAHWAN; MOESSNER, 2010)(ALSHAHWAN;
MOESSNER; CARREZ, 2010) observed that the average processing time increases
when the request message size increases. On their first analysed scenario, the ReST-
based web-services had better performance than SOAP-based framework, mainly
because SOAP demands more time to process bigger messages, while ReST has
explicitly the information on the HTTP request. The second scenario they analysed
scalability and reliability. They stressed with concurrent requests two mobile hosts
in order to check when they will stop to respond. ReST solution shown to be
more rigid and robust to changes in the number of concurrent requests because it
supports cache and demands light power processing. It has a bigger threshold to
start reject requests than SOAP. The SOAP-based framework starts to queue the
requests to process them, starting to reject requests sooner because it needs more
time to parse. Based on those results, they conclude that the ReST-based mobile web
services framework is more scalable and reliable than the SOAP-based mobile web
services framework. Finally they tested resource consumption and discovered that
SOAP-based framework consumes a much lager amount of memory than ReST-based
framework for the same message size.

Marotta, Santanna, Granville and Tarouco on their work noted that resource
oriented architecture(ROA) on network management scenarios could have a response
time seven times faster than service oriented architectures. Also, "[ROA] consumes
32% less power to process a query, in addition of being less influenced by other
parameters"(MAROTTA M. A., 2014).

4.3 Architectural Decisions
Based on the mentioned performance results of previous work, a ReST framework

was chosen to be used. At this maturity stage of the project, flexibility and scalability
are needed in order to match the current requirements. In the figure 4.4 it is possible
to see how currently the system is architected. The relation between the components

26

compared with the previous demonstrator is as following: dispatcher as the union of
web back-end servlet and client socket; and working node as server socket and C++
libHeuston together. The user interface is connected to dispatcher and is completely
independent and loosely decoupled from the functional part of the system.

Figure 4.4: Current Architecture - ReST-based web service

27

5 IMPLEMENTATION

Once the architecture type to use have been decided, the search for frameworks
which better attend the new requirements was started. The system should be capable
to interconnect heterogeneous hardware, with as low impact as possible, using a
standard protocol to avoid compatibility problems. It has to be able to implement
and integrate new benchmark sets in a effortless way. The overall scalability should
be increased, without have processing or network overhead.

The library to perform the benchmark changed from C++ (libHeston) to a
Python implementation (pyheston), while the analysis of the framework possibilities
have been done. The project members were more familiar with Python than Java.
Considering the team expertise, the system will be easy to maintain if a switch from
Java to Python happens.

Frameworks and integrated development environments (IDEs) that implement
ReST natively were searched. Some alternatives arrived from this: Netbeans -
RESTful web services, MyEclipse - ReST web services, CakePHP, Yii framework,
web2py. The use of the web2py web framework was decided to implement the new
architectural style of the benchmark tool because of its useful features, as well as
good documentation and support. On next section a more detailed view over this
framework is presented.

5.1 Framework web2py
web2py(PIERRO, 2013) is an Open Source Web Framework distributed under

the GNU Lesser General Public License version 3. It was created by a cooperation
between professional community and university professors in Computer Science
and Software Engineering. Massimo Di Pierro started this project and he aims
three mains goals: easy of use, rapid development and security. The framework is
completely backward compatible, since their first version and they are planning to
not break it on future versions. Easy to run, web2py contains all the components
needed to develop fully functional web applications, and the only requirement is a
platform able to execute Python 2.5/2.6/2.7, or Java with Jython.

This web framework uses Model View Controller (MVC) pattern, alike the
previous work (TEIXEIRA; SCHRYVER; WIVES, 2013), and provides specific tools
to the developer in each one of this parts for either test, develop or design. It
implements server-side form validation and postbacks which together with MVC
pattern enforce good software engineering practice. Database Abstraction Layer
(DAL) is used to communicate with the database. This feature permits to change
the database technology transparently, without make big changes on the application.

28

Security is very important for information technology, either on development
or infrastructure. web2py follows well established practices to handle many issues
which can lead to security vulnerabilities, for example validate all inputs, escapes
all outputs, renames uploaded files. This decreases the chances of a developer
introducing vulnerability on the system.

