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ABSTRACT

Computational fluid dynamics (CFD) methods have been employed in the studies of
subjects such as aeroacoustics, gas dynamics, turbo machinery, viscoelastic fluids, among
others. However, the need for accuracy and high performanceresulted in methods whose
solutions are becoming increasingly more complex. In this context, feature extraction and
visualization methods play a key role, making it easier and more intuitive to explore and
analyze the simulation data.

Feature extraction methods detect and isolate relevant structures in the context of data
analysis. In the case of flow analysis, these structures could be pressure isocontours,
vortex cores, detachment lines, etc. By assigning visual attributes to these structures,
visualization methods allow for a more intuitive analysis through visual inspection.

Traditionally, CFD methods represent the solution as piecewise linear basis functions
defined over domain elements. However, the evolution of CFD methods has led to solu-
tions represented analytically by higher-order functions. Despite their accuracy and effi-
ciency, data generated by these methods are not compatible with feature extraction and
visualization methods targeted to linearly interpolated data. An alternative approach is re-
sampling, which allows the use of existing low order featureextraction and visualization
methods. However, resampling is not desirable since it may introduce error due to sub-
sampling and increase memory consumption associated to samples storage. To overcome
these limitations, attention has recently been given to methods that handle higher-order
data directly.

The main contributions of this thesis are two methods developed to operate directly
over higher-order data. The first method consists of an isocontouring method. It relies
on a hybrid technique that, by splitting the isocontouring workload over image and ob-
ject space computations, allows for interactive data exploration by dynamically changing
isovalues. The second method is a line-type feature extraction method. The search for
features is accomplished using adaptive subdivision methods driven by the evaluation
of the inclusion form of the parallel vectors operator. Bothmethods were designed to
take advantage of the parallelism of current graphics hardware. The obtained results are
presented for synthetic and real simulation higher-order data generated with the discon-
tinuous Galerkin method.

Keywords: Higher-order CFD data, feature extraction, parallel vectors operator, isocon-
touring, interval arithmetic.





RESUMO

Extração de Estruturas e Visualização de Soluções de DFC de Alta Ordem

Métodos de simulação baseados em dinâmica de fluidos computacional (DFC) têm
sido empregado em diversas areas de estudo, tais como aeroacústica, dinâmica dos gases,
fluidos viscoelásticos, entre outros. Entretanto, a necessidade de maior acurácia e desem-
penho destes métodos têm dado origem a soluções representadas por conjuntos de dados
cada vez mais complexos. Neste contexto, técnicas voltadasà extração de estruturas rele-
vantes (features), e sua posterior visualização, têm um papel muito importante, tornando
mais fácil e intuitiva a análise dos dados gerados por simulações.

Os métodos de extração de estruturas detectam e isolam elementos significativos no
contexto da análise dos dados. No caso da análise de fluidos, estas estruturas podem ser
isosuperfícies de pressão, vórtices, linhas de separação,etc. A visualização, por outro
lado, confere atributos visuais a estas estruturas, permitindo uma análise mais intuitiva
através de sua inspeção visual.

Tradicionalmente, métodos de DFC representam suas soluções como funções lineares
definidas sobre elementos do domínio. Entretanto, a evolução desses métodos tem dado
origem a soluções representadas analiticamente através defunções de alta ordem. Ape-
sar destes métodos apresentarem características desejáveis do ponto de vista de eficiên-
cia e acurácia, os dados gerados não são compatíveis com os métodos de extração de
estruturas ou de visualização desenvolvidos originalmente para dados interpolados lin-
earmente. Uma alternativa para este problema consiste na redução da ordem dos dados
através de reamostragem e posterior aplicação de métodos tradicionais para extração de
estruturas e visualização. Porém, o processo de amostragempode introduzir erros nos
dados ou resultar em excessivo consumo de memória, necessária ao armazenamento das
amostras. Desta forma, torna-se necessário o desenvolvimento de métodos de extração e
visualização que possam operar diretamente sobre os dados de alta ordem.

As principais contribuições deste trabalho consistem em dois métodos que operam
diretamente sobre dados de alta ordem. O primeiro consiste em um método para extração
e visualização de isosuperfícies. O método baseia-se em umaabordagem híbrida que, ao
distribuir o esforço computacional envolvido na extração evisualização das isosuperfí-
cies em operações executadas nos espaços do objeto e da imagem, permite a exploração
interativa de isosuperfícies através da troca de isovalores. O segundo método consiste
em uma técnica para extração de estruturas lineares, onde a avaliação da forma intervalar
do operadorparallel vectors, em conjunto com métodos de subdivisão adaptativa, é uti-
lizada como critério de pesquisa destas estruturas. Ambos os métodos foram projetados
para tirarem proveito do paralelismo dohardwaregráfico. Os resultados obtidos são ap-
resentados tanto para dados sintéticos quanto para dados desimulações gerados através
do método de Galerkin discontínuo.

Palavras-chave:Dados de DFC de alta ordem, extração de estruturas (features), operador



de vetores paralelos (parallel vectors), extração de isosuperfícies, aritmética intervalar.
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1 INTRODUCTION

The foundations for research on computational fluid dynamics (CFD) were established
in the 1960’s, in the paper by Hess and Smith (HESS; SMITH, 1967). Since then, the in-
crease in processing power and the need for accuracy led CFD methods to evolve into
more sophisticated methods that can be applied to a broad range of problems, including
aeroacoustics (REYMEN et al., 2005; RICHTER; STILLER; GRUNDMANN, 2009), gas
dynamics (VAN DEN BERG, 2009; GALANIN; SAVENKOV; TOKAREVA,2009), vis-
coelastic fluids (GUÉNETTE et al., 2008), turbo machinery (SUN et al., 2010), transport
in porous media (AL-HAMAMRE; AL-ZOUBI; TRIMIS, 2010), among others. This
evolution led to increasingly complex solutions, whose analysis has become significantly
harder. In this context, feature extraction and visualization techniques started to play a
key role.

Feature extraction methods concentrate on the automated analysis, detection and se-
lection of relevant data portions, capturing meaningful structures out of large and intricate
data. In the context of flow visualization, examples of such features are creases (ridges
and valleys) in scalar fields, as well as separation, attachment, and vortex core lines in
vector fields. These methods can significantly reduce the amount of data to be manipu-
lated, thus allowing to focus attention on relevant data. Visualization techniques, on the
other hand, allow for a more intuitive and natural way of inspecting data by assigning a
visual representation to the selected structures.

The evolution of CFD methods led to solutions represented analytically by higher-
order functions. Despite their greater accuracy and efficiency, data generated by these
methods are not compatible with feature extraction and visualization methods targeted to
linearly interpolated data. The pragmatic approach is resampling, which allows the use
of existing low order feature extraction and visualizationmethods. However, resampling
is not a desirable approach since it may introduce error due to subsampling and increase
memory consumption, needed for samples storage. To overcome these limitations, more
attention has recently been paid to methods that handle higher-order data directly.

In this thesis we propose two methods that operate directly over analytical higher-
order CFD data. The first method consists of a previewing system for interactive explo-
ration of isosurfaces defined by higher-order data. Interactivity is achieved by splitting
the isocontouring workload over object and image spaces. The second method is an effi-
cient parallel vectors line-type feature extraction method that relies on the use of reduced
affine arithmetic and parallel processing to improve performance and allow for guaran-
teed bounds regarding accuracy with respect to existence, position, and topology of the
features obtained.

Both methods were designed to take advantage of parallel graphics hardware. Quanti-
tative and qualitative results, for both methods, are presented for synthetic and real higher-
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order simulation data generated with discontinuous Galerkin method. The next sections
summarize both methods, for which more detailed descriptions are given in the following
chapters.

1.1 Isocontouring

Approximate representation of higher-order data offers a viable visualization approach
by allowing a trade-off between rendering speed and accuracy. Low-order representations
using an isocontouring algorithm such as marching cubes (LORENSEN; CLINE, 1987)
are among the simplest solutions to this problem. Adaptive sampling variations of march-
ing cubes can further reduce the error and capture more complex structures (REMACLE
et al., 2006; SCHROEDER et al., 2006). However, resampling approaches introduce er-
ror and in some cases lead to memory increase due to the large number of lower-order
elements needed to represent the original data.

Usually, methods for directly contouring higher-order data are formulated as a root
finding or gradient descent problem. Due to the higher-ordernature of the data, there
is no closed-form solution for these formulations, and numerical methods must be used
instead. Since these numerical methods are typically computationally expensive, they are
often computed in a pre-processing step, which was applied in several mesh-extraction
(REMACLE et al., 2006; SCHROEDER et al., 2005, 2006) and point-based algorithms
(FIGUEIREDO et al., 1992; WITKIN; HECKBERT, 1994; VAN KOOTEN; VAN DEN
BERGEN; TELEA, 2007; MEYER et al., 2007). Although interactive rendering is pos-
sible since the isosurface is computed during pre-processing time, changing isovalues
requires the recomputation of the isosurface and hence the overall visualization might be
no longer interactive. The ability to dynamically change isovalues is present in some ray
casting or ray tracing isocontouring algorithms (WILEY et al., 2004; NELSON; KIRBY,
2006; KNOLL et al., 2009). However, the evaluation during the rendering step of such
numerical methods leads to lower frame rates. It was observed that a hybrid approach,
that quickly computes an object space approximation of the desired isosurface, together
with a refinement step in image space, could result in a interactive isocontouring method,
without the need for resampling.

We propose an algorithm for the interactive approximate contouring of multi cell
higher-order data based on two phases. In the first phase coarsely seeded particles are
guided by the gradient field for obtaining an initial sampling of the isosurface in object
space. The second phase performs ray casting in the image space neighborhood of the ini-
tial samples. Since the neighborhood is small, the initial guesses for ray casting tend to be
close to the isosurface, leading to fast root finding and thusefficient rendering. Since the
object space phase affects the density of the samples, some artifacts can occur in the final
rendering. Thus, we also propose a heuristic, based on dynamical systems theory, that
adapts the neighborhood of the seeds in order to obtain a better coverage of the surface.

1.2 Extraction of Parallel Vectors Line-type Features

Several traditional features, such as isosurfaces and streamlines, can be described by
algebraic or differential equations. This allows for the separation between a feature’s de-
scription and its extraction procedure. However, for several other non-traditional features,
this separation between description and extraction methods is not easy to find. Originally
introduced by Roth and Peikert in (PEIKERT; ROTH, 1999), theparallel vectors operator
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consists in a mathematical framework to identify line-typefeatures in vector and scalar
fields. Through the proposed formulation, several featurestypes can be described analyt-
ically by the set of points where two distinct vector fields become parallel or anti-parallel.

In the original parallel vectors method, features are extracted from trilinearly interpo-
lated data by finding intersection points with the faces of grid cells that are later connected
by straight line segments. This method is local (solutions are found per cell), robust, and
comparably fast. However, it might not be accurate enough since it approximates features
by straight segments and suffers from topological ambiguity problems when connecting
more than two intersections per cell. In contrast, the original feature flow field method
(THEISEL; SEIDEL, 2003) provides a more accurate and smoothfeature extraction. The
feature flow field has been applied to parallel vectors feature extraction (THEISEL et al.,
2005) using a subdivision method for finding seeds per cell intrilinearly interpolated data.

Our approach can be seen as an extension of (THEISEL et al., 2005) to higher-order
data. The method looks for linear features in the flow, such asvortex cores, attachment-
detachment lines, ridges, valleys, etc., described analytically by the parallel vectors op-
erator. The parallel vectors formulation allow for the analytical description of several
line-type features previously described only procedurally. Besides separating the feature
description from its extraction procedure, the analyticalform of the operator allows for its
representation in inclusion form. Thus, the proposed method looks for interesting features
using an adaptive space subdivision guided by the evaluation of the inclusion form of the
parallel vectors operator. After the subdivision stage, root finding is used to precisely lo-
cateseeds(points resting on the feature lines). The placed seeds are then used as starting
points in a feature flow field-based tracing stage that finallyreconstructs the features.

1.3 Thesis Statements

I propose two different methods meant to allow efficient exploration of multi cell
higher-order data containing affine mappings between reference and world space. The
first method is a hybrid isocontouring technique that is based on the following statement:

Interactive approximate isocontouring of higher-order data is possible
by splitting the computation workload between object and image spaces. In
object space, a view independent approximation of the surface is computed.
The surface approximation will reduce the cost associated to the surface re-
finement step computed in image space.

Two issues must be addressed to allow for the construction ofa hybrid algorithm capa-
ble of efficiently extracting isosurfaces in this context. The first one is the development of
the method that approximates the desired isosurface in object space. It must be efficient at
the same time that its output serves as a good starting point for the subsequent refinement
step. The second issue is related to the method used in image space, which must effi-
ciently refine the isosurface based on the previously computed approximation. In Chapter
3 we present a hybrid algorithm based on two stages which accounts for the above men-
tioned requirements. It also discusses sampling issues related to the proposed approach,
presenting a heuristic inspired by dynamic systems theory that reduces sampling artifacts.

The second method presented in this thesis is a technique forefficient parallel vectors
line-type feature extraction from higher-order data that is based on the following state-
ment:



24

The representation of the parallel vectors operator in its inclusion form
allows for accurate and efficient approximation of the actual features inside
higher-order data. Dataset processing in a per-element basis, instead of per-
stage basis, reduces data read back overhead and lends itself well for parallel
processing.

The issues raised by the above statement include: an analytic representation for the
parallel vectors expression that is manageable, the choiceof an inclusion form that can be
efficiently implemented and evaluated, and an efficient strategy for data subdivision based
on the evaluation of the inclusion form of the parallel vectors operator. Chapter 5 presents
strategies that handle each one of the above mentioned requirements. The parallel vectors
inclusion form is represented by an 5-term affine form derived from an affine arithmetic
extension. The inclusion form of the parallel vectors is used to guide octree and quadtree-
based subdivision that efficiently and robustly place seed points used for feature tracing.
It is shown how the parallel vectors expression can be efficiently evaluated through the
storage of the coefficients of its primitive components.

1.4 Results

The main contributions introduced in this thesis include:

• A hybrid method for the efficient isocontouring of higher-order data;

• A splatting resizing scheme based on dynamical systems theory;

• A method for line-type feature extraction from higher-order CFD data based on the
evaluation of the inclusion form of the parallel vectors operator;

• An experimental analysis of an efficient subdivision strategy for parallel vectors
line-type feature refinement in parallel architectures;

• A framework for efficient multi cell higher-order data evaluation in the GPU;

• A predictor corrector-based tracing scheme that efficiently reparameterize the field
on the correcting plane;

• An alignment-based face grouping strategy that improves performance on SIMD
architectures by reducing execution divergence among threads.

1.5 Organization of this Document

This document is organized as follows: chapter 2 presents a brief introduction to the
scientific visualization field. Although not focused on the specific subject of this thesis,
it gives context and presents related techniques in the field. At the end of the chapter the
higher-order data format, and the description of the higher-order datasets used along this
work, are introduced.

Chapter 3 presents the proposed isocontouring for higher-order data method. Initially,
the state of the art in isocontouring of implicits and multi cell higher-order data is pre-
sented. Afterwards, the method is discussed in detail and results presented.
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In order to facilitate the understanding of the feature extraction method presented in
chapter 5, chapter 4 introduces the parallel vectors operator. The mathematical formula-
tion is presented and it is shown how several existing line-type features can be rewritten
in terms of the operator.

Chapter 5 presents the proposed method for line-type feature extraction method for
higher-order data. A brief introduction to the concepts of inclusion arithmetic and feature
flow fields is first presented. Afterwards, the feature extraction method together with
implementation decisions are explained. At the end of the chapter results are presented
together with discussions.

Finally, chapter 6 reviews the contributions of this thesis, pointing to directions for
future work.

Appendices present complementary material related to the development of this the-
sis. Appendix A introduces the definition of some mathematical tools used along this
thesis. Code and algorithms snippets related to the isocontouring method are presented
in Appendix B. Finally, Appendix C contains the poster published at IEEE Visualization
2008.
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2 VISUALIZATION OF CFD DATA

In this chapter we provide an overview of the field of scientific visualization and fea-
ture extraction with focus on CFD data analysis. We start by providing a brief description
of the space discretization approaches used by traditionalCFD methods and how the so-
lution is represented and stored. The following sections present visualization and feature
extraction techniques targeted to traditional CFD data. Weintroduce the higher-order data
generated by recent CFD methods, pointing out the key features of this type of data. The
chapter ends by presenting a detailed description of some higher-order datasets obtained
from discontinuous Galerkin fluid simulations which were used to generate results for
both methods presented along this thesis.

2.1 Visualization

Visualization is related to making visible those things that normally can not be seen.
This is the case, for example, with fluid flow. Fluid is usuallytransparent (air, water,
gas, etc.) and under normal circumstances it is not possibleto visually inspect its behav-
ior. Techniques that can be employed to allow the visualization of the fluid flow include,
among others, the injection of smoke in wind tunnels or the placement of colored oil over
friction surfaces. Visualization of other phenomena, suchas the difference of temperature
and shock waves, can be accomplished with techniques such asshadow graphs (SET-
TLES, 2010), an optical technique that captures optical inhomogeneities in transparent
media.

In the context of computer science, visualization can be seen as a branch of computer
graphics responsible for creating images or graphical representations about underlying
data and processes. A description for the visualization field was given in 1987, in the
National Science Foundation’s Visualization in ScientificComputing Workshop report
(reprinted in (MCCORMICK; DEFANTI; BROWN, 1987)):

“Visualization is a method of computing. It transforms the symbolic into
the geometric, enabling researchers to observe their simulations and compu-
tations. Visualization offers a method for seeing the unseen. It enriches the
process of scientific discovery and fosters profound and unexpected insights.
In many fields it is already revolutionizing the way scientists do science (...)”

The visualization field is usually broken into two almost disjoint branches: scientific
visualization and information visualization. Scientific visualization usually deals with the
graphical representation ofcontinuousdata, such as simulation data, e.g. fluid flow simu-
lation, and data obtained from measurement devices, e.g. MRI or CT scans. Information
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visualization, on the other hand, deals with discrete data usually of very high dimension-
ality such as stock market indexes, employee records, social networks, among others.
Despite the above classification, sometimes the boundariesbetween these two branches
can not be clearly defined.

2.2 Traditional CFD Data

Traditional CFD methods usually involve a double discretization. First, the physical
domain is tessellated into several elements that together form a mesh. Second, the con-
tinuous function spaces (infinite dimensional) are replaced by finite expansions. After
the discretizations, the solution is approximated for eachdataset element. The following
sections describe the types of tessellation normally used and how solutions are stored and
retrieved.

2.2.1 Mesh Types

Initially, the physical domainΩ is tessellated into a collection ofn elements, generat-
ing the meshMΩ according to Equation 2.1.

MΩ =
n⋃

i=1

ei , (2.1)

whereei is thei-th element.
Usually MΩ is a compatible mesh, with elements intersecting only at theboundary

faces, edges or vertices. The four basic element shapes commonly used for 3D domain
tessellation are tetrahedra, pyramids, hexahedra, and prisms, as shown in Figure 2.1.

(a) (b) (c) (d)

Figure 2.1: The four basic element shapes commonly used for 3D domain tessellation in
traditional CFD: a) hexahedron, b) tetrahedron, c) pyramidand d) prism.

According to its overall structure, the assembled mesh can be classified asstructured
or unstructured. Structured meshes can be viewed as 2D or 3D arrays of elements rep-
resented by quadrilaterals or hexahedra, respectively. Since inter-element connectivity
information is implicit, it can be compactly stored as a 2D or3D array. Curved meshes
are also considered as structured. Under the structured class, we find the regular meshes,
which consists of regular samplings along each axis. The axis-alignment of the elements
in structured meshes allows easier derivative computations (e.g. finite differences), and
its regularity permits efficient handling (e.g. isocontouring and visualization algorithms
such as (LORENSEN; CLINE, 1987; LACROUTE; LEVOY, 1994)).

