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ABSTRACT

Computational fluid dynamics (CFD) methods have been eneplay the studies of
subjects such as aeroacoustics, gas dynamics, turbo reaghirscoelastic fluids, among
others. However, the need for accuracy and high performaastéted in methods whose
solutions are becoming increasingly more complex. In thigext, feature extraction and
visualization methods play a key role, making it easier adenntuitive to explore and
analyze the simulation data.

Feature extraction methods detect and isolate relevardtstes in the context of data
analysis. In the case of flow analysis, these structuresddoelpressure isocontours,
vortex cores, detachment lines, etc. By assigning visuegbates to these structures,
visualization methods allow for a more intuitive analy$isough visual inspection.

Traditionally, CFD methods represent the solution as pweselinear basis functions
defined over domain elements. However, the evolution of CFthods has led to solu-
tions represented analytically by higher-order functiddespite their accuracy and effi-
ciency, data generated by these methods are not compaiibldéeature extraction and
visualization methods targeted to linearly interpolatathd An alternative approach is re-
sampling, which allows the use of existing low order feaxtraction and visualization
methods. However, resampling is not desirable since it magduce error due to sub-
sampling and increase memory consumption associated folesistorage. To overcome
these limitations, attention has recently been given tchods that handle higher-order
data directly.

The main contributions of this thesis are two methods deezldo operate directly
over higher-order data. The first method consists of an r#oewing method. It relies
on a hybrid technique that, by splitting the isocontouringykioad over image and ob-
ject space computations, allows for interactive data espilon by dynamically changing
isovalues. The second method is a line-type feature eidraotethod. The search for
features is accomplished using adaptive subdivision naistiisiven by the evaluation
of the inclusion form of the parallel vectors operator. Batkhthods were designed to
take advantage of the parallelism of current graphics harewThe obtained results are
presented for synthetic and real simulation higher-or@de¢a generated with the discon-
tinuous Galerkin method.

Keywords: Higher-order CFD data, feature extraction, parallel viectperator, isocon-
touring, interval arithmetic.






Extracdo de Estruturas e Visualizagéo de Solu¢des de DFC ddtA Ordem

RESUMO

Métodos de simulacdo baseados em dinamica de fluidos cocignah(DFC) tém
sido empregado em diversas areas de estudo, tais comosioacdinamica dos gases,
fluidos viscoelasticos, entre outros. Entretanto, a netads de maior acuracia e desem-
penho destes métodos tém dado origem a solucdes represeptacconjuntos de dados
cada vez mais complexos. Neste contexto, técnicas voléaeesacdo de estruturas rele-
vantes f{eature$, e sua posterior visualizagédo, ttm um papel muito imptetaarnando
mais facil e intuitiva a anélise dos dados gerados por sighekR

Os métodos de extracdo de estruturas detectam e isolamnétensggnificativos no
contexto da analise dos dados. No caso da analise de flugtas,estruturas podem ser
isosuperficies de presséo, vortices, linhas de separag@oA visualizacdo, por outro
lado, confere atributos visuais a estas estruturas, pedoitima analise mais intuitiva
através de sua inspecdao visual.

Tradicionalmente, métodos de DFC representam suas selagd® funcdes lineares
definidas sobre elementos do dominio. Entretanto, a evoldesses métodos tem dado
origem a solucdes representadas analiticamente atraaagiies de alta ordem. Ape-
sar destes métodos apresentarem caracteristicas desd@yponto de vista de eficién-
cia e acuracia, os dados gerados ndo sdo compativeis comtagosée extracdo de
estruturas ou de visualizagcdo desenvolvidos originalenpata dados interpolados lin-
earmente. Uma alternativa para este problema consistelnede da ordem dos dados
através de reamostragem e posterior aplicacdo de métedidsidnais para extracao de
estruturas e visualizacdo. Porém, o processo de amostiageenintroduzir erros nos
dados ou resultar em excessivo consumo de memdria, ndeess@rmazenamento das
amostras. Desta forma, torna-se necessario o desenvabame métodos de extracdo e
visualizag@o que possam operar diretamente sobre os daddis drdem.

As principais contribuicfes deste trabalho consistem eis m@todos que operam
diretamente sobre dados de alta ordem. O primeiro consistexemétodo para extracao
e visualizacdo de isosuperficies. O método baseia-se enalbondagem hibrida que, ao
distribuir o esforgo computacional envolvido na extracadsealizagdo das isosuperfi-
cies em operacOes executadas nos espacos do objeto e daninpageite a exploracao
interativa de isosuperficies através da troca de isowvalo@e segundo método consiste
em uma técnica para extracao de estruturas lineares, ondéagao da forma intervalar
do operadoparallel vectors em conjunto com métodos de subdivisdo adaptativa, é uti-
lizada como critério de pesquisa destas estruturas. Andbagtodos foram projetados
para tirarem proveito do paralelismo Hardwaregrafico. Os resultados obtidos séo ap-
resentados tanto para dados sintéticos quanto para dadosulacdes gerados atraves
do método de Galerkin discontinuo.

Palavras-chave:Dados de DFC de alta ordem, extracao de estrutteatifes, operador



de vetores paralelopérallel vector$, extracdo de isosuperficies, aritmética intervalar.
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1 INTRODUCTION

The foundations for research on computational fluid dynarf@-D) were established
in the 1960’s, in the paper by Hess and Smith (HESS; SMITH7L98ince then, the in-
crease in processing power and the need for accuracy led GFbBods to evolve into
more sophisticated methods that can be applied to a broge @mproblems, including
aeroacoustics (REYMEN et al., 2005; RICHTER; STILLER; GRDIMANN, 2009), gas
dynamics (VAN DEN BERG, 2009; GALANIN; SAVENKOV; TOKAREVA2009), vis-
coelastic fluids (GUENETTE et al., 2008), turbo machiney&et al., 2010), transport
in porous media (AL-HAMAMRE; AL-ZOUBI; TRIMIS, 2010), amanothers. This
evolution led to increasingly complex solutions, whoselysia has become significantly
harder. In this context, feature extraction and visualiratechniques started to play a
key role.

Feature extraction methods concentrate on the automasdygkses) detection and se-
lection of relevant data portions, capturing meaningful&ures out of large and intricate
data. In the context of flow visualization, examples of sughtdres are creases (ridges
and valleys) in scalar fields, as well as separation, attaabnand vortex core lines in
vector fields. These methods can significantly reduce theuatraf data to be manipu-
lated, thus allowing to focus attention on relevant datau¥lization techniques, on the
other hand, allow for a more intuitive and natural way of esjing data by assigning a
visual representation to the selected structures.

The evolution of CFD methods led to solutions representedytinally by higher-
order functions. Despite their greater accuracy and effigiedata generated by these
methods are not compatible with feature extraction andaligation methods targeted to
linearly interpolated data. The pragmatic approach ismgsag, which allows the use
of existing low order feature extraction and visualizatmathods. However, resampling
is not a desirable approach since it may introduce error dselhsampling and increase
memory consumption, needed for samples storage. To overtuese limitations, more
attention has recently been paid to methods that handlehmyder data directly.

In this thesis we propose two methods that operate direstty analytical higher-
order CFD data. The first method consists of a previewingesys$or interactive explo-
ration of isosurfaces defined by higher-order data. Intetiacis achieved by splitting
the isocontouring workload over object and image spaces.s€bond method is an effi-
cient parallel vectors line-type feature extraction mdttiwat relies on the use of reduced
affine arithmetic and parallel processing to improve penfamce and allow for guaran-
teed bounds regarding accuracy with respect to existemsgtjgn, and topology of the
features obtained.

Both methods were designed to take advantage of parallehgpshardware. Quanti-
tative and qualitative results, for both methods, are prtesEfor synthetic and real higher-
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order simulation data generated with discontinuous Gaderiethod. The next sections
summarize both methods, for which more detailed descriptase given in the following
chapters.

1.1 Isocontouring

Approximate representation of higher-order data offenshle visualization approach
by allowing a trade-off between rendering speed and acgukaev-order representations
using an isocontouring algorithm such as marching cubefRENSEN; CLINE, 1987)
are among the simplest solutions to this problem. Adapaweing variations of march-
ing cubes can further reduce the error and capture more exrsplctures (REMACLE
et al., 2006; SCHROEDER et al., 2006). However, resamplpm@aches introduce er-
ror and in some cases lead to memory increase due to the langleen of lower-order
elements needed to represent the original data.

Usually, methods for directly contouring higher-orderadate formulated as a root
finding or gradient descent problem. Due to the higher-ond¢ure of the data, there
is no closed-form solution for these formulations, and nucaé methods must be used
instead. Since these numerical methods are typically ctatipnally expensive, they are
often computed in a pre-processing step, which was appliegveral mesh-extraction
(REMACLE et al., 2006; SCHROEDER et al., 2005, 2006) and pbased algorithms
(FIGUEIREDO et al., 1992; WITKIN; HECKBERT, 1994; VAN KOOME VAN DEN
BERGEN; TELEA, 2007; MEYER et al., 2007). Although intergetrendering is pos-
sible since the isosurface is computed during pre-proegssine, changing isovalues
requires the recomputation of the isosurface and hencevidralbvisualization might be
no longer interactive. The ability to dynamically changeveslues is present in some ray
casting or ray tracing isocontouring algorithms (WILEY kf 2004; NELSON; KIRBY,
2006; KNOLL et al., 2009). However, the evaluation during tendering step of such
numerical methods leads to lower frame rates. It was obdehag a hybrid approach,
that quickly computes an object space approximation of #sered isosurface, together
with a refinement step in image space, could result in a iat@eisocontouring method,
without the need for resampling.

We propose an algorithm for the interactive approximatetamarmg of multi cell
higher-order data based on two phases. In the first phaseetpaeeded particles are
guided by the gradient field for obtaining an initial samgliof the isosurface in object
space. The second phase performs ray casting in the image spighborhood of the ini-
tial samples. Since the neighborhood is small, the initigsges for ray casting tend to be
close to the isosurface, leading to fast root finding and éffisient rendering. Since the
object space phase affects the density of the samples, stifaeta can occur in the final
rendering. Thus, we also propose a heuristic, based on dgabsystems theory, that
adapts the neighborhood of the seeds in order to obtain erloetterage of the surface.

1.2 Extraction of Parallel Vectors Line-type Features

Several traditional features, such as isosurfaces anahslires, can be described by
algebraic or differential equations. This allows for thpa®tion between a feature’s de-
scription and its extraction procedure. However, for seMather non-traditional features,
this separation between description and extraction metlsogbt easy to find. Originally
introduced by Roth and Peikert in (PEIKERT; ROTH, 1999),theallel vectors operator
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consists in a mathematical framework to identify line-typatures in vector and scalar
fields. Through the proposed formulation, several feattyqess can be described analyt-
ically by the set of points where two distinct vector fieldstwme parallel or anti-parallel.
In the original parallel vectors method, features are extchfrom trilinearly interpo-
lated data by finding intersection points with the faces af gells that are later connected
by straight line segments. This method is local (solutiaesfaund per cell), robust, and
comparably fast. However, it might not be accurate enougtest approximates features
by straight segments and suffers from topological ambyguioblems when connecting
more than two intersections per cell. In contrast, the nabfeature flow field method
(THEISEL; SEIDEL, 2003) provides a more accurate and smisatture extraction. The
feature flow field has been applied to parallel vectors feagutraction (THEISEL et al.,
2005) using a subdivision method for finding seeds per célilinearly interpolated data.
Our approach can be seen as an extension of (THEISEL et 8b) 20 higher-order
data. The method looks for linear features in the flow, suckoa®x cores, attachment-
detachment lines, ridges, valleys, etc., described anallyt by the parallel vectors op-
erator. The parallel vectors formulation allow for the atiahl description of several
line-type features previously described only procedyrdksides separating the feature
description from its extraction procedure, the analytioah of the operator allows for its
representation in inclusion form. Thus, the proposed nekbaks for interesting features
using an adaptive space subdivision guided by the evaluafithe inclusion form of the
parallel vectors operator. After the subdivision staget fmding is used to precisely lo-
cateseedgpoints resting on the feature lines). The placed seed$areused as starting
points in a feature flow field-based tracing stage that fim@&pnstructs the features.

1.3 Thesis Statements

| propose two different methods meant to allow efficient exglion of multi cell
higher-order data containing affine mappings betweenerbéer and world space. The
first method is a hybrid isocontouring technique that is Hasethe following statement:

Interactive approximate isocontouring of higher-ordenalas possible
by splitting the computation workload between object anagenspaces. In
object space, a view independent approximation of the sarf&computed.
The surface approximation will reduce the cost associabeti¢ surface re-
finement step computed in image space.

Two issues must be addressed to allow for the constructiarngbrid algorithm capa-
ble of efficiently extracting isosurfaces in this contexteTirst one is the development of
the method that approximates the desired isosurface icidgace. It must be efficient at
the same time that its output serves as a good starting foitti¢ subsequent refinement
step. The second issue is related to the method used in inpage,swhich must effi-
ciently refine the isosurface based on the previously coegpapproximation. In Chapter
3 we present a hybrid algorithm based on two stages whichuatedor the above men-
tioned requirements. It also discusses sampling issuatedeto the proposed approach,
presenting a heuristic inspired by dynamic systems thdmtreduces sampling artifacts.

The second method presented in this thesis is a techniqedfiment parallel vectors
line-type feature extraction from higher-order data tisabased on the following state-
ment:
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The representation of the parallel vectors operator in fitslision form
allows for accurate and efficient approximation of the atfeatures inside
higher-order data. Dataset processing in a per-elementd)asstead of per-
stage basis, reduces data read back overhead and lendssléefor parallel
processing.

The issues raised by the above statement include: an anedytiesentation for the
parallel vectors expression that is manageable, the cbhbmeinclusion form that can be
efficiently implemented and evaluated, and an efficientexgsafor data subdivision based
on the evaluation of the inclusion form of the parallel vestoperator. Chapter 5 presents
strategies that handle each one of the above mentionedeetgnts. The parallel vectors
inclusion form is represented by an 5-term affine form detifrem an affine arithmetic
extension. The inclusion form of the parallel vectors isdugeguide octree and quadtree-
based subdivision that efficiently and robustly place semdtp used for feature tracing.
It is shown how the parallel vectors expression can be efigieevaluated through the
storage of the coefficients of its primitive components.

1.4 Results

The main contributions introduced in this thesis include:

A hybrid method for the efficient isocontouring of higheder data;

A splatting resizing scheme based on dynamical systenasythe

A method for line-type feature extraction from higher-erCFD data based on the
evaluation of the inclusion form of the parallel vectors i@per;

« An experimental analysis of an efficient subdivision &gyt for parallel vectors
line-type feature refinement in parallel architectures;

» A framework for efficient multi cell higher-order data ewation in the GPU;

A predictor corrector-based tracing scheme that effibjeeparameterize the field
on the correcting plane;

« An alignment-based face grouping strategy that improvefopmance on SIMD
architectures by reducing execution divergence amongdste

1.5 Organization of this Document

This document is organized as follows: chapter 2 presentgefibtroduction to the
scientific visualization field. Although not focused on thpesific subject of this thesis,
it gives context and presents related techniques in the fidlthe end of the chapter the
higher-order data format, and the description of the higitder datasets used along this
work, are introduced.

Chapter 3 presents the proposed isocontouring for higltearaata method. Initially,
the state of the art in isocontouring of implicits and mu#lldigher-order data is pre-
sented. Afterwards, the method is discussed in detail aadtsgpresented.
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In order to facilitate the understanding of the featureation method presented in
chapter 5, chapter 4 introduces the parallel vectors oprerahe mathematical formula-
tion is presented and it is shown how several existing lypetfeatures can be rewritten
in terms of the operator.

Chapter 5 presents the proposed method for line-type fea&xiraction method for
higher-order data. A brief introduction to the conceptsefusion arithmetic and feature
flow fields is first presented. Afterwards, the feature extoacmethod together with
implementation decisions are explained. At the end of treptdr results are presented
together with discussions.

Finally, chapter 6 reviews the contributions of this thepisinting to directions for
future work.

Appendices present complementary material related to ¢ékeldpment of this the-
sis. Appendix A introduces the definition of some mathenaaticols used along this
thesis. Code and algorithms snippets related to the isouang method are presented
in Appendix B. Finally, Appendix C contains the poster psb&d at IEEE Visualization
2008.
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2 VISUALIZATION OF CFD DATA

In this chapter we provide an overview of the field of scieatvisualization and fea-
ture extraction with focus on CFD data analysis. We startroyiding a brief description
of the space discretization approaches used by tradit©RBI methods and how the so-
lution is represented and stored. The following sectioes@nmt visualization and feature
extraction techniques targeted to traditional CFD dataintveduce the higher-order data
generated by recent CFD methods, pointing out the key fesinirthis type of data. The
chapter ends by presenting a detailed description of sogieehorder datasets obtained
from discontinuous Galerkin fluid simulations which wereedigo generate results for
both methods presented along this thesis.

2.1 Visualization

Visualization is related to making visible those thingsttharmally can not be seen.
This is the case, for example, with fluid flow. Fluid is usualignsparent (air, water,
gas, etc.) and under normal circumstances it is not possibMisually inspect its behav-
ior. Techniques that can be employed to allow the visuatmadf the fluid flow include,
among others, the injection of smoke in wind tunnels or tlae@ient of colored oil over
friction surfaces. Visualization of other phenomena, sagthe difference of temperature
and shock waves, can be accomplished with techniques sushaa®w graphs (SET-
TLES, 2010), an optical technique that captures opticabmmbgeneities in transparent
media.

In the context of computer science, visualization can ba sse branch of computer
graphics responsible for creating images or graphicalesgptations about underlying
data and processes. A description for the visualizatiod fies given in 1987, in the
National Science Foundation’s Visualization in Scientfiomputing Workshop report
(reprinted in (MCCORMICK; DEFANTI; BROWN, 1987)):

“Visualization is a method of computing. It transforms tlyenbolic into
the geometric, enabling researchers to observe their gittarls and compu-
tations. Visualization offers a method for seeing the unséeenriches the
process of scientific discovery and fosters profound andpewted insights.
In many fields it is already revolutionizing the way scietsto science (...)"

The visualization field is usually broken into two almostjdiist branches: scientific
visualization and information visualization. Scientifiswalization usually deals with the
graphical representation obntinuouslata, such as simulation data, e.g. fluid flow simu-
lation, and data obtained from measurement devices, e.d.oMBT scans. Information



28

visualization, on the other hand, deals with discrete datelly of very high dimension-
ality such as stock market indexes, employee records, |soeteorks, among others.
Despite the above classification, sometimes the boundaeiggeen these two branches
can not be clearly defined.

2.2 Traditional CFD Data

Traditional CFD methods usually involve a double discigion. First, the physical
domain is tessellated into several elements that togetiner & mesh. Second, the con-
tinuous function spaces (infinite dimensional) are repldog finite expansions. After
the discretizations, the solution is approximated for edetlaset element. The following
sections describe the types of tessellation normally usddhaw solutions are stored and
retrieved.

2.2.1 Mesh Types

Initially, the physical domaif is tessellated into a collection afelements, generat-
ing the mesiMq according to Equation 2.1.

Mo = (e, (2.1)
i=1

whereg is thei-th element.

Usually Mg is a compatible mesh, with elements intersecting only atothendary
faces, edges or vertices. The four basic element shapes @oynosed for 3D domain
tessellation are tetrahedra, pyramids, hexahedra, ashgras shown in Figure 2.1.

9 4 o

(@)

Figure 2.1: The four basic element shapes commonly usedfaladnain tessellation in
traditional CFD: a) hexahedron, b) tetrahedron, ¢) pyraamid d) prism.

According to its overall structure, the assembled mesh earidssified astructured
or unstructured Structured meshes can be viewed as 2D or 3D arrays of elemsmt
resented by quadrilaterals or hexahedra, respectivelyceSnter-element connectivity
information is implicit, it can be compactly stored as a 208&r array. Curved meshes
are also considered as structured. Under the structurssl, elee find the regular meshes,
which consists of regular samplings along each axis. Theaignment of the elements
in structured meshes allows easier derivative computafjery. finite differences), and
its regularity permits efficient handling (e.g. isoconiagrand visualization algorithms
such as (LORENSEN; CLINE, 1987; LACROUTE; LEVQY, 1994)).