Other useful features are the ticket system (from administrative point of view),
portable cron, scheduler, internalization support, multiple authentication methods,
role based access control and SSL support. Natively supports multiple caching
methods for scalability. The community support is very helpful and web2py has an
excellent documentation in many languages. It is inspired by Ruby on Rails and
Django. "web2py is less verbose than Java-based frameworks and its syntax is much
cleaner than PHP-based frameworks. This makes applications simpler to develop,
and easier to read and maintain." (PIERRO, 2013)

5.2 MVC schema
As mentioned on design decisions chapter, the suggested benchmark tool is

developed using MVC-model, enforcing the good software engineering practices. On
the next subsections a more detailed view of each one of the them is presented.

5.2.1 Model

The model is composed of three different files: db.py, db_model.py and menu.py.
The first file refers to general configuration, as the database connection and authenti-
cation configuration, for example. The database schema is defined on db_model.py
and all the menu options and configurations as well as title and subtitle are stored
on menu.py.

The result of the database connection using the DAL return a object, because on
web2py everything is an object. Listing 5.1 shows how it is done. db is the connection
result and all the methods, that may be applied to the database, should be done on
this object.

1 db = DAL(’mysql : // username : password@host/FinanceBenchmark ’ , poo l_s i ze=1,
check_reserved=[’ a l l ’])

Listing 5.1: Example of database conection

On listing 5.2 is shown how table and its fields are defined on db_model.py. The
table market_parameters is build from line one to eight. The method which creates
a table is db.define_table() and it receives as parameters the table name, followed
by the fields definition. To define a field, it is used the function Field() and its
obligatory parameters are field name followed by the field type or reference to another
table field (foreign key). The DAL allows to implement constrains when defining
a field, but was decided to first create all the tables and at the end implement the
constrains, to make clearer and because some fields depend on the content of other
fields. The requirements of market_parameters fields are implemented between
lines ten to sixteen. For example on line ten of the given table definition, db is
the object that represents the database used on web2py interface. It is followed by
the name of the table, maket_parameter, and the name of the field, correlation.
The requires after the name of the field is a method which is used to validate the
content of a insert, update or delete operation over this specific field. It has a big set

29

of available functions to execute this validation. If there are more requirements over
one field, it is necessary to specify into a list, otherwise just the first one will be used.
Correlation on Heuston Model must have a float value between −1 and 1. Teixeira
et al. (TEIXEIRA; SCHRYVER; WIVES, 2013) provides on his work a detailed
explanation of each one of the parameters needed to perform the benchmarks.

1 db . de f ine_tab l e (’ market_parameters ’ ,
2 Fie ld (’ c o r r e l a t i o n ’ , ’ double ’) ,
3 Fie ld (’ long_run_variance ’ , ’ double ’) ,
4 Fie ld (’ speed_of_revert ion ’ , ’ double ’) ,
5 Fie ld (’ v o l a t i l i t y_ o f_ v o l a t i l i t y ’ , ’ double ’) ,
6 Fie ld (’ spot_pr ice ’ , ’ double ’) ,
7 Fie ld (’ s p o t_vo l a t i l i t y ’ , ’ double ’) ,
8 Fie ld (’ r i s k l e s s_ i n t e r e s t_ r a t e ’ , ’ double ’))
9

10 db . market_parameters . c o r r e l a t i o n . r e qu i r e s = [IS_NOT_EMPTY() ,
IS_FLOAT_IN_RANGE(−1 ,1)]

11 db . market_parameters . long_run_variance . r e qu i r e s = [IS_NOT_EMPTY() ,
IS_FLOAT_IN_RANGE(−1 ,1)]

12 db . market_parameters . speed_of_revert ion . r e qu i r e s = [IS_NOT_EMPTY() ,
IS_EXPR(’ f l o a t (va lue)>0 ’)]

13 db . market_parameters . v o l a t i l i t y_ o f_ v o l a t i l i t y . r e qu i r e s = [IS_NOT_EMPTY
() ,IS_EXPR(’ f l o a t (va lue)>0 ’)]

14 db . market_parameters . spot_pr ice . r e qu i r e s = [IS_NOT_EMPTY() ,IS_EXPR(’
f l o a t (va lue)>0 ’)]

15 db . market_parameters . s p o t_vo l a t i l i t y . r e qu i r e s = [IS_NOT_EMPTY() ,IS_EXPR
(’ f l o a t (va lue)>0 ’)]

16 db . market_parameters . r i s k l e s s_ i n t e r e s t_ r a t e . r e qu i r e s = [IS_NOT_EMPTY() ,
IS_EXPR(’ f l o a t (va lue)>0 ’)]

Listing 5.2: Example of table definition

All the web2py libraries are exposed to the user applications as global objects.
The class gluon.storage.Storage extends the Python dict class. There are some
objects which are instances of this class. request, response and session are the
more important on the suggested implementation.