Unstructured meshes can be composed by mixed shape elementsand need to keep
additional element connectivity information, which may affect memory management and
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performance. However, these meshes better adapt to arbitrary domain boundaries, being
used in cases where fluid flows around obstacles.

There exist also other classes of meshes, such as thehybrid andhierarchical meshes.
While the former is composed by structured and unstructuredmesh portions, the latter is
organized in hierarchical structures, such as the adaptivemesh refinement (AMR) meshes.
Figure 2.2 illustrates some of the above mentioned mesh types.

(a) (b)

(c) (d)

(e)

Figure 2.2: Mesh types: a) structured, b) unstructured, c) curvilinear, d) rectilinear and e)
hybrid.

In the realm of computer-based flow simulation methods, there exist alsomeshless
techniques such as the Smoothed-particle hydrodynamics (SPH)(LUCY, 1977; GINGOLD;
MONAGHAN, 1977). According to this method, the fluid is represented by a set of par-
ticles. The properties for a given point in the simulation domain can be obtained by
summing thesmoothedcontributions of all particles that lie within a certain radial dis-
tance.

2.2.2 Field Description and Interpolation

Solutions to CFD methods are represented by values associated to physical quantities
and, depending on the type of quantity to be represented, different data types must be used.
Physical quantities such as pressure, density or temperature associate a unique value to
each point in space and can be represented by scalar fields. Other physical quantities,
such as velocity or curl, associate a direction and a magnitude to each point in space.
In these cases, such quantities are represented by vector fields, where vector length and
coordinates indicate magnitude and direction, respectively.

Traditional CFD methods represent solutions through discrete samples stored at the
element vertices. While, for scalar fields, these samples are represented by single scalar
values, for vector fields the samples are represented byn-tuples of scalar values.
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Real world quantities are continuous and it becomes necessary to reconstruct contin-
uous functions from the discrete data generated by traditional CFD methods. The recon-
struction of the continuous function can be obtained with approximation or interpolation
techniques. While approximation techniques just "approximates" the discrete function,
interpolation techniques generate continuous functions that match the exact function val-
ues at the sample points.

The simplest and more efficient interpolation technique is the nearest-neighbor inter-
polation. As the name suggests, unknown values are filled with values picked from the
closest sample available. As a side effect of this approach,the reconstructed function will
never be continuous regardless the sampling frequency. Onepossibility to force continu-
ity between two samples is to require the function to vary linearly between them. This
technique is known as linear interpolation, and guaranteesC0 continuity between the sam-
ples. When it is required some level of smoothness in the derivatives of the reconstructed
function (Ci continuity, wherei represents the correspondingi-th order derivative), higher-
order interpolation schemes can be used at the cost of more expensive computations.

2.3 Visualization of Volumetric CFD Scalar Fields

CFD data is not always related to vector fields. Scalar fields representing pressures,
density, heat, as well as scalar fields derived from vector fields, such as velocity and
vorticity magnitude, can be used in flow analysis. A scalar field is a functionf that maps
every point in then-dimensional domain to a scalar value (Equation 2.2).

f : Rn→ R. (2.2)

When associated to units of measurement, scalar values represent quantities such as
density, temperature, etc.

Several techniques have been developed for the visualization of scalar fields. These
methods can be divided in two classes: direct and indirect methods. Direct methods ex-
tract the visualization directly from the scalar data. A classical example of a direct method
is ray casting. Indirect methods rely on an intermediary representation for the scalar data,
and this is usually the case with isocontouring methods, where the most notable example
is the marching cubes algorithm. The following sections present a brief description of
each visualization method.

2.3.1 Direct Volume Rendering

Direct volume rendering assumes that the volume data represents a participant medium
composed by semi-transparent material. Final images are generated in a three stage pro-
cess:

• Sampling

• Classification

• Compositing

Initially, rays emanating from the eye viewpoint are cast through each screen pixel,
traveling along the volume and sampling it at intervals. This is the sampling stage. After-
wards, samples are classified. Classification usually consists of the assignment of color
and opacity values to each sample. Color and opacity values are obtained from transfer
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functions, which map every possible scalar value to pre-defined color and opacity val-
ues. The last stage computes the final pixel color by compositing the samples along the
ray. Several approaches can be used for compositing, depending on the optical model
used. Among the most common models, one can find maximum intensity point (MIP)
(WALLIS et al., 1989), absorption-only and absorption-emission (BLINN, 1982; KA-
JIYA; VON HERZEN, 1984).

Direct volume rendering (DVR) is a good visualization approach for measured real-
world data with noise and amorphous soft objects. A great advantage of the DVR ap-
proach is its intrinsic ability to render contextual information, not limited to a unique
scalar value. The main drawback regarding DVR is the high computational cost de-
manded by the integration during the sampling stage. To mitigate this cost, several ap-
proaches have been developed to approximate the integral (ENGEL; KRAUS; ERTL,
2001; ROETTGER et al., 2003). Additionally, several acceleration techniques have been
developed taking advantage of the regularity found in structured datasets. These tech-
niques are usually separated in three classes, according tothe space where they operate.
Image space techniques, such as ray casting (DREBIN; CARPENTER; HANRAHAN,
1988; UPSON; KEELER, 1988), compute the final volume rendering entirely in image
space. Object space techniques, such assplatting(WESTOVER, 1990; CRAWFIS; MAX,
1993), ortexture slicing(CULLIP; NEUMANN, 1994; CABRAL; CAM; FORAN, 1994;
GUAN; LIPES, 1994), take advantage of structures describedin object space to accel-
erate volume rendering. Hybrid methods combine characteristics of both classes and an
example of such method is theshear-warp(CAMERON; UNDERILL, 1992; YAGEL;
KAUFMAN, 1992; SCHRöDER; STOLL, 1992), which distributes the computation ef-
fort to compute the volume rendering over the object and image spaces.

Unstructured meshes present distinct properties that can not be handled by DVR meth-
ods targeted to structured data. Examples of these specificities are rays that can leave and
re-enter the volume during tracing and sample locations that are not implicit. Thus, for
unstructured meshes, additional techniques have been developed, such asprojected tetra-
hedra(SHIRLEY; TUCHMAN, 1990) and theHAVS(CALLAHAN et al., 2005), among
others.

2.3.2 Isocontouring

Given the 3-dimensional scalar fieldf : R3→ R, an isosurface is a surfaceS that
represents a set of points of constant valuev (Equation 2.3).

S= {x| f (x) = v}. (2.3)

Isocontouring is an alternate approach for scalar field visualization. Opposite to DVR,
isocontouring methods usually rely on a intermediary representation of the desired struc-
tures, which is then used for the final visualization.

Originally developed for regular meshes (composed by hexahedral elements), the
marching cubes (MC) algorithm (LORENSEN; CLINE, 1987) proceeds over the data,
taking eight samples at a time and verifying whether they arecrossed by the desired iso-
surface. This verification is based on the values of the eightsamples. If two samples
present different signs, it indicates that the element is crossed by the isosurface, and in-
verse linear interpolation is used to find the intersection points over the element edges.
These intersection points are later connected and originate polygons inside each element.
This computation is executed independently for each dataset element and the union of
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generated polygons compose a triangle mesh that representsan approximation of the de-
sired isosurface. MC must be executed every time the isovalue is changed. The method
is robust and simple to implement. Since the surface extraction is executed independently
for each element, it lends itself well for parallelization.

However, MC suffers from problems related to ambiguity and quality of the generated
mesh. Ambiguity emanates from cases where the configurationof the intersection points
found for a given element allow for the construction of topologically non-equivalent poly-
gons. Several publications have presented alternatives that can reduce problems related to
the topological ambiguity intrinsic to MC. Regarding mesh quality, it depends directly on
the quality of each triangle of the mesh, and MC can generate very bad quality triangles
under certain circumstances. Several publications have also attacked the mesh quality
problem of MC (DIETRICH et al., 2009; SCHREINER; SCHEIDEGGER; SILVA, 2006;
GARLAND; HECKBERT, 1997; CROSSNO; ANGEL, 1997; GAVRILIU etal., 2001).

MC was originally developed for the isocontouring of regularly sampled scalar fields,
and could not be applied directly over unstructured meshes.Marching tetrahedra (PAYNE;
TOGA, 1990) was a marching strategy developed for the isocontouring of unstructured
tetrahedral meshes. Although not susceptible to the ambiguity problems encountered in
original MC, the method can generate meshes topologically inconsistent with the underly-
ing data. Regarding the contouring of implicit data, marching methods can be used given
that a sampled version of the original data is available. However, disadvantages regard-
ing this approach are the inclusion of error in data and increase in memory consumption
needed to store the samples.

2.4 Feature Extraction

Increase in computational processing power has allowed forthe development of so-
phisticated CFD simulation methods capable of generating more accurate results. To-
gether with the adoption of time-dependent simulations, these new methods have led to
substantial increase in the size of the resulting datasets.Increasingly larger amounts of
data have posed new challenges to the scientific visualization community, which has seen
feature-based visualization as an option to make the exploration of this data feasible.

By extracting only the relevant structures out of intricatedata, feature-based tech-
niques reduce the current data to manageable sizes, allowing for easier inspection and
sometimes allowing for interactive data exploration.

There is not a formal definition regarding features. Usually, features represent patterns
or structures which are relevant in a certain visualizationcontext. It is important to note
that features to be extracted must be "localizable" in the domain represented by the data.

The two main tasks regarding feature-based visualization are the appropriate definition
of the feature and the design of an algorithm that is able to isolate features described ac-
cording to that definition. The description of the features is related to their corresponding
dimensionalities. Some features are 0-dimensional (pointfeatures), such as critical points
in scalar or vector fields. Other features can be representedby 1-dimensional structures,
such as vortex cores or detachment and attachment lines. Examples of 2-dimensional fea-
tures include surfaces such as shock fronts or isosurfaces.In the case of closed surfaces,
such as isosurfaces, they additionally delimit a 3-dimensional region in space. These re-
gions can also be seen as 3-dimensional features, e.g., regions where some value is under
or above a prescribed threshold.

Another point regarding features is the scope of their definitions. Some features are
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only described in a global scope. This is the case for examplewith watersheds. Other
features can be described completely in local terms, as for example critical points in
scalar fields, which are represented by points where the first-order derivatives are zero.
A higher dimensional feature described in local terms is theEberly height ridge defini-
tion (EBERLY, 1996). For the feature extraction method presented in Chapter 5 of this
thesis, we focus on line-type features described locally.

2.5 Higher-Order CFD Data

As already discussed, traditional CFD methods are based on point-based discrete data
from which element-wise continuous data can be obtained using an arbitrarily chosen
interpolation scheme. A commonly used approach is the linear interpolation since it is
simple to compute (i.e. local to the element), does not introduce spurious oscillations in
the reconstructed function, and guarantees at leastC0 continuity at the element bound-
aries.

An alternative to avoid the assumption of an arbitrary interpolation would be to pro-
vide the original interpolation scheme (possibly higher-order) along with the discrete
data, thus allowing for the reconstruction of the exact cell-wise continuous function from
the samples. This is the case, for example, with data generated with the discontinuous
Galerkin method, for which the solution is given in terms of per-element multivariate
higher-order polynomials.

The discontinuous Galerkin framework can be considered as acombination of the
finite volume and finite element schemes. Similar to traditional CFD schemes, discontin-
uous Galerkin assumes a tessellation of the simulation domain into elements. As in finite
volume schemes, discontinuous Galerkin allows for solution discontinuities at element
boundaries, at the same time that, as in the finite element schemes, it allows the represen-
tation of the solution in terms of polynomial expansions. Inthis case, the coefficients of
the polynomials indicate the possible degrees of freedom determined by the formulation
of the governing equations.

The degree of the polynomials determine the accuracy order of the solution in space.
To increase accuracy, it is sufficient to increase the order of the polynomials. This can be
done adaptively, in regions where higher resolution is demanded. Alternatively, the com-
bination of changes in the polynomial degrees can be coupledwith local grid refinement to
change the accuracy order in distinct regions of the dataset. The solution, represented by
the set of element-wise polynomials, is discontinuous (C0 continuous) at element bound-
aries. In the interior of each element the solution isCp (p≥ 1) continuous, wherep is the
degree of the polynomial.

Most finite-element methods define local element operations, which is usually the case
regarding discontinuous Galerkin approaches. Element-wise analytic functions describ-
ing the solution are defined in the corresponding element reference space. Thus, in order
to query the solution value for a pointpW in world space, one must first locate the ele-
mentei containing the point, transformpW to the corresponding element reference space
positionpe using the inverse of the element’s mapping functionTi and finally evaluate the
solution polynomialFi at positionpe in the reference space (Figure 2.3).

The mapping functionT, which can be non-linear, maps points from element refer-
ence space to the world space. Usually, this function can notbe analytically inverted, and
numerical approaches must be used instead. In this work we focus on multi cell higher-
order data whose mapping functionT represents only affine transformations that can be
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Figure 2.3: Element-wise mapping functionsTi transform a pointpe in the reference space
of the elementei to a pointpW in world space. In the general case,Ti may be non-linear,
and can not be analytically inverted. In these cases, numerical approaches must be used
to computeTi

−1.

inverted analytically.
Higher-order data represented analytically presents several advantages with respect to

visualization and feature extraction. The exact solution value for any point can be eval-
uated and prescribed accuracy checked. Symbolic manipulation of the analytical data
representation allows for the exact evaluation of arbitrary higher-order derivatives. This
is essential, for instance, in feature extraction approaches that rely on feature descriptions
based on solution derivatives (e.g. vortex cores, streamlines, among others). An analytical
solution description allows for its evaluation in inclusion form. Together with spatial sub-
division methods, this allows to safely discard data portions that do not contain interesting
data, focusing computational effort towards relevant data.

2.5.1 Discontinuous Galerkin Datasets

The higher-order data used in this work were generated by spacetime expansion dis-
continuous Galerkin simulations presented in (GASSNER; LÖRCHER; MUNZ, 2008).
Datasets are represented by unstructured meshes whose elements assume polyhedral shapes.
The solution is represented by element-wise polynomials ofarbitrary degree, defined in
each corresponding element’s reference space. Each polynomialP is described in a mono-
mial basis of the form

P(x) = ∑
i+ j+k<n

ci, j ,kx
iy jzk, (2.4)

wherec is the coefficient of each monomial;x,y, andz are the independent variables in
the element reference space;i, j,andk are the powers of each independent variable; andn
is the degree of the polynomial.

Mapping functions, that map the element reference space to the world space, are de-
fined separately for each element and consist entirely of translations.

The shock channeldataset was generated by a numerical simulation where a propa-
gating shock with Mach numberMa = 3 hits a cubic obstacle positioned in the middle
of the channel. As the shock advances, a lifted ballistic wave is formed, along with the
shock’s reflections on the channel walls. Low order numerical schemes face challenges
when dealing with shocks and the resolution of their corresponding effects. In this simu-
lation, the high degree of the polynomials (5 and 6, in this case), compensates for the very
coarse resolution of the grid (20×2×3 hexahedral (cubic) cells). The obstacle is the size
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of one cell, resulting in a mesh with 119 cells in total. Figure 2.4 shows the structure of
thespheredataset.

(a)

Figure 2.4:Shock channeldataset structure. The mesh is composed of 119 hexahedral
(cubic) elements. The solution is represented by degree 5 and 6 polynomials described
in monomial basis. The mapping functions between referenceand world spaces contain
only translations.

The second dataset was generated by a hydrodynamical simulation that solves the
compressible Navier-Stokes equations. With a Reynolds number ofRe= 300 and a uni-
form flow with Ma= 0.3 initially set up, the simulation results show a von Karman vortex
street roll-up. The unstructured mesh for thespheredataset is composed by 34.535 poly-
hedral elements that assume the following shapes: hexahedron, tetrahedron, pyramid and
prism. The degree of the solution polynomials is 3. Figure 2.5 shows the structure of the
spheredataset.

(a)

Figure 2.5:Spheredataset structure. The mesh is composed of 34,535 polyhedral ele-
ments. Solution is represented by degree 3 polynomials described in monomial basis.
The mapping functions between reference and world spaces contain only translations.
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3 ISOCONTOURING HIGHER-ORDER SURFACES

In this chapter we describe the details of a method for interactive approximate iso-
contouring of higher-order data. The method is based on a two-phase hybrid rendering
algorithm. In the first phase, coarsely seeded particles areguided by the gradient of the
field for obtaining an initial sampling of the isosurface in object space. The second phase
performs ray casting in the image space neighborhood of the initial samples. Since the
neighborhood is small, the initial guesses tend to be close to the isosurface, leading to
accelerated root finding and thus efficient rendering. The object space phase affects the
density of the coarse samples on the isosurface, which can lead to holes in the final render-
ing and overdraw. Thus, we also propose a heuristic, based ondynamical systems theory,
that adapts the neighborhood of the seeds in order to obtain abetter coverage of the sur-
face. Results for datasets from computational fluid dynamics are shown and performance
measurements for our GPU implementation are given. The contents of this chapter were
published as "Interactive Isocontouring of High-Order Surfaces" (PAGOT et al., 2010).

3.1 Isocontouring Higher-Order Data

There is a vast literature on isocontouring. We constrain the discussion below to
techniques targeted to higher-order data.

Figueiredoet al. (FIGUEIREDO et al., 1992) proposed physically-based approaches
for extracting triangle meshes from implicit surfaces. Onemethod is particle-based while
the second is based on a mass-spring system, and represents the first attempt on using
particles to sample higher-order data. This work inspired Witkin and Heckbert (WITKIN;
HECKBERT, 1994) to develop a point-based tool for the modeling and visualization of
implicit surfaces. When used as a modeling tool, points represent handles for changing
shapes. As a visualization tool, points are projected onto the surface and rendered as discs,
with size and distribution adaptively computed according to the curvature of the surface.
Meyeret al. (MEYER et al., 2007) proposed a technique for isosurfaces generated from
higher-order finite element simulations that builds upon the approach of Witkin and Heck-
bert. Potential functions are used for particles repulsion, giving more control over particle
distribution. This method handles cells with curved surfaces and allows for interactive
visualization of a given isosurface. Interactive exploration of different isovalues is not
viable since every isovalue change typically takes severalminutes due to resampling.

Kootenet al. (VAN KOOTEN; VAN DEN BERGEN; TELEA, 2007) presented the
first interactive particle-based method for implicit surface visualization that runs entirely
on the GPU. The projection method is an adaptation of that by Witkin and Heckbert.
Particle repulsion relies on a spatial-hash data structurethat requires costly and frequent
updates, thus preventing its use for rendering large datasets. Although not directly related
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to isocontouring, Zhou and Garland (ZHOU; GARLAND, 2006) present a point-based
approach for the direct volume rendering of higher-order tetrahedral data. Despite their
effectiveness, point-based methods typically only provide a coarse representation for the
isosurface, and accurate representations require a huge number of points. Haasdonket al.
(HAASDONK et al., 2003) presented a multi-resolution rendering method forhp-adaptive
data based on polynomial textures. Although effective, this method was designed only for
2D rendering. Schroederet al. (SCHROEDER et al., 2005) presented a mesh extraction
method that explores critical points of basis functions to provide topological guarantees
on the extracted mesh. Similar to other mesh extraction methods, it employs computa-
tionally expensive pre-processing to allow interactive exploration of arbitrary isovalues.
Remacleet al. (REMACLE et al., 2006) proposed a method for resampling higher-order
data inspired by adaptive mesh refinement (AMR) methods. Theoriginal higher-order
data is down-sampled to a lower-order representation whichis suitable for lower-order
visualization algorithms like Marching Cubes (LORENSEN; CLINE, 1987). The resam-
pling error threshold can be adjusted, but low thresholds can lead to memory consumption
explosion.

A competing strategy is to avoid pre-computation and compute isocontours during
rendering. Nelson and Kirby (NELSON; KIRBY, 2006) presented a ray tracing-based
method for the isocontouring of spectral/hp-adaptive data. The method works by pro-
jecting the higher-order functions onto each traced ray andcomputing the intersection
with the isosurface from the resulting univariate function. Visualization error is carefully
quantified and reduced. However, it typically takes severalseconds to generate the final
image, prohibiting interactive exploration of the data.