Unstructured meshes can be composed by mixed shape eleamehteed to keep
additional element connectivity information, which mafeat memory management and
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performance. However, these meshes better adapt to ayliiwenain boundaries, being
used in cases where fluid flows around obstacles.

There exist also other classes of meshes, such ds/thve andhierarchical meshes
While the former is composed by structured and unstructoresh portions, the latter is
organized in hierarchical structures, such as the adapiggh refinement (AMR) meshes.
Figure 2.2 illustrates some of the above mentioned meslstype

(@) (b)

(c) (d)

()

Figure 2.2: Mesh types: a) structured, b) unstructuredyjikinear, d) rectilinear and e)
hybrid.

In the realm of computer-based flow simulation methods,etleist alsomeshless
techniques such as the Smoothed-particle hydrodynanfd$)(8UCY, 1977; GINGOLD;
MONAGHAN, 1977). According to this method, the fluid is repeaited by a set of par-
ticles. The properties for a given point in the simulatiom@in can be obtained by
summing thesmootheccontributions of all particles that lie within a certain ralddis-
tance.

2.2.2 Field Description and Interpolation

Solutions to CFD methods are represented by values asst¢taphysical quantities
and, depending on the type of quantity to be representddreiift data types must be used.
Physical quantities such as pressure, density or temperassociate a unique value to
each point in space and can be represented by scalar fieltier @hysical quantities,
such as velocity or curl, associate a direction and a maggmita each point in space.
In these cases, such quantities are represented by vedtist fihere vector length and
coordinates indicate magnitude and direction, respdgtive

Traditional CFD methods represent solutions through discsamples stored at the
element vertices. While, for scalar fields, these samplkesepresented by single scalar
values, for vector fields the samples are representedtbples of scalar values.
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Real world quantities are continuous and it becomes negesseeconstruct contin-
uous functions from the discrete data generated by traditiGFD methods. The recon-
struction of the continuous function can be obtained withragimation or interpolation
technigues. While approximation techniques just "apprnates” the discrete function,
interpolation techniques generate continuous functibasrhatch the exact function val-
ues at the sample points.

The simplest and more efficient interpolation techniquéésriearest-neighbor inter-
polation. As the name suggests, unknown values are filleld veilues picked from the
closest sample available. As a side effect of this apprdaelreconstructed function will
never be continuous regardless the sampling frequencyp@swability to force continu-
ity between two samples is to require the function to vargditly between them. This
technique is known as linear interpolation, and guarar@&esntinuity between the sam-
ples. When it is required some level of smoothness in theval@res of the reconstructed
function C' continuity, where represents the correspondinth order derivative), higher-
order interpolation schemes can be used at the cost of mpemsive computations.

2.3 Visualization of Volumetric CFD Scalar Fields

CFD data is not always related to vector fields. Scalar fiedgsasenting pressures,
density, heat, as well as scalar fields derived from vecttusjesuch as velocity and
vorticity magnitude, can be used in flow analysis. A scaldd i®a functionf that maps
every point in then-dimensional domain to a scalar value (Equation 2.2).

f:R" > R. (2.2)

When associated to units of measurement, scalar valuessegrquantities such as
density, temperature, etc.

Several techniques have been developed for the visualizafiscalar fields. These
methods can be divided in two classes: direct and indirethoas. Direct methods ex-
tract the visualization directly from the scalar data. Assiaal example of a direct method
is ray casting. Indirect methods rely on an intermediaryesentation for the scalar data,
and this is usually the case with isocontouring methodsyevtiee most notable example
is the marching cubes algorithm. The following sectionssprg a brief description of
each visualization method.

2.3.1 Direct Volume Rendering

Direct volume rendering assumes that the volume data rept®a participant medium
composed by semi-transparent material. Final images arergied in a three stage pro-
cess:

» Sampling
* Classification
« Compositing

Initially, rays emanating from the eye viewpoint are casbtigh each screen pixel,
traveling along the volume and sampling it at intervals.sTibithe sampling stage. After-
wards, samples are classified. Classification usually stsmef the assignment of color
and opacity values to each sample. Color and opacity vakgest#ained from transfer
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functions, which map every possible scalar value to preaddficolor and opacity val-
ues. The last stage computes the final pixel color by compgdite samples along the
ray. Several approaches can be used for compositing, deygead the optical model
used. Among the most common models, one can find maximumsitygooint (MIP)
(WALLIS et al., 1989), absorption-only and absorption-ssmn (BLINN, 1982; KA-
JIYA; VON HERZEN, 1984).

Direct volume rendering (DVR) is a good visualization apgmio for measured real-
world data with noise and amorphous soft objects. A greatmidge of the DVR ap-
proach is its intrinsic ability to render contextual infation, not limited to a unique
scalar value. The main drawback regarding DVR is the highpdational cost de-
manded by the integration during the sampling stage. Tagatiithis cost, several ap-
proaches have been developed to approximate the integidbE; KRAUS; ERTL,
2001; ROETTGER et al., 2003). Additionally, several aceaien techniques have been
developed taking advantage of the regularity found in stinecl datasets. These tech-
niques are usually separated in three classes, accordthg g&pace where they operate.
Image space technigues, such as ray casting (DREBIN; CARERNHANRAHAN,
1988; UPSON; KEELER, 1988), compute the final volume remdgéntirely in image
space. Object space techniques, sugdpéating( WESTOVER, 1990; CRAWFIS; MAX,
1993), ortexture slicing[CULLIP; NEUMANN, 1994; CABRAL; CAM; FORAN, 1994;
GUAN; LIPES, 1994), take advantage of structures describaibject space to accel-
erate volume rendering. Hybrid methods combine charatiesiof both classes and an
example of such method is tiehear-warp(CAMERON; UNDERILL, 1992; YAGEL;
KAUFMAN, 1992; SCHRODER; STOLL, 1992), which distributdsetcomputation ef-
fort to compute the volume rendering over the object and ersquaces.

Unstructured meshes present distinct properties thataarerhandled by DVR meth-
ods targeted to structured data. Examples of these spietfiare rays that can leave and
re-enter the volume during tracing and sample locationsatenot implicit. Thus, for
unstructured meshes, additional techniques have beetogede such aprojected tetra-
hedra(SHIRLEY; TUCHMAN, 1990) and théiAVS(CALLAHAN et al., 2005), among
others.

2.3.2 Isocontouring

Given the 3-dimensional scalar field: R® — R, an isosurface is a surfa&@that
represents a set of points of constant valEquation 2.3).

S={x|f(x) =v}. (2.3)

Isocontouring is an alternate approach for scalar fieldalization. Opposite to DVR,
isocontouring methods usually rely on a intermediary regnéation of the desired struc-
tures, which is then used for the final visualization.

Originally developed for regular meshes (composed by hedhath elements), the
marching cubes (MC) algorithm (LORENSEN; CLINE, 1987) preds over the data,
taking eight samples at a time and verifying whether theycamssed by the desired iso-
surface. This verification is based on the values of the esghtples. If two samples
present different signs, it indicates that the elementassed by the isosurface, and in-
verse linear interpolation is used to find the intersectiom{s over the element edges.
These intersection points are later connected and orgpigons inside each element.
This computation is executed independently for each diatsment and the union of



32

generated polygons compose a triangle mesh that represeafgproximation of the de-
sired isosurface. MC must be executed every time the isevaluhanged. The method
is robust and simple to implement. Since the surface extract executed independently
for each element, it lends itself well for parallelization.

However, MC suffers from problems related to ambiguity andldy of the generated
mesh. Ambiguity emanates from cases where the configurafithe intersection points
found for a given element allow for the construction of taygptally non-equivalent poly-
gons. Several publications have presented alternatia¢sdin reduce problems related to
the topological ambiguity intrinsic to MC. Regarding mesialty, it depends directly on
the quality of each triangle of the mesh, and MC can genertehad quality triangles
under certain circumstances. Several publications hae attacked the mesh quality
problem of MC (DIETRICH et al., 2009; SCHREINER; SCHEIDEGBESILVA, 2006;
GARLAND; HECKBERT, 1997; CROSSNO; ANGEL, 1997; GAVRILIU at., 2001).

MC was originally developed for the isocontouring of reglyl@ampled scalar fields,
and could not be applied directly over unstructured medilesching tetrahedra (PAYNE;
TOGA, 1990) was a marching strategy developed for the isocwimg of unstructured
tetrahedral meshes. Although not susceptible to the antpigtoblems encountered in
original MC, the method can generate meshes topologigathyrisistent with the underly-
ing data. Regarding the contouring of implicit data, manghinethods can be used given
that a sampled version of the original data is available. &les, disadvantages regard-
ing this approach are the inclusion of error in data and esen memory consumption
needed to store the samples.

2.4 Feature Extraction

Increase in computational processing power has alloweth®odevelopment of so-
phisticated CFD simulation methods capable of generatiogeraccurate results. To-
gether with the adoption of time-dependent simulationss¢hnew methods have led to
substantial increase in the size of the resulting datasetseasingly larger amounts of
data have posed new challenges to the scientific visuaizabmmunity, which has seen
feature-based visualization as an option to make the exjpbor of this data feasible.

By extracting only the relevant structures out of intricdega, feature-based tech-
niques reduce the current data to manageable sizes, ajjdasireasier inspection and
sometimes allowing for interactive data exploration.

There is not a formal definition regarding features. Usuyélgtures represent patterns
or structures which are relevant in a certain visualizatontext. It is important to note
that features to be extracted must be "localizable" in thealo represented by the data.

The two main tasks regarding feature-based visualizatiotha appropriate definition
of the feature and the design of an algorithm that is ablediais features described ac-
cording to that definition. The description of the featusereiated to their corresponding
dimensionalities. Some features are 0-dimensional (feattires), such as critical points
in scalar or vector fields. Other features can be represdytdddimensional structures,
such as vortex cores or detachment and attachment linemas of 2-dimensional fea-
tures include surfaces such as shock fronts or isosurféitéise case of closed surfaces,
such as isosurfaces, they additionally delimit a 3-dimamedi region in space. These re-
gions can also be seen as 3-dimensional features, e.gqansaghere some value is under
or above a prescribed threshold.

Another point regarding features is the scope of their dedimé. Some features are
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only described in a global scope. This is the case for examjilewatersheds Other
features can be described completely in local terms, asXample critical points in
scalar fields, which are represented by points where thedfidgr derivatives are zero.
A higher dimensional feature described in local terms isBberly height ridge defini-
tion (EBERLY, 1996). For the feature extraction method préed in Chapter 5 of this
thesis, we focus on line-type features described locally.

2.5 Higher-Order CFD Data

As already discussed, traditional CFD methods are basediatiipased discrete data
from which element-wise continuous data can be obtainedgusn arbitrarily chosen
interpolation scheme. A commonly used approach is the fdimgarpolation since it is
simple to compute (i.e. local to the element), does not thice spurious oscillations in
the reconstructed function, and guarantees at @asontinuity at the element bound-
aries.

An alternative to avoid the assumption of an arbitrary jpdéstion would be to pro-
vide the original interpolation scheme (possibly highetes) along with the discrete
data, thus allowing for the reconstruction of the exactagtle continuous function from
the samples. This is the case, for example, with data gesterveith the discontinuous
Galerkin method, for which the solution is given in terms ef4lement multivariate
higher-order polynomials.

The discontinuous Galerkin framework can be considered @mraination of the
finite volume and finite element schemes. Similar to tradaldCFD schemes, discontin-
uous Galerkin assumes a tessellation of the simulation ohoimi@ elements. As in finite
volume schemes, discontinuous Galerkin allows for sofutiscontinuities at element
boundaries, at the same time that, as in the finite elemeptses it allows the represen-
tation of the solution in terms of polynomial expansionstHis case, the coefficients of
the polynomials indicate the possible degrees of freedaeréned by the formulation
of the governing equations.

The degree of the polynomials determine the accuracy offdéeaolution in space.
To increase accuracy, it is sufficient to increase the ortigreopolynomials. This can be
done adaptively, in regions where higher resolution is deted. Alternatively, the com-
bination of changes in the polynomial degrees can be cowytedocal grid refinement to
change the accuracy order in distinct regions of the data$et solution, represented by
the set of element-wise polynomials, is discontinudtfsdontinuous) at element bound-
aries. In the interior of each element the solutio@®yp > 1) continuous, where is the
degree of the polynomial.

Most finite-element methods define local element operatishieh is usually the case
regarding discontinuous Galerkin approaches. Elemesg-analytic functions describ-
ing the solution are defined in the corresponding elemeeteate space. Thus, in order
to query the solution value for a poip{y in world space, one must first locate the ele-
menteg containing the point, transformy to the corresponding element reference space
positionpe using the inverse of the element’s mapping funciipand finally evaluate the
solution polynomiak; at positionpe in the reference space (Figure 2.3).

The mapping functio, which can be non-linear, maps points from element refer-
ence space to the world space. Usually, this function cab@analytically inverted, and
numerical approaches must be used instead. In this work @esfon multi cell higher-
order data whose mapping functi@nrepresents only affine transformations that can be
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Figure 2.3: Element-wise mapping functiohsransform a poinpe in the reference space
of the elemeng to a pointpy in world space. In the general ca3emay be non-linear,
and can not be analytically inverted. In these cases, nealepproaches must be used
to computeT, L.

inverted analytically.

Higher-order data represented analytically presentgakadvantages with respect to
visualization and feature extraction. The exact solutialu& for any point can be eval-
uated and prescribed accuracy checked. Symbolic manipulaf the analytical data
representation allows for the exact evaluation of arbjtragher-order derivatives. This
is essential, for instance, in feature extraction appreathat rely on feature descriptions
based on solution derivatives (e.g. vortex cores, stregsliamong others). An analytical
solution description allows for its evaluation in inclusifimorm. Together with spatial sub-
division methods, this allows to safely discard data posithat do not contain interesting
data, focusing computational effort towards relevant data

2.5.1 Discontinuous Galerkin Datasets

The higher-order data used in this work were generated byesipge expansion dis-
continuous Galerkin simulations presented in (GASSNERROCBIER; MUNZ, 2008).
Datasets are represented by unstructured meshes whosmederssume polyhedral shapes.
The solution is represented by element-wise polynomiaksbitrary degree, defined in
each corresponding element’s reference space. Each poigidis described in a mono-
mial basis of the form

P(x) = Ek Gi kXY 2, (2.4)
i+j+k<n

wherec is the coefficient of each monomialy, andz are the independent variables in
the element reference spacg;andk are the powers of each independent variable;rand
is the degree of the polynomial.

Mapping functions, that map the element reference spadestworld space, are de-
fined separately for each element and consist entirely n§ka#ions.

The shock channetlataset was generated by a numerical simulation where aprop
gating shock with Mach numbdéfia = 3 hits a cubic obstacle positioned in the middle
of the channel. As the shock advances, a lifted ballisticeniaformed, along with the
shock’s reflections on the channel walls. Low order numéschemes face challenges
when dealing with shocks and the resolution of their cowasing effects. In this simu-
lation, the high degree of the polynomials (5 and 6, in theegacompensates for the very
coarse resolution of the grid (202 x 3 hexahedral (cubic) cells). The obstacle is the size
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of one cell, resulting in a mesh with 119 cells in total. Fg@r4 shows the structure of
thespheredataset.

@)

Figure 2.4:Shock channeallataset structure. The mesh is composed of 119 hexahedral
(cubic) elements. The solution is represented by degreeal % golynomials described

in monomial basis. The mapping functions between referanceworld spaces contain
only translations.

The second dataset was generated by a hydrodynamical sonulhat solves the
compressible Navier-Stokes equations. With a Reynoldsheurof Re= 300 and a uni-
form flow with Ma = 0.3 initially set up, the simulation results show a von Karmartex
street roll-up. The unstructured mesh for gpheredataset is composed by 34.535 poly-
hedral elements that assume the following shapes: hexamgdtrahedron, pyramid and
prism. The degree of the solution polynomials is 3. FiguBeshows the structure of the
spheredataset.

100

Figure 2.5: Spheredataset structure. The mesh is composed of 34,535 polyhadra
ments. Solution is represented by degree 3 polynomialsribesicin monomial basis.
The mapping functions between reference and world spacgainmnly translations.
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3 ISOCONTOURING HIGHER-ORDER SURFACES

In this chapter we describe the details of a method for ictes@ approximate iso-
contouring of higher-order data. The method is based on gptvese hybrid rendering
algorithm. In the first phase, coarsely seeded particlegaitked by the gradient of the
field for obtaining an initial sampling of the isosurface inject space. The second phase
performs ray casting in the image space neighborhood ofritialisamples. Since the
neighborhood is small, the initial guesses tend to be cloghd isosurface, leading to
accelerated root finding and thus efficient rendering. Theablspace phase affects the
density of the coarse samples on the isosurface, which adridéholes in the final render-
ing and overdraw. Thus, we also propose a heuristic, basdgrmamical systems theory,
that adapts the neighborhood of the seeds in order to obtagétter coverage of the sur-
face. Results for datasets from computational fluid dynaraie shown and performance
measurements for our GPU implementation are given. Thesatsdf this chapter were
published as "Interactive Isocontouring of High-Orderf&ces" (PAGOT et al., 2010).

3.1 Isocontouring Higher-Order Data

There is a vast literature on isocontouring. We constragdiscussion below to
techniques targeted to higher-order data.

Figueiredoet al. (FIGUEIREDO et al., 1992) proposed physically-based apgines
for extracting triangle meshes from implicit surfaces. @rethod is particle-based while
the second is based on a mass-spring system, and reprdsefitstt attempt on using
particles to sample higher-order data. This work inspiretkWand Heckbert (WITKIN;
HECKBERT, 1994) to develop a point-based tool for the maodglnd visualization of
implicit surfaces. When used as a modeling tool, pointsesgmt handles for changing
shapes. As a visualization tool, points are projected dr@strrface and rendered as discs,
with size and distribution adaptively computed accordmghie curvature of the surface.
Meyeret al. (MEYER et al., 2007) proposed a technique for isosurfacesigeed from
higher-order finite element simulations that builds upaapproach of Witkin and Heck-
bert. Potential functions are used for particles repulsyonng more control over particle
distribution. This method handles cells with curved swfaand allows for interactive
visualization of a given isosurface. Interactive explmmatof different isovalues is not
viable since every isovalue change typically takes sevenmalites due to resampling.

Kootenet al. (VAN KOOTEN; VAN DEN BERGEN; TELEA, 2007) presented the
first interactive particle-based method for implicit sedavisualization that runs entirely
on the GPU. The projection method is an adaptation of that ikikVand Heckbert.
Particle repulsion relies on a spatial-hash data stru¢hatrequires costly and frequent
updates, thus preventing its use for rendering large datagkhough not directly related
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to isocontouring, Zhou and Garland (ZHOU; GARLAND, 2006¢sent a point-based
approach for the direct volume rendering of higher-ordaateedral data. Despite their
effectiveness, point-based methods typically only pre\accoarse representation for the
isosurface, and accurate representations require a hugieenwf points. Haasdordt al.
(HAASDONK et al., 2003) presented a multi-resolution remagmethod fohp-adaptive
data based on polynomial textures. Although effectives, téthod was designed only for
2D rendering. Schroedet al. (SCHROEDER et al., 2005) presented a mesh extraction
method that explores critical points of basis functionsrove topological guarantees
on the extracted mesh. Similar to other mesh extraction oagksthit employs computa-
tionally expensive pre-processing to allow interactivpleration of arbitrary isovalues.
Remacleet al. (REMACLE et al., 2006) proposed a method for resampling &igirder
data inspired by adaptive mesh refinement (AMR) methods. dFfggnal higher-order
data is down-sampled to a lower-order representation wisiciitable for lower-order
visualization algorithms like Marching Cubes (LORENSEN;IRE, 1987). The resam-
pling error threshold can be adjusted, but low thresholdde&ad to memory consumption
explosion.

A competing strategy is to avoid pre-computation and compstcontours during
rendering. Nelson and Kirby (NELSON; KIRBY, 2006) presehteray tracing-based
method for the isocontouring of spectrgfadaptive data. The method works by pro-
jecting the higher-order functions onto each traced ray @wdputing the intersection
with the isosurface from the resulting univariate functidisualization error is carefully
guantified and reduced. However, it typically takes seveeabnds to generate the final
image, prohibiting interactive exploration of the data.