1 active_path = reques t . c o n t r o l l e r
2 re sponse .menu = [
3 (T(’Home ’) , (r eque s t . f unc t i on==’ index ’) , URL(’ d e f au l t ’ , ’ index ’) , [])

,
4 (T(’ S imulat ion ’) , (r eque s t . f unc t i on==’ add_simulation_from_benchmark ’)

, URL(’ d e f au l t ’ , ’ add_simulation_from_benchmark ’) , []) ,
5 (T(’ Resu l t s ’) , (r eque s t . f unc t i on==’ r e s u l t s ’) , URL(’ d e f au l t ’ , ’ r e s u l t s ’

) , []) ,
6 (T(’ Admin i s t rat ive ’) , (r eque s t . f unc t i on==’ admin ’) , URL(’ d e f au l t ’ , ’

admin ’) , [])
7]
8

9 DEVELOPMENT_MENU = False

Listing 5.3: Menu definition

The menu is constructed by the MENU helper. On listing 5.3 is shown how the
response.menu optional parameter to pass a navigation menu tree to the view was
used. It is a list of lists or of tuples. The first argument of each list/tuple is the text
to be displayed for this element. The second one is a boolean to define if this item is
active or not. When set to True, the MENU helper will add a "web2py-menu-active"

30

class to the for that item, making possible to customize easily the css. The
third one is a HTML helper (which could include nested helpers), and the MENU
helper will simply render that helper rather than creating its own <a> tag on the
respective view. The fourth argument is optional and is related to the possibles
nested sub-menus. It is possible to enable a menu to help when is developing a web
application by just setting DEVELOPMENT_MENU option to True. It is going to add to
the menu an item called web2py with a sub-menu with links to many documentation
reference and to the administrative interface of the application.

5.2.2 Controller

On controller are located the files responsible for apply updates or changes to the
model. It is possible to have as many controllers as is wanted, with no restrictions.
Two separated controllers are being used on this benchmark tool. One to handle the
administrative interface of the server called appadmin.py, which is responsible for
the ticket system, log, and server security polices for example, and all the functions
related to the benchmark tool are defined on the default.py, as well as the ReST
URIs and operations.

5.2.3 ReST Application Programming Interface (API)

The web2py web framework has an API which implements ReST, as was already
mentioned. According to ReST architecture, each resource has its own URI. On
this context it is specified as a URL. There are four methods to interact with
a resource which should be implemented: create, read, update and delete. The
set of those operations is known as CRUD. The system interaction is over HTTP
protocol and makes use of them to pass instructions to the resources. The settled
operations are POST, GET, PUT and DELETE, respectively. To understand the
application request, it is necessary to parse the URL to get the parameters to the
operations. web2py provides the decorator request.restful() which should be
placed before the ReST action on the controller. This decorator allows to filter the
request arguments and then process them individually.

It is necessary to associate each resource to an URL aiming to expose and to make
it visible. There is a function called parse_as_rest which, as the name suggest,
allows to parse the URL as ReST requests. When is set to ’auto’, it generates all
the possible combinations of resources into the system. Since this is an experimental
function and is not wanted to expose all the elements of the infrastructure as a global
resources, it was decided to generate all the paths to address the available resources.
This was possible because there is a small set of operations to perform in order to
get the required system responses and requests to perform the benchmarks.

To be able to read the ReST response also as JSON, this library had to be imported.
The system uses HTTP authentication and to enable it the HTTPBasicAuth was
imported from requests.auth. This is shown on listing 5.4 and those imports are
placed on beginning of the default controller.

1 import j son
2 import r eque s t s
3 from reque s t s . auth import HTTPBasicAuth

Listing 5.4: Importing Libraries

Listing 5.5 shows how the ReST interface is build. Right after the beginning of

31

the controller definition, a decorator is placed to say that this controller should uses
the ReST API. The controller function started to be defined and it was named as
api. The third line is to enable different kind of return formats. If at the end of the
ReST request an XML extension was placed, the system is going to give a response
on XML format. The same happen to other formats as JSON, RSS and CSV. Inside
api(), the methods GET, POST, PUT and DELETE are created. Depending on
which kind of request is made, it is going to respond with a different action.