Knoll et al. (KNOLL et al., 2009) presented an interactive interval arithmetic-based
method for ray tracing of implicit surfaces on the GPU. It is currently one of the fastest ray
tracers for implicits, presenting also robustness with respect to the root-finding process.
However, the equations of the implicits must be converted toan inclusion-computable
form, which increases the number of arithmetic operations needed to evaluate the equa-
tions. This is not a problem in the case of polynomials with only a few coefficients, as
can be verified by their results. However, in the case of simulation data we usually have
polynomials with hundreds of coefficients and thousands of polynomials to be evaluated
for each frame, and the use of interval arithmetic may impactperformance.

3.2 The Proposed Isocontouring Method

Interactive rendering rates in the proposed method are obtained by dividing the iso-
contouring workload between object and image space computations, each defined in a
separate phase. The first phase, in object-space, generatesan initial sampling of the iso-
surface by projecting particles (here calledseeds) along the gradient field onto the surface.
Only seeds successfully projected onto the surface are considered for further processing.
Each projected seed generates a surface-tangent, seed-centered quadrilateral (quad) that
covers the neighborhood of the seed. The second step uses thefragments generated by the
rasterization of those quads as the initial points for a ray casting that refines the isosurface
representation in image space. Figure 3.1 gives an overviewof the method’s pipeline.

To compute the initial isosurface approximation, we start by placing a set of seeds
uniformly distributed inside each element and projecting them onto the surface. The
projection affects the density of the seeds and thus the sampling quality. There are meth-
ods described in the literature that handle this problem by using repulsion/attraction or
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Figure 3.1: The proposed higher-order isocontouring method pipeline: An initial sam-
pling of the isosurface is generated in object space by projecting coarsely seeded par-
ticles over the isosurface along the gradient field in objectspace. Each projected point
(seed) generates a surface-tangent, seed-centered, quadrilateral that covers the neighbor-
hood of the seeds. In the second stage the quadrilaterals arerasterized in image space
and fragments used as the starting point for a ray casting that refines the final isosurface
representation.

birth/kill of seeds in a pre-processing stage (WITKIN; HECKBERT, 1994; MEYER et al.,
2007; VAN KOOTEN; VAN DEN BERGEN; TELEA, 2007). Despite their effectiveness,
these procedures are computationally expensive, requiring the update of complex data
structures that are hard to efficiently map to parallel architectures. Although our experi-
mental results show that satisfactory quality images are obtained even without handling
the sampling problem, we additionally propose a heuristic that helps in reducing the ar-
tifacts of the final image. This heuristic is implemented as apre-processing stage that
analyzes, under the dynamical systems theory perspective,the seeds behavior along the
gradient field during projection. Differently from the previous methods that must com-
pute the pre-processing for each isovalue, this pre-computation is executed only once for
the entire dataset and does not depend on a specific isovalue.The next sections give an in
depth explanation of each step of our algorithm.

3.3 Object Space Sampling

The task of finding an isosurface for a given polynomial data can be formulated as
a root-finding problem. For higher-order polynomials, the lack of closed form solutions
leads to the use of iterative numerical methods. Newton-Raphson (NR) is one of the best
known methods for numerical root finding. Additionally, it presents good convergence
rates when the starting point is already close to the desiredsolution. However, uniformly
distributed seeds may not be close to the solution and NR may fail, leading to poor sam-
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pling. One possible solution is to guide the seeds through the gradient field until they get
closer to the isosurface and then apply NR to refine the projection. Since we just want to
bring the seeds closer to the isosurface, we decided for guiding the points by means of
integration. After the integration step, it is assumed thatthe seeds are closer to the de-
sired isosurface and we start with NR iterations. Directional NR (LEVIN; BEN-ISRAEL,
2002) along the gradient is used, since it has the additionaladvantage of quadratic con-
vergence. Equation 3.1 shows the formulation used for the NRiterations.

xk+1 = xk− f (xk)

∇ f (xk) ·∇ f (xk)
∇ f (xk), (3.1)

wherek is the time step (k = 0, 1, . . .),x is the point position in reference space, andf is
the polynomial for the current element.

All computations are performed separately for each seed point since no neighborhood
information is needed. Figure 3.2 gives an overview of the first phase.

(a) (b)

(c) (d)

Figure 3.2: Isosurface approximation: (a) Seeds are initially distributed uniformly into
each element. (b) Seeds are guided through integration steps along the gradient field to-
wards the desired isosurface. (c) Seeds are projected onto the isosurface using directional
NR. (d) Surface-tangent, seed-centered, quads are generated for each seed successfully
projected.

3.4 Image Space Refinement

The input for the second phase of our method is a set of surface-tangent, seed-centered
quads that together cover the isosurface. Points lying on these quads can be used as
starting points for the ray casting that will refine the representation of the isosurface.
These points are efficiently obtained through the rasterization of the quads in image space.



41

The fact that these points are already close to the isosurface implies that we can use the
directional NR method along the ray direction, as show in Figure 3.3. Equation 3.2 shows
the formulation for the directional NR used for the fragmentprojection:

xk+1 = xk− f (xk)

∇ f (xk) · r r , (3.2)

wherek is the time step (k = 0, 1, . . .),x is the point position in reference space,f is the
polynomial for the current element, andr is the ray vector in reference space.

The generated ray and fragment coordinates are transformedinto the reference coor-
dinate system, where the ray-isosurface intersection computations are performed. After
the maximum number of iterations is reached, if the fragmentis not projected onto the
isosurface (within an error tolerance bound) or it has been moved outside of the element,
it is discarded. If the fragment is successfully projected,shading is computed and the
corresponding pixel color is updated.

(a) (b)

Figure 3.3: Isosurface refinement: (a) Quads are rasterizedin image space. (b) Each
fragment is projected against the isosurface through directional Newton-Raphson along
the viewing rays.

3.5 Sampling Strategies

In both the object space sampling (Section 3.3) and the image-based refinement (Sec-
tion 3.4) phases, an appropriate sampling for obtaining a complete isosurface representa-
tion is required. In some cases holes can result due to improper sampling. As a limit case
of the object space sampling, infinitely dense seeding wouldguarantee a complete isosur-
face representation, but in practice, no guarantees about the resulting isosurface sampling
can be given.

The reason is that in general no assumptions about the behavior of the gradient field
can be made, and hence of mapping of seeds to the isosurface. For example, it is often not
possible to estimate the maximum distance between two seedswhen they are mapped to
an isosurface of arbitrary isolevel. A limit case of the image space refinement is a single
quad that spans the complete screen, which would be equivalent to a ray casting approach.
This would lead to the typically low performance of these methods due to computationally
expensive root finding along the viewing rays. Our method operates between the two
mentioned limit cases. To motivate the parametrization anda sampling technique, we
will first discuss the relevant issues and implications thatarise in the context of sampling.
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3.5.1 Sampling Issues

The proposed approach processes fragments independently.On one hand, it allows for
efficient parallel processing of fragments. On the other hand, the lack of neighborhood
information makes it impossible to detect, and to directly fix holes in the isosurface. Holes
can be caused by different reasons:

1. root finding may fail, e.g. due to insufficient iteration count,

2. root finding may deliver a point on a nearby isosurface if the quad is not well aligned
with the isosurface, i.e. the isosurface exhibits too high curvature with respect to the
initial sampling,

3. quad sizes are insufficient to cover the whole surface.

The first case is hard to address explicitly because the efficiency of our method re-
lies on synchronized root finding and hence constant iteration count (see Section 3.7.2).
However, this is typically negligible. Since we use quads aligned with the tangent plane
of the isosurface at each sampling seed, the second case depends only on the quality of
the initial sampling and the last one on the quad sizes. The initial sampling has to be
performed each time the isolevel is changed and therefore the exploration of isocontours
requires high performance for this operation. This makes the use of expensive approaches
not feasible for this step. Unfortunately, it is generally not possible to find a seed distri-
bution for the object space sampling that leads to uniformlysampled isosurfaces for all
possible isovalues. This makes non-uniform quad sizes for the image space refinement
necessary.

Therefore, we propose a method for estimating sufficient quad sizes in Section 3.6 and
place the seeds for the object space sampling regularly inside each element. One problem
is that even comparably large quads cannot guarantee hole-free coverage of the isosurface
because the sampling points can be arbitrarily distant due to the possible intricacy of the
gradient field. Additionally, large quads typically lead tohigh overdraw and hence to
lowered performance. All in all, a balance has to be found between the number of initial
seeds for the object space sampling and the sizes of the quads.

For approximate results at high performance that can serve as a preview to more ex-
pensive but robust methods such as that by Knollet al. (KNOLL et al., 2009), the sam-
pling in object space can be parametrized and the size for thequads can be derived from
that sampling as shown in Section 3.8. As an alternative, we now propose a method to
estimate conservative quad sizes for individual quads.

3.6 Estimating Quad Sizes using FTLE

A method to determine quad sizes that guarantee a complete covering of the isosur-
faces under the assumption of an appropriate object-space sampling can be derived from
dynamical systems theory. The finite-time (or local) Lyapunov exponent (FTLE) was
originally defined to measure the predictability of dynamical systems (LORENZ, 1965;
HALLER, 2001). More precisely, it measures the exponentialgrowth that a perturbation
undergoes when it is advected for a finite time interval in a vector field. The flow map
φφφT(x), which maps a sample pointx to its advected positionφφφT(x) after advection time
T, is the basis for the Cauchy-Green deformation tensor∇φφφ T(x). Using

∆T(x) = (∇φφφT(x))⊤∇φφφT(x) (3.3)
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and λmax being the largest eigenvalue, leads to the finite-time Lyapunov exponent
(HALLER, 2001):

σT(x) =
1
|T| ln

√
λmax(∆T(x)). (3.4)

For our application, we are only interested in the growth of the distance between two
seeds as they are guided by the gradient field and therefore weomit the normalization by
advection time and the logarithm in Equation 3.4. Additionally, since we look for points
on the isosurfaces, i.e. the intersections of isosurfaces with gradient field lines starting at
the seeds, the integration along the field lines shall not be limited by integration time (or
length). Instead, it has to be limited by the prescribed isolevel l . We defineφφφ l(x) to be
mapping the positionx to the isosurface of isolevell along the corresponding gradient
field line (the field line is stopped if a critical point of the gradient field is reached). Using
Equation 3.4, this would lead to the separation factor

sl(x) =
√

λmax(∆l (x)). (3.5)

We follow a direct approach for evaluatingsl (x). To avoid numerical issues and to
be able to exclude certain seeding neighborsn ∈ N (x) of x, as described below, the
computation ofsl(x) is not based on the gradient ofφφφ l (x), but it is calculated directly:

sl(x) = max
n∈N (x)

||φφφ l (n)−φφφ l (x)||
||n−x|| . (3.6)

The quad sized(x) at φφφ l(x) is sl (x) times the corresponding seeding distance||n−
x||. If the resolution of the object space sampling is appropriate, using these quad sizes
guarantees a complete covering of the isosurface at levell . For obtaining quad sizes that
are appropriate for any isolevel, the maximum separations(x) over all isolevels, computed
in a preprocessing step, is used to determine the quad sizes:

s(x) = max
lmin≤l≤lmax

sl (x). (3.7)

This quantity relates to the FTLE maximum by Sadlo and Peikert (SADLO; PEIK-
ERT, 2007). Unfortunately, as shown in Figure 3.4, neighboring seeds can get mapped
to different isosurface parts, making the resulting quad sizes too conservative. This leads
to unnecessary overdraw during rendering and hence lowers the overall performance. As
a remedy, we propose a heuristic that reduces the overdraw caused by these cases. The
idea is to exclude neighbors ofx from the computation ofs(x), that are not located in
its vicinity on the same isosurface. There are several possible approaches for detecting if
two points are adjacent on the same isosurface. The straightforward approach would be
to compute the geodesic distance between the points along the isosurface. However, this
is considered impractical and too expensive.

A criterion for testing if a mapped pointφφφ l (x) and its mapped neighborsφφφ l (n),n ∈
N (x), are located close to each other on the same isosurface can bemotivated by the fact
that the gradient is always aligned with the isosurface normal.

To test if a point and its neighbor are located on the same isosurface, the behavior of
the gradient field is analyzed on the straight line connecting them. If the isosurface is pla-
nar between the two points, the line follows the isosurface and intersects the gradient field
everywhere perpendicularly. If, on the other hand, the isosurface is non-planar between
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(a) (b)

Figure 3.4: (a) Neighboring points projected over the same surface lead to more adequate
(i.e less conservative) estimates for quad sizes. (b) Neighboring points projected over
disjoint surfaces may lead to very conservative quad estimates and reduced performance.
A heuristic, based on the alignment of the normal vectors at the sampling points, reduces
the influence of points laying on disjoint surfaces during quad size computation.

the points or if the points even lie on different isosurface regions, there are positions on
the segment where the gradient is not perpendicular. We introduce the following measure
amin for the minimum angle between the gradient and the segmentsn going fromx to n:

amin = max
t∈[0,1]

|sn ·∇s(x+ tsn)|
||sn||||∇s(x+ tsn)||

. (3.8)

The neighborn is excluded from the computation ifamin exceeds a user-defined
threshold. In practice, this threshold can be typically setto 0.5 for suppressing most
of the erroneous neighbors in order to prevent too conservative quad sizes and reduce the
performance loss due to overdraw.

3.7 Implementation

The proposed method was designed to take full advantage of parallel architectures.
Although our current implementation runs on a single GPU, itcould be easily distributed
over a GPU cluster. We start by first describing the data structures used. Afterwards we
go into the details of the implementation.

3.7.1 Data Storage

For the early element culling we use an interval-tree (CIGNONI et al., 1997) that
stores the extrema of the scalar field for each element. This tree is stored and processed
on the CPU side. The remaining data structures are stored on the GPU through the use
of different buffers. Each time the user selects a differentisovalue, we need to load
the initial set of uniformly distributed seeds and compute the isosurface approximation.
Thus we allocate two seed arrays on the GPU: one with the initial unprojected seeds and
another to store the projected seeds. For each unprojected seed, its corresponding FTLE
value is stored as itsw coordinate. Actually, those seed arrays are implemented asvertex
buffer objects (VBOs). We refer toVBOunpro j for the VBO with unprojected seeds and
VBOquadsfor the VBO that stores the quads. Polynomial, gradient, andelement boundary
data are read-only and are made available for GLSL through the use of bindable uniform



45

buffer objects (BUBOs). Since BUBOs are limited in size (usually 64KB) we chose to
create a separate BUBO for each element and to bind them on demand.

3.7.2 GLSL Shaders

Both phases of the algorithm are implemented through a set ofshader programs. The
first step of the algorithm is implemented through a GLSL program composed of a ver-
tex shader and a geometry shader. The vertex shader reads theVBOunpro j and projects
the seeds onto the isosurface (Section 3.3). These seeds arestreamed up to the geometry
shader and used to generate surface tangent quads. The quadsare resized accordingly
to the FTLE value of the seed (Section 3.7.1). In order to record the generated quads
into theVBOquadswe interrupt the pipeline just after the geometry shader through the use
an OpenGL extension calledTransform Feedback(or Stream-Outin DirectX terminol-
ogy). The GLSL program responsible for the second step is composed of a vertex and a
fragment shader. The vertex shader just redirects the vertices of the quads to the raster-
ization stage. The fragment shader implements the core of the second step. It performs
a ray casting using the input fragment as the starting point for the root-finding iterations
(Section 3.4). As said before, fragments that are not successfully projected are discarded.
However, it must be observed that fragments successfully projected onto the isosurface
are only shaded according to the new position, without having their depth coordinate up-
dated. This procedure greatly increases method’s performance by allowing the use of the
early-z test. A side effect of this approach is that some noise can appear on some regions
of the isosurface. This happens because a fragment closer tothe camera can be projected
on a far surface, being thus wrongly shaded. This effect is reduced through the com-
parison between the angles of the polynomial gradient vectors at the fragment positions
before and after projection. If the two angles differ above acertain value, it is assumed
that the fragment jumped to another surface. In this case onehave just to discard the
fragment. In both steps, the shaders must compute several evaluations of the polynomials
and their gradients. A shader capable of evaluating a general polynomial with an arbi-
trary degree would contain a loop that could not be unrolled by the compiler. To increase
performance, we decided to keep several versions of these shaders, each one targeted to a
specific polynomial degree. For the polynomial evaluation itself we use static expressions
generated by a multivariate Horner scheme approach (CEBERIO; KREINOVICH, 2004).
We decided to keep the number of integration and NR iterations static in order to reinforce
thread synchronization, increasing performance.

3.7.3 Computation Flow

When the user chooses a desired isovalue, the elements containing the isovalue are se-
lected. These elements are inserted in a separate list and arranged in front-to-back order
through fast sorting, that does not have to be exact. This ordering is not necessary, but it
helps the second step of the algorithm to avoid processing occluded fragments, increasing
performance. The shaders corresponding to the polynomial degree of the current element
are activated. The corresponding BUBO (containing the polynomial, gradient, and bound-
ary data) for the current element is bound and the seeds are projected. After all seeds are
projected, we start with the second step. Again, the elementlist is traversed, and now
the ray casting shaders and corresponding BUBOs are bound. Fragments successfully
projected onto the isosurface are recorded in the frame buffer.
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3.8 Results

Results and performance measurements were obtained on a computer with an Intel
Core 2 Quad 2.4 GHz processor, with 4 GB of RAM, Linux operating system, and NVidia
GeForce 8800 GTX video card. To demonstrate the method we used synthetic data and
two density datasets generated by Discontinuous Galerkin flow simulations. The synthetic
dataset is composed by a regular grid containing 43 cubic elements. For each element, the
scalar field is described by polynomials of degree 4. Data isC4 continuous inside each
element and at element boundaries. The two real higher-order discontinuous Galerkin
datasets used for the method demonstration are described inSection 2.5.1.

3.8.1 Performance

For each phase of the algorithm a set of parameters can be adjusted. For the first
phase these parameters are the number of initial seeds (ns), number of integration steps
(ni), number of NR steps (nN1) for seed projection, and the error for the NR projections
(ε1). For the second phase the parameters that can be adjusted are the number of NR
steps (nN2) for fragment projection, the scale factor for the quad size(sq), and the error
for the NR projections (ε2). Although the large number of parameters may be confusing
at first, they offer great flexibility to the user, allowing the tuning towards accuracy or
interactivity. From our experience we observed also that ingeneral one can explore both
accuracy and performance by adjusting just a few of them, keeping the others at fixed
values. For all presented measurements we used screen resolutions of 10242 pixels.

All renderings were made with early element culling active and with front-to-back
ordering for the elements. Figure 3.5 shows performance measurements for theshock
channeldataset. The fixed parameters, and their respective values,are:ns= 103, ni = 50,
nN1 = 10,ε1 = 10−3, nN2 = 3 andε2 = 10−4. These values were chosen through trial-and-
error. The only variable parameter issq. Due to early element culling only 16 elements
(≈ 7.43% of the total) were processed. The results of Figure 3.6 show performance mea-
surements for thespheredataset. The fixed parameters are:ns = 83, ni = 50, nN1 = 10,
ε1 = 10−3, nN2 = 3 andε2 = 10−4. These values were also chosen through trial-and-
error. Again, the only variable parameter issq. Due to early element culling, only 3,781
elements (≈ 9.13% of the total) were processed.

Figure 3.8 shows how the method scales with respect to the number of elements. These
measurements were made with degree 3 polynomials extractedfrom thespheredataset.
It can be seen that the rendering cost does not grow linearly.This can be explained by
the use of the early-z test, which avoids the processing of fragments or even elements
that are totally occluded. This behavior is reinforced since we use front-to-back ordering
for the elements. We may still have some overdraw since we do not order the quads
inside the element. However, from our experiments, this hasnot affected significantly the
performance in the general case.