Knoll et al. (KNOLL et al., 2009) presented an interactive intervalkarietic-based
method for ray tracing of implicit surfaces on the GPU. Itusrently one of the fastest ray
tracers for implicits, presenting also robustness witlpeesto the root-finding process.
However, the equations of the implicits must be convertedrtanclusion-computable
form, which increases the number of arithmetic operatieeded to evaluate the equa-
tions. This is not a problem in the case of polynomials witlyanfew coefficients, as
can be verified by their results. However, in the case of satuh data we usually have
polynomials with hundreds of coefficients and thousandsobfrpmials to be evaluated
for each frame, and the use of interval arithmetic may impacdiormance.

3.2 The Proposed Isocontouring Method

Interactive rendering rates in the proposed method areraatdy dividing the iso-
contouring workload between object and image space coriposa each defined in a
separate phase. The first phase, in object-space, genanaitgial sampling of the iso-
surface by projecting particles (here calkkd¥$along the gradient field onto the surface.
Only seeds successfully projected onto the surface ared=yed for further processing.
Each projected seed generates a surface-tangent, se¢ededequadrilateral (quad) that
covers the neighborhood of the seed. The second step udeasgh®nts generated by the
rasterization of those quads as the initial points for a esting that refines the isosurface
representation in image space. Figure 3.1 gives an ovenfighe method’s pipeline.

To compute the initial isosurface approximation, we stgrplacing a set of seeds
uniformly distributed inside each element and projectingnt onto the surface. The
projection affects the density of the seeds and thus thelgagpyuality. There are meth-
ods described in the literature that handle this problem diggurepulsion/attraction or



39

Isovalue selection
by the user

A

Isosurface approximation
(particle system)

Y

N Isosurface reflnement
(ray casting)

+

Screen }

New frame

Figure 3.1: The proposed higher-order isocontouring neethipeline: An initial sam-
pling of the isosurface is generated in object space by gtioge coarsely seeded par-
ticles over the isosurface along the gradient field in obgpetce. Each projected point
(seed) generates a surface-tangent, seed-centeredilapeaalrthat covers the neighbor-
hood of the seeds. In the second stage the quadrilateralasiszized in image space
and fragments used as the starting point for a ray castingefiaes the final isosurface
representation.

birth/kill of seeds in a pre-processing stage (WITKIN; HEBEKRT, 1994; MEYER et al.,
2007; VAN KOOTEN; VAN DEN BERGEN; TELEA, 2007). Despite tmaffectiveness,
these procedures are computationally expensive, reqguihie update of complex data
structures that are hard to efficiently map to parallel aedtires. Although our experi-
mental results show that satisfactory quality images ataiodd even without handling
the sampling problem, we additionally propose a heurisiat helps in reducing the ar-
tifacts of the final image. This heuristic is implemented gageprocessing stage that
analyzes, under the dynamical systems theory perspetiieseeds behavior along the
gradient field during projection. Differently from the preus methods that must com-
pute the pre-processing for each isovalue, this pre-caatipatis executed only once for
the entire dataset and does not depend on a specific isoVdlaaext sections give an in
depth explanation of each step of our algorithm.

3.3 Object Space Sampling

The task of finding an isosurface for a given polynomial data be formulated as
a root-finding problem. For higher-order polynomials, theki of closed form solutions
leads to the use of iterative numerical methods. NewtorhBRap (NR) is one of the best
known methods for numerical root finding. Additionally, itgsents good convergence
rates when the starting point is already close to the deswm&dion. However, uniformly
distributed seeds may not be close to the solution and NR mkydading to poor sam-
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pling. One possible solution is to guide the seeds througlytadient field until they get
closer to the isosurface and then apply NR to refine the projecSince we just want to
bring the seeds closer to the isosurface, we decided foirgutie points by means of
integration. After the integration step, it is assumed thatseeds are closer to the de-
sired isosurface and we start with NR iterations. DirealdtR (LEVIN; BEN-ISRAEL,
2002) along the gradient is used, since it has the additiatedntage of quadratic con-
vergence. Equation 3.1 shows the formulation used for theté&Rtions.

XKL = kK — Fx9 Of (xX) (3.1)
Of (xK) - Of (xK) ’
wherek is the time step =0, 1, . . .),x is the point position in reference space, dnd
the polynomial for the current element.
All computations are performed separately for each seet pwice no neighborhood
information is needed. Figure 3.2 gives an overview of trst fihase.

(@) (b)

v/

(©) (d)

Figure 3.2: Isosurface approximation: (a) Seeds are liyitthstributed uniformly into
each element. (b) Seeds are guided through integratios atepg the gradient field to-
wards the desired isosurface. (c) Seeds are projectedimisasurface using directional
NR. (d) Surface-tangent, seed-centered, quads are getdoateach seed successfully
projected.

3.4 Image Space Refinement

The input for the second phase of our method is a set of sutéacgent, seed-centered
quads that together cover the isosurface. Points lying esetlguads can be used as
starting points for the ray casting that will refine the reyar@ation of the isosurface.
These points are efficiently obtained through the rasteoiz@f the quads in image space.
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The fact that these points are already close to the isosunfaglies that we can use the
directional NR method along the ray direction, as show iuFeéd.3. Equation 3.2 shows
the formulation for the directional NR used for the fragmerdjection:

VIRt
=X _Df(xk)-rr’ (3.2)
wherek is the time step=0, 1, . . .),x is the point position in reference spadds the
polynomial for the current element, ands the ray vector in reference space.

The generated ray and fragment coordinates are transfamueethe reference coor-
dinate system, where the ray-isosurface intersection otatipns are performed. After
the maximum number of iterations is reached, if the fragnenibt projected onto the
isosurface (within an error tolerance bound) or it has beewet outside of the element,
it is discarded. If the fragment is successfully projectgthding is computed and the
corresponding pixel color is updated.

X

€Y (b)

Figure 3.3: Isosurface refinement: (a) Quads are rastenz@dage space. (b) Each
fragment is projected against the isosurface through titreal Newton-Raphson along
the viewing rays.

3.5 Sampling Strategies

In both the object space sampling (Section 3.3) and the irbaged refinement (Sec-
tion 3.4) phases, an appropriate sampling for obtaininghaptete isosurface representa-
tion is required. In some cases holes can result due to irepggmpling. As a limit case
of the object space sampling, infinitely dense seeding wguédantee a complete isosur-
face representation, but in practice, no guarantees aheuésulting isosurface sampling
can be given.

The reason is that in general no assumptions about the lmelathe gradient field
can be made, and hence of mapping of seeds to the isosurtacexdmple, it is often not
possible to estimate the maximum distance between two sdeels they are mapped to
an isosurface of arbitrary isolevel. A limit case of the iraapace refinement is a single
quad that spans the complete screen, which would be eguiteala ray casting approach.
This would lead to the typically low performance of thesemoels due to computationally
expensive root finding along the viewing rays. Our methodrates between the two
mentioned limit cases. To motivate the parametrization asdmpling technique, we
will first discuss the relevant issues and implications #rese in the context of sampling.
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3.5.1 Sampling Issues

The proposed approach processes fragments independ@nityie hand, it allows for
efficient parallel processing of fragments. On the otherdh#&me lack of neighborhood
information makes itimpossible to detect, and to direcynfiles in the isosurface. Holes
can be caused by different reasons:

1. root finding may fail, e.g. due to insufficient iteratioruc,

2. rootfinding may deliver a point on a nearby isosurfacedfgbad is not well aligned
with the isosurface, i.e. the isosurface exhibits too higivature with respect to the
initial sampling,

3. quad sizes are insufficient to cover the whole surface.

The first case is hard to address explicitly because the effigi of our method re-
lies on synchronized root finding and hence constant itaratount (see Section 3.7.2).
However, this is typically negligible. Since we use quadgredd with the tangent plane
of the isosurface at each sampling seed, the second caseddepdy on the quality of
the initial sampling and the last one on the quad sizes. Tiialisampling has to be
performed each time the isolevel is changed and thereferexploration of isocontours
requires high performance for this operation. This makesife of expensive approaches
not feasible for this step. Unfortunately, it is generalbt possible to find a seed distri-
bution for the object space sampling that leads to uniforsalypled isosurfaces for all
possible isovalues. This makes non-uniform quad sizeshiirhage space refinement
necessary.

Therefore, we propose a method for estimating sufficiendgizes in Section 3.6 and
place the seeds for the object space sampling regularlyaresich element. One problem
is that even comparably large quads cannot guarantee tededverage of the isosurface
because the sampling points can be arbitrarily distant oltieet possible intricacy of the
gradient field. Additionally, large quads typically lead hah overdraw and hence to
lowered performance. All in all, a balance has to be foungvbeh the number of initial
seeds for the object space sampling and the sizes of the.quads

For approximate results at high performance that can sereepseview to more ex-
pensive but robust methods such as that by Kebdl. (KNOLL et al., 2009), the sam-
pling in object space can be parametrized and the size faguhds can be derived from
that sampling as shown in Section 3.8. As an alternative, eve propose a method to
estimate conservative quad sizes for individual quads.

3.6 Estimating Quad Sizes using FTLE

A method to determine quad sizes that guarantee a compleggicg of the isosur-
faces under the assumption of an appropriate object-spacglisig can be derived from
dynamical systems theory. The finite-time (or local) Lyapumexponent (FTLE) was
originally defined to measure the predictability of dynaahisystems (LORENZ, 1965;
HALLER, 2001). More precisely, it measures the exponemfiaivth that a perturbation
undergoes when it is advected for a finite time interval in etmefield. The flow map
@' (x), which maps a sample pointto its advected positiop' (x) after advection time
T, is the basis for the Cauchy-Green deformation teﬁBpTr(x). Using

AT(x) = (0@"(x)) 0" (x) (3.3)
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and Amax being the largest eigenvalue, leads to the finite-time Lyapuexponent
(HALLER, 2001):

o' (x) = % 1N/ Amax(AT (X)). (3.4)

For our application, we are only interested in the growthhefdistance between two
seeds as they are guided by the gradient field and therefooenitehe normalization by
advection time and the logarithm in Equation 3.4. Additibnaince we look for points
on the isosurfaces, i.e. the intersections of isosurfadisgradient field lines starting at
the seeds, the integration along the field lines shall noibigeld by integration time (or
length). Instead, it has to be limited by the prescribedeiselll. We define(pI (x) to be
mapping the positiox to the isosurface of isolevélalong the corresponding gradient
field line (the field line is stopped if a critical point of theaglient field is reached). Using
Equation 3.4, this would lead to the separation factor

S (X) = \/Amax(B (X)). (3.5)

We follow a direct approach for evaluatisyx). To avoid numerical issues and to
be able to exclude certain seeding neighbors .4/ (x) of X, as described below, the
computation of (x) is not based on the gradient @f(x), but it is calculated directly:

1¢'(n) - @ Xl
net () |In=x||

(3.6)

The quad sizel(x) at @' (x) is s (x) times the corresponding seeding distafjoe-
x||. If the resolution of the object space sampling is approgyiasing these quad sizes
guarantees a complete covering of the isosurface atlle¥@r obtaining quad sizes that
are appropriate for any isolevel, the maximum separa{ionover all isolevels, computed
in a preprocessing step, is used to determine the quad sizes:

00 = I, S

This quantity relates to the FTLE maximum by Sadlo and Pe{@&ADLO; PEIK-
ERT, 2007). Unfortunately, as shown in Figure 3.4, neighfgpseeds can get mapped
to different isosurface parts, making the resulting quadsstoo conservative. This leads
to unnecessary overdraw during rendering and hence lotversverall performance. As
a remedy, we propose a heuristic that reduces the overdnaseddy these cases. The
idea is to exclude neighbors a&ffrom the computation o§(x), that are not located in
its vicinity on the same isosurface. There are several blesapproaches for detecting if
two points are adjacent on the same isosurface. The sti@aiglard approach would be
to compute the geodesic distance between the points alerigdburface. However, this
is considered impractical and too expensive.

A criterion for testing if a mapped poirg (x) and its mapped neighboqﬂ(n),n €
A (X), are located close to each other on the same isosurface caotlvated by the fact
that the gradient is always aligned with the isosurface abrm

To test if a point and its neighbor are located on the sameaiitase, the behavior of
the gradient field is analyzed on the straight line conngdtiem. If the isosurface is pla-
nar between the two points, the line follows the isosurfaxckiatersects the gradient field
everywhere perpendicularly. If, on the other hand, theudase is non-planar between
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<

(a) (b)

Figure 3.4: (a) Neighboring points projected over the samtase lead to more adequate
(i.e less conservative) estimates for quad sizes. (b) Neiging points projected over

disjoint surfaces may lead to very conservative quad estsrend reduced performance.
A heuristic, based on the alignment of the normal vectoree@sampling points, reduces
the influence of points laying on disjoint surfaces duringdjsize computation.

the points or if the points even lie on different isosurfaegions, there are positions on
the segment where the gradient is not perpendicular. Wedate the following measure
amin for the minimum angle between the gradient and the segs@ting fromx to n:

|- OS(X +tsn)|
= max . 3.8
Amin = 70 T[sol [T[0S(x + tsn)]| (38)

The neighbom is excluded from the computation &, exceeds a user-defined
threshold. In practice, this threshold can be typicallytse0.5 for suppressing most
of the erroneous neighbors in order to prevent too conseevatiad sizes and reduce the
performance loss due to overdraw.

3.7 Implementation

The proposed method was designed to take full advantagerallglaarchitectures.
Although our current implementation runs on a single GPUoitld be easily distributed
over a GPU cluster. We start by first describing the data &tras used. Afterwards we
go into the details of the implementation.

3.7.1 Data Storage

For the early element culling we use an interval-tree (CIGN®t al., 1997) that
stores the extrema of the scalar field for each element. Téwsi$ stored and processed
on the CPU side. The remaining data structures are storekdeo®®U through the use
of different buffers. Each time the user selects a diffeisavalue, we need to load
the initial set of uniformly distributed seeds and compie isosurface approximation.
Thus we allocate two seed arrays on the GPU: one with thalinitiprojected seeds and
another to store the projected seeds. For each unprojemted iss corresponding FTLE
value is stored as itw coordinate. Actually, those seed arrays are implementedraesx
buffer objects (VBOs). We refer td BQ,nproj for the VBO with unprojected seeds and
VBQyuadsfor the VBO that stores the quads. Polynomial, gradient.ed@chent boundary
data are read-only and are made available for GLSL througlusle of bindable uniform
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buffer objects (BUBOs). Since BUBOSs are limited in size @lgu64KB) we chose to
create a separate BUBO for each element and to bind them oandem

3.7.2 GLSL Shaders

Both phases of the algorithm are implemented through a staxder programs. The
first step of the algorithm is implemented through a GLSL paog composed of a ver-
tex shader and a geometry shader. The vertex shader read8®Mgproj and projects
the seeds onto the isosurface (Section 3.3). These seestsemed up to the geometry
shader and used to generate surface tangent quads. Theajea@sized accordingly
to the FTLE value of the seed (Section 3.7.1). In order toneétbe generated quads
into theV BOyuagswe interrupt the pipeline just after the geometry shadenubh the use
an OpenGL extension callebransform Feedbackor Stream-Ouitn DirectX terminol-
ogy). The GLSL program responsible for the second step igposed of a vertex and a
fragment shader. The vertex shader just redirects thecesrtf the quads to the raster-
ization stage. The fragment shader implements the coreecdebond step. It performs
a ray casting using the input fragment as the starting pointhfe root-finding iterations
(Section 3.4). As said before, fragments that are not sstidgsprojected are discarded.
However, it must be observed that fragments successfutlegied onto the isosurface
are only shaded according to the new position, without ttatheir depth coordinate up-
dated. This procedure greatly increases method’s perfarenby allowing the use of the
early-z test. A side effect of this approach is that someencas appear on some regions
of the isosurface. This happens because a fragment cloder tamera can be projected
on a far surface, being thus wrongly shaded. This effectdsiged through the com-
parison between the angles of the polynomial gradient veebthe fragment positions
before and after projection. If the two angles differ abowegain value, it is assumed
that the fragment jumped to another surface. In this casehawe just to discard the
fragment. In both steps, the shaders must compute sevatab#&ons of the polynomials
and their gradients. A shader capable of evaluating a gepelgnomial with an arbi-
trary degree would contain a loop that could not be unrollethle compiler. To increase
performance, we decided to keep several versions of theskesd) each one targeted to a
specific polynomial degree. For the polynomial evaluatiself we use static expressions
generated by a multivariate Horner scheme approach (CEBERREINOVICH, 2004).
We decided to keep the number of integration and NR iteratstetic in order to reinforce
thread synchronization, increasing performance.

3.7.3 Computation Flow

When the user chooses a desired isovalue, the elementstogtae isovalue are se-
lected. These elements are inserted in a separate list earjad in front-to-back order
through fast sorting, that does not have to be exact. Thisrorglis not necessary, but it
helps the second step of the algorithm to avoid processiclgded fragments, increasing
performance. The shaders corresponding to the polynomegake of the current element
are activated. The corresponding BUBO (containing thempatyial, gradient, and bound-
ary data) for the current element is bound and the seeds @jexfed. After all seeds are
projected, we start with the second step. Again, the eleinsns traversed, and now
the ray casting shaders and corresponding BUBOs are bouradymiénts successfully
projected onto the isosurface are recorded in the framebuff
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3.8 Results

Results and performance measurements were obtained onutmnwith an Intel
Core 2 Quad 2.4 GHz processor, with 4 GB of RAM, Linux opemsystem, and NVidia
GeForce 8800 GTX video card. To demonstrate the method wasysehetic data and
two density datasets generated by Discontinuous Galedunsiimulations. The synthetic
dataset is composed by a regular grid containihgubic elements. For each element, the
scalar field is described by polynomials of degree 4. Da@fisontinuous inside each
element and at element boundaries. The two real higher-alideontinuous Galerkin
datasets used for the method demonstration are descril@stiion 2.5.1.

3.8.1 Performance

For each phase of the algorithm a set of parameters can bstedljuFor the first
phase these parameters are the number of initial seedsi0mber of integration steps
(ni), number of NR stepanfy1) for seed projection, and the error for the NR projections
(¢1). For the second phase the parameters that can be adjustdteanumber of NR
steps (n2) for fragment projection, the scale factor for the quad $&& and the error
for the NR projectionsg,). Although the large number of parameters may be confusing
at first, they offer great flexibility to the user, allowingethuning towards accuracy or
interactivity. From our experience we observed also thaeineral one can explore both
accuracy and performance by adjusting just a few of thempikgethe others at fixed
values. For all presented measurements we used screeuti@s®bf 1024 pixels.

All renderings were made with early element culling activel avith front-to-back
ordering for the elements. Figure 3.5 shows performancesurements for thehock
channeldataset. The fixed parameters, and their respective valtess = 10°, nj = 50,
nn1 = 10,6 =103, ny2 = 3 ands, = 104, These values were chosen through trial-and-
error. The only variable parametergg Due to early element culling only 16 elements
(=~ 7.43% of the total) were processed. The results of Figure & gierformance mea-
surements for thepheredataset. The fixed parameters ang= 83, nj = 50, ny1 = 10,

g =103, ny2 = 3 ands, = 1074 These values were also chosen through trial-and-
error. Again, the only variable parametersis Due to early element culling, only 3,781
elements4 9.13% of the total) were processed.

Figure 3.8 shows how the method scales with respect to théeuohelements. These
measurements were made with degree 3 polynomials extractedthe spheredataset.

It can be seen that the rendering cost does not grow line&His can be explained by

the use of the early-z test, which avoids the processingaginfients or even elements
that are totally occluded. This behavior is reinforced sim@ use front-to-back ordering
for the elements. We may still have some overdraw since wead@rder the quads

inside the element. However, from our experiments, thigloasiffected significantly the

performance in the general case.