Inside the GET, the patterns to pick data from the data model are beeing de-
fined. The patterns described here are just examples of how it is done. Those
ones are exposing the benchmark_set resource. Line seven is making benchmark be-
ing an alias to the benchmark_set table, so now it is possible to access this resource as
http://application_host/default/api/scheduler_worker, where "application_host"
is the address to where the application is running, followed by controller name (de-
fault), desired function to access the controller and resource name. When a GET
method is applied over this URI resource, it retrieves all the registers of the table
benchmark_set. The next line exposes the resource in a smaller granularity, being pos-
sible now to request just a field of the registers, and not all the fields. To execute more
complex queries, it is possible to use some methods, as "startswith" which returns all
the exposed resources of that specific URI starting with the requested string. Example:
if is wanted to retrieve all the benchmark sets starting with "asian", it is needed to send
a GET to the URI http://application_host/default/api/benchmark/asi.csv
and then an CSV view with the query is get as a result. When the list of patterns
is ready, it can be passed as parameter of the function parse_as_rest and expose
the resources. The subsequent parameters ’args’ and ’vars’ came from the URL
itself and for the payload, respectively. After parsing the request and retrieve the
data, is verified if the response was 200 which means OK, the standard response
for successful HTTP requests. In positive case, a dictionary is returned with the
response, otherwise the HTTP error is raised.

1 @request . r e s t f u l ()
2 de f api () :
3 re sponse . view = ’ g ene r i c . ’+reque s t . ex t ens i on
4

5 de f GET(∗ args ,∗∗ vars) :
6 pat t e rns = [
7 " /benchmark [benchmark_set] " ,
8 " /benchmark [benchmark_set] / : f i e l d " ,
9 " /benchmark/{benchmark_set . name . s t a r t sw i t h } " ,

10 " /benchmark/{benchmark_set . name}/ : f i e l d " ,
11 " /benchmark/{benchmark_set . id }/ : f i e l d "
12]
13

14 par s e r = db . parse_as_rest (patterns , args , vars)
15

16 i f pa r s e r . s t a tu s == 200 :
17 re turn d i c t (content=par s e r . r e sponse)
18 e l s e :
19 r a i s e HTTP(par s e r . s tatus , pa r s e r . e r r o r)
20

21 de f POST(table_name ,∗∗ vars) :
22 re turn db [table_name] . va l idate_and_insert (∗∗ vars)
23

24 de f PUT(table_name , record_id ,∗∗ vars) :

32

25 re turn db(db [table_name] . _id==record_id) . update (∗∗ vars)
26

27 de f DELETE(table_name , record_id) :
28 re turn db(db [table_name] . _id==record_id) . d e l e t e ()
29

30 re turn d i c t (GET=GET, POST=POST, PUT=PUT, DELETE=DELETE)

Listing 5.5: Restfull interface

The action POST is used to insert new records on the database. All the benchmark
tool data is stored on database. This request receives a table name as parameter,
from the URL, and the data to be inserted is transferred trough the payload. The
DELETE action is called when is wanted to remove any previously inserted record.
It needs the table name and register identifier to execute. When an update is wanted,
the action PUT is the proper one to request. Its parameters are table name, record
identification and the update data. It is an hybrid from POST and DELETE actions.
The ReST controller definition allows to use it and call it from the user interface
and access the resources.

Related to the user interface, a controller is also needed. On listing 5.6 is shown
how was implemented the one responsible for add a new simulation from existing
benchmark. There are comments along the code to explain each important step.

1 @auth . r equ i r e s_ l og in ()
2 de f add_simulation_from_benchmark () :
3 " " "
4 Star t new s imu la t i on from the benchmark l i s t
5 " " "
6 " " " " Get the names o f a l l e x i s t i n g benchmarks " " "
7 search_str = " http :/// app l i ca t i on_host / d e f au l t / api /benchmark_set . j son

"
8 benchmark_row = json . l oads (r eque s t s . get (search_str) . t ex t) ;
9

10 " " " Create a l i s t with the benchmark names " " "
11 benchmarks = [benchmark_row [’ content ’] [i] [’name ’] f o r i in range (l en (

benchmark_row [’ content ’]))]
12

13 " " " Get the names o f a l l a c t i v e working nodes " " "
14 search_str = " http :/// app l i ca t i on_host / d e f au l t / api / scheduler_worker /

a c t i v e . j son "
15 working_nodes_row = json . l oads (r eque s t s . get (search_str) . t ex t) ;
16