The method proposed by Knollet al. (KNOLL et al., 2009) may look, at first, as a
competing approach. Despite the fact that their method is meant for the robust rendering
of implicits, it is fast and could be applied separately to each element of our datasets.
Figure 3.9 shows a comparison between our method and Knoll’sfor the rendering of a
single element of theshock channeldataset. Visual inspection shows that our method is
able to achieve higher framerates at better image quality. One reason for the difference
in performance is probably related to the extra cost involved with the use of inclusion
arithmetic in Knoll’s method. Although the use of inclusionarithmetic guarantees error
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bounds for the results, it tends to produce inferior resultsif larger error bounds are used.
Since we are not primarily interested in the control of accuracy, we rely on the direct
evaluation of the original polynomial representation, which is computationally cheaper
and thus can be used in a previewing system.

Regarding the time spent to recompute the object space approximation at each iso-
value change, for all our tests, they took less than 2 seconds. In the case of theshock
channeldataset, it takes less than 1 second to recompute the seed projection. All mea-
surements were made withni = 50 integration steps andnN1 = 10 Newton iterations.

3.8.2 Isocontouring Quality

As a previewing system the proposed method does not focus on high accuracy. Nev-
ertheless, it is capable of delivering results of reasonable quality. Figure 3.10 shows a
comparison between images generated by our method and the same images generated by
POV Ray, a well known, tested, and freely available ray tracer (POVRAY, 2009). The
discontinuities observed in these renderings are due the discontinuous Galerkin method
used to compute the simulations. Our method handles continuous data properly, as can be
seen in Figure 3.7.

Despite the reasonable quality of the images, one may want tohave better visual
quality for the isocontouring. In such cases the user can switch to a robust isocontouring
system, as the one proposed by Knollet al. (KNOLL et al., 2009). However, we have
also developed some heuristics in order to allow our method to generate better quality
images. The quality of the final sampling depends on the relation between the number
of seeds and the size of the quads. The exact relation betweenthese two parameters is
difficult to assess since the projection changes seed density. The FTLE-based heuristic
tries to estimate “optimal” quad sizes that “work” for all isovalues considering an initial
seeding given by the user. Since the FTLE does not take into account the topology of the
isosurface, it can be too conservative, by considering distances between seeds in disjoint
surfaces. For this case we adopt a test that estimates whether points are in disjoint surfaces
(Section 3.6). Figure 3.11 illustrates the sampling problems related to bad seeding/quad
size relation and how our heuristic resizes the splats according to that seeding, reducing
effectively the artifacts in the final image. It also illustrates the effect of our disjoint-
surfaces test on reducing the FTLE conservativeness. Despite the fact that it improves the
quality of the final rendering, the FTLE makes the method lessattractive for previewing
since it reduces its performance.
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Figure 3.5: Renderings for the isovalue≈ 2 of theshock channeldataset with varyingsq.
From top to bottom, thesq value and corresponding frames per second (fps) are:sq = 0.75
and 45 fps,sq = 1.0 and 39 fps,sq = 1.25 and 29 fps.
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Figure 3.6: Renderings for the isovalue≈ 0.9983 of thespheredataset with varyingsq.
From top to bottom, rendering and zoomed images with the followingsq value and corre-
sponding frames per second (fps):sq = 0.5 and 21 fps,sq = 0.75 and 14 fps,sq = 1.0 and
12.5 fps.
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Figure 3.7: Rendering of Tangle dataset sampled with a grid of 43 = 64 elements (left).
The dataset is continuous inside and across elements. Zoomed image (right) shows how
our method handles the continuity at the borders correctly.Settings for this rendering are:
ns= 103, ni = 50,nN1 = 10,ε1 = 10−3, nN2 = 3, andε2 = 10−4. The isovalue is≈−1.98.
Image was rendered at 10242 with ≈ 9.6 fps.

Figure 3.8: Performance (in frames per second, fps) vs. number of processed elements.
The non-linearity can be explained by the use of the early-z test, which avoids the pro-
cessing of occluded fragments.
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Figure 3.9: Comparison between our method and Knoll’s scheme. (left) Polynomial of
degree 5 rendered by our method at≈ 30 fps. With the standard settings (depth = 10 and
error = 0), Knoll’s method rendered this image at≈ 8 fps without visible artifacts. (right)
After optimization of their parameters (depth = 4 and error =0) to reach the best possible
image quality at≈ 30 fps. Both images rendered in a 10242 pixel screen.

Figure 3.10: Comparison against POV Ray. (left) Image generated with our method, with
the following settings:ns = 103, ni = 50, nN1 = 10, ε1 = 10−3, nN2 = 3, ε2 = 10−4,
sq = 1.5 and isovalue≈ 5.8437. This scene was rendered at 8.7fps. (right) Reference
image generated from the same data and same isovalue with POVRay. Both images
rendered at 10242 pixels.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Sampling issues related to quad size: (a) Standard quads reduced to 30%
of original size. (b) Sampling using standard quads: some artifacts can be seen due to
poor sampling. (c) Quads scaled by the FTLE and reduced to 30%of their size. (d)
Sampling obtained with quads resized by the FTLE approach. (e) Quads resized by our
FTLE approach in conjunction with a heuristic that reduces its conservativeness, reduce
in 30%. (f) Sampling obtained with our FTLE approach in conjunction with the heuristic.
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4 THE PARALLEL VECTORS OPERATOR

In order to facilitate the understanding of the feature extraction method presented in
Chapter 5, this chapter, based on the thesis by Martin Roth (ROTH, 2000) which origi-
nally introduces the parallel vectors operator, presents abrief description of the operator
definition and properties. The following sections present the formalization, in terms of
the parallel vectors operators, of several line-type features typically found in the context
of flow analysis. A couple of techniques that can be used to extract line-type features
described by linear vector fields are also presented and briefly discussed. A section is de-
voted to give an overview about current research on parallelvectors. The chapter finishes
with a summary of several line-type parallel vectors features and properties.

4.1 Definition

Let u andz be two arbitraryn-dimensional vector fields. The set of points for which
u andz are parallel or one of them is zero is defined as

S= {x : u(x) = 0}∪{x : ∃λ ,z(x) = λu(x)} (4.1)

The first term in the equation above avoidsλ = ±∞. The second term represents a
system ofn scalar equations onn+1 unknowns (x1, ...,xn, λ ). Solution points require that
z ‖ u. If one assumes a local coordinate system with one axis parallel to u(x), z(x) will
be parallel tou(x) only if its n−1 components orthogonal tou(x) are zero. This restricts
n−1 degrees of freedom for the solution, which explains the fact that, for independent
equations (non-degenerated), the solution is 1-dimensional.

This is the general parallel vectors definition which describes 1-dimensional features
embedded in ann-dimensional domain. In this thesis we will restrict the discussion about
parallel vectors feature extraction to one-dimensional features in three-dimensional do-
mains.

To extract the parallel vectors feature lines inR
3 of two continuous vector fieldsu and

z defined on[xmin,xmax]× [ymin,ymax]× [zmin,zmax], we first derive a third vector fieldw
such that:

w(x,y,z) = u(x,y,z)×z(x,y,z) =




k(x,y,z)
l(x,y,z)
m(x,y,z)


 (4.2)

Parallel vectors feature lines are defined as the set of points wherew = (0,0,0)⊤.
Equation 4.2 presents a system of three equations on three unknowns. However, these
equations are not independent, and the solutions are represented by 1-dimensional closed
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manifolds. In the seminal work by Peikert and Roth (PEIKERT;ROTH, 1999) they
present some possibilities for the choice ofu andz whose parallelism correspond to dif-
ferent feature types.

The next section discusses parallel vectors features filtering and classification. The
following sections present the parallel vectors definitions for some prominent line-type
features in the context of flow analysis. Additionally, a brief description of some tech-
niques used to extract feature lines described by parallel vectors criterion is introduced.
The last section presents a table which summarizes the parallel vectors features presented
in this chapter.

4.2 Feature Classification and Filtering

As will be seen in the following sections, some feature typescan be fully described by
parallel vectors expressions. However, this is not the casein general. As shown before,
solutions for the parallel vectors expressions are represented by 1-dimensional algebraic
curves, which are closed, although most of the features are not representable by closed
lines. In fact, usually only some of the requirements neededto define a feature can be
expressed in terms of parallel vectors, whose solution represents a superset of points con-
taining the desired structures (raw features). In order to fully describe and isolate the
desired structures, additional criteria must be applied over the resulting raw features.

Some of these additional criteria classify points as being part of the feature or not.
These are calledboolean filtering criteriaor conditions, and restrict, select or classify the
set of points in the raw features.

Additionally, feature extraction based on local criteria,such as those amenable to a
definition by the parallel vectors operator, are often susceptible to numerical noise and
false positives. Therefore, it is usually inevitable to perform a subsequentquality filtering
step. There are several possibilities for the criteria usedfor quality filtering in the context
of line-type features according to (PEIKERT; ROTH, 1999).

Classification and filtering criteria may vary a lot depending on the feature type. Thus,
we introduce some filtering and classifications criteria as we present the feature types and
the corresponding parallel vectors expressions in the following sections.

4.3 Application Examples

This section presents examples of features that can be described in terms of the parallel
vectors operator. First,primitive structures of scalar and vector fields, such as curvature
and minimum/maximum lines, are described in terms of the introduced operator. Some
existing line-type feature definitions, such as vortex cores and separation lines, are then
described in terms of these primitive structures, giving rise to parallel vectors expressions
which represent equivalent descriptions for these features.

4.3.1 Zero Curvature

Assuming thatv is a steady vector field, the accelerationa of a particle moving along
this field can be determined according to

a=
Dv
Dt

= (∇v)v, (4.3)

as shown in Appendix A.3.
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If the acceleration of the particle is aligned with the direction of v, there are no per-
pendicular forces bending the current particle trajectoryand that the particle is following
a straight line. Thus, it is possible to define a parallel vectors expression which identifies
locations where streamlines present zero curvature. The loci of zero curvature of a vector
field is represented by the set of points where

v ‖ (∇v)v. (4.4)

According to differential geometry, curvature vanishes when acceleration is aligned
with velocity as shown in

κ =
a×v
‖v‖3 , (4.5)

whereκ is the curvature of the streamline (Appendix A.1).
This formulation is important for the description of several line-type features such as

vortex core by Sujudi and Haimes (SUJUDI; HAIMES, 1995) and separation and attach-
ment lines by Kenwright (KENWRIGHT, 1998; KENWRIGHT; HENZE; LEVIT, 1999)
as will be shown next.

4.3.1.1 Sujudi/Haimes Criterion for Vortex Core Definition

Vortices are prominent structures in the context of flow analysis, and their presence
may be desired or not. They play an important role in combustion chambers, where their
presence may increase the efficiency of the mixing process. On the other hand, they may
cause a drag in aerodynamic profiles.There is no consensus inthe definition of a vortex
and several different models have been developed.

One of these definitions is the one by Sujudi and Haimes, whichproposes a rather
intricate algorithm for vortex core definition and extraction. According to their definition,
vortex core is the set of points where thereduced velocityis zero.

For a given point, the reduced velocity is computed by first computing the eigenvalues
of the Jacobian of the velocity (∇v). If the Jacobian presents only one real eigenvalue,
the eigenvectore0, corresponding to the unique real eigenvalue, is calculated. Finally, the
reduced velocity is computed by subtracting, from the original velocity, its component
aligned with the eigenvectore0.

According to this formulation, the reduced velocity is zeroonly at locations wheree0
is parallel tov. Sincee0 is an eigenvector of∇v, then

(∇v)e0 = λe0. (4.6)

As explained before, for points on the vortex core we havee0 = v. Thus, Equation 4.6
can be rewritten as

(∇v)v = λv, (4.7)

that is equivalently written as

v ‖ (∇v)v, (4.8)

which is the same formulation for the zero curvature criterion presented in Equation 4.4
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As is usual for parallel vectors formulations, the above expression extracts raw fea-
tures, and post-processing becomes necessary to isolate only the desired structures. Ad-
ditionally to the parallelism between velocity and the eigenvectors of the Jacobian (guar-
anteed in Equation 4.8), it is necessary that, at the featurepoints locations, the Jacobian
presents only one real eigenvalue. Martin Roth (ROTH, 2000)suggests the computation
of the discriminantD of the Jacobian at each extracted point in order to verify if the Jaco-
bian presents only one real eigenvalue. If, for a given pointD > 0, the Jacobian presents
only one real eigenvalue and the point is part of the vortex core. Otherwise, the point is
not part of the feature and must be discarded.

4.3.1.2 Attachment and Detachment Lines

Attachment and detachment lines are structures that indicate, respectively, where the
flow abruptly moves away or returns to the surface. These are important structures in
aerodynamics since they can increase drag and reduce lift, and therefore their occurrence
should be reduced or completely eliminated.

Kenwrightet al. (KENWRIGHT, 1998; KENWRIGHT; HENZE; LEVIT, 1999) pro-
posed a formulation for attachment and detachment lines that is very close to the vortex
core formulation of Sujudi and Haimes presented in the previous section.

As with the Sujudi and Haimes approach, this formulation is based on the alignment
of the velocity with the eigenvectors of the Jacobian. Thus,a requirement for a point to
be part of an attachment or detachment line is

v ‖ (∇v)v, (4.9)

which is exactly the same criterion as in Sujudi and Haime’s approach (Equation 4.8).
Attachment and detachment lines are features defined on a 2-dimensional parameteri-

zation (skin friction field) of the original 3-dimensional vector field, leading to a 2×2 Ja-
cobian. Feature lines extracted with the above formulationcomprise a superset containing
the desired features. In order to detect and classify the desired structures (as attachment
and detachment lines), as well as to discard points that do not represent features, further
analysis of the eigenvalues of the Jacobian must be performed.

4.3.2 Extremum Lines

Extremum linesare lines for which a scalar fields assumes a extremum value (min-
imum, maximum or saddle) on a plane perpendicular to a vectorobtained from a vector
field w defined on the same domain:

w ‖ ∇s. (4.10)

The above parallel vectors criterion defines a new class of linear structures, called
sectional extrema, which can be used for the description of line-type features. This is
the case, for instance, with the Banks and Singer (BANKS; SINGER, 1994) and Strawn,
Kenwright and Ahmad (STRAWN; KENWRIGHT; AHMAD, 1998) vortex core defini-
tions.

Banks and Singer (BANKS; SINGER, 1994) proposed a predictor-corrector scheme
for the extraction of vortex core lines along the vorticity and pressure fields. According
to their scheme, advancing moves are generated along the vorticity while the correction
moves minimize the pressure on the plane perpendicular to the vorticity field. Thus, vortex
cores should be approximations of vorticity lines.
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For the algorithm to start, a set of seeds must be first placed.According to Roth
(ROTH, 2000), the vortex core definition by Banks and Singer suggests that, at the vortex
core, vorticity is approximately parallel to the pressure gradient

∇×v ‖ ∇p, (4.11)

where∇×v is the vorticity andp the pressure field.
The above criterion includes points that are located on pressure maximum, minimum

or saddle points. Thus, an additional filtering criterion must be employed to reject points
that do not satisfy the minimum pressure criterion. This canbe accomplished through the
computation of the two eigenvalues of the Hessian of the pressure field parameterized on
the perpendicular plane. If both eigenvalues are positive it means that the point is located
at a pressure minimum and is part of the vortex core. If both eigenvalues are negative
(pressure maximum) or present different signs (saddle points), the point is not on a vortex
core and must be discarded.

Strawn, Kenwright and Ahmad (STRAWN; KENWRIGHT; AHMAD, 1998) also pro-
posed a vortex core definition that can be expressed in terms of extremum lines. Accord-
ing to their definition, a vortex core is the set of points where the magnitude of the vorticity
field w reaches its maximum on the plane perpendicular to vorticity. Since the magnitude
of the vorticity field|w| can be substituted byw2, the equivalent description according to
the parallel vectors is

w ‖ ∇(w2), (4.12)

which can be equivalently written as

w ‖ (∇w)Tw, (4.13)

according to the derivation in Appendix A.4.

4.3.3 Ridges and Valleys

Regions of minimum and maximum values are usually related torelevant structures,
and a proper definition (and detection) of such structures play a key role in data behavior
analysis. Among such structures, there are ridges and valleys, which have been used for
the extraction of several different types of interesting structures, ranging from topographic
features to multidimensional structures in fluid flow.

Ridges and valleys are important structures in topography and their mathematical for-
malization as curves were already pursued early in the nineteenth century by De Saint-
Venant (SAINT-VENANT, 1852) and Breton de Champ (CHAMP, 1854). Figure 4.1
illustrates geomorphological ridges and valleys extracted from a 2-dimensional height
field.

Two main approaches have been used for the definition of ridges and valleys. One is
based on the concept of watershed (and watercourse) and the other based on the concept
of height ridge.

According to the watershed based definition, ridges are extracted as slope lines that
depart from saddle points on the height fields, and are tracedin positive and negative
gradient direction. Despite the usefulness of this type of description, watershed based
definition is global in nature, involving the processing of the whole dataset in order to
locate the desired features.
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Figure 4.1: Red points: maximum. Blue points: minimum. Graypoints: saddle. Left:
height field contour map. Right: corresponding height maps ridge (red) and valley lines
(blue).

The height ridge approach, on the other hand, represent features not as slope lines,
but as solution manifolds of algebraic equations, which arecomputed only from local
properties obtained from the height field and its corresponding derivatives. The most
prominent definition of this type is the one by Eberly (EBERLY, 1996).

Due the local nature of the parallel vectors operator, we restrict the discussion of ridges
and valleys extraction to techniques that operate locally.More specifically, we concentrate
on the one proposed by Eberly, for which an equivalent parallel vectors expression is
presented.

According to Eberly (EBERLY, 1996):

“The height ridge definition uses the heuristic that a ridge point should be
a point for which the function has a local maximum in the direction for which
the graph has the largest concavity (assuming the normal direction is in the
positivez direction).”

More formally, ak-dimensional height ridge embedded inRn can be defined as the set
of points of the scalar fieldf : Rn→R where

∂ f
∂y1

= · · ·= ∂ f
∂yn−k

= 0 (4.14)

∂ 2 f
∂y2

1
, · · · , ∂ 2 f

∂y2
n−k
≤ 0 (4.15)

in the local coordinate framey1, · · · ,yn defined by the eigenvectors of the Hessian matrix

H = ∂ 2 f
∂xi∂x j

. The ordering of the eigenvaluesλi is defined as follows:

λ1≤ ·· · ≤ λn. (4.16)

The height ridge counterpart,height valley, can be extracted as the height ridges of
the inverted function− f .

According to (ROTH, 2000), ridge (or valley) lines are the set of points where the
slope is locally minimal compared to points located on a lineperpendicular to the eleva-
tion gradient. Thus, the definition requires a minimum of themagnitude of the gradient
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g of the scalar fieldf in the plane perpendicular tog. Ridge and valleys are therefore
the minimum lines ofg and can be expressed according to the extremum line formulation
presented in Section 4.3.2:

g ‖ (∇g)Tg. (4.17)

The vector fieldg used in the formulation above is the gradient of a scalar fieldand∇g
represents its Hessian (H), which is always symmetric. Since theH = HT , Equation 4.17
can be simplified and rewritten as

g ‖ Hg. (4.18)

The above formulation would be equivalent to the first part ofEberly’s definition
(Equation 4.14) except for the fact that, for points laying on features lines, it does not
restrict the alignment ofg with the maximal (or minimal) eigenvectors of theH. In fact,
Equation 4.18 extracts all points for whichg is aligned toanyof the current eigenvectors
of H (PEIKERT; SADLO, 2008). Isolation of desired features can be accomplished by
testing the alignment ofg with the eigenvectors ofH at each extracted point. Points
whereg is aligned to the maximal/minimal eigenvectors ofH are kept. Otherwise, they
are discarded.

At this stage we have a set of points that represents the unionof all extracted ridges
and valleys, but we are not yet able to determine to which feature type each point pertains.
As a final step, points are classified as being part of a ridge ora valley line according to
Equation 4.15.