The method proposed by Knadt al. (KNOLL et al., 2009) may look, at first, as a
competing approach. Despite the fact that their method antrfer the robust rendering
of implicits, it is fast and could be applied separately tolealement of our datasets.
Figure 3.9 shows a comparison between our method and Kifiotl'the rendering of a
single element of thehock channetiataset. Visual inspection shows that our method is
able to achieve higher framerates at better image qualibe ®@ason for the difference
in performance is probably related to the extra cost inwbhwgth the use of inclusion
arithmetic in Knoll's method. Although the use of inclusianthmetic guarantees error
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bounds for the results, it tends to produce inferior restilegger error bounds are used.
Since we are not primarily interested in the control of aacyy we rely on the direct
evaluation of the original polynomial representation, ethis computationally cheaper
and thus can be used in a previewing system.

Regarding the time spent to recompute the object space xp@tion at each iso-
value change, for all our tests, they took less than 2 secoimdthe case of thehock
channeldataset, it takes less than 1 second to recompute the sgedtjano. All mea-
surements were made with= 50 integration steps amgy; = 10 Newton iterations.

3.8.2 Isocontouring Quality

As a previewing system the proposed method does not focugybrabcuracy. Nev-
ertheless, it is capable of delivering results of reasangbhlity. Figure 3.10 shows a
comparison between images generated by our method andigeiseges generated by
POV Ray, a well known, tested, and freely available ray wrgP©VRAY, 2009). The
discontinuities observed in these renderings are due gwwlinuous Galerkin method
used to compute the simulations. Our method handles cantgdata properly, as can be
seen in Figure 3.7.

Despite the reasonable quality of the images, one may wahave better visual
quality for the isocontouring. In such cases the user catthwo a robust isocontouring
system, as the one proposed by Kratllal. (KNOLL et al., 2009). However, we have
also developed some heuristics in order to allow our metbogenherate better quality
images. The quality of the final sampling depends on theiogldietween the number
of seeds and the size of the quads. The exact relation betivesa two parameters is
difficult to assess since the projection changes seed gefi$ie FTLE-based heuristic
tries to estimate “optimal” quad sizes that “work” for albislues considering an initial
seeding given by the user. Since the FTLE does not take ictmuat the topology of the
isosurface, it can be too conservative, by consideringdcss between seeds in disjoint
surfaces. For this case we adopt a test that estimates wipeihés are in disjoint surfaces
(Section 3.6). Figure 3.11 illustrates the sampling prolsieelated to bad seeding/quad
size relation and how our heuristic resizes the splats dougpto that seeding, reducing
effectively the artifacts in the final image. It also illusties the effect of our disjoint-
surfaces test on reducing the FTLE conservativeness. f@dhpifact that it improves the
quality of the final rendering, the FTLE makes the method #&sactive for previewing
since it reduces its performance.
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1.0 and 39 fpsgq = 1.25 and 29 fps.

Figure 3.5: Renderings for the isovalse? of theshock channeadataset with varyingg
From top to bottom, the, value and corresponding frames per second (fps)sare:0.75

and 45 fpsgg
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Figure 3.6: Renderings for the isovalee0.9983 of thespheredataset with varyingy,.
From top to bottom, rendering and zoomed images with thevofig s, value and corre-
sponding frames per second (fps):= 0.5 and 21 fpssg = 0.75 and 14 fpssg = 1.0 and
12.5 fps.
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Figure 3.7: Rendering of Tangle dataset sampled with a dgrif e- 64 elements (left).
The dataset is continuous inside and across elements. Z£oomage (right) shows how
our method handles the continuity at the borders corre§#itings for this rendering are:
ns=10% n; =50,ny1 = 10, &, = 103, ny2 = 3, ande, = 104, The isovalue isz —1.98.
Image was rendered at 1624ith ~ 9.6 fps.
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Figure 3.8: Performance (in frames per second, fps) vs. euwibprocessed elements.
The non-linearity can be explained by the use of the earlst, tvhich avoids the pro-
cessing of occluded fragments.
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Figure 3.9: Comparison between our method and Knoll's sehefeft) Polynomial of
degree 5 rendered by our methockaBO fps. With the standard settings (depth = 10 and
error = 0), Knoll's method rendered this image~a8 fps without visible artifacts. (right)
After optimization of their parameters (depth = 4 and err@) o reach the best possible

image quality at 30 fps. Both images rendered in a 18dxel screen.

ek e

Figure 3.10: Comparison against POV Ray. (left) Image geerdrwith our method, with

the following settings:ns = 103, nj = 50, ny1 = 10, & = 1073, ny2 = 3, & = 1074,

Sq = 1.5 and isovaluex 5.8437. This scene was rendered at 8.7fps. (right) Reference
image generated from the same data and same isovalue withR®V Both images
rendered at 10Z4pixels.
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Figure 3.11: Sampling issues related to quad size: (a) Stdrguads reduced to 30%
of original size. (b) Sampling using standard quads: sortilaets can be seen due to
poor sampling. (c) Quads scaled by the FTLE and reduced to @0#teir size. (d)
Sampling obtained with quads resized by the FTLE approaeghQads resized by our
FTLE approach in conjunction with a heuristic that redu¢ssonservativeness, reduce
in 30%. (f) Sampling obtained with our FTLE approach in cawjion with the heuristic.
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4 THE PARALLEL VECTORS OPERATOR

In order to facilitate the understanding of the featureation method presented in
Chapter 5, this chapter, based on the thesis by Martin R&@T R 2000) which origi-
nally introduces the parallel vectors operator, preseitsed description of the operator
definition and properties. The following sections preséstformalization, in terms of
the parallel vectors operators, of several line-type festtypically found in the context
of flow analysis. A couple of techniques that can be used traeixtine-type features
described by linear vector fields are also presented anfliylbdiscussed. A section is de-
voted to give an overview about current research on pasaidbrs. The chapter finishes
with a summary of several line-type parallel vectors feaduand properties.

4.1 Definition

Let u andz be two arbitraryn-dimensional vector fields. The set of points for which
u andz are parallel or one of them is zero is defined as

S={x:u(x)=0}uU{x:3A,z(X) = Au(x)} 4.1)

The first term in the equation above avoitls= +«. The second term represents a
system oh scalar equations am4- 1 unknownsXg, ...,Xn, A). Solution points require that
z || u. If one assumes a local coordinate system with one axislpbr@alu(x), z(x) will
be parallel tau(x) only if its n— 1 components orthogonal tgx) are zero. This restricts
n—1 degrees of freedom for the solution, which explains the tfaat, for independent
equations (non-degenerated), the solution is 1-dimeakion

This is the general parallel vectors definition which ddsesil-dimensional features
embedded in an-dimensional domain. In this thesis we will restrict theagission about
parallel vectors feature extraction to one-dimensionaluies in three-dimensional do-
mains.

To extract the parallel vectors feature line&hof two continuous vector fields and
z defined oNXmin, Xmax X [Ymin, Ymax X [Zmin, Zmax, We first derive a third vector field/
such that:

k(x.y,2)
wW(X,Y,2) =u(X,y,2) x 2(X,y,2) = [ 1(XY,2) (4.2)
m(x,y, z)
Parallel vectors feature lines are defined as the set of paiherew = (0,0,0)".

Equation 4.2 presents a system of three equations on thfe®mwns. However, these
eqguations are not independent, and the solutions are espieesby 1-dimensional closed
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manifolds. In the seminal work by Peikert and Roth (PEIKERDTH, 1999) they
present some possibilities for the choiceucdindz whose parallelism correspond to dif-
ferent feature types.

The next section discusses parallel vectors featuredridtemd classification. The
following sections present the parallel vectors defingidor some prominent line-type
features in the context of flow analysis. Additionally, agbrilescription of some tech-
niques used to extract feature lines described by paradletovs criterion is introduced.
The last section presents a table which summarizes thdglaredtors features presented
in this chapter.

4.2 Feature Classification and Filtering

As will be seen in the following sections, some feature tygasbe fully described by
parallel vectors expressions. However, this is not the cageneral. As shown before,
solutions for the parallel vectors expressions are reptedeby 1-dimensional algebraic
curves, which are closed, although most of the features @reepresentable by closed
lines. In fact, usually only some of the requirements neddedkfine a feature can be
expressed in terms of parallel vectors, whose solutioressgts a superset of points con-
taining the desired structuresa(v feature$. In order to fully describe and isolate the
desired structures, additional criteria must be applies tve resulting raw features.

Some of these additional criteria classify points as beiaig pf the feature or not.
These are calledoolean filtering criteriaor conditions and restrict, select or classify the
set of points in the raw features.

Additionally, feature extraction based on local critesach as those amenable to a
definition by the parallel vectors operator, are often spsloke to numerical noise and
false positives. Therefore, it is usually inevitable tofpan a subsequermuality filtering
step. There are several possibilities for the criteria dseduality filtering in the context
of line-type features according to (PEIKERT; ROTH, 1999).

Classification and filtering criteria may vary a lot depemgdam the feature type. Thus,
we introduce some filtering and classifications criteria apvesent the feature types and
the corresponding parallel vectors expressions in theviatig sections.

4.3 Application Examples

This section presents examples of features that can balosdan terms of the parallel
vectors operator. Firsprimitive structures of scalar and vector fields, such as curvature
and minimum/maximum lines, are described in terms of thethtced operator. Some
existing line-type feature definitions, such as vortex s@ed separation lines, are then
described in terms of these primitive structures, givisg to parallel vectors expressions
which represent equivalent descriptions for these feature

4.3.1 Zero Curvature

Assuming thav is a steady vector field, the accelerateaf a particle moving along
this field can be determined according to
Dv
a=— = (Ov)v 4.3
as shown in Appendix A.3.
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If the acceleration of the particle is aligned with the direc of v, there are no per-
pendicular forces bending the current particle trajectorg that the particle is following
a straight line. Thus, it is possible to define a parallel @ecexpression which identifies
locations where streamlines present zero curvature. Tdelaero curvature of a vector
field is represented by the set of points where

v (Ov)v. (4.4)

According to differential geometry, curvature vanisheewlacceleration is aligned
with velocity as shown in

P axyv
VI3’

wherek is the curvature of the streamline (Appendix A.1).

This formulation is important for the description of sevdirze-type features such as
vortex core by Sujudi and Haimes (SUJUDI; HAIMES, 1995) aepasation and attach-
ment lines by Kenwright (KENWRIGHT, 1998; KENWRIGHT; HENZEEVIT, 1999)
as will be shown next.

(4.5)

4.3.1.1 Sujudi/Haimes Criterion for Vortex Core Definition

Vortices are prominent structures in the context of flow wsial and their presence
may be desired or not. They play an important role in combasthambers, where their
presence may increase the efficiency of the mixing processh©other hand, they may
cause a drag in aerodynamic profiles.There is no consenghs grefinition of a vortex
and several different models have been developed.

One of these definitions is the one by Sujudi and Haimes, whioposes a rather
intricate algorithm for vortex core definition and extracti According to their definition,
vortex core is the set of points where tleeluced velocitys zero.

For a given point, the reduced velocity is computed by firstpoting the eigenvalues
of the Jacobian of the velocityl{/). If the Jacobian presents only one real eigenvalue,
the eigenvectogy, corresponding to the unique real eigenvalue, is calcdldtmally, the
reduced velocity is computed by subtracting, from the oagielocity, its component
aligned with the eigenvectey.

According to this formulation, the reduced velocity is zerdy at locations wherey
is parallel tov. Sincegy is an eigenvector dflv, then

(Ov)eg = Aep. (4.6)

As explained before, for points on the vortex core we h&ve v. Thus, Equation 4.6
can be rewritten as

(Ov)v=Av, 4.7)

that is equivalently written as

v (Ov)v, (4.8)

which is the same formulation for the zero curvature citiepresented in Equation 4.4
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As is usual for parallel vectors formulations, the aboveregpion extracts raw fea-
tures, and post-processing becomes necessary to isolgttherdesired structures. Ad-
ditionally to the parallelism between velocity and the ewmgtors of the Jacobian (guar-
anteed in Equation 4.8), it is necessary that, at the fegioirgs locations, the Jacobian
presents only one real eigenvalue. Martin Roth (ROTH, 280@pests the computation
of the discriminanD of the Jacobian at each extracted point in order to verifyefiaco-
bian presents only one real eigenvalue. If, for a given pbint 0, the Jacobian presents
only one real eigenvalue and the point is part of the vorter.cQtherwise, the point is
not part of the feature and must be discarded.

4.3.1.2 Attachment and Detachment Lines

Attachment and detachment lines are structures that iredicaspectively, where the
flow abruptly moves away or returns to the surface. Thesemp®itant structures in
aerodynamics since they can increase drag and reducentiftharefore their occurrence
should be reduced or completely eliminated.

Kenwrightet al. (KENWRIGHT, 1998; KENWRIGHT; HENZE; LEVIT, 1999) pro-
posed a formulation for attachment and detachment lingsghary close to the vortex
core formulation of Sujudi and Haimes presented in the prevsection.

As with the Sujudi and Haimes approach, this formulationasdal on the alignment
of the velocity with the eigenvectors of the Jacobian. Thlusequirement for a point to
be part of an attachment or detachment line is

v (Ov)v, (4.9)

which is exactly the same criterion as in Sujudi and Haimpjgraach (Equation 4.8).

Attachment and detachment lines are features defined onraéhdional parameteri-
zation gkin friction fielg of the original 3-dimensional vector field, leading to a 2 Ja-
cobian. Feature lines extracted with the above formulat@mprise a superset containing
the desired features. In order to detect and classify thieedestructures (as attachment
and detachment lines), as well as to discard points that toepoesent features, further
analysis of the eigenvalues of the Jacobian must be pertbrme

4.3.2 Extremum Lines

Extremum linesre lines for which a scalar fielslassumes a extremum value (min-
imum, maximum or saddle) on a plane perpendicular to a vetitained from a vector
field w defined on the same domain:

w || Os. (4.10)

The above parallel vectors criterion defines a new classnefl structures, called
sectional extremawhich can be used for the description of line-type featurélis is
the case, for instance, with the Banks and Singer (BANKS (&R, 1994) and Strawn,
Kenwright and Ahmad (STRAWN; KENWRIGHT; AHMAD, 1998) vortecore defini-
tions.

Banks and Singer (BANKS; SINGER, 1994) proposed a predimorector scheme
for the extraction of vortex core lines along the vorticitydgpressure fields. According
to their scheme, advancing moves are generated along theityowhile the correction
moves minimize the pressure on the plane perpendiculaetedticity field. Thus, vortex
cores should be approximations of vorticity lines.
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For the algorithm to start, a set of seeds must be first pladextording to Roth
(ROTH, 2000), the vortex core definition by Banks and Singggests that, at the vortex
core, vorticity is approximately parallel to the pressuradient

Oxv | Op, (4.11)

wherel x v is the vorticity andp the pressure field.

The above criterion includes points that are located onspresmaximum, minimum
or saddle points. Thus, an additional filtering criterionstioe employed to reject points
that do not satisfy the minimum pressure criterion. Thislmaaccomplished through the
computation of the two eigenvalues of the Hessian of thespredfield parameterized on
the perpendicular plane. If both eigenvalues are positiveeans that the point is located
at a pressure minimum and is part of the vortex core. If bojlerialues are negative
(pressure maximum) or present different signs (saddletppitme point is not on a vortex
core and must be discarded.

Strawn, Kenwright and Ahmad (STRAWN; KENWRIGHT; AHMAD, 189also pro-
posed a vortex core definition that can be expressed in teregr@mum lines. Accord-
ing to their definition, a vortex core is the set of points véire magnitude of the vorticity
field w reaches its maximum on the plane perpendicular to vortiSityce the magnitude
of the vorticity field|w| can be substituted by?, the equivalent description according to
the parallel vectors is

w || O(w?), (4.12)

which can be equivalently written as

w || (Ow)Tw, (4.13)

according to the derivation in Appendix A.4.

4.3.3 Ridges and Valleys

Regions of minimum and maximum values are usually relatedlevant structures,
and a proper definition (and detection) of such structurag alkey role in data behavior
analysis. Among such structures, there are ridges andysalléhich have been used for
the extraction of several different types of interestimg&ures, ranging from topographic
features to multidimensional structures in fluid flow.

Ridges and valleys are important structures in topographytteeir mathematical for-
malization as curves were already pursued early in the eam¢h century by De Saint-
Venant (SAINT-VENANT, 1852) and Breton de Champ (CHAMP, 485 Figure 4.1
illustrates geomorphological ridges and valleys extdtem a 2-dimensional height
field.

Two main approaches have been used for the definition ofsidgd valleys. One is
based on the concept of watershed (and watercourse) anthérebased on the concept
of height ridge.

According to the watershed based definition, ridges areaetdd as slope lines that
depart from saddle points on the height fields, and are tracgasitive and negative
gradient direction. Despite the usefulness of this typeesfcdption, watershed based
definition is global in nature, involving the processing & twhole dataset in order to
locate the desired features.
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Figure 4.1: Red points: maximum. Blue points: minimum. Gpaynts: saddle. Left:
height field contour map. Right: corresponding height magger (red) and valley lines
(blue).

The height ridge approach, on the other hand, representrésahot as slope lines,
but as solution manifolds of algebraic equations, whichammputed only from local
properties obtained from the height field and its correspanderivatives. The most
prominent definition of this type is the one by Eberly (EBERII¥96).

Due the local nature of the parallel vectors operator, wigictthe discussion of ridges
and valleys extraction to techniques that operate locklbye specifically, we concentrate
on the one proposed by Eberly, for which an equivalent pelraltctors expression is
presented.

According to Eberly (EBERLY, 1996):

“The height ridge definition uses the heuristic that a ridgmpshould be
a point for which the function has a local maximum in the di@tfor which
the graph has the largest concavity (assuming the normadthn is in the
positivez direction).”

More formally, ak-dimensional height ridge embeddedrifi can be defined as the set
of points of the scalar field : R" — R where

of of
- == =0 414
oy1 OYn—k (4.19)
02f 02f
- <0 4.15
0)’21 ayznfk ( )

in the local coordinate framy, - - - , yn defined by the eigenvectors of the Hessian matrix

H= —a‘z;ij . The ordering of the eigenvaludsis defined as follows:

M << An. (4.16)

The height ridge counterpattgight valley can be extracted as the height ridges of
the inverted function-f.

According to (ROTH, 2000), ridge (or valley) lines are thé sepoints where the
slope is locally minimal compared to points located on a peegpendicular to the eleva-
tion gradient. Thus, the definition requires a minimum of tm@gnitude of the gradient
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g of the scalar fieldf in the plane perpendicular @ Ridge and valleys are therefore
the minimum lines ofj and can be expressed according to the extremum line forimmlat
presented in Section 4.3.2:

gl (Og)'a. (4.17)

The vector fieldy used in the formulation above is the gradient of a scalar &éietil g
represents its HessiaH], which is always symmetric. Since thk=HT, Equation 4.17
can be simplified and rewritten as

g || Hg. (4.18)

The above formulation would be equivalent to the first parEberly’s definition
(Equation 4.14) except for the fact that, for points layingfeatures lines, it does not
restrict the alignment of with the maximal (or minimal) eigenvectors of thk In fact,
Equation 4.18 extracts all points for whighs aligned taany of the current eigenvectors
of H (PEIKERT; SADLO, 2008). Isolation of desired features canaocomplished by
testing the alignment of with the eigenvectors ofl at each extracted point. Points
whereg is aligned to the maximal/minimal eigenvectorstbfare kept. Otherwise, they
are discarded.

At this stage we have a set of points that represents the whialh extracted ridges
and valleys, but we are not yet able to determine to whictufeaype each point pertains.
As a final step, points are classified as being part of a ridgevailey line according to
Equation 4.15.

4.3.4 Other Uses of the Parallel Vectors Operator

Levy et al. (LEVY; DEGANI; SEGINER, 1990) defined vortex core as the skt
points where normalized helicity approachek or +1. Normalized helicity is the cosine
of the angle between velocityand vorticity[ x v. If the vectors are parallel and point
in the same direction (despite their magnitude), the casppeoaches-1. If the vectors
are anti-parallel (point in opposite directions) the cesni the angle between them ap-
proaches-1. Thus, a vortex core is defined as the set of points wheregis parallel
to vorticity

v Oxv, (4.19)

which represents the equivalent criterion for extractiogex cores according to the par-
allel vectors formulation.