17 " " " Create a l i s t with a l l a c t i v e working nodes names " " "
18 working_nd = [(working_nodes_row [’ content ’] [i] [’ id ’] ,

working_nodes_row [’ content ’] [i] [’ worker_name ’]) f o r i in range (l en (
working_nodes_row [’ content ’]))]

19

20 " " " Create a form to add new s imu la t i on based on pre−determined
benchmarks " " "

21 s imulation_form = SQLFORM. f a c t o ry (
22 Fie ld (’ benchmark_set ’ , r e q u i r e s=IS_IN_SET(

benchmarks , ze ro=T(’−− Se l e c t benchmark s e t −− ’))) ,
23 Fie ld (’ s t a r t_ l e v e l ’ , ’ i n t e g e r ’ , d e f au l t =1, r e qu i r e s=

IS_EXPR(’ i n t (va lue)>0 ’)) ,
24 Fie ld (’ f i n a l_ l e v e l ’ , ’ i n t e g e r ’ , d e f au l t =16, r e qu i r e s=

IS_EXPR(’ i n t (va lue)>0 ’)) ,
25 Fie ld (’ r e f e r en c e_pr i c e ’ , ’ double ’ , r e q u i r e s=IS_EXPR(’

f l o a t (va lue)>0 ’)) ,

33

26 Fie ld (’ p r i c e_pr e c i s i on ’ , ’ double ’ , r e q u i r e s=IS_EXPR(’
f l o a t (va lue)>0 ’)) ,

27 Fie ld (’ ava i l ab l e_r e s ou r c e s ’ , ’ boolean ’ , r e qu i r e s=
IS_IN_SET(working_nd , mu l t ip l e=True) , widget=SQLFORM. widgets .
checkboxes . widget))

28

29 " " " Va l idate the input data from the form " " "
30 i f s imulation_form . va l i d a t e () :
31

32 " " " Get a l l the f i e l d s o f benchmark_set t ab l e which id corresponds
to the s e l e c t e d one from UI " " "

33 search_str = " http :// app l i ca t i on_host / d e f au l t / api /benchmark_set/ "+
simulation_form . vars . benchmark_set+" . j son "

34 sel_benchmark_row = json . l oads (r eque s t s . get (search_str) . t ex t) ;
35

36 " " " Generates the payload to i n s e r t a new job r e g i s t e r to the
database " " "

37 payload = { ’ market_parameters ’ : benchmark_row [’ content ’] [0] [’
mkt_param ’] , ’ option_parameters ’ : benchmark_row [’ content ’] [0] [’
opt_param ’] , ’ username ’ : auth . user_id }

38 new_job = reque s t s . post (" http :// app l i ca t i on_host / d e f au l t / api / job .
j son " , data=payload)

39

40 " " " i f i t was s u c c e s s f u l y added , then add new algor i thm parameter
r e g i s t e r " " "

41 i f (new_job == 200) :
42 payload = { ’ p r i c e_pr e c i s i on ’ : s imulation_form . vars .

p r i c e_prec i s i on , ’ r e f e r en c e_pr i c e ’ : s imulation_form . vars .
r e f e r ence_pr i c e , ’ s t a r t_ l e v e l ’ : s imulation_form . vars . s t a r t_ l ev e l , ’
f i n a l_ l e v e l ’ : s imulation_form . vars . f i n a l_ l e v e l }

43 new_alg_param = reque s t s . post (" http :// app l i ca t i on_host / d e f au l t /
api / algorithm_parameters . j s on " , data=payload)

44 i f (new_job == 200) :
45 " " " i f i t was s u c c e s s f u l y added , then a s s i gn a l l the

s imu la t i on s to the s e l e c t e d working nodes " " "
46 f o r r e s ou r c e in range (l en (s imulation_form . vars .

ava i l ab l e_r e s ou r c e s)) :
47 payload = { ’ compute_server ’ : r e source , ’ alg_param ’ :

new_alg_param . id , ’ job_id ’ : new_job . id }
48 new_sim_param = reque s t s . post (" http :// app l i ca t i on_host /

d e f au l t / api / algorithm_parameters . j s on " , data=payload)
49 i f (new_sim !=200) :
50 " " " I f the re are any er ror , t e l l the user " " "
51 re sponse . f l a s h = T(’The s imu la t i on could not begin ! ’)
52 e l s e :
53 re sponse . f l a s h = T(’The parameters could not be added ! ’)
54 e l s e :
55 re sponse . f l a s h = T(’The task could not be s t a r t ed ! ’)
56 e l i f s imulation_form . e r r o r s :
57 re sponse . f l a s h = T(’ Please check f o r e r r o r s on form ! ’)
58 e l s e :
59 re sponse . f l a s h = T(’ Please f i l l the form ’)
60 re turn d i c t (s imulation_form=simulation_form)

Listing 5.6: Add new simulation from existing benchmark

34

5.2.4 View

The files inside the section view are responsible for rendering the user interface,
in this case, the web pages. There are some formats pre defined and they are known
as generics. This is what allows to receive the responses in many different formats, as
JSON, for example. The definition is given inside each file called generic, followed by
the respective extension. Listing 5.7 exhibits the content of the file generic.json.