4.3.4 Other Uses of the Parallel Vectors Operator

Levy et al. (LEVY; DEGANI; SEGINER, 1990) defined vortex core as the setof
points where normalized helicity approaches−1 or+1. Normalized helicity is the cosine
of the angle between velocityv and vorticity∇×v. If the vectors are parallel and point
in the same direction (despite their magnitude), the cosineapproaches+1. If the vectors
are anti-parallel (point in opposite directions) the cosine of the angle between them ap-
proaches−1. Thus, a vortex core is defined as the set of points where velocity is parallel
to vorticity

v ‖ ∇×v, (4.19)

which represents the equivalent criterion for extracting vortex cores according to the par-
allel vectors formulation.

Another example of the use of parallel vectors in vortex coredefinition is related
to curved vortex cores. Linear vector fields can model only vortices whose core is a
straight line, and most of the existing vortex core extraction methods (usually based on
first derivatives) assume that the vector field is locally linear. However, curved and bended
vortices are found in practical data very often, mainly in the field of turbo-machinery,
where the fluid is usually constrained to curved channels. Using the method by Sujudi
and Haimes (SUJUDI; HAIMES, 1995) as the starting point, Roth and Peikert (ROTH;
PEIKERT, 1998) developed a method for the extraction of idealized curved vortex core,
which presented satisfactory results when applied over real simulation data. The method
makes use of second derivatives of the velocity field, and oneof the requirements for a
point to be part of the bended vortex core is the parallelism shown below



60

v ‖ (∇a)v, (4.20)

wherev expresses velocity anda the acceleration.
This formulation identifies a superset of points that contains the desired features, and

further processing is necessary to isolate only the desiredstructures. For each point sat-
isfying Equation 4.20, it must be assured that the velocity gradient presents only one real
eigenvalue. This can be accomplished by the computation of the discriminantD of the
velocity gradient at each extracted point, whereD > 0 for the points lying on the feature.

4.4 Extracting Features

According to the original proposal (PEIKERT; ROTH, 1999), for 1-dimensional fea-
tures inR2, the extraction of the zero-isolines of the cross product between the two vector
fields can be used. However, the extraction in higher dimensional spaces (Rn, where
n≥ 3), the choice of the method is not obvious, and several possibilities can be consid-
ered. Thus, four possible methods are suggested for the extraction of parallel vectors
line-type features. While the first three methods are concerned with finding intersections
of the features with faces of the data grid, the fourth is a continuation-based line tracing
approach that, used in combination with any of the three previously suggested methods,
enables the extraction of topologically correct line features. Following is a brief descrip-
tion of each one of these methods.

4.4.1 Isosurface Based Approach

The parallel vectors feature lines can be seen as the intersection of the 0-level isosur-
faces of three distinct scalar fields, as shown in Equation 4.2. Thus, one possible approach
to extract the feature line is to locate two of the three possible isosurfaces and compute the
curve generated by their intersections. This can be accomplished with a marching lines
algorithm, such as the one proposed by (THIRION; GOURDON, 1996). Later on, at each
point of the extracted curve, the third scalar field is testedfor a zero. Points on the ex-
tracted curve that successfully evaluate to zero for the third isosurface can be considered
as feature points.

This approach might suffer from some problems. The curve extracted in the first step
is just a piecewise linear approximation of the actual curve. Thus, the test between the
extracted curve and the third scalar field should account for, probably, large tolerance val-
ues that may lead to inaccurate feature lines and discontinuities. Additionally, isosurfaces
forming sharp angles may generate numerically unstable tracing vectors.

4.4.2 Iteration on Cell Faces

Another possibility for the feature extraction is to use an iterative method on the cell
faces to find the corresponding intersection points with thefeature lines. These intersec-
tion points serve asseedsfor a post feature tracing stage.

According to this method, the parallel vectors expression to be zeroed is

w = u×z, (4.21)

and the vector valued functionw is defined within grid cells.
Before it starts, for each cell face (be it a quadrilateral ora triangle) a point is placed at

its center. This point serve as the starting point for several Newton iterations restricted to
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the supporting plane of the cell face. During the iterations, if the point is moved beyond
the corresponding face limits, it is positioned back at the face border. If the value ofw2

becomes smaller than a prescribed error tolerance, the iteration stops and the current seed
location is stored.

Despite the accuracy regarding seed placements, the algorithm just delivers a set of
seeds which are not related to one another. The reconstruction of the feature, by means of
seed connection, must be accomplished using heuristics. Cases such as cells containing
zero or two intersection points are trivially handled. However, problems emerge when
the cell contains only one or more than two intersection points. In these cases several
heuristics can be used, including seed proximity, direction of the tangent vector at seed
positions, etc.

4.4.3 Analytic Solution at Triangular Faces

This algorithm explores the existence of an analytic solution for linear feature inter-
sections on triangular cell faces. As the algorithm presented in Section 4.4.2, it provides
a set of non-connected seeds which must be connected afterwards. The algorithm can be
applied to quadrilateral faces since they can be broken intotriangles. It explores the fact
that a 3-dimensional linear vector fieldu can be described in terms of the triangle local
coordinate system through a matrixU:

u = Ux, (4.22)

whereU is a 3×3 matrix as isZ andx= [s, t,1]T is a point in the triangle local coordinate
system.

Two linear vector fields are parallel when

Ux = λZx. (4.23)

If Z is invertible, the problem of finding the locus where both fields are parallel re-
duces to an eigenvector problem for a 3×3 matrix

Z−1Ux = λx (4.24)

If Z is not invertible, butU is, the expression can be swapped. If both vector fields are
not invertible, then no solution exists.

4.4.4 Curve-following Methods

As observed with the methods presented in Sections 4.4.2 and4.4.3, heuristics must
be used during the connection of the seeds, and it can be the case that the connections
generated do not represent the actual feature topology.

An alternative to reduce topological problems related to incorrect seed connections
is to use curve-following algorithms to trace the features from the previously extracted
seeds (BANKS; SINGER, 1994; HARALICK; SHAPIRO, 1992). Although not capable
to guarantee topologically correct lines due the limited floating point precision available
in computers, sufficiently small tracing steps usually leadto acceptable quality results.
Additionally, since it is known that the value of the parallel vectors expression at a point
lying on the feature line is zero for all its components (Section 4.1), one can also advocate
the use of predictor-corrector-based tracing schemes for higher-quality feature tracing.



62

4.5 State of the Art in Parallel Vectors

Current research on parallel vectors feature extraction ismainly focused on more ac-
curate feature tracing and extraction in higher dimensions. Sukharevet al.(SUKHAREV;
ZHENG; PANG, 2006) propose a new line-type feature integration method based on an-
alytical expressions for feature line tangents that allowsfor topologically correct extrac-
tion of smooth feature curves from linear data. The authors discuss two methods for seed
finding that simultaneously evaluate the equations that compose the parallel vectors ex-
pression, respecting their linear dependence. Gelder and Pang (VAN GELDER; PANG,
2009), inspired by Banks and Singer (Section 4.3.2), propose PVsolve, an accurate par-
allel vectors line-type feature tracing method based on a predictor-corrector scheme. A
stable feature flow field (WEINKAUF et al., 2010), which guarantees converging behav-
ior around feature lines, was also proposed. Although capable of accurately extracting
features using larger step sizes than previously publishedtracing methods, these methods
assume that seed points are given.

Several works discuss feature extraction in higher dimensional spaces. Baueret al.
(BAUER; PEIKERT, 2002) propose a method for parallel vectors feature extraction using
scale-space techniques. Theiselet al. (THEISEL et al., 2005) discuss the extraction of
parallel vectors vortex core surfaces in time-dependent vector fields using a robust method
for seed detection in linearly interpolated data. Their method is based on a recursive
subdivision of the element’s face and interior to ensure thedetection of at least one seed
on each feature line. The authors also present a general derivation for the FFF, which
represents features of a general parallel vectors expression as streamlines. Our method
extends seed finding and subdivision approaches for robust feature extraction in higher-
order data.

Feature extraction from volumetric multi-cell higher-order data is discussed in related
problems of isocontouring and direct volume rendering (MEYER et al., 2007; NELSON;
KIRBY, 2006; REMACLE et al., 2006; SCHROEDER et al., 2006; WALFISH, 2007;
ÜFFINGER; FREY; ERTL, 2010).

Schindleret al. (SCHINDLER et al., 2009) propose, as far as we know, the first at-
tempt to extract parallel vectors features from higher-order data. However, their method
is tailored to the specific case of SPH data, which does not provide cells. The work
presented in this thesis is, to the best of our knowledge, thefirst attempt to handle the
extraction of parallel vectors line-type feature lines from multi-cell higher-order data. For
numerical accuracy, several works use interval arithmetic(IA) (MOORE, 1966) or its
variants such as Affine Arithmetic (AA) (COMBA; STOLFI, 1993) and Reduced Affine
Arithmetic (RAA) (GAMITO; MADDOCK, 2007). Knoll et al. (KNOLL et al., 2009)
present a method for extracting isosurfaces from implicitsbased on an IA-driven bisec-
tion approach. They achieve interactivity and less conservative results by utilizing an
adaptation of the inclusion-preserving RAA approach proposed by Messine (MESSINE,
2002). Our method also benefits from the bounds given by IA forfeature extraction.

4.6 Summary of Parallel Vectors Features

Table 4.1 presents a summary of the parallel vectors formulations presented so far.
All formulations where devised to extract the 1-dimensional features embedded inR3.
The columnPV Criterionpresents the feature formulation in terms of the parallel vectors
operator. The columnFeaturedescribes the type of feature to be extracted. The column
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Author(s)presents the authors which developed the original feature definition, pointing
the reader to the corresponding section where the feature, and its equivalent description
in terms of parallel vectors, is further explained. Finally, the columnDescriptionpresents
a brief comment about the corresponding parallel vectors formulation. It also presents
required post-filtering and classification criteria when the corresponding parallel vectors
description is not sufficient to fully describe the feature.
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PV Criterion Feature Author(s) Description

1 v ‖ (∇v)v vortex cores Sujudi and Haimes
(Section 4.3.1.1)

Jacobian at extracted
point locations must
present only one real
eigenvalue.

2 v ‖ (∇v)v attachment and
detachment
lines

Kenwright et al.
(Section 4.3.1.2)

Applies only on 2D
vector field parameter-
izations (skin friction
field). Further analy-
sis of the eigenvalues of
the Jacobian needed for
proper feature classifi-
cation.

3 ∇×v ‖ ∇p vortex cores Banks and Singer
(Section 4.3.2)

Both eigenvalues of the
Hessian of the pres-
sure (parameterized on
the plane perpendicular
to the velocity) must
be positive (minimum
pressure).

4 v ‖ (∇v)Tv vortex cores Strawnet al. (Sec-
tion 4.3.2)

Both eigenvalues of the
Hessian of the pres-
sure (parameterized on
the plane perpendicular
to the velocity) must
be negative (maximum
vorticity).

5 g ‖ Hg ridge and valley
lines

Eberly Gradient of the scalar
field parallel to eigen-
vectors of the Hessian.
Needs post-filtering.

6 v ‖ ∇×v vortex cores Levy et al. (Sec-
tion 4.3.4)

The PV formulation
fully describes the
feature.

7 v ‖ (∇a)v vortex cores Roth and Peikert
(Section 4.3.4)

Jacobian at extracted
point locations must
present only one real
eigenvalue.

Table 4.1: Possible parallel vectors expressions as discussed by Roth and Peikert
in (PEIKERT; ROTH, 1999). Some of the presented expressionsextract raw features,
and post filtering is necessary in order to isolate only the desired structures.
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5 EXTRACTING FEATURES FROM HIGHER-ORDER CFD
DATA

In this chapter, we present a technique for extraction of line-type parallel vectors fea-
tures from higher-order (HO) data represented by piecewiseanalytical basis functions
defined over structured and unstructured grid cells. The extraction uses parallel vectors
in two distinct stages. First, seed points on the feature lines are placed by evaluating the
inclusion form of the parallel vectors criterion with reduced affine arithmetic. Second, a
feature flow field is derived from the parallel vectors expression in such a way it contains
the features in the form of streamlines starting at the seeds. Our approach allows for guar-
anteed bounds regarding accuracy with respect to existence, position, and topology of the
features obtained. The method is suitable for parallel implementation and we present re-
sults obtained with our GPU-based prototype. We apply our method to the discontinuous
Galerkin higher-order datasets presented in Section 2.5.1. The contents of this chapter
were published as "Efficient Parallel Vectors Feature Extraction from High Order Data"
(PAGOT et al., 2011).

5.1 Background

To facilitate the understanding of the proposed technique,we start by introducing
the feature flow field (FFF) and interval arithmetic concepts. Afterwards, the proposed
method is presented and explained in detail.

5.1.1 Feature Flow Fields

Feature tracking methods usually work by detecting features of the flow in several time
steps. Features are detected independently for each time step, being their correspondence
and events established afterwards.

The correspondence among features in different time steps is traditionally investigated
taking into consideration two criteria: region correspondence and attribute similarities.
While region correspondence usually involves distances among features, attribute simi-
larities involve feature sizes, volume and color among others.

Once the correspondence among features is established, their attributes are checked
for significant changes over the time, that may indicate the occurrence of certain events.
The following events, according to (THEISEL; SEIDEL, 2003), are considered:

• continuation

• birth (creation)
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• death (dissipation)

• entry

• exit

• split (bifurcation)

• merge (amalgamation)

Until the introduction of the FFF concept, an usual approachwas to track the fea-
tures through isocontouring in a 4-dimensional space (WEIGLE; BANKS, 1998; BAUER;
PEIKERT, 2002). Feature flow fields (THEISEL; SEIDEL, 2003) proposes an alternate
approach for feature tracking that represents the dynamic behavior of feature not as higher
dimensional isosurfaces, but as stream lines of a higher dimensional vector field. This ap-
proach benefits from the well-established techniques for numerical integration of stream
lines commonly used in flow visualization.

5.1.1.1 General Feature Flow Field formulation

Assuming a 3-dimensional instationary vector fieldw for which we want to track
features:

w(x,y,z, t) =




k(x,y,z, t)
l(x,y,z, t)
m(x,y,z, t)


 , (5.1)

wheret represents discrete time steps.
The idea is to construct a 4-dimensional vector fieldf from w in such a way that the

dynamic behavior of features inw can be represented by stream lines off. In this casef
is a vector field that points in the direction in which vectorsof w remain constant.

The direction of highest variation ofk (Equation 5.1) at a given point happens in the
direction of∇k. Assuming a first order approximation, the value ofk remains constant
on the plane perpendicular to∇k. The same holds for∇l and∇m. Sincef must point in
the direction in which the vectors inw remain constant,f must be perpendicular to the
gradients of allw components simultaneously:

f ⊥ ∇k

f ⊥ ∇l

f ⊥ ∇m

(5.2)

Thus, from Equation 5.2,f can be formulated as

f(x,y,z, t) =




det(wy,wz,wt)
det(wz,wt ,wx)
det(wt ,wx,wy)
det(wx,wy,wz)


 , (5.3)

wherewx, wy, wz andwt are the partial derivatives ofw.
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5.1.1.2 PV features as Streamlines of the FFF

To represent the parallel vectors feature lines of the vector field w (Equation 4.2) as
streamlines of the FFFf, the vectors off must point in the direction in which the vectors
of w neither change direction nor magnitude, i.e., once a streamline of f is started where
w = 0, this holds along the streamline. Thus, the dynamic evolution of the features inw
is represented as stream lines off.

Sincef must point in the direction in which the vectors inw remain constant,f must
be perpendicular to the gradients of allw components simultaneously. Letf1, f2 and f3

represent perpendicular directions defined as

f1(p) = ∇k(p)×∇l(p),

f2(p) = ∇k(p)×∇m(p),

f3(p) = ∇l(p)×∇m(p).

(5.4)

As demonstrated in (THEISEL et al., 2005),f1, f2 andf3 define collinear vectors for
a given pointp and can be linearly combined to form a unique FFF forw. However, we
observed in our experiments that this approach can generateresults with poor numerical
stability. This can be caused by a combination of vectors pointing in opposite directions,
leading to cancellation, or due to small angles between∇k, ∇l and∇m. These issues have
been recently addressed by the stable FFF (WEINKAUF et al., 2010) at the cost of storing
higher-order derivatives.

In our modified formulation we considerf1, f2, andf3 separately. At each integration
step, we choose one as the current FFF, based on the angle formed by the gradient vectors
at the current integration pointp. For example, one of the angles is computed by the
following scalar product:

α1(p) = arccos

(
∇k(p)
|∇k(p)| ·

∇l(p)
|∇l(p)|

)
. (5.5)

The other two angles,α2(p) andα3(p), are defined similarly for the pairs∇k, ∇m,
and∇l , ∇m, respectively. The FFF chosen is thef i corresponding to theαi closer to 90
degrees. For consistency during feature tracing, once a FFFis chosen, it is used for all
evaluations required by the Runge- Kutta integration scheme for the computation of the
current integration step. Figure 5.1 illustrates geometrically how f is chosen. This for-
mulation avoids vector cancellation that may occur in (THEISEL et al., 2005), improving
the numerical accuracy of the FFF, at the same time that uses lower order derivatives than
required by the stable feature flow field approach.

5.1.2 Interval Arithmetic

Interval arithmetic (IA), or interval analysis, is a tool conceived by Ramon E. Moore
(MOORE, 1966) to automatically handle round-off truncation errors during computations
with floating-point numbers and to robustly inspect the behavior of multivariate functions
over domain intervals. The following sections present a brief overview of the original IA
proposal, some existing IA variations and the reduced affineform adopted in this work
for the representation of parallel vectors expressions.

5.1.2.1 Interval Arithmetic

According to IA definitions, a real quantityx is represented as an interval of floating-
point numbers ¯x = [xL,xU ], wherexL andxU represent the corresponding interval lower
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Figure 5.1: Selection of the current FFF based on the angle formed between the gradient
vectors. In the above example we choosef1 as the FFF for the current feature integration
step, since the angleα1, formed by its orthogonal gradient vector fields at the pointp is
closest to 90 degrees.

and upper bounds. The actual value ofx is known to lie somewhere in ¯x. Besides repre-
senting quantities as intervals of real values, IA also redefines the elementary arithmetic
operators and functions such that results are guaranteed tocontain the value the oper-
ation represents, a property known as inclusion property. Thus, for example, addition,
subtraction and multiplication of intervals are defined as

x̄+ ȳ= [xL +yL,xU +yU ],

x̄− ȳ= [xL−yU ,xU −yL],

x̄× ȳ= [min(xLyL,xLyU ,xUyL,xUyU ),max(xLyL,xLyU ,xUyL,xUyU )].

(5.6)

Although it is not easy to find simple inclusion form descriptions for many functions,
it is still possible to extend some functions to account for inclusion. That is the case, for
example, with sine, cosine, power, square root, among others. Once the primitive opera-
tions and functions are redefined to account for inclusion, complex functions obtained by
the combination of these operations will also preserve thisproperty. Thus, any function
f : Ω⊆ R

n→R can be extended into its inclusion form̄f such that

f̄ (x̄)⊇ f (x̄) = { f (x) : x∈ x̄}, (5.7)

wherex̄⊆Ω is a interval box.
Since floating-point arithmetic presents limited precision, it may affect the actual in-

terval limit values due rounding. Thus, in order to preservethe inclusion property at the
cost of a more conservative result, it must be ensured that, at the generation of every
interval quantity, the lower limit is always rounded down and the upper limit is always
rounded up.

The main disadvantage of IA is the assumption that unknown values vary indepen-
dently over the corresponding intervals. This assumption may lead to overly conservative
results that are often impractical to use. One simple example is the expression ¯x− x̄,
for x̄ = [−1,1]. Although the actual range for this expression is[0,0], according to the
original IA definition it evaluates to[−2,2]. The conservativeness problem becomes even
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more evident when a longer sequence of arithmetic operations is performed. One pos-
sibility to reduce the conservativeness of IA is to subdivide the function domain into
sub-domains and to evaluate the inclusion function on each sub-domain, combining the
separate resulting intervals into a single one. However, the relative accuracy of IA is
generally independent of the width of the input intervals.