Another example of the use of parallel vectors in vortex abeénition is related
to curved vortex cores. Linear vector fields can model onlti®es whose core is a
straight line, and most of the existing vortex core extmcttnethods (usually based on
first derivatives) assume that the vector field is locallgén However, curved and bended
vortices are found in practical data very often, mainly ie ffeld of turbo-machinery,
where the fluid is usually constrained to curved channelsndgJthe method by Sujudi
and Haimes (SUJUDI; HAIMES, 1995) as the starting point,lRatd Peikert (ROTH;
PEIKERT, 1998) developed a method for the extraction oflided curved vortex core,
which presented satisfactory results when applied ovésnemilation data. The method
makes use of second derivatives of the velocity field, andafrike requirements for a
point to be part of the bended vortex core is the parallelisows below
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v || (Da)v, (4.20)

wherev expresses velocity aralthe acceleration.

This formulation identifies a superset of points that corgdhe desired features, and
further processing is necessary to isolate only the destredtures. For each point sat-
isfying Equation 4.20, it must be assured that the veloaitggent presents only one real
eigenvalue. This can be accomplished by the computatioheotliscriminanD of the
velocity gradient at each extracted point, whBre- O for the points lying on the feature.

4.4 Extracting Features

According to the original proposal (PEIKERT; ROTH, 1999 i-dimensional fea-
tures inR?, the extraction of the zero-isolines of the cross produtiwben the two vector
fields can be used. However, the extraction in higher dinograsispacesK", where
n > 3), the choice of the method is not obvious, and several pitigis can be consid-
ered. Thus, four possible methods are suggested for thacéwin of parallel vectors
line-type features. While the first three methods are corezkwith finding intersections
of the features with faces of the data grid, the fourth is a@iooation-based line tracing
approach that, used in combination with any of the threeipusly suggested methods,
enables the extraction of topologically correct line feasu Following is a brief descrip-
tion of each one of these methods.

4.4.1 Isosurface Based Approach

The parallel vectors feature lines can be seen as the intens®f the 0-level isosur-
faces of three distinct scalar fields, as shown in Equatidn®hus, one possible approach
to extract the feature line is to locate two of the three gmessosurfaces and compute the
curve generated by their intersections. This can be acaéshgal with a marching lines
algorithm, such as the one proposed by (THIRION; GOURDOMNG)9L ater on, at each
point of the extracted curve, the third scalar field is testech zero. Points on the ex-
tracted curve that successfully evaluate to zero for the tebsurface can be considered
as feature points.

This approach might suffer from some problems. The curveaetdd in the first step
is just a piecewise linear approximation of the actual curieus, the test between the
extracted curve and the third scalar field should accounpfobably, large tolerance val-
ues that may lead to inaccurate feature lines and discatiisuAdditionally, isosurfaces
forming sharp angles may generate numerically unstaldengyarectors.

4.4.2 lteration on Cell Faces

Another possibility for the feature extraction is to use t@native method on the cell
faces to find the corresponding intersection points withf¢la¢ure lines. These intersec-
tion points serve aseeddor a post feature tracing stage.

According to this method, the parallel vectors expressidoet zeroed is

W=UXZ, (4.21)

and the vector valued functiom is defined within grid cells.
Before it starts, for each cell face (be it a quadrilatera ttangle) a point is placed at
its center. This point serve as the starting point for sé\esvton iterations restricted to
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the supporting plane of the cell face. During the iteratjohhe point is moved beyond
the corresponding face limits, it is positioned back at tieefborder. If the value af?
becomes smaller than a prescribed error tolerance, tlaiderstops and the current seed
location is stored.

Despite the accuracy regarding seed placements, the thlgojust delivers a set of
seeds which are not related to one another. The reconsinutihe feature, by means of
seed connection, must be accomplished using heuristicsesGaich as cells containing
zero or two intersection points are trivially handled. Hee® problems emerge when
the cell contains only one or more than two intersection {goirin these cases several
heuristics can be used, including seed proximity, directbthe tangent vector at seed
positions, etc.

4.4.3 Analytic Solution at Triangular Faces

This algorithm explores the existence of an analytic sotufor linear feature inter-
sections on triangular cell faces. As the algorithm pressbiit Section 4.4.2, it provides
a set of non-connected seeds which must be connected afisrwidhe algorithm can be
applied to quadrilateral faces since they can be brokertiigogles. It explores the fact
that a 3-dimensional linear vector fieldcan be described in terms of the triangle local
coordinate system through a mattix

u = Ux, (4.22)

whereU is a 3x 3 matrix as iZ andx = [s,t,1]" is a point in the triangle local coordinate
system.

Two linear vector fields are parallel when

Ux = AZx. (4.23)

If Z is invertible, the problem of finding the locus where bothdgeare parallel re-
duces to an eigenvector problem for & 3 matrix

ZlUx = Ax (4.24)

If Z is notinvertible, bulJ is, the expression can be swapped. If both vector fields are
not invertible, then no solution exists.

4.4.4 Curve-following Methods

As observed with the methods presented in Sections 4.4.2 4@, heuristics must
be used during the connection of the seeds, and it can be sleetltat the connections
generated do not represent the actual feature topology.

An alternative to reduce topological problems related tmirect seed connections
is to use curve-following algorithms to trace the featumesrf the previously extracted
seeds (BANKS; SINGER, 1994; HARALICK; SHAPIRO, 1992). Adilgh not capable
to guarantee topologically correct lines due the limitedtitog point precision available
in computers, sufficiently small tracing steps usually lea@cceptable quality results.
Additionally, since it is known that the value of the parhilectors expression at a point
lying on the feature line is zero for all its components (®ec#.1), one can also advocate
the use of predictor-corrector-based tracing schemesdbeh-quality feature tracing.
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4.5 State of the Art in Parallel Vectors

Current research on parallel vectors feature extractiomaisly focused on more ac-
curate feature tracing and extraction in higher dimensiSog&hare\et al. (SUKHAREYV,;
ZHENG; PANG, 2006) propose a new line-type feature integnatnethod based on an-
alytical expressions for feature line tangents that allavgopologically correct extrac-
tion of smooth feature curves from linear data. The authmsuds two methods for seed
finding that simultaneously evaluate the equations thatpos® the parallel vectors ex-
pression, respecting their linear dependence. Gelder and AN GELDER; PANG,
2009), inspired by Banks and Singer (Section 4.3.2), prepdssolve an accurate par-
allel vectors line-type feature tracing method based orediptor-corrector scheme. A
stable feature flow field (WEINKAUF et al., 2010), which guatees converging behav-
ior around feature lines, was also proposed. Although depafbaccurately extracting
features using larger step sizes than previously publistaethg methods, these methods
assume that seed points are given.

Several works discuss feature extraction in higher dinmradispaces. Bauat al.
(BAUER; PEIKERT, 2002) propose a method for parallel vesteature extraction using
scale-space techniques. Theisehl. (THEISEL et al., 2005) discuss the extraction of
parallel vectors vortex core surfaces in time-dependestovdields using a robust method
for seed detection in linearly interpolated data. Theirhodtis based on a recursive
subdivision of the element’s face and interior to ensuredigtection of at least one seed
on each feature line. The authors also present a generahtien for the FFF, which
represents features of a general parallel vectors expreasi streamlines. Our method
extends seed finding and subdivision approaches for robasire extraction in higher-
order data.

Feature extraction from volumetric multi-cell higher-erdlata is discussed in related
problems of isocontouring and direct volume rendering (NHRYet al., 2007; NELSON;
KIRBY, 2006; REMACLE et al., 2006; SCHROEDER et al., 2006; WASH, 2007;
UFFINGER; FREY; ERTL, 2010).

Schindleret al. (SCHINDLER et al., 2009) propose, as far as we know, the first a
tempt to extract parallel vectors features from highereodhta. However, their method
is tailored to the specific case of SPH data, which does natigeocells. The work
presented in this thesis is, to the best of our knowledgefitsteattempt to handle the
extraction of parallel vectors line-type feature linesviroulti-cell higher-order data. For
numerical accuracy, several works use interval arithm@fg (MOORE, 1966) or its
variants such as Affine Arithmetic (AA) (COMBA; STOLFI, 1998nd Reduced Affine
Arithmetic (RAA) (GAMITO; MADDOCK, 2007). Knollet al. (KNOLL et al., 2009)
present a method for extracting isosurfaces from implizétsed on an IA-driven bisec-
tion approach. They achieve interactivity and less corase results by utilizing an
adaptation of the inclusion-preserving RAA approach psagloby Messine (MESSINE,
2002). Our method also benefits from the bounds given by |Adature extraction.

4.6 Summary of Parallel Vectors Features

Table 4.1 presents a summary of the parallel vectors fortounka presented so far.
All formulations where devised to extract the 1-dimensldeatures embedded iR®.
The columrPV Criterionpresents the feature formulation in terms of the paralletors
operator. The columReaturedescribes the type of feature to be extracted. The column
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Author(s)presents the authors which developed the original featefi@ition, pointing
the reader to the corresponding section where the featndeit@equivalent description
in terms of parallel vectors, is further explained. Fingilhe columrDescriptionpresents
a brief comment about the corresponding parallel vectammdtation. It also presents
required post-filtering and classification criteria whee torresponding parallel vectors
description is not sufficient to fully describe the feature.
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| | PV Criterion| Feature | Author(s) | Description |

1| v (Bv)v | vortex cores Sujudi and Haimes Jacobian at extracted
(Section 4.3.1.1) | point locations must
present only one rea

eigenvalue.
2| v| (Ov)v | attachment and Kenwright et al | Applies only on 2D
detachment (Section 4.3.1.2) | vector field parameter-
lines izations (skin friction

field). Further analy-
sis of the eigenvalues @
the Jacobian needed for
proper feature classifi
cation.

3| Oxv| Op | vortex cores Banks and Singef Both eigenvalues of th
(Section 4.3.2) Hessian of the preg
sure (parameterized gn
the plane perpendicula
to the velocity) must
be positive (Mminimum

—h

1%

=

pressure).
4| v| (Ov)"v | vortex cores Strawnet al. (Sec-| Both eigenvalues of the
tion 4.3.2) Hessian of the pres-

sure (parameterized gn
the plane perpendicula
to the velocity) must
be negative (maximum

=

vorticity).
5 gl Hg ridge and valley| Eberly Gradient of the scalar
lines field parallel to eigen-

vectors of the Hessian.
Needs post-filtering.

6| v| Oxv | vortex cores Levy et al. (Sec-| The PV formulation
tion 4.3.4) fully  describes the
feature.
7| v (Oa)v | vortex cores Roth and Peikert Jacobian at extracted

(Section 4.3.4) point locations must
present only one rea
eigenvalue.

Table 4.1: Possible parallel vectors expressions as disduby Roth and Peikert
in (PEIKERT; ROTH, 1999). Some of the presented expressextisct raw features,
and post filtering is necessary in order to isolate only trerdd structures.
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5 EXTRACTING FEATURES FROM HIGHER-ORDER CFD
DATA

In this chapter, we present a technique for extraction @-type parallel vectors fea-
tures from higher-order (HO) data represented by pieceasdytical basis functions
defined over structured and unstructured grid cells. Theaetxbon uses parallel vectors
in two distinct stages. First, seed points on the featueslare placed by evaluating the
inclusion form of the parallel vectors criterion with reedcaffine arithmetic. Second, a
feature flow field is derived from the parallel vectors expies in such a way it contains
the features in the form of streamlines starting at the se@dsapproach allows for guar-
anteed bounds regarding accuracy with respect to existposiion, and topology of the
features obtained. The method is suitable for parallel @mgntation and we present re-
sults obtained with our GPU-based prototype. We apply ouhatkto the discontinuous
Galerkin higher-order datasets presented in Section.2Bhe contents of this chapter
were published as "Efficient Parallel Vectors Feature Etiwa from High Order Data"
(PAGOT etal., 2011).

5.1 Background

To facilitate the understanding of the proposed technigues start by introducing
the feature flow field (FFF) and interval arithmetic concepifierwards, the proposed
method is presented and explained in detail.

5.1.1 Feature Flow Fields

Feature tracking methods usually work by detecting feataféhe flow in several time
steps. Features are detected independently for each emebgting their correspondence
and events established afterwards.

The correspondence among features in different time ssepaditionally investigated
taking into consideration two criteria: region correspamce and attribute similarities.
While region correspondence usually involves distancesmngnfieatures, attribute simi-
larities involve feature sizes, volume and color amongsthe

Once the correspondence among features is establishadattnibutes are checked
for significant changes over the time, that may indicate teigence of certain events.
The following events, according to (THEISEL; SEIDEL, 2008)e considered:

* continuation

* birth (creation)
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death (dissipation)

entry

exit

split (bifurcation)

merge (amalgamation)

Until the introduction of the FFF concept, an usual approael to track the fea-
tures through isocontouring in a 4-dimensional space (WHEHMBANKS, 1998; BAUER;
PEIKERT, 2002). Feature flow fields (THEISEL; SEIDEL, 2003)poses an alternate
approach for feature tracking that represents the dynaefmavor of feature not as higher
dimensional isosurfaces, but as stream lines of a highegmkional vector field. This ap-
proach benefits from the well-established techniques farerical integration of stream
lines commonly used in flow visualization.

5.1.1.1 General Feature Flow Field formulation

Assuming a 3-dimensional instationary vector figdfor which we want to track
features:
K(x,y,zt)
wxy,zt)=| l(xy,zt) |, (5.1)
m(x,y, zt)

wheret represents discrete time steps.

The idea is to construct a 4-dimensional vector fieftbm w in such a way that the
dynamic behavior of features im can be represented by stream line$.ai this casd
is a vector field that points in the direction in which vectofsv remain constant.

The direction of highest variation &f (Equation 5.1) at a given point happens in the
direction of Jk. Assuming a first order approximation, the valuekaemains constant
on the plane perpendicular k. The same holds farll and0m. Sincef must point in
the direction in which the vectors i remain constant, must be perpendicular to the
gradients of allv components simultaneously:

f 1 Ok
f_L Ol (5.2)
f L Om

Thus, from Equation 5.4,can be formulated as

det(wy, Wz, W)
det(wy, Wi, Wy
det(we, wy,Wy) |’
det(wy, Wy, W)

f(xy.2t) = (5.3)

wherewy, Wy, W, andw; are the partial derivatives .
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5.1.1.2 PV features as Streamlines of the FFF

To represent the parallel vectors feature lines of the vdettnl w (Equation 4.2) as
streamlines of the FFF, the vectors of must point in the direction in which the vectors
of w neither change direction nor magnitude, i.e., once a stiearof f is started where
w = 0, this holds along the streamline. Thus, the dynamic eimiuf the features inv
is represented as stream lined .of

Sincef must point in the direction in which the vectorswnremain constanf, must
be perpendicular to the gradients of wlicomponents simultaneously. Lit f, andfs
represent perpendicular directions defined as

f1(p) = Ok(p) x OI(p),
f2(p) = Ok(p) x Om(p), (5.4)
f3(p) = Ol (p) x Om(p).

As demonstrated in (THEISEL et al., 2005y, f, andfs define collinear vectors for
a given pointp and can be linearly combined to form a unique FFFfoHowever, we
observed in our experiments that this approach can gerresaiéts with poor numerical
stability. This can be caused by a combination of vectoratptg in opposite directions,
leading to cancellation, or due to small angles betweélerll andOm. These issues have
been recently addressed by the stable FFF (WEINKAUF et@LQpat the cost of storing
higher-order derivatives.

In our modified formulation we considér, f», andfz separately. At each integration
step, we choose one as the current FFF, based on the angbkdfoynthe gradient vectors
at the current integration poimt. For example, one of the angles is computed by the
following scalar product:

ai(p) = arcco

Ok(p)  Oi(p)
(p)| |m|<p>|)- (5.5)

The other two anglesy»(p) and as(p), are defined similarly for the pairfsk, Om,
andll, Om, respectively. The FFF chosen is theorresponding to the; closer to 90
degrees. For consistency during feature tracing, once ai$-Efkosen, it is used for all
evaluations required by the Runge- Kutta integration seéhanthe computation of the
current integration step. Figure 5.1 illustrates georoaliy howf is chosen. This for-
mulation avoids vector cancellation that may occur in (TSIEL et al., 2005), improving
the numerical accuracy of the FFF, at the same time that as&s brder derivatives than
required by the stable feature flow field approach.

5.1.2 Interval Arithmetic

Interval arithmetic (1A), or interval analysis, is a toolraeived by Ramon E. Moore
(MOORE, 1966) to automatically handle round-off truncatesrors during computations
with floating-point numbers and to robustly inspect the bedraof multivariate functions
over domain intervals. The following sections present efloverview of the original IA
proposal, some existing IA variations and the reduced afbrma adopted in this work
for the representation of parallel vectors expressions.

5.1.2.1 Interval Arithmetic

According to IA definitions, a real quantityis represented as an interval of floating-
point numbersx = [x_,Xy], wherex_ andxy represent the corresponding interval lower
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Figure 5.1: Selection of the current FFF based on the anghecid between the gradient
vectors. In the above example we chobsas the FFF for the current feature integration
step, since the angle;, formed by its orthogonal gradient vector fields at the ppirg
closest to 90 degrees.

and upper bounds. The actual valuexa$ known to lie somewhere in Besides repre-

senting quantities as intervals of real values, IA alsofiade the elementary arithmetic
operators and functions such that results are guaranteedntain the value the oper-
ation represents, a property known as inclusion propertyusy for example, addition,
subtraction and multiplication of intervals are defined as

X+y=[XL+Y, XU+l
X—Y=[X_—Yu,Xu — Y], (5.6)
XX Y = [MIN(X_YL, XLYU, XU YL, XuYu ), Max( XYL, XLYu, Xu YL, XuYu ) .-

Although it is not easy to find simple inclusion form desaops for many functions,
it is still possible to extend some functions to account fmiusion. That is the case, for
example, with sine, cosine, power, square root, among fitli@nce the primitive opera-
tions and functions are redefined to account for inclusiompmlex functions obtained by
the combination of these operations will also preservegtoperty. Thus, any function
f: Q C R" — R can be extended into its inclusion forfrsuch that

f(%) 2 £(0) = {f(x) : xe X}, (5.7)

wherex C Q is a interval box.

Since floating-point arithmetic presents limited preaisih may affect the actual in-
terval limit values due rounding. Thus, in order to presehesinclusion property at the
cost of a more conservative result, it must be ensured thaheageneration of every
interval quantity, the lower limit is always rounded dowrdahe upper limit is always
rounded up.

The main disadvantage of IA is the assumption that unknovimegavary indepen-
dently over the corresponding intervals. This assumptiay lead to overly conservative
results that are often impractical to use. One simple exarigpthe expressior — X,
for x=[—1,1]. Although the actual range for this expressiondg)|, according to the
original IA definition it evaluates tp—2, 2]. The conservativeness problem becomes even
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more evident when a longer sequence of arithmetic opesaigperformed. One pos-
sibility to reduce the conservativeness of IA is to subdivittlie function domain into
sub-domains and to evaluate the inclusion function on eabkdemain, combining the
separate resulting intervals into a single one. However,rélative accuracy of IA is
generally independent of the width of the input intervals.

5.1.2.2 Affine Arithmetic

As an alternative to the 1A conservativeness, Comba andi 82DMBA; STOLFI,
1993) proposed the affine arithmetic (AA). While still retimig the inclusion property of
the original 1A, AA attempts to reduce the conservativenasblem by keeping track
of correlations between quantities during arithmetic apens. This is accomplished
through the representation of interval quantities withnaffiorms, actually first degree
polynomials, whose variables represent sources of unegriand coefficients their cor-
responding magnitudes. Thus, in AA an affine quantitgkes the form

n
X= X°+.le‘£" (5.8)

wherexg is a real value representing the central value of the affima,fig are real coeffi-
cients indicating the magnitude of the corresponding gkdigviation and; are the noise
symbols.

The noise symbols represent unknown values which are assumed to be in thelclose
interval[—1,1]. Noise symbols can be shared among several AA quantitidghénis the
key feature of the method. The sharing of certain noise sysrdsnong several quantities
indicates how they are related to each other.