1 {{ from gluon . s e r i a l i z e r s import j son }}{{=XML(j son (re sponse . _vars)) }}

Listing 5.7: Structure of the file generic.json

The file layout.html contains the basic structure of the application design. On
this file is defined where all elements are going to be displayed on screen and to each
css class they belong. All the other pages of the benchmark tool application should
extend this file. It also includes the file web2py_ajax.html, permitting to generate
Ajax requests. Listing 5.8 shows the code used to generate the final result presented
on picture 5.1.

1 {{ extend ’ layout . html ’ }}
2 {{=simulation_form }}

Listing 5.8: Structure of the file add_simulation_from_benchmark.html

Figure 5.1: Simulation form layout

35

All the string which are being displayed to the user are inside the helper T(). This
enables to translate the system in an easy way. There are some files inside the group
languages of the framework which contains a dictionary to translate automatically
the interface according to the user preferences.

5.3 Task Schedule
In order to perform on a working node the benchmark, the schedule module

of web2py needs to be enable. The database contains the central information to
schedule the tasks. On the file db_model.py were placed the lines described on
listing 5.9. This adds three more tables on the database model: scheduler_worker,
scheduler_task and scheduler_run. All the information about tasks running,
available resources, last heartbeat, run_result, are stored at this tables.

1 from gluon . s chedu l e r import Scheduler
2 s chedu l e r = Scheduler (db)

Listing 5.9: Enable scheduler

Despite enabling the scheduler module, it is needed to define the task format. A
new task on this context is a new simulation. On listing5.10 is shown how one of
the benchmarks is triggered and the results stored on database. Defining tasks and
implementing them in such a modular way allows us to easily change the current
scheduler engine to another more dynamic.

1 de f new_sim(args) :
2 import subproces s
3 " " " begin task execut ion " " "
4 output = subproces s . check_output ([’ python3 ’ , ’ / var / l i b /pyheston/

heston_web2py . py ’ , a rgs])
5 r e s u l t s=output [1 : −2] . s p l i t (’ , ’)
6 " " " S to r e s r e s u l t s on database " " "
7 payload = { ’ energy ’ : r e s u l t s [0] , ’ runtime_value ’ : r e s u l t s [1] , ’ p r i c e ’ :

r e s u l t s [2] , ’ p r e c i s i on_va lue ’ : r e s u l t s [3] }
8 r = r eque s t s . post (" http : / / 1 2 7 . 0 . 0 . 1 : 8 0 0 0 / webpr icer / d e f au l t / api /

r e s u l t s . j s on " , data=payload)
9

10 re turn r e s u l t s

Listing 5.10: New task definition

36

6 CONCLUSION

The present investigation has compared different ways to interconnect and execute
algorithms in distributed heterogeneous hardware. The development of a new
benchmark tool was undertaken to design a more scalable, flexible and standard
solution, compared to the previous work. Returning to the proposed goals at the
beginning of this study, it is now possible to state that the change of the architectural
style was the main factor to achieve better results.

At the beginning of this work many issues related to the fast change of the
requirements as well as changes on other infrastructure components had happened.
Flexibility was a very important aim to achieve on the context of this research. The
first approach was to reuse and remodel the current version of the benchmark tool,
aiming to save implementation time. After the first tries to modify the existing tool,
it was realized that there were many changes and it will continue changing. This
was the main reason to rethink on the architectural model of the tool.

The second important decision was the framework. Some of them were tried for a
while and it was noticed that many of the tries had not desirable restrictions. Many
claims to easily implement ReST applications, but this fact was not true if you were
not familiar with the framework or the library. This was one of the advantages of
using web2py, because the deployment and development time were reduced. The
good documentation and the helpful community support are differential comparing
to others tools.