5.1.2.2 Affine Arithmetic

As an alternative to the IA conservativeness, Comba and Stolfi (COMBA; STOLFI,
1993) proposed the affine arithmetic (AA). While still retaining the inclusion property of
the original IA, AA attempts to reduce the conservativenessproblem by keeping track
of correlations between quantities during arithmetic operations. This is accomplished
through the representation of interval quantities with affine forms, actually first degree
polynomials, whose variables represent sources of uncertainty and coefficients their cor-
responding magnitudes. Thus, in AA an affine quantity ˆx takes the form

x̂= x0+
n

∑
i=1

xiεi , (5.8)

wherex0 is a real value representing the central value of the affine form, xi are real coeffi-
cients indicating the magnitude of the corresponding partial deviation andεi are the noise
symbols.

The noise symbolsεi represent unknown values which are assumed to be in the closed
interval[−1,1]. Noise symbols can be shared among several AA quantities, and this is the
key feature of the method. The sharing of certain noise symbols among several quantities
indicates how they are related to each other.

As for IA, to compute operations between affine forms the elementary operations must
be replaced by their AA counterparts. Affine operations, such as addition, subtraction of
two affine forms, as well as addition and multiplication witha scalar valueα, can be
computed according to

x̂+ ŷ= (x0+y0)+(x1+y1)ε1+ · · ·+(xn+yn)εn,

x̂− ŷ= (x0−y0)+(x1−y1)ε1+ · · ·+(xn−yn)εn,

x̂+α = (x0+α)+x1ε1+ · · ·+xnεn,

α x̂= (αx0)+(αx1)ε1+ · · ·+(αxn)εn.

(5.9)

Non-affine operations, such as the multiplication of two affine forms, lead to non-
affine results which must be approximated by affine forms. Themain challenge is to
choose affine forms which present small approximations errors.

After the execution of a non-affine operation, the approximation error is represented
by a new noise symbol added to the resulting quantity. An example of non-affine operation
is the multiplication of two affine forms ˆx andŷ, as shown bellow

x̂× ŷ=

(
x0+

n

∑
i=1

xiεi

)
×
(

y0+
n

∑
i=1

yiεi

)

= x0y0+
n

∑
i=1

(x0yi +y0xi)εi +zkεk,

(5.10)

where the coefficientzk for the new noise symbol is computed according to

zk =
n

∑
i=1
|xi |×

n

∑
i=1
|yi |. (5.11)
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As for IA, errors may be inserted into resulting affine forms due rounding of floating-
point values. However, differently from IA, rounding can destroy the relation of the cur-
rent affine form quantity with respect to others. Thus, rounding and truncation errors are
handled through the determination of a upper bound for the round-off errors committed
in the computation of each coefficient and then adding this error to the linearization error
coefficient.

Converting quantities between IA and AA forms is straightforward. Assuming that
x̂ is a quantity represented in the affine form, its conversion to the IA form can be done
according to

x̄= [x0−δ ,x0+δ ], δ =
n

∑
i=1
|xi |. (5.12)

The conversion from AA to IA form destroys any correlation information between
quantities since the existing noise symbols are collapsed during conversion. Conversely,
assuming that a quantity ¯x= [xL,xU ], in IA form, is to be converted to the corresponding
AA form x̂= x0+xkεk, this can be accomplished according to

x0 =
xU +xL

2
, xk =

xU −xL

2
. (5.13)

5.1.2.3 Affine Arithmetic Extensions

Despite producing tighter bounds, AA is more expensive to compute and suffers from
a growing number of error symbols each time non-affine operations occur, thus affecting
overall performance and memory management. Messine (MESSINE, 2002) observed that
and proposed some extensions to the original AA. One of theseextensions is called the
first affine form(AF1), and was introduced to attack the memory management problem.
According to AA, for each variablexi a corresponding noise symbolεi may be created.
This allows the tracking for quantities correlations during computations. However, non
affine operations introduce new noise symbolsεk,k∈ {n+1,n+2, · · · ,n+p}, which may
be generated by performingp non affine operations. Once these new symbols are created,
they are stored, and never changed. It was observed that all these new terms could be
added into a single new noise symbolεn+1, without losing the affine information related
to the variablesxi . The AF1 could then be written as

x̂= x0+
n

∑
i=1

xiεi +xn+1εn+1, (5.14)

whereεn+1 is the error symbol which represents the errors generated byall affine approx-
imations executed so far, withxn+1≥ 0.

In order to preserve the inclusion property, elementary operations are defined in such
way that only positive definite operations are involved in the generation ofxn+1. Some
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operations defined by AF1 are

x̂± ŷ= (x0±y0)+
n

∑
i=1

(xi±yi)εi +(xn+1+yn+1)εn+1,

a± x̂= (a±x0)+
n

∑
i=1

xiεi +xn+1εn+1,

a× x̂= (ax0)+
n

∑
i=1

axiεi + |a|xn+1εn+1,

x̂× ŷ= x0y0+
n

∑
i=1

(x0yi +xiy0)εi +

(
|x0|yn+1+ |y0|xn+1+

n+1

∑
i=1
|xi |×

n+1

∑
i=1
|yi |
)
.

(5.15)

5.1.2.4 Reduced Affine Arithmetic

The framework of AA is meant to be as general as possible, turning it into valuable
tool for the solution of a wide range of problems. However, sometimes the problem is
defined over a very restricted domain. In these cases, the original AA can be modified,
and even simplified, in order to attend the problem specificities without loosing its original
properties. This is the case with the reduced affine arithmetic (RAA) method proposed by
Gamito and Maddock (GAMITO; MADDOCK, 2007) for the rendering of implicit fractal
surfaces, that limits the number of error symbols the affine form can contain. The 3-term
RAA form employs aggressive condensation executed each time non-affine operations
are performed, reducing the correlation between error variables while still preserving the
inclusion property under the specific problem circumstances.

Still in the context of implicit surface visualization, Knoll et al.(KNOLL et al., 2009)
revisited the work of Messine (MESSINE, 2002) and implemented a modified 3-term
RAA formulation that, while executing condensation steps after each non-affine opera-
tion, ensures correct inclusion for all compositions of AA operations. Despite the in-
creased conservativeness, the method present improved performance with respect to the
original AA proposal.

Due to its generality and high performance, in this work we have used the RAA form
by Knoll et al. (KNOLL et al., 2009). Since we evaluate our expressions inR

3, we adopt
the following 5-term RAA form

x̂= x0+x1ε1+x2ε2+x3ε3+xcεc, (5.16)

wherexcεc represents the condensed error symbol.

5.2 PV feature extraction from HO data using RAA

Parallel vectors line-type feature extraction methods usually start by defining a collec-
tion of seed points that are used as starting points for subsequent feature reconstruction.
In order to place a seed, it is common to use some data subdivision scheme together
with an additional refinement step. While regular grids tendto require a large number
of cells, adaptive refinement methods early discard data regions that do not contain so-
lutions, directing computational effort towards relevantregions. One way to guide an
adaptive spatial subdivision is to use the sign of the field atthe element vertices as sub-
division criterion. In the case of trilinearly interpolated data, different signs at element
vertices indicate the presence of line-type features and that the spatial subdivision process
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Figure 5.2: Computation pipeline for extracting features from higher-order data. At the
end of each iteration step, for each stage, a reduction step (represented by the gray ’R’
box) is applied over the primitives list in order to remove gaps.

should continue recursively. In case signs are equal, therecannot be features inside the
current cell and subdivision is stopped. However, in the case of higher-order data this
simple criterion no longer works: a feature line can intersect a cell even if all vertices
have identical signs.

In this section we present an algorithm for parallel vectorsfeature extraction com-
posed of two stages. The seed extraction stage executes octree and quadtree-based adap-
tive subdivision followed by Newton iterations to accurately locate seeds. The use of RAA
to guide the spatial subdivision provides error bounds withrespect to existence, position
and topology of the features. In the second stage, features lines defined as streamlines
of the FFF are traced from previously located seeds. Figure 5.2 illustrates the method’s
pipeline, which is explained in detail in the following sections.

5.2.1 Seed Extraction

The search for seeds starts with an adaptive subdivision scheme which narrows the
search for features separately for each element (cell of thegrid). Since elements can be
represented by arbitrary polyhedral shapes, the estimation of bounds for the higher-order
data might not be trivial. Instead, we estimate bounds usingan axis-aligned bounding box
(AABB) Bi that encloses each dataset elementei .
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Spatial refinement is performed in two successive steps. First, Bi is adaptively sub-
divided in an octree-fashion guided by the evaluation of theRAA form of the parallel
vectors criterion. Subdivision stops when the octree cell sizes are within a minimum pre-
scribed size (features down to this size are guaranteed to beintersected by the cells). This
process generates a collection of candidate octree cells that might contain (intersected)
features. For each face of the octree cells, we apply adaptive quadtree-based subdivision
steps, again based on RAA, to better approximate seed locations. The center point of
candidate quadtree cells are used as starting points for thefinal refinement step, where
Newton iterations further improve seed placement. The nextsections explain in detail
each step of the seed extraction stage.

5.2.1.1 Octree Seed Refinement

Initially, each elementei is tightly enclosed by an axis-aligned bounding boxBi that
represents the initial cell of the octree subdivision process. The extents of the bounding
box are represented in RAA form by ˆx, ŷ, and ẑ in the reference space ofei . Adaptive
subdivision is guided by the evaluation of the RAA form of theparallel vectors expression
ŵ(x̂, ŷ, ẑ). If 0 ∈ ŵ(x̂, ŷ, ẑ) for the current octree cell, it potentially contains features and
must be further subdivided. This process is repeated recursively for child cells. If 0 /∈
ŵ(x̂, ŷ, ẑ) for a given cell, it does not contain features and can be safely discarded. During
the subdivision process, due to the conservativeness ofBi with respect to the coverage of
ei , some cells may fall outsideei . These cells are also discarded. The remaining cells
after the subdivision process ends are candidates for containing features.

Since each boxBi may have a different size depending on the corresponding element
ei , the maximum octree depth, needed to capture features with aminimum prescribed size,
must be computed separately for each element. For this purpose, we define the feature
size as the length of the longest side of its axis-aligned bounding box. Thus, considering
the minimum feature sizeεF, the maximum octree depthODi for Bi is computed in terms
of εF and the lengthl i of the largest edge ofBi as

ODi = ⌈log2

(
l i
εF

)
⌉. (5.17)

The parameterεF allows us to extract feature lines at different levels of theoctree.
Smaller values forεF capture smaller features at the cost of decreased performance and
increased memory consumption, whereas larger values result in more efficient feature
extraction at the cost of possibly missing small features.

5.2.1.2 Quadtree Seed Refinement

After the octree refinement it is guaranteed that features larger than
√

3εF intersect at
least an octree cell face. However, it can be the case that a given face intersects multiple
feature lines, or even multiple times the same feature. Thissecond subdivision scheme
further refines the search for, potentially multiple, seedsat the octree cell faces by comput-
ing an adaptive quadtree-based 2D subdivision of each face.Each rectangle representing
an octree cell face is set as the root for the quadtree refinement step. As for the octree
subdivision, the quadtree refinement is driven by the evaluation of a RAA form of the par-
allel vectors expression. However, since each face is perpendicular to one coordinate axis
and hence represents a 2D space (Figure 5.3), only three specific parallel vectors RAA
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expressions have to be defined:

ŵxy(x̂, ŷ,z),

ŵxz(x̂,y, ẑ),

ŵyz(x, ŷ, ẑ),

(5.18)

wherex̂, ŷ andẑ are intervals representing the quadtree cell extents alongthe three axes,
andx,y andz are constant real values representing the fixed coordinate.According to the
alignment of a given quadtree cell, one of the expressions inEquation 5.18 is used for
the evaluation of the parallel vectors operator. If the resulting interval encloses zero, it
potentially contains a feature intersection and must be further subdivided.

Figure 5.3: Quadtree cells aligned with octree cell faces reduce the dimension of the
domain where parallel vectors criterion will be evaluated.

Considering that a minimum prescribed distance among seedsmust be detected, and
that the size of faces in an octree cell may vary, the maximum quadtree depth would be
ideally computed separately for each face. Since the aspectratio of a given cell usually
has little variation, for simplicity, a maximum quadtree depthQDi is defined for all octree
cell faces generated for an elementei . This leads to a more conservative subdivision that
still preserves the accuracy thresholds and does not significantly affect performance.QDi

is computed in terms of minimum distance among seedsεS, the largest edgel i of theBi ,
and the maximum depth of the current octree:

QDi = ⌈log2

(
l i
εS

)
⌉−ODi . (5.19)

Feature intersections over a quadtree face that are fartheraway thanεS are considered
as individual seeds by the quadtree refinement, whereas seeds with a distance smaller than
εS are collapsed into a single point and hence only a single feature will be traced from
there.

5.2.1.3 Newton Seed Refinement

The last step employs root finding to refine seed positions. Remaining quadtree cells
are candidates for containing seeds, however, RAA conservativeness may lead to false
positives. To locate the final seed positions, we use 2D Newton root finding forw con-
strained to the cell supporting plane. The starting point for the Newton iterations is the
center pointp0 of the corresponding quadtree cell.
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The quadtree cells are always perpendicular to one of the coordinate system axis,
leading to three possible 2D Newton expressions:

pk+1 = pk−Jxy(pk)−1wxy(pk),

pk+1 = pk−Jxz(pk)−1wxz(pk),

pk+1 = pk−Jyz(pk)−1wyz(pk),
(5.20)

wherewxy, wxz, andwyz are parallel vectors expressions,Jxy, Jxz, andJyz their corre-
sponding Jacobians, andk is the iteration step.

The pointp is considered as a seed if it has converged within the cell limits after the
execution of a maximum number of Newton iterationsNq. For all our experiments,Nq =
25 and the convergence thresholds|wx| ≤ 10−3, |wy| ≤ 10−3, and|wz| ≤ 10−3 worked
well. To be more generic, the thresholds could be scaled by the maximum of|w| at the
corners of the quadtree cell.

5.2.2 Feature Tracing and Filtering

Seeds generated by previous refinement steps serve as starting points for feature trac-
ing along the stream lines of the FFF. Depending on the feature type to be extracted, ad-
ditional filtering must be applied to the extracted raw features. The next sections describe
additional details regarding the feature tracing and additional filtering steps.

5.2.2.1 Feature Tracing

An accurate tracing strategy such as stable FFF (WEINKAUF etal., 2010) would
greatly benefit from the analytical derivatives available in higher-order data. However, the
computation of higher-order derivatives requires additional storage of the corresponding
coefficients. To save high-performance cached memory for higher efficiency by simulta-
neous processing of a larger number of elements, we use a tracing scheme based on the
one by Theisel et al. (THEISEL et al., 2005), which requires lower-order derivatives while
providing reasonably accurate results.

Feature tracing starts at seed points and follows streamlines of the FFF. The feature
flow field f is constructed from the respective parallel vectors expressionw (Section 5.1.1).
Our feature tracing method consists of a predictor-corrector scheme using a 4th-order
Runge-Kutta scheme with fixed step sizes. For all our experiments, we useds= 10−3

(compare the extents of the datasets in the result section) and three corrector moves per
predictor move.

Some prior predictor-corrector tracing schemes constraincorrector moves to a plane
perpendicular to the predictor move. However, this plane can assume arbitrary orientation
with respect to the reference system during the tracing process. This would require a re-
parameterization ofw on the new correcting plane at each predictor-move step, which
would degrade performance. Therefore, we only use corrector moves constrained to axis-
aligned planes. This approach allows efficient re-parameterization ofw by simply keeping
the coordinate related to the perpendicular axis constant.Thus, after each integration step,
we check the angle between the predictor move and the three possible axis-aligned planes.
The correcting plane is the one that forms the angle closest to 90 degrees (Figure 5.4). To
compute the correcting moves, we apply the Newton method, searching for zeros ofw.
Since the correcting planes are axis-aligned, we can use thesame 2D Newton formulation
used for seed refinement (Section 5.2.1.3).
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Figure 5.4: Selection of the correcting plane (gray) based on the angle formed with the
predictor move (black arrow). Left and center: planes form smaller angles with the predic-
tor move direction. Right: the ZX plane forms the angle that is the closest to 90 degrees,
thus being elected to be the correcting plane.

Differently from the seed refinement stage, the point is assumed to has converged if,
after the Newton iterations, it remains within the bounds ofa quadrilateral centered at the
predicted point. The size of the quadrilateral defines the maximum allowed angle formed
between the predictor move and the feature for the given stepsizes. For our experiments,
a quadrilateral with dimensions 6s×6s showed to work well. Additionally, for all our
experiments, three Newton steps were sufficient for the correction step. Once feature lines
are traced, redundant feature parts are removed, as well as features that extend beyond
element boundaries (pruning) as shown in Figure 5.5.

Figure 5.5: Pruning extracted feature lines against the actual element boundary.

5.2.2.2 Filtering

According to (PEIKERT; ROTH, 1999), there are several possibilities in the context
of line-type features. One of the most powerful and often neglected ones is the angle
between the feature tangent and the parallel vectors. This quantity has to stay small for a
well-defined feature, as already mentioned by Eberly (EBERLY, 1996) in the context of
ridges. It is also important in the context of the extractionof vortex core lines and lines
of separation and attachment. Further, it is important to filter features by their strength.
Here, the filter definition depends on the feature type. In case of vortex core lines, one
can use the absolute value of the imaginary part of the complex eigenvalue of the velocity
gradient. In case of ridges, one can filter the ridges by theirheight, i.e., by the value of
the scalar field. We apply this filter for the results presented in Section 5.4.

Another criterion used is the length of the feature. It is often the case that short fea-
tures are less important than long ones and more likely to arise due to noise. Although
this filtering is often used, we were not able to use it in our discontinuous Galerkin re-
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sults because the discontinuities at the cell boundaries disrupt features and make it even
impossible in many cases to identify correspondence to features in adjacent cells. Further
details on feature filtering are discussed in (PEIKERT; ROTH, 1999; PEIKERT; SADLO,
2008).

5.3 CUDA Implementation

The design of our algorithm lends itself for parallel computation of several elements.
In this section we describe a CUDA (CUDA, 2010) implementation that aims at paral-
lelizing computations as much as possible.

5.3.1 Ordering of Computation

The only pre-processing step that must be performed is the CPU-based element order-
ing based on the degree of the polynomials, since simultaneous processing of elements
with same degree polynomials improves performance by reducing divergence when exe-
cuting threads in parallel. Dataset elements are pushed through a pipeline that performs
seed placement, feature tracing, and filtering. Each pipeline stage is implemented as a
separate kernel. One important aspect to consider is data transfer: prior to the processing
of each element, related data, including polynomial coefficients and element boundaries,
must be loaded into the GPU. To minimize data transfers and improve cache locality,
computations are performed on a per-element basis rather than on a per-pipeline-stage
basis.

5.3.2 Polynomial Evaluation and Storage

All steps of the algorithm, with the exception of pruning, execute some sort of polyno-
mial evaluation. Since each element field interpolation canbe represented by an arbitrary
degree polynomial, kernels must account for that. However,a kernel capable of eval-
uating a general degree polynomial with an arbitrary degreeshould contain a loop that
could not be unrolled by the compiler. To increase performance, we decided to keep sev-
eral versions of these kernels, each one targeted to a specific polynomial degree. For the
polynomial evaluation itself we use static expressions generated by a multivariate Horner
scheme approach (CEBERIO; KREINOVICH, 2004).

In our experiments the amount of data for each element is lessthan 8kB. Since the
size of the shared memory of current GPUs is between 16kB and 64kB, more than one
element can be processed in different threads without fetching data at each new pipeline
stage.

The polynomial describing the field for each element is givenin analytical form
through an array of coefficients. Expressions such as the parallel vectors or the FFF
are usually constructed from then-th order derivatives of the original fields resulting in
polynomial expressions of very high degrees and thousands of terms. However, large
polynomial expressions reduce performance, increase datatransfer and storage demands.
Additionally, during the subdivision process the polynomials representing the parallel
vectors criterion must be translated into the corresponding inclusion form, implying that
operators and quantities are replaced by their (more complex) inclusion form counterparts.