As for IA, to compute operations between affine forms the eleary operations must
be replaced by their AA counterparts. Affine operationshsagaddition, subtraction of
two affine forms, as well as addition and multiplication wéhscalar valuex, can be
computed according to
X+Y=(X0+Yo) + (X1 +Yy1)€1+ -+ (X + Yn)&n,
X—Y=(X0—Yo)+ (X1 —Yy1)€1+ -+ (X1 — Yn)&n, (5.9)
X+a=Xo+0a)+Xi1&1+-- -+ Xn&n, '

= (axp) + (axy)&r+ -+ (0Xn)&n.

Non-affine operations, such as the multiplication of tworaffforms, lead to non-
affine results which must be approximated by affine forms. ian challenge is to
choose affine forms which present small approximationg®rro

After the execution of a non-affine operation, the approxiomeerror is represented
by a new noise symbol added to the resulting quantity. An @taof non-affine operation
is the multiplication of two affine formg andy, as shown bellow

n n
Xxy=|%+) %& | x [ Yo+ ) Viéi
) (5.10)
= XoYo + Z(Xoyi + YoXi) & + Zk&,
i=

where the coefficient for the new noise symbol is computed according to

2= ._i'”' 9 §|yi|. (5.11)
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As for IA, errors may be inserted into resulting affine fornuedounding of floating-
point values. However, differently from IA, rounding carstiey the relation of the cur-
rent affine form quantity with respect to others. Thus, rong@nd truncation errors are
handled through the determination of a upper bound for thedeff errors committed
in the computation of each coefficient and then adding thier ¢o the linearization error
coefficient.

Converting quantities between IA and AA forms is straightfard. Assuming that
X is a quantity represented in the affine form, its conversiothé IA form can be done
according to

T X0 8,50+ 0], 6=,§l\xi|. (5.12)

The conversion from AA to IA form destroys any correlatiorioirmation between
quantities since the existing noise symbols are collapseiag conversion. Conversely,
assuming that a quantity= [x_,xy], in 1A form, is to be converted to the corresponding
AA form X = Xg + Xk&k, this can be accomplished according to

XU + X XU — X

5.1.2.3 Affine Arithmetic Extensions

Despite producing tighter bounds, AA is more expensive taate and suffers from
a growing number of error symbols each time non-affine operatoccur, thus affecting
overall performance and memory management. Messine (MES21002) observed that
and proposed some extensions to the original AA. One of tBrtnsions is called the
first affine form(AF1), and was introduced to attack the memory managemebtem.
According to AA, for each variablg a corresponding noise symbgimay be created.
This allows the tracking for quantities correlations dgrcomputations. However, non
affine operations introduce new noise symlgl& € {n+1,n+2,--- ,n+ p}, which may
be generated by performimmgnon affine operations. Once these new symbols are created,
they are stored, and never changed. It was observed thdtesk new terms could be
added into a single new noise symiagl 1, without losing the affine information related
to the variables;. The AF1 could then be written as

n

X=Xo+ ) Xi& +Xnt1€n+1, (5.14)
i=1

wheregn, 1 is the error symbol which represents the errors generatedl bifine approx-
imations executed so far, with 1 > 0.

In order to preserve the inclusion property, elementaryatpms are defined in such
way that only positive definite operations are involved ia generation ok, 1. Some
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operations defined by AF1 are
n
X+y = (0+Yo) + Z(Xﬁ £Y)& + X1+ Ynr1)Ent1,
i=

n
at+X=(atxp)+ lei & + Xnr18En41,
=

n (5.15)
axX=(ax)+ Za)q &+ |alXn+1&ns1,
s

n n+1 n+1
XX Y=XoYo+ ) (Xo¥i +%Yo)& + | [XolYn+1+ [YolXnra + D X x > Ivil |-
i;( i )Ei <\ [Yn+1+ |YolXn i;\ i i;l J)

5.1.2.4 Reduced Affine Arithmetic

The framework of AA is meant to be as general as possibleingritinto valuable
tool for the solution of a wide range of problems. Howevemstimes the problem is
defined over a very restricted domain. In these cases, thmaliAA can be modified,
and even simplified, in order to attend the problem speddgivithout loosing its original
properties. This is the case with the reduced affine arittt{lRAA) method proposed by
Gamito and Maddock (GAMITO; MADDOCK, 2007) for the rendegiof implicit fractal
surfaces, that limits the number of error symbols the affomenfcan contain. The 3-term
RAA form employs aggressive condensation executed eaah rtiom-affine operations
are performed, reducing the correlation between erroaisées while still preserving the
inclusion property under the specific problem circumstance

Still in the context of implicit surface visualization, Khet al. (KNOLL et al., 2009)
revisited the work of Messine (MESSINE, 2002) and impleradrsa modified 3-term
RAA formulation that, while executing condensation stefisraeach non-affine opera-
tion, ensures correct inclusion for all compositions of Apecations. Despite the in-
creased conservativeness, the method present improviedrpance with respect to the
original AA proposal.

Due to its generality and high performance, in this work weehased the RAA form
by Knoll et al. (KNOLL et al., 2009). Since we evaluate our expressiori@inwe adopt
the following 5-term RAA form

X = Xo -+ X1€1 + X2€2 + X3€3 + Xc&e, (5.16)

wherexc&: represents the condensed error symbol.

5.2 PV feature extraction from HO data using RAA

Parallel vectors line-type feature extraction methodsligstart by defining a collec-
tion of seed points that are used as starting points for sulese feature reconstruction.
In order to place a seed, it is common to use some data suiodivssheme together
with an additional refinement step. While regular grids temdequire a large number
of cells, adaptive refinement methods early discard datameghat do not contain so-
lutions, directing computational effort towards relevaegions. One way to guide an
adaptive spatial subdivision is to use the sign of the fielthatelement vertices as sub-
division criterion. In the case of trilinearly interpoldtelata, different signs at element
vertices indicate the presence of line-type features aaidhle spatial subdivision process
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Figure 5.2: Computation pipeline for extracting featunesf higher-order data. At the
end of each iteration step, for each stage, a reduction stppeSented by the graiR”
box) is applied over the primitives list in order to removega

should continue recursively. In case signs are equal, temaot be features inside the
current cell and subdivision is stopped. However, in thes aafshigher-order data this
simple criterion no longer works: a feature line can intersecell even if all vertices

have identical signs.

In this section we present an algorithm for parallel vecfeegure extraction com-
posed of two stages. The seed extraction stage executes actd quadtree-based adap-
tive subdivision followed by Newton iterations to accuhpatecate seeds. The use of RAA
to guide the spatial subdivision provides error bounds waspect to existence, position
and topology of the features. In the second stage, features dlefined as streamlines
of the FFF are traced from previously located seeds. FigixdlGstrates the method’s
pipeline, which is explained in detail in the following siects.

5.2.1 Seed Extraction

The search for seeds starts with an adaptive subdivisioenselwhich narrows the
search for features separately for each element (cell ofitilck. Since elements can be
represented by arbitrary polyhedral shapes, the estimafibounds for the higher-order
data might not be trivial. Instead, we estimate bounds usmaxis-aligned bounding box
(AABB) B; that encloses each dataset elensgnt
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Spatial refinement is performed in two successive stepst, Biris adaptively sub-
divided in an octree-fashion guided by the evaluation of RA&A form of the parallel
vectors criterion. Subdivision stops when the octree ¢a#issare within a minimum pre-
scribed size (features down to this size are guaranteeditidysected by the cells). This
process generates a collection of candidate octree celisrtiyht contain (intersected)
features. For each face of the octree cells, we apply adagtiadtree-based subdivision
steps, again based on RAA, to better approximate seed dosatiThe center point of
candidate quadtree cells are used as starting points fdmthlerefinement step, where
Newton iterations further improve seed placement. The segtions explain in detalil
each step of the seed extraction stage.

5.2.1.1 Octree Seed Refinement

Initially, each elemeng is tightly enclosed by an axis-aligned bounding ixhat
represents the initial cell of the octree subdivision psscelhe extents of the bounding
box are represented in RAA form byy, andZin the reference space ef. Adaptive
subdivision is guided by the evaluation of the RAA form of gfagallel vectors expression
W(X,¥,2). If 0 € W(X,Y,2) for the current octree cell, it potentially contains featiand
must be further subdivided. This process is repeated rieely<or child cells. If 0¢
W(X, ¥, 2) for a given cell, it does not contain features and can besdfsetarded. During
the subdivision process, due to the conservativeneBswith respect to the coverage of
g, some cells may fall outsidg. These cells are also discarded. The remaining cells

after the subdivision process ends are candidates forioomgdeatures.

Since each boB; may have a different size depending on the correspondimgezie
&, the maximum octree depth, needed to capture features withimmum prescribed size,
must be computed separately for each element. For this peypee define the feature
size as the length of the longest side of its axis-alignedtdmg box. Thus, considering
the minimum feature sizer, the maximum octree dep®p, for Bj is computed in terms
of e and the lengtlh of the largest edge @; as

Op, = [log, (I—'>} (5.17)

&F

The parametegr allows us to extract feature lines at different levels of dutree.
Smaller values foer capture smaller features at the cost of decreased perfosrand
increased memory consumption, whereas larger valuest iesoiore efficient feature
extraction at the cost of possibly missing small features.

5.2.1.2 Quadtree Seed Refinement

After the octree refinement it is guaranteed that featumgetahan/3¢r intersect at
least an octree cell face. However, it can be the case thata ace intersects multiple
feature lines, or even multiple times the same feature. $é&te®nd subdivision scheme
further refines the search for, potentially multiple, sestdbe octree cell faces by comput-
ing an adaptive quadtree-based 2D subdivision of each Eeaeh rectangle representing
an octree cell face is set as the root for the quadtree refimestep. As for the octree
subdivision, the quadtree refinement is driven by the etalnaf a RAA form of the par-
allel vectors expression. However, since each face is pdipalar to one coordinate axis
and hence represents a 2D space (Figure 5.3), only thredispecallel vectors RAA
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expressions have to be defined:
), (5.18)

wherex]y andZ are intervals representing the quadtree cell extents dlmthree axes,
andx,y andz are constant real values representing the fixed coordiAatmrding to the
alignment of a given quadtree cell, one of the expressiori&gumation 5.18 is used for
the evaluation of the parallel vectors operator. If the Itesy interval encloses zero, it
potentially contains a feature intersection and must biénrsubdivided.

v
X
2

-

AN

Z} l

Figure 5.3: Quadtree cells aligned with octree cell facekice the dimension of the
domain where parallel vectors criterion will be evaluated.

Considering that a minimum prescribed distance among seedsbe detected, and
that the size of faces in an octree cell may vary, the maximuadtjee depth would be
ideally computed separately for each face. Since the asggatof a given cell usually
has little variation, for simplicity, a maximum quadtreetieQp, is defined for all octree
cell faces generated for an elementThis leads to a more conservative subdivision that
still preserves the accuracy thresholds and does not signify affect performanceQp,

Is computed in terms of minimum distance among seedthe largest edgk of the B;,
and the maximum depth of the current octree:

|.
Qo, = [log; <—')1 —Op;. (5.19)
S
Feature intersections over a quadtree face that are fatveer thares are considered
as individual seeds by the quadtree refinement, whereas sathch distance smaller than
&s are collapsed into a single point and hence only a singleifeatill be traced from
there.

5.2.1.3 Newton Seed Refinement

The last step employs root finding to refine seed positionmdR@ng quadtree cells
are candidates for containing seeds, however, RAA consegn@ss may lead to false
positives. To locate the final seed positions, we use 2D Newdot finding forw con-
strained to the cell supporting plane. The starting pointhe Newton iterations is the
center poinpg of the corresponding quadtree cell.
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The quadtree cells are always perpendicular to one of thedowde system axis,
leading to three possible 2D Newton expressions:

PR = pK = Iy (%) iy (P9),
pF = p* — Jy(p*) (),

(5.20)
PRt = pK = Jya(pX) ~wyA(pY),

wherewyy, Wy, andwy, are parallel vectors expressiony, Jxz, andJy, their corre-
sponding Jacobians, akds the iteration step.

The pointp is considered as a seed if it has converged within the ceiiidiafter the
execution of a maximum number of Newton iteratidiys For all our experiments\g =
25 and the convergence thresholdg| < 103, |wy| < 103, and|w,| < 10~ worked
well. To be more generic, the thresholds could be scaled &yrtaiximum ofjw| at the
corners of the quadtree cell.

5.2.2 Feature Tracing and Filtering

Seeds generated by previous refinement steps serve asgspaints for feature trac-
ing along the stream lines of the FFF. Depending on the fedjyre to be extracted, ad-
ditional filtering must be applied to the extracted raw feasu The next sections describe
additional details regarding the feature tracing and aalthl filtering steps.

5.2.2.1 Feature Tracing

An accurate tracing strategy such as stable FFF (WEINKAUEI.et2010) would
greatly benefit from the analytical derivatives availabléigher-order data. However, the
computation of higher-order derivatives requires addaicstorage of the corresponding
coefficients. To save high-performance cached memory fgrdriefficiency by simulta-
neous processing of a larger number of elements, we useiagrscheme based on the
one by Theisel et al. (THEISEL et al., 2005), which requiorgdr-order derivatives while
providing reasonably accurate results.

Feature tracing starts at seed points and follows streamti the FFF. The feature
flow field f is constructed from the respective parallel vectors exgpoesv (Section 5.1.1).
Our feature tracing method consists of a predictor-coorestheme using a 4th-order
Runge-Kutta scheme with fixed step sieFor all our experiments, we used= 102
(compare the extents of the datasets in the result sectimwh)heiee corrector moves per
predictor move.

Some prior predictor-corrector tracing schemes constrairector moves to a plane
perpendicular to the predictor move. However, this plameassume arbitrary orientation
with respect to the reference system during the tracinggaicThis would require a re-
parameterization ofv on the new correcting plane at each predictor-move stepshwhi
would degrade performance. Therefore, we only use comremwes constrained to axis-
aligned planes. This approach allows efficient re-paranzetgon ofw by simply keeping
the coordinate related to the perpendicular axis constédmits, after each integration step,
we check the angle between the predictor move and the thes@yp@axis-aligned planes.
The correcting plane is the one that forms the angle clos€Xi tlegrees (Figure 5.4). To
compute the correcting moves, we apply the Newton methaickimg for zeros ofv.
Since the correcting planes are axis-aligned, we can usathe 2D Newton formulation
used for seed refinement (Section 5.2.1.3).
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Figure 5.4: Selection of the correcting plane (gray) basethe angle formed with the
predictor move (black arrow). Left and center: planes formaker angles with the predic-
tor move direction. Right: the ZX plane forms the angle tsahie closest to 90 degrees,
thus being elected to be the correcting plane.

Differently from the seed refinement stage, the point is m&slto has converged if,
after the Newton iterations, it remains within the bounda gliadrilateral centered at the
predicted point. The size of the quadrilateral defines theimam allowed angle formed
between the predictor move and the feature for the givenssteg. For our experiments,
a quadrilateral with dimensions& 6s showed to work well. Additionally, for all our
experiments, three Newton steps were sufficient for theection step. Once feature lines
are traced, redundant feature parts are removed, as wedbhtigds that extend beyond

element boundaries (pruning) as shown in Figure 5.5.

Figure 5.5: Pruning extracted feature lines against theshelement boundary.

5.2.2.2 Filtering

According to (PEIKERT; ROTH, 1999), there are several gubges in the context
of line-type features. One of the most powerful and oftenlewgd ones is the angle
between the feature tangent and the parallel vectors. Thaistdy has to stay small for a
well-defined feature, as already mentioned by Eberly (EBERI996) in the context of
ridges. It is also important in the context of the extractdvortex core lines and lines
of separation and attachment. Further, it is important terfiieatures by their strength.
Here, the filter definition depends on the feature type. I ads/ortex core lines, one
can use the absolute value of the imaginary part of the comgdnvalue of the velocity
gradient. In case of ridges, one can filter the ridges by tineight, i.e., by the value of
the scalar field. We apply this filter for the results preseimeSection 5.4.

Another criterion used is the length of the feature. It i®pfthe case that short fea-
tures are less important than long ones and more likely seatue to noise. Although
this filtering is often used, we were not able to use it in oscdntinuous Galerkin re-
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sults because the discontinuities at the cell boundarssigli features and make it even
impossible in many cases to identify correspondence tafeain adjacent cells. Further
details on feature filtering are discussed in (PEIKERT; ROI$#99; PEIKERT; SADLO,
2008).

5.3 CUDA Implementation

The design of our algorithm lends itself for parallel congiign of several elements.
In this section we describe a CUDA (CUDA, 2010) implememtatihat aims at paral-
lelizing computations as much as possible.

5.3.1 Ordering of Computation

The only pre-processing step that must be performed is theléE3ed element order-
ing based on the degree of the polynomials, since simultepoocessing of elements
with same degree polynomials improves performance by iadutivergence when exe-
cuting threads in parallel. Dataset elements are pusheddhra pipeline that performs
seed placement, feature tracing, and filtering. Each pipadtage is implemented as a
separate kernel. One important aspect to consider is @datsfér: prior to the processing
of each element, related data, including polynomial caefiiis and element boundaries,
must be loaded into the GPU. To minimize data transfers armmtawe cache locality,
computations are performed on a per-element basis rathardh a per-pipeline-stage
basis.

5.3.2 Polynomial Evaluation and Storage

All steps of the algorithm, with the exception of pruningeeute some sort of polyno-
mial evaluation. Since each element field interpolationtmanepresented by an arbitrary
degree polynomial, kernels must account for that. Howesdwrnel capable of eval-
uating a general degree polynomial with an arbitrary degremild contain a loop that
could not be unrolled by the compiler. To increase perforreawe decided to keep sev-
eral versions of these kernels, each one targeted to a speaifinomial degree. For the
polynomial evaluation itself we use static expressionegaied by a multivariate Horner
scheme approach (CEBERIO; KREINOVICH, 2004).

In our experiments the amount of data for each element isttess 8kB. Since the
size of the shared memory of current GPUs is between 16kB 4kB,6nore than one
element can be processed in different threads withoutifedatata at each new pipeline
stage.

The polynomial describing the field for each element is giueranalytical form
through an array of coefficients. Expressions such as thal@lavectors or the FFF
are usually constructed from theth order derivatives of the original fields resulting in
polynomial expressions of very high degrees and thousahtesms. However, large
polynomial expressions reduce performance, increasemaisfer and storage demands.
Additionally, during the subdivision process the polynafsirepresenting the parallel
vectors criterion must be translated into the correspanahiolusion form, implying that
operators and quantities are replaced by their (more cotipleusion form counterparts.

In order to improve performance, and keep the necessargga®pace within ac-
ceptable limits, instead of storing the parallel vectord BRF expressions, we store only
the coefficients of the@-th order derivatives used to compute them. This approash pr
vides knowledge of the highest polynomial degree to be ewatlduring the compu-
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tations. Another advantage is that smaller expressions fiUDA's high performance
shared memory, while intermediate values generated dexatyations fit almost com-
pletely into registers, thus avoiding costly global memacgess. Additionally, for all
polynomial evaluations we take advantage of a multivatiaener scheme (CEBERIO;
KREINOVICH, 2004), which further reduces the number of reseey arithmetic opera-
tions.

5.3.3 Seed Extraction

The following sections examine the implementation of thedsefinement stages.

5.3.3.1 Octree Refinement

Before computation starts, we load into the GPU shared mgtherpolynomial and
boundary shape information for the corresponding elenyaetyiously stored on GPU
global memory. The octree subdivision kernel correspantbrthe respective polynomial
degree is loaded and refinement starts. As described in &véops section, octree cells
that potentially contain features are identified by the @atbn of the RAA form of the
parallel vectors expression.

The implementation of the adaptive octree refinement stag@UDA suffers from
limitations of the GPU'’s with respect to dynamic memory edibon. Therefore, since
we only evaluate octree cells to find regions that will be uasccandidates for seed
extraction, we do not need to store explicit links betweerodenand its descendants.
Instead, we construct the octree incrementally by addingvanefinement level at each
kernel invocation.