These research findings suggest that in general resource oriented architecture
with representational state transfer interfaces is the best choice for network man-
agement of target-devices with memory and processing constrains. Employing this
architectural style, the system components coupling was reduced, favouring the scal-
ability improvement. The chosen framework contributed to keep the good software
engineering practices, facilitated the implementation of basic security techniques and
other relevant features, as internalization support. The methods used to perform
benchmarks may be applied to execute other algorithms on distributed heterogeneous
hardware. If the scheduler is changed to another, it may be possible to execute
smarter decisions, considering queue and time to processing based on benchmark
results, for example.

The current investigation was limited to a small controlled testing context.
However, with a limited scope, caution must be applied, as the findings might not
be transferable to bigger infrastructures. It is needed to perform a workload test to
decide which is the suitable number of schedulers, as well the number of supported
database concurrent connections.

Further research might explore the security concerns of this system. Despite small

37

issues being addressed by the framework and during the development phase, the
overall security of the system is insufficient and needs special attention. A further
study regarding the role of the scheduler would be worthwhile, analysing how to
better schedule the tasks. The mentioned change may allow expand the system
to not just perform benchmarks, but also perform distributed computation aiming
better use of integrated resources.

38

AppendixA

A.1 Previous Database Schema

Figure A.1: Previous Database Schema

39

A.2 Current Database Schema

Figure A.2: Current Database Schema

40

REFERENCES

ALSHAHWAN, F.; MOESSNER, K. Providing SOAP Web Services and RESTful
Web Services from Mobile Hosts. In: INTERNET AND WEB APPLICATIONS
AND SERVICES (ICIW), 2010 FIFTH INTERNATIONAL CONFERENCE ON.
Anais. . . [S.l.: s.n.], 2010. p.174–179.

ALSHAHWAN, F.; MOESSNER, K.; CARREZ, F. Evaluation of Distributed SOAP
and RESTful MobileWeb Services. International Journal on Advances in Net-
works and Services, [S.l.], v.3, n.3 & 4, p.447 – 461, November 2010. 2010, c©
Copyright by authors, Published under agreement with IARIA - www.iaria.org.

CASE, J. et al. Simple Network Management Protocol (SNMP). [S.l.]: IETF,
1990. n.1157. (Request for Comments).

CLARK, D. D.; TENNENHOUSE, D. L. Architectural Considerations for a New
Generation of Protocols. In: ACM SYMPOSIUM ON COMMUNICATIONS ARCHI-
TECTURES & PROTOCOLS, New York, NY, USA. Proceedings. . . ACM,
1990. p.200–208. (SIGCOMM ’90).

D. BOOTH H. HAAS, F. M. E. N. M. C. C. F. D. O. Web Services Architecture.
Latest version available at http://www.w3.org/TR/ws-arch/ .

DUAN, K. et al. Composition of Engineering Web Services with Universal Distributed
Data-flows Framework Based on ROA. In: THIRD INTERNATIONAL WORKSHOP
ON RESTFUL DESIGN, New York, NY, USA. Proceedings. . . ACM, 2012. p.41–
48. (WS-REST ’12).

FIELDING, R. et al. Hypertext Transfer Protocol – HTTP/1.1. Updated by
RFCs 2817, 5785, 6266, 6585, RFC 2616 (Draft Standard).

FIELDING, R. T. Architectural Styles and the Design of Network-based
Software Architectures. 2000. Tese (Doutorado em Ciência da Computação) —
University of California, Irvine.

FIELDING, R. T.; TAYLOR, R. N. Principled Design of the Modern Web Architec-
ture. ACM Trans. Internet Technol., New York, NY, USA, v.2, n.2, p.115–150,
May 2002.

FUGGETTA, A.; PICCO, G. P.; VIGNA, G. Understanding Code Mobility. IEEE
Transactions on Software Engineering, Los Alamitos, CA, USA, v.24, n.5,
p.342–361, 1998.

41

GRANVILLE, L. Z. et al. Handbook of Research on Telecommunications
Planning and Management for Business. [S.l.]: IGI Global, 2009. p.724–741.

HADLE, M. Web Application Description Language. [S.l.]: W3C, 2009. W3C
Member Submissionn, http://www.w3.org/Submission/wadl/.

HADLEY, M. et al. SOAP Version 1.2 Part 1: messaging framework (second edi-
tion). [S.l.]: W3C, 2007. W3C Recommendation, http://www.w3.org/TR/2007/REC-
soap12-part1-20070427/.