In order to improve performance, and keep the necessary storage space within ac-
ceptable limits, instead of storing the parallel vectors and FFF expressions, we store only
the coefficients of then-th order derivatives used to compute them. This approach pro-
vides knowledge of the highest polynomial degree to be evaluated during the compu-
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tations. Another advantage is that smaller expressions fit in CUDA’s high performance
shared memory, while intermediate values generated duringevaluations fit almost com-
pletely into registers, thus avoiding costly global memoryaccess. Additionally, for all
polynomial evaluations we take advantage of a multivariateHorner scheme (CEBERIO;
KREINOVICH, 2004), which further reduces the number of necessary arithmetic opera-
tions.

5.3.3 Seed Extraction

The following sections examine the implementation of the seed refinement stages.

5.3.3.1 Octree Refinement

Before computation starts, we load into the GPU shared memory the polynomial and
boundary shape information for the corresponding element,previously stored on GPU
global memory. The octree subdivision kernel corresponding to the respective polynomial
degree is loaded and refinement starts. As described in the previous section, octree cells
that potentially contain features are identified by the evaluation of the RAA form of the
parallel vectors expression.

The implementation of the adaptive octree refinement stage in CUDA suffers from
limitations of the GPU’s with respect to dynamic memory allocation. Therefore, since
we only evaluate octree cells to find regions that will be usedas candidates for seed
extraction, we do not need to store explicit links between a node and its descendants.
Instead, we construct the octree incrementally by adding a new refinement level at each
kernel invocation.

All octree leaves in the current level, that potentially contain features, are stored in
a list. The octree subdivision is done in successive steps, each receiving a list of octree
leaves from the previous step, and producing a list of octreeleaves for the next level. After
a new list of cells is produced, the previous list is discarded. This process is repeated until
the maximum octree depthODi for the current element is reached.

At the end of a refinement step, child cells that were evaluated as candidates for con-
taining features are stored into a list, while cells that were discarded generate gaps in the
list. At the end of each refinement step, gaps are removed by the execution of a specific
condensation kernel that overwrites the previous list contents with a list of cells without
gaps. The resulting list is used as input for the next octree refinement step, or as input for
the quadtree refinement step, if the maximum octree depth wasreached.

5.3.3.2 Quadtree Refinement

Initially a face list with the faces of each octree cell is created. Each face will serve as
the starting cell for the quadtree refinement. The faces are perpendicular to one coordinate
system axis and are related to an arbitrary degree polynomial. Thus, to improve efficiency,
quadtree subdivision is implemented through several CUDA kernels, each one optimized
for a specific combination of polynomial degree and face alignment.

The face list certainly presents arbitrary face alignment sequences, and it is likely
that simultaneous execution of distinct kernels will happen, degrading performance. Ide-
ally, cells presenting the same alignment should be processed in batches together. Since
the size of the octree cells list is known, and that each cell generates six faces (two per-
pendicular to each axis), we generate an alignment-based grouped face list directly from
the octree cell list (Figure 5.6). An advantage is that subdivided faces generate equally
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aligned cells, which means that the alignment-based grouping is preserved along the en-
tire quadtree subdivision stage.

Once the ordered face list is built, quadtree subdivision iscomputed in parallel for each
face through successive steps, as for the octrees. At the endof one step a new quadtree
cell list is produced, which replaces the previous list and will serve as input for the next
subdivision step. At the end of a subdivision step there might be gaps due discarded
cells. Again, a reduction step, implemented as a separate kernel, compacts the cell list.
The reduction step does not affect the cell list alignment-based ordering. The subdivision
process is repeated until the maximum quadtree depth levelQDi for the current elementei

is reached.

Figure 5.6: (1) Quadtree cell list presenting arbitrary alignment sequences. (2) Quadtree
cell list presenting alignment-based grouping sequences.Alignment-based cell grouping
improves performance by reducing divergence during kernelexecutions.

5.3.3.3 Newton Refinement

Candidate faces generated by the quadtree refinement stage are used to generate the
initial list of candidate seed points. The points are obtained from the central coordinates
of each face.

A fixed number of 2D Newton iterations, restricted to the corresponding face sup-
porting plane, are computed for each point through a set of kernels optimized for specific
combinations of polynomial degrees and face alignments. The number of iterations is
fixed in order to keep threads synchronized. Additionally, through the use of several
kernel implementations, this stage also benefits from the face alignment-based grouping
imposed previously by the quadtree subdivision stage.

After the maximum number of iterations are reached, the resulting point list is written
together with flags that indicates whether the point has converged to a seed or not. An
additional reduction step is performed to remove divergentpoints from the list.

5.3.4 Feature Tracing and Classification

Features are traced in parallel from each seed through several passes (kernel invoca-
tions). In each pass a small number of integration steps are executed. This approach helps
in reducing the overhead involved with excessive kernel invocations and additionally dis-
tributes the tracing workload over several threads. For allour experiments, the number
of integration steps executed in each pass was 32 since this number showed to give better
performances according to our hardware and software setup.

Raw features are represented by closed lines, and some features can be doubled traced.
However, from our experiments the number of features to be traced showed to be small
if compared to the parallel processing capacity of the GPU, meaning that the double inte-
gration presented no significant performance impact on performance.

After the integration stage, an additional CPU step is executed to remove the redundant
features. The last step in the pipeline involves the classification and computation of the
attributes of points on the extracted raw feature lines. Theclassification and computation
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of the local properties depends on the type of feature to be extracted and on a series
of constant-cost parallel computations particular to eachpoint. In case of height ridge
extraction, one has to decide if the feature represents a ridge or a valley. This can be done
by checking the signs of the eigenvalues of the Hessian of thescalar field (Section 4.3.3).

5.4 Results

Performance measurements were obtained on a computer equipped with a Intel Core
i7 960 3.2 GHz processor, 6GB of RAM, and a NVIDIA Geforce GTX 470. The CPU-
side code was implemented in C++/OpenGL and the GPU-side in CUDA 3.2 and Thrust
1.3. Feature tracing used the predictor-corrector approach presented in Section 5.2.2.1.
Fixed settings were used for feature tracing. Octree and quadtree maximum depths depend
on the minimum feature size threshold and may vary across elements (Sections 5.2.1.1 and
5.2.1.2). The method was evaluated using the two higher-order discontinuous Galerkin
datasets presented in Section 2.5.

Performance measurements and images presented in this section refer to the extrac-
tion of ridge and valley lines according to the parallel vectors formulation presented in
Section 4.3.3.

In the left column of Figures 5.7 and 5.8, we present the performance measurements of
our method with respect to feature extraction from thesphereandshock channeldatasets
respectively. Each row indicates the performance measurements according to the number
of elements processed in parallel: 2 elements in top row, 4 elements in the middle row
ad 8 elements in the bottom row. The charts show performance timings against minimum
feature sizeεF. The charts contain 5 different curves showing the timing breakdown
across different stages of the algorithm: octree subdivision (orange), quadtree subdivision
(yellow), seed refinement using 2D Newton steps (green), feature tracing (brown), and
total time to extract raw features (blue).

Values forεF were chosen to assess the method’s performance in scenarioswhere
finer refinement is demanded. Even though there is just a smallcost associated with
octree subdivision at the largestεF (fewer subdivisions), we observe that the cost related
to feature tracing is the highest. This is explained by the fact that the number of feature
lines inside a given element is usually small, leaving the GPU idle. As we decreaseεF,
more octree subdivisions start to occur and feature lines are broken into segments. As the
number of segments approaches the maximum number of threadsthat can be executed in
parallel on the GPU, the feature tracing cost reaches its minimum. We also observed that
the cost of octree subdivision did not increase substantially as feature size diminished.
Additionally, finer refinement leads to tighter intervals inthe RAA evaluations.

Differently from our approach, Theisel et al. (THEISEL et al., 2005) proposed an
octree refinement towards points on features lines. Their method has lower memory re-
quirements, but is less robust to handle higher-order data since it assumes trilinear in-
terpolation. As we discussed before, fewer seeds lead to poorer performance in parallel
architectures. The right columns of Figures 5.7 and 5.8 present performance measure-
ments for our RAA-based method using their octree refinement(towards points). As can
be observed, octree refinement towards points on the featurelines leads to lower perfor-
mance.

Figures 5.9 and 5.10 illustrate results for the shock-channel dataset. In Figure 5.9 we
show all raw features in a given cell, as well the leaves of theoctree at two different depths
to demonstrate how the subdivision process. Figure 5.10 shows raw features extracted for
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all cells and the main valley lines obtained after filtering.
In Figure 5.11 we compare valley lines extracted through ourmethod with the lines

extracted with Peikert and Roth (PEIKERT; ROTH, 1999) approach, for two cells of the
shock channeldata set. Since their method does not operate directly over higher-order
data, we have resampled the two cells into a regular grid. Three sampling resolutions were
used. Results for the coarser resolution (6x3x3 samples) are shown in Figure 5.11a. Fig-
ure 5.11b presents results obtained with a more refined sampling, consisting of 20x10x10
samples. Results for the highest resolution sampling (160x80x80) are shown in Figure
5.11c. Figure 5.11d presents the current state of the RAA-based octree refinement after
10 subdivision steps computed over the higher-order data represented by the two ele-
ments. It can be seen that, despite the high resolution used during resampling, in the left
part of Figure 5.11c there are spurious line segments in regions that were robustly dis-
carded by the RAA-based octree refinement used in Figure 5.11d. This can be explained
by the introduction of errors due resampling and the use of finite-differences scheme for
derivative computations, which may not be sufficiently accurate (in particular, regarding
the second order derivatives used in the parallel vectors-based ridges and valleys defi-
nition). Finally, in Figure 5.11e we present the valley lines extracted directly from the
higher-order data using our method. As can be seen, there is higher number of features
without spurious lines and features tend to be represented by smoother and longer lines
(despite discontinuities at the element boundaries due thenature of the data).

There are several criteria used for filtering (see caption offigure for details). Small
feature lines are less important since they are usually related to noise. Thus, filtering out
features by length becomes an important criterion. However, given the boundary discon-
tinuities present in our discontinuous Galerkin data, filtering by length is not possible and
local filtering criteria become of great importance. Figure5.12 shows several stages of
the feature filtering for the sphere dataset. Figure 5.12a presents unfiltered ridges (red),
valleys (blue) and connector curves (white). Figure 5.12b shows only unfiltered valley
lines. Figure 5.12c shows valley lines filtered by the angle between the feature tangent
and the parallel vectors (≤ 2.5 degrees). Finally, in Figure 5.12d we have valley lines
filtered by angle (≤ 2.5 degrees) and isovalue (≤ 0.998). Figure 5.12d also presents, for
illustration, the overlay of the isosurface that corresponds to isovalue 0.998.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Performance measurements obtained with our feature extraction method for
thesphere dataset(34,535 elements). Ordinate represents performance measurements in
minutes while abscissa represents the value ofεF (smallerεF implies higher octree refine-
ment). For all testsεS= εF/2, to force quadtree subdivisions. Left column: Measurements
obtained with octree refinement towards feature lines. Right column: Measurements ob-
tained with octree refinement towards single points on closed feature lines (as proposed
by Theisel et al. (THEISEL et al., 2005)). Lines present timings for the processing of
2 (top), 4 (middle), and 8 (bottom) dataset elements in parallel. Colored lines represent
performance measurements for the octree subdivision (orange), quadtree subdivision (yel-
low), seed refinement with 2D Newton (green), feature tracing (brown), and total time to
extract raw features (blue).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Performance measurements obtained with our feature extraction method for
the shock channel dataset (119 elements). Ordinate represents performance measurements
in seconds. For more details, see caption of Figure 5.7.
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(a) (b) (c)

Figure 5.9: Shock-channel dataset. (a) Raw features extracted from a single element:
ridges (red) and valleys (blue) (εF = 1, εS = 0.01). No octree subdivision. (b) Same
as (a), withεF = 0.0625,εS = 10−3. Octree leaves at depth 4. (c) Same as (a), with
εF = 0.0019,εS = 10−3. Octree leaves at depth 8.

(a)

(b)

Figure 5.10: Shock-channel dataset. (a) Connector curves (white) for all dataset elements
(εF = 10−1, εS= 10−2). (b) Filtered valley lines from (d). Minimum scalar value =1 and
maximum = 1.9995. Angle between gradient and FFF tangent vector≤ 27 degrees.
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(a) (b)

(c) (d)

(e)

Figure 5.11: Comparison of valley lines extracted through our higher-order method with
the lines extracted with the linear method by Peikert and Roth (PEIKERT; ROTH, 1999)
for two cells of theshock channeldata set. Figures (a),(b) and (c) were computed with
the linear approach, while Figures (d) and (e) where computed directly over the higher-
order data. a) Results for the coarser resolution (6x3x3 samples). b) Results obtained
with a more refined sampling (20x10x10 samples). c) Results for the highest resolution
sampling (160x80x80 samples). d) Current state of a RAA-based octree refinement after
10 subdivision steps computed over the higher-order data represented by the two elements.
e) Valley lines extracted directly from the higher-order data using our method, resulting
in a higher number of longer and smoother feature lines.
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(a)

(b)

(c)

(d)

Figure 5.12: Extracted line-type features from sphere dataset under increasingly restrict-
ing filtering criteria. (a) Unfiltered ridges (red), valley (blue) and connector curves
(white). (b) Only unfiltered valley lines (c) Valley lines filtered with the angle crite-
rion (≤ 2.5 degrees). (d) Valley lines filtered with the angle (≤ 2.5 degrees) and isovalue
(≤ 0.998) criteria.
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6 CONCLUSIONS AND FUTURE WORK

The analysis of CFD data is a problem confronted by scientists and engineers every
day. This analysis may involve the extraction of regions that present constant values for
certain properties or the detection of data portions associated to relevant structures. The
development of visualization and feature extraction methods have been explored and ex-
tended in many ways to allow exploration of various data types. This thesis has presented
two new methods for the direct exploration of multi cell higher-order data. The proposed
methods are efficient, scalable and do not rely in data resampling. This closing chapter
presents a summary of the major points discussed in this dissertation. The chapter ends
with a list of suggested areas for future exploration.

6.1 Isocontouring of Higher-Order Data

Existing isocontouring methods targeted at multi cell higher-order data usually rely on
mesh extraction or image based techniques. Although allowing for interactive exploration
of a extracted isosurface, mesh extraction techniques relyon intensive pre-computation
that prohibits dynamic exploration of different isovalues. In the case of image based
techniques, each image is generated from the scratch, leading to lower frame rates.

We propose a hybrid approach for the isocontouring of continuous or discontinuous
higher-order data generated byhp-adaptive discretization methods. The method operates
on higher-order data whose mapping function includes only affine transformations. Inter-
activity is achieved by splitting the contouring workload over computations in object and
image spaces.

By using point sampling in the object space stage, we avoid the use of complex data
structures and neighborhood information, thus making thisstage suitable for parallel pro-
cessing. Coverage of the isosurface is obtained through thegeneration of quads for each
seed successfully projected onto the isosurface in the firststage. Points in these quads
serve as starting points for the refinement stage based on raycasting, which also maps
nicely on parallel architectures.

Since no neighborhood information is kept along the isocontouring pipeline, artifacts
can emerge due subsampling. Although not focusing high accuracy, the proposed iso-
contouring method is capable of delivering results of reasonably quality. An additional
heuristic, inspired on dynamical systems theory, is proposed to, at the cost of additional
computational resources, pre-compute quads scaling factors resulting in better isosurface
coverage.

The method counts with several parameters that can be adjusted in order to control the
trade-off between efficiency and accuracy. It has been shownthat one can explore both
(accuracy and performance) by adjusting just a few parameters, keeping the remaining
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parameters at fixed values.

6.2 Line-type Feature extraction from Higher-Order Data

Several techniques for parallel vectors feature extraction in trilinearly interpolated
data have been already developed. Recent research in the field has focused mainly in more
accurate feature tracing and feature extraction in higher dimensional spaces. Although
some existing tracing strategies could be applied directlyto higher-order data, the seed
placement problem remained almost untouched in this context.

In this work we propose an efficient method for line-type parallel vectors feature ex-
traction from multi cell higher-order data. The method operates on piecewise discontinu-
ous higher-order data containing affine mappings between reference and world spaces. As
in other research fields, such as isocontouring and optimization problems, the proposed
method advocates the use of inclusion arithmetic to achieveefficiency and to guarantee
bounds regarding accuracy with respect to existence, position, and topology of the fea-
tures obtained.

Inclusion arithmetic (actually a RAA extension) is used during the seed placement
stage to evaluate the parallel vectors expressions that drive the octree and quadtree-based
adaptive data subdivisions towards feature lines and seed points. This approach improves
performance by safely early discarding data portions that do not contain features and
seeds. A compact 5-term RAA form used for the parallel vectors operator allows for effi-
cient evaluation at the same time that avoids the conservativeness of the original interval
arithmetic proposal. We also propose a more efficient octreesubdivision scheme, towards
feature lines, that is more efficient for parallel implementations. Performance improve-
ment is also obtained through a processing pipeline carefully designed to process data
in a per-element basis instead of per-stage basis, reducingthe data read-back overhead.
Additionally, we present a predictor-corrector based tracing scheme that efficiently re-
parameterize the data field onto correcting planes perpendicular to the coordinate system
axis.

6.3 Future Work

With respect to the proposed isocontouring system, some points should be addressed
in future work. Despite the good results obtained with the FTLE-inspired heuristic for
quads’ scaling, the pre-processing stage involved in its computation could be removed
through quad rescaling "on the fly". Another possibility regarding conservativity reduc-
tion during point sampling would be to remove points that have traveled through "long dis-
tances" inside the cell before getting projected onto the isosurface. The development of an
improved initial point distribution heuristic for the firstphase would be an alternative for
improved surface sampling. Point-based isosurface approximation is view-independent
and must be stored in order to be used by the image based phase.This may lead to higher
storage demands during the isocontouring of large datasets. A multi-resolution approach
for the isosurface approximation would allow the processing of larger datasets. Policies
and strategies to discard seeds related to subpixel cells are also other possibilities for
future research.

With respect to the parallel vectors line-type feature extraction technique, there are
also several avenues for future investigations. More involved memory management meth-
ods may allow processing of a higher number of dataset elements in parallel. Simplifica-
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tions in the tracing stage and storage of previous computations might allow progressive
feature refinement. The extension of this method for the extraction of higher dimensional
features is also a challenge under consideration. The simple inclusion of additional terms
in the proposed RAA form, accounting for the combinations ofpairs of independent vari-
ables, would result in less conservative results during theadaptive data spatial subdivision.

Both methods proposed in this thesis are targeted to higher-order data containing
affine mappings between reference and world spaces. An interesting research avenue
under consideration is the handling of higher-order data whose mapping functions are
non-linear, thus leading to methods capable to handle the general case of higher-order
CFD data.
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APPENDIX A MATHEMATICAL DEFINITIONS

A.1 Differential Geometry Equations

A parametric curve inR3 can be expressed as

w = w(t) (A.1)

Definingw′ = dw/dt andw′′ = d2w/dt2, the curvature vector ofw can be expressed
as

c=
w′×w′′

|w′|3 (A.2)

Thus, the curvatureκ of w can be written as

κ = |c|. (A.3)

A.2 Directional Newton Method

Given a functionf , such that

f (x) = 0. (A.4)

The functionf can be restricted to a lineL

L = {x0+ td : t ∈ R}, (A.5)

where it is a univariate function

F(t) = f (x0+ td). (A.6)

One Newton iteration forF at the pointt0 = 0 gives the next point

t1 =− F(0)
F ′(0)

. (A.7)

SinceF(0) = f (x0) andF ′(0) = ∇ f (x0) ·d, from A.7 we can write

t1 =− f (x0)

∇ f (x0) ·d . (A.8)

Given that
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x1 = x0+ t1 ·d, (A.9)

we can write A.8 as

x1−x0

d
=− f (x0

∇ f (x0) ·d , (A.10)

or

x1 = x0− f (x0)

∇ f (x0) ·dd, (A.11)

which is the directional Newton method for the functionf along the directiond, according
to (LEVIN; BEN-ISRAEL, 2002).