All octree leaves in the current level, that potentially @on features, are stored in
a list. The octree subdivision is done in successive steud) eeceiving a list of octree
leaves from the previous step, and producing a list of odt@ees for the next level. After
a new list of cells is produced, the previous list is discdrdehis process is repeated until
the maximum octree depp, for the current element is reached.

At the end of a refinement step, child cells that were evatlasecandidates for con-
taining features are stored into a list, while cells thatendiscarded generate gaps in the
list. Atthe end of each refinement step, gaps are removedeogxtcution of a specific
condensation kernel that overwrites the previous list@atstwith a list of cells without
gaps. The resulting list is used as input for the next oceéeement step, or as input for
the quadtree refinement step, if the maximum octree depthesated.

5.3.3.2 Quadtree Refinement

Initially a face list with the faces of each octree cell isatesl. Each face will serve as
the starting cell for the quadtree refinement. The facesengepdicular to one coordinate
system axis and are related to an arbitrary degree polyhoffas, to improve efficiency,
quadtree subdivision is implemented through several CUB¥héls, each one optimized
for a specific combination of polynomial degree and facenatignt.

The face list certainly presents arbitrary face alignmemgjugnces, and it is likely
that simultaneous execution of distinct kernels will happiegrading performance. Ide-
ally, cells presenting the same alignment should be predessbatches together. Since
the size of the octree cells list is known, and that each elegates six faces (two per-
pendicular to each axis), we generate an alignment-baseghed face list directly from
the octree cell list (Figure 5.6). An advantage is that sulddd faces generate equally
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aligned cells, which means that the alignment-based gnouipreserved along the en-
tire quadtree subdivision stage.

Once the ordered face listis built, quadtree subdivisiaomputed in parallel for each
face through successive steps, as for the octrees. At thefeorte step a new quadtree
cell list is produced, which replaces the previous list arltilsgrve as input for the next
subdivision step. At the end of a subdivision step there miighgaps due discarded
cells. Again, a reduction step, implemented as a separatelkeompacts the cell list.
The reduction step does not affect the cell list alignmexgelol ordering. The subdivision
process is repeated until the maximum quadtree depth@ydbr the current elemerg
is reached.

o leB8==011 . ij===000

Desync. Desync. Desync. Sync.Sync.  Sync.

Figure 5.6: (1) Quadtree cell list presenting arbitrargm@thent sequences. (2) Quadtree
cell list presenting alignment-based grouping sequentkgnment-based cell grouping
improves performance by reducing divergence during kesretutions.

5.3.3.3 Newton Refinement

Candidate faces generated by the quadtree refinement stagsed to generate the
initial list of candidate seed points. The points are olgdifrom the central coordinates
of each face.

A fixed number of 2D Newton iterations, restricted to the esponding face sup-
porting plane, are computed for each point through a setrofgke optimized for specific
combinations of polynomial degrees and face alignmentse fumber of iterations is
fixed in order to keep threads synchronized. Additionallyptigh the use of several
kernel implementations, this stage also benefits from tbe &ignment-based grouping
imposed previously by the quadtree subdivision stage.

After the maximum number of iterations are reached, thdtiagpoint list is written
together with flags that indicates whether the point has egad to a seed or not. An
additional reduction step is performed to remove divergeirits from the list.

5.3.4 Feature Tracing and Classification

Features are traced in parallel from each seed throughaeasses (kernel invoca-
tions). In each pass a small number of integration stepsxaauged. This approach helps
in reducing the overhead involved with excessive kernadgations and additionally dis-
tributes the tracing workload over several threads. Fooallexperiments, the number
of integration steps executed in each pass was 32 sinceutmber showed to give better
performances according to our hardware and software setup.

Raw features are represented by closed lines, and somesgfgeatin be doubled traced.
However, from our experiments the number of features to &mett showed to be small
if compared to the parallel processing capacity of the GP&aming that the double inte-
gration presented no significant performance impact oropadnce.

After the integration stage, an additional CPU step is eteztto remove the redundant
features. The last step in the pipeline involves the clasgiin and computation of the
attributes of points on the extracted raw feature lines. diassification and computation
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of the local properties depends on the type of feature to bea®ed and on a series
of constant-cost parallel computations particular to gamimt. In case of height ridge
extraction, one has to decide if the feature representgja nda valley. This can be done
by checking the signs of the eigenvalues of the Hessian cfdalar field (Section 4.3.3).

5.4 Results

Performance measurements were obtained on a computepeduipth a Intel Core
i7 960 3.2 GHz processor, 6GB of RAM, and a NVIDIA Geforce GTX04 The CPU-
side code was implemented in C++/OpenGL and the GPU-sid&JIDAC3.2 and Thrust
1.3. Feature tracing used the predictor-corrector apprpaesented in Section 5.2.2.1.
Fixed settings were used for feature tracing. Octree andtog@maximum depths depend
on the minimum feature size threshold and may vary acrosssgits (Sections 5.2.1.1 and
5.2.1.2). The method was evaluated using the two higheraicontinuous Galerkin
datasets presented in Section 2.5.

Performance measurements and images presented in thanseder to the extrac-
tion of ridge and valley lines according to the parallel westformulation presented in
Section 4.3.3.

In the left column of Figures 5.7 and 5.8, we present the perdmce measurements of
our method with respect to feature extraction fromspbereandshock channellatasets
respectively. Each row indicates the performance measmtnaccording to the number
of elements processed in parallel: 2 elements in top rowgshehts in the middle row
ad 8 elements in the bottom row. The charts show performamaegs against minimum
feature sizesg. The charts contain 5 different curves showing the timingakdown
across different stages of the algorithm: octree subdmirange), quadtree subdivision
(yellow), seed refinement using 2D Newton steps (greenjurffedracing (brown), and
total time to extract raw features (blue).

Values foreg were chosen to assess the method’s performance in scemdrevs
finer refinement is demanded. Even though there is just a stosilassociated with
octree subdivision at the largest (fewer subdivisions), we observe that the cost related
to feature tracing is the highest. This is explained by tloe tlaat the number of feature
lines inside a given element is usually small, leaving th&JGdle. As we decreaser,
more octree subdivisions start to occur and feature linebmaoken into segments. As the
number of segments approaches the maximum number of thitegtdsan be executed in
parallel on the GPU, the feature tracing cost reaches itamim. \We also observed that
the cost of octree subdivision did not increase substén@al feature size diminished.
Additionally, finer refinement leads to tighter intervaldie RAA evaluations.

Differently from our approach, Theisel et al. (THEISEL et, &005) proposed an
octree refinement towards points on features lines. Theihadehas lower memory re-
guirements, but is less robust to handle higher-order data st assumes trilinear in-
terpolation. As we discussed before, fewer seeds lead teepperformance in parallel
architectures. The right columns of Figures 5.7 and 5.8gmrteserformance measure-
ments for our RAA-based method using their octree refinerftemiards points). As can
be observed, octree refinement towards points on the felateseleads to lower perfor-
mance.

Figures 5.9 and 5.10 illustrate results for the shock-cabdataset. In Figure 5.9 we
show all raw features in a given cell, as well the leaves obtiteee at two different depths
to demonstrate how the subdivision process. Figure 5.1@shaw features extracted for
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all cells and the main valley lines obtained after filtering.

In Figure 5.11 we compare valley lines extracted throughmethod with the lines
extracted with Peikert and Roth (PEIKERT; ROTH, 1999) apphy for two cells of the
shock channeflata set. Since their method does not operate directly agbetrorder
data, we have resampled the two cells into a regular gride@ sampling resolutions were
used. Results for the coarser resolution (6x3x3 samplesgteown in Figure 5.11a. Fig-
ure 5.11b presents results obtained with a more refined sagnpbnsisting of 20x10x10
samples. Results for the highest resolution sampling (@6%80) are shown in Figure
5.11c. Figure 5.11d presents the current state of the RAs&dactree refinement after
10 subdivision steps computed over the higher-order dameesented by the two ele-
ments. It can be seen that, despite the high resolution us@thdesampling, in the left
part of Figure 5.11c there are spurious line segments ironsgihat were robustly dis-
carded by the RAA-based octree refinement used in Figurel5THis can be explained
by the introduction of errors due resampling and the use aéfutifferences scheme for
derivative computations, which may not be sufficiently aatel (in particular, regarding
the second order derivatives used in the parallel vectased ridges and valleys defi-
nition). Finally, in Figure 5.11e we present the valley Srextracted directly from the
higher-order data using our method. As can be seen, therghsrtnumber of features
without spurious lines and features tend to be representexinoother and longer lines
(despite discontinuities at the element boundaries duedhee of the data).

There are several criteria used for filtering (see captiofigoire for details). Small
feature lines are less important since they are usuallyeetl@ noise. Thus, filtering out
features by length becomes an important criterion. Howereen the boundary discon-
tinuities present in our discontinuous Galerkin data,ritig by length is not possible and
local filtering criteria become of great importance. FigGré2 shows several stages of
the feature filtering for the sphere dataset. Figure 5.18agmts unfiltered ridges (red),
valleys (blue) and connector curves (white). Figure 5.1tws only unfiltered valley
lines. Figure 5.12c shows valley lines filtered by the angievieen the feature tangent
and the parallel vectors{(2.5 degrees). Finally, in Figure 5.12d we have valley lines
filtered by angle € 2.5 degrees) and isovalug (0.998). Figure 5.12d also presents, for
illustration, the overlay of the isosurface that corresgsoto isovalue ®98.
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Figure 5.7: Performance measurements obtained with otureaxtraction method for
thesphere datasgB4,535 elements). Ordinate represents performance measats in
minutes while abscissa represents the valug ¢gémallerer implies higher octree refine-
ment). For all testss = &¢/2, to force quadtree subdivisions. Left column: Measurdsien
obtained with octree refinement towards feature lines. Riglumn: Measurements ob-
tained with octree refinement towards single points on ddeature lines (as proposed
by Theisel et al. (THEISEL et al., 2005)). Lines present tigs for the processing of
2 (top), 4 (middle), and 8 (bottom) dataset elements in f@raColored lines represent
performance measurements for the octree subdivisiondejaquadtree subdivision (yel-
low), seed refinement with 2D Newton (green), feature tig€ibrown), and total time to
extract raw features (blue).
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Figure 5.8: Performance measurements obtained with oturéeaxtraction method for
the shock channel dataset (119 elements). Ordinate repsgsrformance measurements
in seconds. For more details, see caption of Figure 5.7.
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@) (b) (©)

Figure 5.9: Shock-channel dataset. (a) Raw features ¢attdom a single element:
ridges (red) and valleys (blue}{= 1, s = 0.01). No octree subdivision. (b) Same
as (a), wither = 0.0625,s5 = 1073, Octree leaves at depth 4. (c) Same as (a), with
& = 0.0019,e5 = 103 Octree leaves at depth 8.

(b)

Figure 5.10: Shock-channel dataset. (a) Connector cuwigise) for all dataset elements
(e =101, e =1072). (b) Filtered valley lines from (d). Minimum scalar valugl=and
maximum = 1.9995. Angle between gradient and FFF tangendrvec27 degrees.
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Figure 5.11: Comparison of valley lines extracted throughhogher-order method with
the lines extracted with the linear method by Peikert ancdhRBEIKERT; ROTH, 1999)
for two cells of theshock channetlata set. Figures (a),(b) and (c) were computed with
the linear approach, while Figures (d) and (e) where contpdirectly over the higher-
order data. a) Results for the coarser resolution (6x3x3Jpkzsn b) Results obtained
with a more refined sampling (20x10x10 samples). c¢) Resattie highest resolution
sampling (160x80x80 samples). d) Current state of a RAAtastree refinement after
10 subdivision steps computed over the higher-order dptasented by the two elements.
e) Valley lines extracted directly from the higher-ordetadasing our method, resulting
in a higher number of longer and smoother feature lines.
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Figure 5.12: Extracted line-type features from spheresgdtander increasingly restrict-
ing filtering criteria. (a) Unfiltered ridges (red), valleblge) and connector curves
(white). (b) Only unfiltered valley lines (c) Valley linestéred with the angle crite-
rion (< 2.5 degrees). (d) Valley lines filtered with the angieZ.5 degrees) and isovalue
(< 0.998) criteria.
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6 CONCLUSIONS AND FUTURE WORK

The analysis of CFD data is a problem confronted by scienéistl engineers every
day. This analysis may involve the extraction of regions grasent constant values for
certain properties or the detection of data portions aasedito relevant structures. The
development of visualization and feature extraction méshmave been explored and ex-
tended in many ways to allow exploration of various data sydéis thesis has presented
two new methods for the direct exploration of multi cell hégtorder data. The proposed
methods are efficient, scalable and do not rely in data relsagnprl his closing chapter
presents a summary of the major points discussed in thisrtié®n. The chapter ends
with a list of suggested areas for future exploration.

6.1 Isocontouring of Higher-Order Data

Existing isocontouring methods targeted at multi cell eigbrder data usually rely on
mesh extraction or image based techniques. Although allp¥ar interactive exploration
of a extracted isosurface, mesh extraction techniquesoreiytensive pre-computation
that prohibits dynamic exploration of different isovaluels the case of image based
techniques, each image is generated from the scratchntgtaiower frame rates.

We propose a hybrid approach for the isocontouring of comstits or discontinuous
higher-order data generated bg-adaptive discretization methods. The method operates
on higher-order data whose mapping function includes offilyeatransformations. Inter-
activity is achieved by splitting the contouring workloageo computations in object and
image spaces.

By using point sampling in the object space stage, we av@diie of complex data
structures and neighborhood information, thus makingdtaige suitable for parallel pro-
cessing. Coverage of the isosurface is obtained througbeheration of quads for each
seed successfully projected onto the isosurface in thestiagfe. Points in these quads
serve as starting points for the refinement stage based ocastyng, which also maps
nicely on parallel architectures.

Since no neighborhood information is kept along the iscmombg pipeline, artifacts
can emerge due subsampling. Although not focusing highracguthe proposed iso-
contouring method is capable of delivering results of reabty quality. An additional
heuristic, inspired on dynamical systems theory, is predds, at the cost of additional
computational resources, pre-compute quads scalingaesulting in better isosurface
coverage.

The method counts with several parameters that can be edjusbrder to control the
trade-off between efficiency and accuracy. It has been shbatrone can explore both
(accuracy and performance) by adjusting just a few parasieteeping the remaining
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parameters at fixed values.

6.2 Line-type Feature extraction from Higher-Order Data

Several techniques for parallel vectors feature extradtmotrilinearly interpolated
data have been already developed. Recent research in thiedgefocused mainly in more
accurate feature tracing and feature extraction in higireedsional spaces. Although
some existing tracing strategies could be applied dirgctligigher-order data, the seed
placement problem remained almost untouched in this cantex

In this work we propose an efficient method for line-type fjalaectors feature ex-
traction from multi cell higher-order data. The method @pes on piecewise discontinu-
ous higher-order data containing affine mappings betwderergce and world spaces. As
in other research fields, such as isocontouring and opttroiz@roblems, the proposed
method advocates the use of inclusion arithmetic to achefi@ency and to guarantee
bounds regarding accuracy with respect to existence,iposdand topology of the fea-
tures obtained.

Inclusion arithmetic (actually a RAA extension) is usedidgrthe seed placement
stage to evaluate the parallel vectors expressions that tihe octree and quadtree-based
adaptive data subdivisions towards feature lines and saietsp This approach improves
performance by safely early discarding data portions tleahot contain features and
seeds. A compact 5-term RAA form used for the parallel vesobperator allows for effi-
cient evaluation at the same time that avoids the conseevadss of the original interval
arithmetic proposal. We also propose a more efficient osueeivision scheme, towards
feature lines, that is more efficient for parallel implensitns. Performance improve-
ment is also obtained through a processing pipeline cdyefi@lsigned to process data
in a per-element basis instead of per-stage basis, redtloendata read-back overhead.
Additionally, we present a predictor-corrector baseditrgqscheme that efficiently re-
parameterize the data field onto correcting planes perpeladito the coordinate system
axis.

6.3 Future Work

With respect to the proposed isocontouring system, somegshould be addressed
in future work. Despite the good results obtained with the.ETnspired heuristic for
guads’ scaling, the pre-processing stage involved in ilepgdation could be removed
through quad rescaling "on the fly". Another possibilityastjng conservativity reduc-
tion during point sampling would be to remove points thathaaveled through "long dis-
tances" inside the cell before getting projected onto thstiface. The development of an
improved initial point distribution heuristic for the firphase would be an alternative for
improved surface sampling. Point-based isosurface appetion is view-independent
and must be stored in order to be used by the image based diasenay lead to higher
storage demands during the isocontouring of large data&etuilti-resolution approach
for the isosurface approximation would allow the procegsihlarger datasets. Policies
and strategies to discard seeds related to subpixel cellalao other possibilities for
future research.

With respect to the parallel vectors line-type feature aotton technique, there are
also several avenues for future investigations. More vedimemory management meth-
ods may allow processing of a higher number of dataset elenmeparallel. Simplifica-
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tions in the tracing stage and storage of previous communstnight allow progressive
feature refinement. The extension of this method for theaektrn of higher dimensional
features is also a challenge under consideration. The simglusion of additional terms
in the proposed RAA form, accounting for the combinationpaifs of independent vari-
ables, would result in less conservative results duringittagtive data spatial subdivision.

Both methods proposed in this thesis are targeted to higiter data containing
affine mappings between reference and world spaces. Arestieg research avenue
under consideration is the handling of higher-order datasghmapping functions are
non-linear, thus leading to methods capable to handle thergecase of higher-order
CFD data.
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APPENDIX A MATHEMATICAL DEFINITIONS

A.1 Differential Geometry Equations
A parametric curve ifR3 can be expressed as

W = w(t) (A.1)

Definingw’ = dw/dt andw” = d?w/dt?, the curvature vector of can be expressed
as

w x w”
= A.2
Thus, the curvature of w can be written as
K =|c|. (A.3)
A.2 Directional Newton Method
Given a functionf, such that
f(x)=0. (A.4)
The functionf can be restricted to a lide
L={x"+td:t e R}, (A.5)
where it is a univariate function
F(t) = f(x°+td). (A.6)
One Newton iteration foF at the point® = 0 gives the next point
F(0)
tt=— . A7
=0 (A.7)
SinceF (0) = f(x%) andF’(0) = Of(x%) - d, from A.7 we can write
f 0
o f) (A.8)

COf(x9).d’
Given that
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xt=x0+tt.d, (A.9)
we can write A.8 as
xt —x0 f(x0
d ~— Dfx%.d’ (A.10)
or
f(x%)
1,0
XT =X Df(xo)-dd’ (A.11)

which is the directional Newton method for the functibalong the directionl, according
to (LEVIN; BEN-ISRAEL, 2002).

A.3 Convective Derivative

Assuming a vector functiow(x,t) and a scalar functiofi(x,t) defined over the same
domain. The convective derivati®/Dt is defined as
Df of
— —(Of)- Z
ot ~ (OH w5
which represents the variation inexperienced by a particle that is at a particular place
and time, being advected by the flow.