HARRINGTON, D.; PRESUHN, R.; WIJNEN, B. An Architecture for De-
scribing Simple Network Management Protocol (SNMP) Management
Frameworks. Updated by RFCs 5343, 5590, RFC 3411 (INTERNET STANDARD).

JIN, Q.; LUK, W.; THOMAS, D. On Comparing Financial Option Price Solvers on
FPGA. In: FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES
(FCCM), 2011 IEEE 19TH ANNUAL INTERNATIONAL SYMPOSIUM ON.
Anais. . . [S.l.: s.n.], 2011. p.89–92.

LAI, Y.; SPANIER, J. Applications of Monte Carlo Quasi-Monte Carlo methods
in finance: option pricing. In: THIRD INTERNATIONAL CONFERENCE ON
MONTE CARLO AND QUASI-MONTE CARLO METHODS. Proceedings. . .
Springer-Verlag, 1998. p.284–295.

MAROTTA M. A., B. C. B. R. J. G. L. Z. T. L. M. R. Evaluating Management
Architectures for Internet of Things Devices. In: WIRELESS DAYS (WD), 2014
IFIP, Rio de Janeiro, Brazil. Anais. . . [S.l.: s.n.], 2014. p.11–12. Submitted.

MCCLOGHRIE, K.; ROSE, M. Management Information Base for Network
Management of TCP/IP-based internets:mib-ii. Updated by RFCs 2011, 2012,
2013, RFC 1213 (INTERNET STANDARD).

NEISSE, R. et al. Implementation and bandwidth consumption evaluation of SNMP
to Web services gateways. In: NETWORK OPERATIONS AND MANAGEMENT
SYMPOSIUM, 2004. NOMS 2004. IEEE/IFIP. Anais. . . [S.l.: s.n.], 2004. v.1, p.715–
728 Vol.1.

OH, Y.-J. et al. Interaction Translation Methods for XML/SNMP Gateway. In:
DSOM. Anais. . . Springer, 2002. p.54–65. (Lecture Notes in Computer Science,
v.2506).

PAVLOU, G. et al. On management technologies and the potential of Web services.
Communications Magazine, IEEE, [S.l.], v.42, n.7, p.58–66, July 2004.

PIERRO, M. D. web2py (5th Edition). [S.l.]: Experts4Solutions, 2013.

ROSE, M.; MCCLOGHRIE, K. Structure and identification of management
information for TCP/IP-based internets. [S.l.]: IETF, 1990. n.1155. (Request
for Comments).

SANCHEZ, A.; ALVARADO-NAVA, O.; MARTINEZ, F. Network monitoring system
based on an FPGA with Linux. In: TECHNOLOGIES APPLIED TO ELECTRON-
ICS TEACHING (TAEE), 2012. Anais. . . [S.l.: s.n.], 2012. p.232–236.

42

SCHMERKEN, I. Deutsche Bank Shaves Trade Latency Down to 1.25 Mi-
croseconds. "[Online; accessed 31-March-2013]", http://hdl.handle.net/10183/
86278).

SCHRYVER, C. de et al. An Energy Efficient FPGA Accelerator for Monte Carlo Op-
tion Pricing with the Heston Model. In: IEEE INTERNATIONAL CONFERENCE
ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG). Proceed-
ings. . . [S.l.: s.n.], 2011. p.468–474.

SCHRYVER, C. de; TORRUELLA, P.; WEHN, N. A Multi-Level Monte Carlo FPGA
Accelerator for Option Pricing in the Heston Model. In: IEEE CONFERENCE ON
DESIGN, AUTOMATION AND TEST IN EUROPE (DATE). Anais. . . [S.l.: s.n.],
2013.

Sloten, J. van; Pras, A.; Sinderen, M. van. On the standardisation of Web service
management operations. In: OPEN EUROPEAN SUMMER SCHOOL AND IFIP
WG6.3 WORKSHOP - ADVANCES IN FIXED AND MOBILE NETWORKS,
EUNICE 2004, 10., Tampere, Finland. Anais. . . Tampere University of Technology,
2004. p.143–150.

STALLINGS, W. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. [S.l.]:
Addison-Wesley, 1999.

TEIXEIRA, G. A.; SCHRYVER, C. de; WIVES, L. K. A web interface for ac-
cessing option pricer implementations based on the Heston model. "[On-
line; accessed 23-Mai-2014]", http://www.advancedtrading.com/infrastructure/
229300997.

WOOD, L. et al. Document Object Model (DOM) Level 1. [S.l.]: W3C, 1998.
W3C Recommendation, http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001.