A.3 Convective Derivative

Assuming a vector functionw(x, t) and a scalar functionf (x, t) defined over the same
domain. The convective derivativeD/Dt is defined as

D f
Dt

= (∇ f ) ·w+
∂ f
∂ t

, (A.12)

which represents the variation inf experienced by a particle that is at a particular place
and time, being advected by the flow.

A.4 Strawn, Kenright and Ahmad Vortex Core Definition in Term s
of the PV Operator

Section 4.3.2 introduced the PV form for the vortex core definition by Strawn, Ken-
wright and Ahmad (STRAWN; KENWRIGHT; AHMAD, 1998) as

w ‖ ∇(w2). (A.13)

According to the general vector identity

∇(u ·v) = (∇u)Tv+(∇v)Tu. (A.14)

Thus, foru = v, we have

∇(u2) = 2(∇u)Tu. (A.15)

From A.15, we can write A.13 as

w ‖ (∇w)Tw. (A.16)
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APPENDIX B ISOCONTOURING CODE

B.1 Unprojecting Fragments

Fragments in GLSL environment are described in normalized device coordinates (NDC).
Thus, for a pointp = (s, t,u,v), in the GLSL NDC space:s, t ∈ [−1,1];u ∈ [0,1] and
v= 1/w, wherew is the homogeneous coordinate.

f l o a t width_half = f l o o r ( f l o a t (viewport_w ) / 2 . 0 ) ;
f l o a t height_half = f l o o r ( f l o a t (viewport_h ) / 2 . 0 ) ;

vec4 ndc_coord ;
ndc_coord .x = ( g l_FragCoord.x * ( 1 . 0 /width_half ) −1.0) * ( 1 . 0 /←֓

g l_FragCoord.w ) ;
ndc_coord .y = ( g l_FragCoord.y * ( 1 . 0 /height_half ) −1.0) * ( 1 . 0 /←֓

g l_FragCoord.w ) ;
ndc_coord .z = ( g l_FragCoord.z * 2 .0 − 1 . 0 ) * ( 1 . 0 / g l_FragCoord.w ) ;
ndc_coord .w = 1 . 0 /g l_FragCoord.w ;
vec4 unproj_coord = gl_ModelViewProjectionMatrixInverse * ndc_coord ;
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APPENDIX C IEEE VISUALIZATION 2008 POSTER
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Figure C.1: IEEE Visualization 2008 poster.
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APPENDIX D RESUMO EXPANDIDO
(EXTENDED ABSTRACT IN PORTUGUESE)

Os fundamentos da pesquisa em dinâmica de fluidos computacional (DFC) foram es-
tabelecidos na década de 60 com o artigo de Hess e Smith (HESS;SMITH, 1967). Desde
então, o aumento no poder de processamento dos computadores, em conjunto com a ne-
cessidade de maior precisão nos cálculos, têm dado origem a métodos de DFC cada vez
mais sofisticados. Esses novos métodos têm sido aplicados noestudo de uma vasta gama
de problemas incluindo a aeroacústica (REYMEN et al., 2005;RICHTER; STILLER;
GRUNDMANN, 2009), a dinâmica de gases (GALANIN; SAVENKOV; TOKAREVA,
2009; VAN DEN BERG, 2009), fluidos viscoelásticos (GUÉNETTEet al., 2008), turbo
máquinas (SUN et al., 2010), transporte em meios porosos (AL-HAMAMRE; AL-ZOUBI;
TRIMIS, 2010), entre outros. Entretanto, esta evolução também tem dado origem a con-
juntos de dados de soluções mais complexos, cuja análise temse tornado cada vez mais
difícil. Neste contexto, as técnicas para extração de estruturas relevantes (features) e vi-
sualização passaram a desempenhar um papel essencial.

Métodos voltados para a extração de estruturas relevantes se concentram na análise,
detecção e seleção automática de porções de dados, capturando estruturas significativas a
partir de conjuntos de dados grandes e intrincados. No contexto da visualização de fluxos,
exemplos de tais estruturas seriam as dobras (cristas e vales) encontradas em campos es-
calares, bem como as linhas de convergência, separação e centros de vórtices encontrados
em campos vetoriais. Estes métodos podem reduzir significativamente a quantidade de
dados a ser manipulada, permitindo que se concentre a atenção somente em regiões rele-
vantes. As técnicas de visualização, por outro lado, fornecem uma maneira mais intuitiva
e natural de inspecionar os dados através da atribuição de uma representação visual às
estruturas selecionadas.

A evolução dos métodos de DFC levaram a soluções representadas analiticamente
através de funções de alta ordem. Apesar de mais precisos, dados representados desta
forma não são compatíveis com os métodos de visualização e deextração de estruturas
desenvolvidos para operar sobre dados interpolados linearmente. Neste caso, a abor-
dagem pragmática é a reamostragem dos dados de alta ordem, permitindo o uso dos méto-
dos tradicionais de visualização e de extração de estruturas. Entretanto, a reamostragem
não se mostra uma alternativa atraente pelo fato de poder introduzir erros relacionados
a subamostragem e aumentar o consumo de memória, necessáriaao armazenamento das
amostras. De forma a superar essas limitações, mais atençãotem sido concentrada no
desenvolvimento de métodos visualização e extração de estruturas capazes de operar di-
retamente sobre dados de alta ordem.

Nesta tese são propostos dois métodos que operam diretamente sobre dados de DFC
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de alta ordem. O primeiro método consiste em um sistema de pré-visualização para a
exploração interativa de isosuperfícies. A interatividade do método é obtida através da
distribuição do esforço computacional em computações executadas nos espaços do objeto
e da imagem. O segundo método consiste uma técnica eficiente para extração de estruturas
lineares descritas pelo operador de vetores paralelos (parallel vectors). A técnica se baseia
no uso de aritmética afim reduzida e processamento paralelo,desta forma permitindo o
ganho de performance e garantias em relação a limites de precisão quanto à existência,
posição e topologia das estruturas obtidas.

Ambos os métodos foram projetados para tirar vantagem do paralelismo dohardware
gráfico. Resultados quantitativos e qualitativos são apresentados para ambos os métodos
através de sua aplicação sobre dados sintéticos e dados gerados por simulações baseadas
no método de Galerkin discontínuo. As próximas seções apresentam um resumo do fun-
cionamento de cada um dos métodos.

D.1 Extração de Isosuperfícies

A representação aproximada de dados de alta ordem, geralmente obtida através de
reamostragem, se apresenta como uma possibilidade no contexto da visualização de iso-
superfícies por permitir o balanço entre a interatividade na exploração e a precisão da
isosuperfície gerada. Algoritmos para a visualização de dados de baixa ordem, tais como
o marching cubes(LORENSEN; CLINE, 1987), estão entre as soluções mais simples
para este problema. Versões adaptativas deste algoritmo permitem a redução dos erros
introduzidos pelomarching cubesao mesmo tempo em que permitem a captura de estru-
turas mais complexas (REMACLE et al., 2006; SCHROEDER et al., 2006). Entretanto,
abordagens baseadas na reamostragem dos dados de alta ordemintroduzem erros e, em
alguns casos, levam a um aumento considerável no consumo de memória, necessária ao
armazenamento das amostras.

Métodos que extraem isosuperfícies diretamente a partir dedados de alta ordem nor-
malmente formulam o problema em termos de localização de raízes ou descida de gra-
diente. Entretanto, a alta ordem dos dados pode inviabilizar o uso de soluções fechadas
fazendo com que métodos numéricos, muitas vezes iterativos, sejam adotados. Alguns
destes métodos, porém, apresentam um custo computacional elevado, degradando a per-
formance da aplicação. Como forma de reduzir o impacto negativo na performance, al-
gumas abordagens decidem por executar os cálculos numéricos em um estágio de pré-
processamento. Este tipo de abordagem é utilizada em uma série de algoritmos para ex-
tração de malhas (REMACLE et al., 2006; SCHROEDER et al., 2005, 2006) e em algorit-
mos baseados em nuvens de pontos (FIGUEIREDO et al., 1992; WITKIN; HECKBERT,
1994; VAN KOOTEN; VAN DEN BERGEN; TELEA, 2007; MEYER et al., 2007). Em-
bora estes métodos permitam a exploração interativa de uma isosuperfície computada no
estágio de pré-processamento, eles não permitem a exploração dinâmica de isosuperfí-
cies referentes a diferentes isovalores. A possibilidade de se explorar de forma interativa
diferentes isovalores esta presente em alguns algoritmos baseados no traçado de raios (ray
tracing ou ray casting) (WILEY et al., 2004; NELSON; KIRBY, 2006; KNOLL et al.,
2009). Entretanto, a intensa avaliação de cálculos de intersecção executadas ao longo da
geração das imagens leva a baixas taxas de quadros por segundo.

Desta forma, baseando-se nas características dos métodos existentes, observou-se que
uma abordagem híbrida, capaz de calcular uma aproximação daisosuperfície no espaço
do objeto, e rapidamente refiná-la através de computações executadas no espaço da im-
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agem, poderia resultar em um método para extração de isosuperfícies interativo, sem que
fosse necessária a reamostragem dos dados de alta ordem.

Sendo assim, propomos na primeira parte desta tese um algoritmo baseado em duas
fases para a extração interativa e aproximada de isosuperfícies a partir de dados de alta
ordem definidos sobre malhas compostas por células. Na primeira fase, partículas uni-
formemente distribuídas no interior do volume de dados são guiadas através do campo
gradiente de forma a gerar uma amostragem inicial da isosuperfície no espaço do ob-
jeto. Na segunda fase, utiliza-se o traçado de raios no espaço da imagem, calculado a
partir das vizinhanças das partículas, para refinar a representação da isosuperfície. Como
a vizinhança das partículas tende a ser pequena, o traçado dos raios é iniciado já próx-
imo à isosuperfície, levando a uma eficiente localização dasraízes. A primeira fase do
algoritmo, calculada no espaço do objeto, afeta a densidadedas partículas podendo gerar
problemas de amostragem da isosuperfície. Desta forma, também é proposta uma heurís-
tica, baseada na teoria dos sistemas dinâmicos, que adapta avizinhança das partículas de
forma a gerar uma melhor taxa de amostragem da isosuperfície.

D.2 Extração de Estruturas Lineares Descritas pelo Operador de Ve-
tores Paralelos

Uma série de estruturas, tais como isosuperfícies e linhas de corrente, podem ser de-
scritas por meio de equações algébricas e diferenciais. Isto permite a separação entre a
descrição da estrutura e o seu procedimento de extração. Entretanto, para uma série de
outras estruturas não tradicionais, esta separação entre asua descrição e o seu método de
extração não é simples de definir. Originalmente introduzido por Roth e Peikert (PEIK-
ERT; ROTH, 1999), o operador de vetores paralelos consiste em uma ferramenta utilizada
para identificar estruturas lineares em campos escalares e vetoriais. Através da fomulação
proposta, uma série de estruturas pode ser descrita analiticamente através de um conjunto
de pontos onde dois campos vetoriais distintos se tornam paralelos.

De acordo com a proposta original, estruturas lineares são extraídas a partir de dados
interpolados linearmente através da localização de suas intersecções com as faces das
células da malha, que são posteriormente conectadas através de segmentos de reta. Este
método é local (soluções são localizadas por célula), robusto e eficiente. Entretanto, esta
abordagem não é precisa o suficiente dado que as estruturas são aproximadas através
de segmentos de reta, e pode sofrer de problemas relacionados a ambiguidade topológica
durante a fase de conexão dos pontos de intersecção. Neste contexto, o método de campos
de fluxo de estruturas (feature flow field) (THEISEL; SEIDEL, 2003) fornece um método
mais preciso para a extração de estruturas lineares. O campode fluxo de estruturas foi
utilizado com sucesso na extração de estruturas lineares descritas pelo operador de vetores
paralelos através de um método de subdivisão espacial em dados interpolados linearmente
(THEISEL et al., 2005).

Nossa abordagem pode ser vista como uma extensão deste trabalho objetivando a ex-
tração de estruturas a partir de dados de alta ordem. O métodolocaliza estruturas lineares
tais como centros de vórtices, linhas de separação e conexão, cristas, vales, etc., descritas
analiticamente pelo operador de vetores paralelos. Além depermitir a separação entre a
descrição das estruturas e o seu procedimento de extração, aforma analítica do operador
permite sua representação no formato de inclusão. Desta forma, o método proposto local-
iza estruturas interessantes no contexto de visualização através da subdivisão adaptativa
espacial dos dados, guiada através da avaliação do formato de inclusão do operador de
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vetores paralelos. Após a fase de subdivisão espacial, um método de localização de raízes
é utilizado para localizar com precisão pontos localizadossobre as estruturas. Estes pon-
tos servirão como pontos iniciais para o traçado das estruturas, que é calculado a partir do
campo de fluxo gerado para as estruturas.

D.3 Idéia Central

São propostos dois diferentes métodos para a exploração de conjuntos de dados com-
postos por dados de alta ordem descritos sobre malhas. Assume-se que as funções de
mapeamento entre os espaços do objeto e do universo são compostas apenas por transfor-
mações afins. O primeiro método é uma técnica híbrida para a extração de isosuperfícies
baseada na seguinte idéia:

A extração interativa aproximada de isosuperfícies a partir de dados
de alta ordem é possível através da distribuição do processamento entre os
espaços do objeto e da imagem. No espaço do objeto, uma aproximação da
isosuperfície, independente do ponto de vista, é gerada. Esta aproximação
irá reduzir o custo associado ao estágio de refinamento da isosuperfície, que
será calculado no espaço da imagem.

Dois pontos devem ser considerados na construção de um algoritmo capaz de extrair
isosuperfícies de forma eficiente neste contexto. O primeiro é o desenvolvimento de um
método que aproxime a isosuperfície desejada no espaço do objeto. Este método deve ser
eficiente ao mesmo tempo em que sua saída sirva como um bom ponto de partida para o
passo de refinamento subsequente. O segundo ponto está relacionado ao método utilizado
no espaço da imagem, que deve refinar a representeação da isosuperfície baseando-se na
aproximação calculada anteriormente.

O segundo método apresentado nesta tese consiste em uma técnica eficiente para ex-
tração de estruturas lineares descritas pelo operador de vetores paralelos a partir de dados
de alta ordem. Este segundo método é baseado na seguinte idéia:

A representação do operador de vetores paralelos em sua forma de in-
clusão permite uma aproximação eficiente e precisa das reaisestruturas lin-
eares existentes em dados de alta ordem. O processamento do conjunto de
dados elemento a elemento, ao invés de estágio a estágio, reduz demandas
relacionadas a largura de banda necessária ao tráfego de dados ao mesmo
tempo que permite o processamento dos elementos em paralelo.

Os pontos levantados em relação as declarações apresentadas incluem uma represen-
tação para a expressão do operador de vetores paralelos que seja utilizável, a escolha de
uma forma de inclusão que possa ser eficientemente implementda e avaliada, e uma es-
tratégia eficiente de subdivisão espacial do conjunto de dados baseada na avaliação da
forma de inclusão do operador de vetores paralelos. A forma de inclusão do operador
de vetores paralelos é representada por uma forma afim de 5 termos, derivada a partir
de uma extensão da aritmética afim. A avaliação do formato de inclusão do operador
de vetores paralelos é utilizada para guiar a subdivisão adaptativa do conjunto de dados,
utilizando-se estruturas de dados baseadas emoctreese quadtrees. Adicionalmente, é
proposta uma estratégia para a eficiente avaliação do operador de vetores paralelos que
utiliza os coeficentes de seus componentes de menor ordem.
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D.4 Resultados

As principais contribuições deste trabalho incluem:

• Um método híbrido para a extração eficiente de isosuperfícies a partir de dados de
alta ordem;

• Um método para redimensionamento desplatsbaseado na teoria dos sistemas dinâmi-
cos;

• Um método para extração de estruturas lineares a partir de dados de alta ordem
gerados por DFC baseado na avaliação da forma de inclusão do operador de vetores
paralelos;

• A análise experimental de uma estratégia eficiente de subdivisão espacial para o
refino de estruturas lineares descritas pelo operador de vetores paralelos;

• Uma estratégia para a avaliação eficiente de dados de alta ordem em GPU.

• Um esquema de traçado de estruturas lineares baseado em movimentos preditores
e corretores que eficientemente reparametrizam o campo no plano corretor.

• Uma estratégia para agrupamento de faces baseado em alinhamentos e que aumenta
a performance do algoritmo de extração de estruturas em arquiteturas SIMD através
da redução da divergência entre fluxos de execução.

D.5 Conclusões e Trabalhos Futuros

Este trabalho apresentou extensões à métodos de visualização e de extração de es-
truturas existentes e que permitiram a eficiente exploraçãode dados de alta ordem. Os
métodos propostos são eficientes, escaláveis e não dependemde reamostragens. Esta
seção apresenta um sumário dos principais pontos discutidos nesta tese. A seção termina
com uma lista de tópicos considerados como possibilidades para futuras investigações.

O primeiro método apresentado trata da extração de isosuperfícies a partir de dados
de alta ordem. O método opera sobre dados cujas funções de mapeamento contenham
somente transformações afins, não conta com o uso de estruturas de dados complexas e
não reamostra os dados originais. Embora não tenha sido projetado para gerar isosuper-
fícies com alta precisão, as superfícies resultantes apresentam muito boa qualidade. Uma
série de parâmetros pode ser ajustada de forma a controlar o balanço entre a eficiência e
a precisão do método, embora se possa explorar ambos (precisão e performance) através
do ajuste de apenas alguns destes parâmetros.

O segundo método trata da extração de estruturas lineares descritas pelo operador
de vetores paralelos. O método é composto por uma série de estágios que extraem es-
truturas dos dados de forma eficiente e em paralelo. Através do uso de aritmética afim
reduzida podemos eficientemente subdividir o conjunto de dados de alta ordem, descar-
tando porções de dados que seguramente não contém estruturas relevantes. Através da
avaliação do campo de fluxo de estruturas, utilizando-se umaadaptação capaz de gerar
vetores tangente mais estáveis numericamente, podemos reconstruir as estruturas com
maior precisão. Adicionalmente, apresentamos uma estratégia para subdivisão espacial
adaptativa cuja implementação em paralelo é mais eficiente que as existentes.
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D.5.1 Trabalhos Futuros

Em relação ao método de extração de isosuperfícies, alguns pontos devem ser con-
siderados em trabalhos futuros: a redução de computações redundantes durante a fase
de refino das isosuperfícies, o desenvolvimento de uma heurística para uma melhor dis-
tribuição inicial de pontos, o tratamento de conjuntos de dados grandes e otimizações que
considerem células menores que um pixel.

A técnica para extração de estruturas lineares também sugere uma série de possibil-
idades para trabalhos futuros. Um ponto a ser investigado é uma melhor comparação
qualitativa entre os resultdos gerados pelos métodos existentes e os gerados pelo método
proposto. O melhor gerenciamento da memória pode permitir que um maior número de
celulas possa ser processada em paralelo. Os efeitos, em termos de desempenho, do pro-
cessamento assíncrono de elementos e o processamento simultâneo de células de taman-
hos diferentes são possibilidades para estudos. Simplificações no estágio de traçado das
estruturas pode permitir o refino progressivo destas estruturas. A extensão do método
proposto, objetivando a extração de estruturas com dimensões maiores, também é consid-
erado.

Um tópico adicional para pesquisa, e que poderia beneficiar ambos os métodos pro-
postos, seria a manipulação de conjuntos de dados contendo funções de mapeamento
não-lineares. A resolução deste problema tornaria os métodos capazes de tratarem o caso
geral dos dados de alta ordem. Outro tópico interessante para pesquisa é a remoção de
discontinuidades no caso de dados discontínuos.
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