(A.12)

A.4  Strawn, Kenright and Ahmad Vortex Core Definition in Term s
of the PV Operator

Section 4.3.2 introduced the PV form for the vortex core d@dim by Strawn, Ken-
wright and Ahmad (STRAWN; KENWRIGHT; AHMAD, 1998) as

w | O(w?). (A.13)

According to the general vector identity

O(u-v) = (Ou)Tv+ (Ov)Tu. (A.14)

Thus, foru = v, we have

O(u?) =2(0u)Tu. (A.15)

From A.15, we can write A.13 as

w || (Ow)Tw. (A.16)
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APPENDIX B ISOCONTOURING CODE

B.1 Unprojecting Fragments

Fragments in GLSL environment are described in normalieeiteé coordinates (NDC).
Thus, for a pointp = (s,t,u,v), in the GLSL NDC spaces;t € [-1,1];u € [0,1] and
v=1/w, wherew is the homogeneous coordinate.

float width_half
float hei ght_half

floor(float(vi ewport_w) /2.0);
floor(float(viewport _h) /2.0);

vec4 ndc_coord;

ndc_coord.x = (gl_FragCoordx *(1.0/mwidth_half)—-1.0) » (1.0/«
gl_FragCoordw);

ndc_coord.y = (gl _FragCoordy =(1.0/height _half)—-1.0) = (1.0/«
gl_FragCoordw);

ndc_coord.z = (gl_FragCoordz = 2.0 — 1.0) = (1.0/gl_FragCoordw);

ndc_coord.w = 1.0/gl_FragCoordw;

vec4 unproj _coord = gl _Mdel Vi ewProj ecti onMatri xl nverse = ndc_coord;




94



APPENDIX C

IEEE VISUALIZATION 2008 POSTER

A Fast GPU Particle System Approach for Isocontouring
on hp-Adaptive Finite Element Meshes

C. A. Pagot' J. E. Vollrath?

J. L. D. Comba!

D. Weiskopf?

TInstituto de Informatica, Federal University of Rio Grande do Sul, Brazil
2Visualization Research Center (VISUS), University of Stuttgart, Germany

ABSTRACT

The hp-adaptive finite element (FE) method is a discretization
scheme which is increasingly finding application in numerical
solvers. Most existent visualization tools, however, are based on
linear graphic primitives and corresponding low order interpolation
schemes. Consequently, pragmatic approaches in such a setting fol-
low a resampling strategy that may introduce a loss of information,
prohibitive increase of memory consumption, or additional com-
plex data structures which are likewise difficult to handle for visu-
alization. In this work we advocate the use of a GPU-based particle
system for isocontouring of scalar quantities defined on hp-adaptive
FE meshes. We present the status of our ongoing research which
shows that such an approach fulfills three important requirements:
i) preservation of the original data, ii) control over memory con-
sumption and iii) interactive exploration.

Index Terms: 1.3.1 [Computer Graphics]: Hardware Architec-
ture - Graphics processors—Parallel processing; 1.3.6 [Computer
Graphics]: Methodology and Techniques—Graphics data struc-
tures and data types

1 INTRODUCTION

Hp-adaptive FE discretization methods can be employed in scien-
tific and engineering applications, such as discontinuous Galerkin
formulations, ranging from aeroacoustics to hydrodynamics. By al-
lowing the elements in the simulation to be refined, and the polyno-
mial order within the element domain to be increased, these meth-
ods are able to handle complex geometries while offering good con-
vergence properties. The visualization of the data produced by this
method is essential for scientists to understand the simulations. Iso-
contouring methods such as Marching Cubes [3] are not directly
applicable to high order data. Linear graphic primitives and low or-
der interpolants available in visualization systems require elaborate
resampling schemes to represent such data with sufficient accuracy
and tolerable memory consumption.

In this work we propose a simple and effective particle system
approach to interactively and accurately visualize isocontours of
scalar quantities defined on hp-adaptive FE meshes. We focus our
attention to arbitrary polyhedral elements and polynomials of de-
gree up to 6, given analytically on a monomial basis in object space.
Our solution has the following characteristics: a compact memory
layout for polynomial coefficients; an efficient framework for poly-
nomial evaluation based on a greedy approach to the multivariate
Horner scheme; fast isocontouring formulated as a highly paral-
lelized root finding algorithm in the CUDA [6] programming lan-
guage; computational efficiency since the computation of the iso-
contour is view-independent for a given isovalue, as opposed i.e. to
raycasting methods.

2 RELATED WORK

Remacle et al. [8] proposed an adaptive resampling scheme with
guaranteed error bounds for the visualization of higher order finite
elements and thus effectively transform the problem into one of
adaptive mesh refinement (AMR). Figueiredo et al. [2] presented
two physically based methods to generate triangle meshes from im-
plicit surfaces. The first approach is based on a mass-string system
while the second is based on a particle system. Witkin and Heck-
bert [10] developed an iterative technique, based on particle sys-
tems, to model and visualize implicit surfaces. When used as a
modeling tool, the points are used as handles that deform the im-
plicit surface. When used as a visualization tool, the particles are
projected onto the surface and rendering is performed via splatting.
The size and distribution of the splats over the surface take curva-
ture into account and are controlled through several parameters.

Meyer et al. [4] presented a particle system based method to
sample high order surfaces generated by FE simulations. Par-
ticle projection is based in the same procedure presented by
Witkin and Heckbert. On the other hand, their approach is based on
data sets where the high order functions must be evaluated in a ref-
erence space, which involves expensive mapping operations. In this
algorithm the projection and repulsion of particles are interleaved
until the system converges. Despite its effectiveness, the proce-
dure is not interactive, taking several minutes to project thousands
of points. Nelson and Kirby [5] proposed an isocontour raytracing
solution for spectral/hp-adaptive FE which projects a polynomial
onto the viewing ray of each pixel in the image plane with a sub-
sequent root finding along each ray. To the best of our knowledge,
Kooten et al. [9] presented the first interactive implicit surface vi-
sualization method based on particle systems that runs entirely on a
GPU. Points are projected through the same procedure described by
Witkin and Heckbert, but neighbor search required for inter-particle
repulsion is accelerated using a spatial hash structure.

3 A GPU-BASED PARTICLE SYSTEM APPROACH

The hp-adaptive FE data used in this work originates from discon-
tinuous Galerkin (DG) simulations in which the solution is given
for each element based on its geometry (which can have an arbi-
trary polyhedral shape) and polynomials. Matters are simplified by
the fact that polynomials are defined in object space. Therefore, an
intricate mapping between object and reference space is unneces-
sary. We assume polynomials to be given on a monomial basis of
the form:

Px)= Y cxxyd 0

i+jtk<n

with i, j,k € No, the maximum order n, the coefficients ¢; jx and
the object space coordinates x,y,z. Given n, which is known be-
forehand and constant for one scalar quantity per element, we de-
fine an ordering rule for the list of coefficients C; by the following
algorithm:
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Figure 1: Point density appears to be higher in areas of high surface curvature (left). Rendering with discs and surface lighting (right).

1=0
fork=n—1.0do
for j=n—k—1..0do
fori=n—k—j—1.0do
Cr=cijk
H+=1
end
end
end
Algorithm 1: Ordering rule for polynomial coefficients

A straightforward strategy is to evaluate Equation 1 in the same
fashion as Algorithm 1, computing the exponents of x, y, z explicitly.
Instead, our solution uses the greedy multivariate Horner scheme of
Ceberio and Kreinovich [1] which we have implemented in C++
and CUDA. Empirical results indicate that using this evaluation
scheme, the resulting number of multiplications is equal to the num-
ber of summations, which we believe to be the theoretical optimum.

Isocontouring is formulated as a root finding problem with ini-
tially uniformly distributed particles per element. Elements are
processed successively whereas particles of one element are pro-
cessed in parallel by spawning a CUDA thread per particle solving
P(x) — I = 0 by successive Newton-Raphson iterations for a given
isovalue /. Since this requires VP, derivatives in x, y and z direction
are computed analytically in a preprocessing step. Coefficients of
P, Py, Py and P; are interleaved and stored in a vector of float4
which resides in constant global device memory. This interleaving
results in a minor memory overhead since the degrees of derivatives
and P differ by one. However, the benefit of this layout is that it al-
lows for a 16 byte stride which enables quick coalesced memory
access on the GPU. A particle is modeled with a st ruct contain-
ing the position in space and a flag describing its state (three floats
and one int). Particles can thus be arranged in a vector with 16 byte
stride, which again allows for efficient memory access. Depending
on the size of the data it is either possible to stream coefficients
and particles to the GPU per element or to store the dataset entirely
in device memory. Measurements show that with all data residing
locally on device memory, the proposed framework is capable of
performing 95 million Newton-Raphson iterations per second on
an NVIDIA GeForce 8800 GTX card. Therefore, for a 10 million
particle system and 10 Newton-Raphson iterations on average until
convergence, the computation roughly lasts a second.

Many particle-based isocontouring methods employ inter-
particle repulsion in order to distribute particles evenly on the sur-
face, which is a time consuming task. In this work we propose
to intentionally omit the repulsion step based on two observations:
First, the projection of particles onto the isocontour can be done
quickly on a GPU, as already observed by Kooten et al. [9]. Sec-
ond, it appears that gradient based methods already distribute par-

ticles onto the isocontour with curvature-dependent density, as ob-
served by Figueiredo et al. [2], but not further explored. Figure 1
shows some preliminary results.

4 DiscuUssION AND FUTURE WORK

The presented approach is subject of ongoing research which we
have decided to share with the community before a subsequent de-
tailed publication. In the immediate future we plan to further ex-
plore both the use of local surface curvature and parallelized inter-
particle repulsion, for which an n-body approach along the lines of
Lyland [7] appears promising.
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APPENDIX D RESUMO EXPANDIDO
(EXTENDED ABSTRACT IN PORTUGUESE)

Os fundamentos da pesquisa em dinamica de fluidos compoigh¢ioFC) foram es-
tabelecidos na década de 60 com o artigo de Hess e Smith (FEBE8$H, 1967). Desde
entdo, o aumento no poder de processamento dos computasloresnjunto com a ne-
cessidade de maior precisdo nos célculos, tém dado origeétoalos de DFC cada vez
mais sofisticados. Esses novos métodos tém sido aplicacesuo de uma vasta gama
de problemas incluindo a aeroacustica (REYMEN et al.,, 20068HTER; STILLER,;
GRUNDMANN, 2009), a dinamica de gases (GALANIN; SAVENKOVORAREVA,
2009; VAN DEN BERG, 2009), fluidos viscoelasticos (GUENET@&Eal., 2008), turbo
maquinas (SUN et al., 2010), transporte em meios porosocdH{AMAMRE; AL-ZOUBI;
TRIMIS, 2010), entre outros. Entretanto, esta evolucadtamtem dado origem a con-
juntos de dados de solugbes mais complexos, cuja analisgetéonnado cada vez mais
dificil. Neste contexto, as técnicas para extracao detesasirelevanteddature$ e vi-
sualizac&o passaram a desempenhar um papel essencial.

Métodos voltados para a extracdo de estruturas relevantmnsentram na analise,
deteccao e selecdo automatica de por¢des de dados, cdptesdruturas significativas a
partir de conjuntos de dados grandes e intrincados. Noxdorda visualizacao de fluxos,
exemplos de tais estruturas seriam as dobras (cristass) ealeontradas em campos es-
calares, bem como as linhas de convergéncia, separacamasamvortices encontrados
em campos vetoriais. Estes métodos podem reduzir sigivica¢nte a quantidade de
dados a ser manipulada, permitindo que se concentre a ateoigiente em regides rele-
vantes. As técnicas de visualizacdo, por outro lado, femeema maneira mais intuitiva
e natural de inspecionar os dados através da atribuicdo deaepresentacéo visual as
estruturas selecionadas.

A evolucdo dos métodos de DFC levaram a soluc¢des repressnaadliticamente
através de funcdes de alta ordem. Apesar de mais precisies dgpresentados desta
forma ndo sdo compativeis com os métodos de visualizacaertidedo de estruturas
desenvolvidos para operar sobre dados interpolados imezde. Neste caso, a abor-
dagem pragmatica é a reamostragem dos dados de alta ordemiirnu® 0 uso dos méto-
dos tradicionais de visualizacdo e de extracao de estsuttHraretanto, a reamostragem
nao se mostra uma alternativa atraente pelo fato de podeduair erros relacionados
a subamostragem e aumentar o consumo de memaria, necessarrmazenamento das
amostras. De forma a superar essas limitacdes, mais atesmasido concentrada no
desenvolvimento de métodos visualizagédo e extragédo dgwsts capazes de operar di-
retamente sobre dados de alta ordem.

Nesta tese sdo propostos dois métodos que operam diretasodmé dados de DFC
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de alta ordem. O primeiro método consiste em um sistema deiguélizacédo para a
exploracao interativa de isosuperficies. A interativielad método é obtida através da
distribuicdo do esforgco computacional em computagbessxeas nos espagos do objeto
e daimagem. O segundo método consiste uma técnica eficanatexiracao de estruturas
lineares descritas pelo operador de vetores paraledwal(el vector3. A técnica se baseia
no uso de aritmética afim reduzida e processamento pardksta forma permitindo o
ganho de performance e garantias em relacdo a limites disgweguanto a existéncia,
posicao e topologia das estruturas obtidas.

Ambos os métodos foram projetados para tirar vantagem édgtiamo dohardware
grafico. Resultados quantitativos e qualitativos sdo aptagdos para ambos os métodos
através de sua aplicagdo sobre dados sintéticos e daddsge@ simulacdes baseadas
no método de Galerkin discontinuo. As préximas secdes apias um resumo do fun-
cionamento de cada um dos métodos.

D.1 Extracao de Isosuperficies

A representacao aproximada de dados de alta ordem, getelmigtida através de
reamostragem, se apresenta como uma possibilidade nximdgevisualizacdo de iso-
superficies por permitir o balanco entre a interatividadesxploracdo e a precisdo da
isosuperficie gerada. Algoritmos para a visualizacdo deslde baixa ordem, tais como
o marching cube§LORENSEN; CLINE, 1987), estdo entre as solu¢gbes mais ssnpl
para este problema. Versdes adaptativas deste algoritmuteen a reducdo dos erros
introduzidos pelanarching cubesio mesmo tempo em que permitem a captura de estru-
turas mais complexas (REMACLE et al., 2006; SCHROEDER ¢8D6). Entretanto,
abordagens baseadas na reamostragem dos dados de altardrdduozem erros e, em
alguns casos, levam a um aumento consideravel no consumerdéra, necesséria ao
armazenamento das amostras.

Métodos que extraem isosuperficies diretamente a partades de alta ordem nor-
malmente formulam o problema em termos de localizacdo desaiu descida de gra-
diente. Entretanto, a alta ordem dos dados pode inviabiizeso de solucdes fechadas
fazendo com que métodos numéricos, muitas vezes iterae@n adotados. Alguns
destes métodos, porém, apresentam um custo computadeved®, degradando a per-
formance da aplicacdo. Como forma de reduzir o impacto ivegaa performance, al-
gumas abordagens decidem por executar 0s calculos nusmeérncam estagio de pré-
processamento. Este tipo de abordagem é utilizada em urealsélgoritmos para ex-
tracdo de malhas (REMACLE et al., 2006; SCHROEDER et al.52P006) e em algorit-
mos baseados em nuvens de pontos (FIGUEIREDO et al., 1992 Wj HECKBERT,
1994; VAN KOOTEN; VAN DEN BERGEN; TELEA, 2007; MEYER et al.097). Em-
bora estes métodos permitam a exploracédo interativa desgsagerficie computada no
estagio de pré-processamento, eles ndo permitem a exjpdodatamica de isosuperfi-
cies referentes a diferentes isovalores. A possibilidadeedexplorar de forma interativa
diferentes isovalores esta presente em alguns algoritaseados no tracado de raicesy(
tracing ou ray casting (WILEY et al., 2004; NELSON; KIRBY, 2006; KNOLL et al.,
2009). Entretanto, a intensa avaliacdo de calculos desgteéio executadas ao longo da
geracao das imagens leva a baixas taxas de quadros por segund

Desta forma, baseando-se nas caracteristicas dos méxistestes, observou-se que
uma abordagem hibrida, capaz de calcular uma aproximac&osigerficie no espaco
do objeto, e rapidamente refina-la através de computac@esitexlas no espaco da im-
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agem, poderia resultar em um método para extracéo de igtisigseinterativo, sem que
fosse necessaria a reamostragem dos dados de alta ordem.

Sendo assim, propomos na primeira parte desta tese umtalgdraseado em duas
fases para a extracao interativa e aproximada de isostipseréi partir de dados de alta
ordem definidos sobre malhas compostas por células. Naipifiase, particulas uni-
formemente distribuidas no interior do volume de dados s@adgs através do campo
gradiente de forma a gerar uma amostragem inicial da isd$tipeno espaco do ob-
jeto. Na segunda fase, utiliza-se o tracado de raios no esfmgnagem, calculado a
partir das vizinhancas das particulas, para refinar a repiasao da isosuperficie. Como
a vizinhanca das particulas tende a ser pequena, o tracadaids € iniciado ja prox-
imo a isosuperficie, levando a uma eficiente localizacaaaiass. A primeira fase do
algoritmo, calculada no espaco do objeto, afeta a densulparticulas podendo gerar
problemas de amostragem da isosuperficie. Desta formbgtaré proposta uma heuris-
tica, baseada na teoria dos sistemas dinamicos, que adaptalenca das particulas de
forma a gerar uma melhor taxa de amostragem da isosuperficie

D.2 Extracao de Estruturas Lineares Descritas pelo Operadade Ve-
tores Paralelos

Uma série de estruturas, tais como isosuperficies e linhaswente, podem ser de-
scritas por meio de equacdes algébricas e diferencias pésimite a separagéo entre a
descricdo da estrutura e o seu procedimento de extracaretdtrb, para uma série de
outras estruturas nao tradicionais, esta separacao esueedescricdo e o seu metodo de
extracdo nao é simples de definir. Originalmente introdupiol Roth e Peikert (PEIK-
ERT; ROTH, 1999), o operador de vetores paralelos consisigea ferramenta utilizada
para identificar estruturas lineares em campos escalastergais. Através da fomulagéo
proposta, uma série de estruturas pode ser descrita ca@énte através de um conjunto
de pontos onde dois campos vetoriais distintos se tornaatetas.

De acordo com a proposta original, estruturas lineares)déamidas a partir de dados
interpolados linearmente através da localizagdo de stas@tcoes com as faces das
células da malha, que sédo posteriormente conectadassatt@segmentos de reta. Este
método é local (solu¢des sao localizadas por célula), tolausficiente. Entretanto, esta
abordagem néo é precisa o suficiente dado que as estrutorapreikimadas atraves
de segmentos de reta, e pode sofrer de problemas relacgaaobiguidade topoldgica
durante a fase de conexao dos pontos de interseccdo. Ne&rtopo método de campos
de fluxo de estruturasdature flow field) (THEISEL; SEIDEL, 2003) fornece um método
mais preciso para a extragéo de estruturas lineares. O cdenfdaxo de estruturas foi
utilizado com sucesso na extracdo de estruturas lineasestds pelo operador de vetores
paralelos através de um método de subdivisdo espacial eys ierpolados linearmente
(THEISEL et al., 2005).

Nossa abordagem pode ser vista como uma extensao desthdrabgtivando a ex-
tracéo de estruturas a partir de dados de alta ordem. O mémaliza estruturas lineares
tais como centros de vértices, linhas de separacgéo e carmisias, vales, etc., descritas
analiticamente pelo operador de vetores paralelos. Alépedmitir a separacao entre a
descricéo das estruturas e 0 seu procedimento de extraigiimaanalitica do operador
permite sua representagdo no formato de inclusdo. Destafarmétodo proposto local-
iza estruturas interessantes no contexto de visualizagéicéa da subdiviséo adaptativa
espacial dos dados, guiada através da avaliacdo do forrateldsdo do operador de
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vetores paralelos. Apos a fase de subdivisdo espacial, tadmée localizacdo de raizes
é utilizado para localizar com precisao pontos localizadise as estruturas. Estes pon-
tos servirdo como pontos iniciais para o tracado das estsjtque € calculado a partir do
campo de fluxo gerado para as estruturas.

D.3 Idéia Central

Sao propostos dois diferentes métodos para a explorac@mfistos de dados com-
postos por dados de alta ordem descritos sobre malhas. Asseigue as funcdes de
mapeamento entre os espacos do objeto e do universo sdostasapenas por transfor-
macdes afins. O primeiro método é uma técnica hibrida paraacér de isosuperficies
baseada na seguinte idéia:

A extracdo interativa aproximada de isosuperficies a paté dados
de alta ordem é possivel através da distribuicdo do procgessdo entre 0s
espacos do objeto e da imagem. No espaco do objeto, uma EaC&o da
isosuperficie, independente do ponto de vista, € geradta d&soximagao
ird reduzir o custo associado ao estagio de refinamento dauiserficie, que
sera calculado no espaco da imagem.

Dois pontos devem ser considerados na construcdo de unit@lgaapaz de extrair
isosuperficies de forma eficiente neste contexto. O proréem desenvolvimento de um
método que aproxime a isosuperficie desejada no espacqeto.dbste método deve ser
eficiente ao mesmo tempo em que sua saida sirva como um bomdmpéartida para o
passo de refinamento subsequente. O segundo ponto esi@nadimcao método utilizado
no espaco da imagem, que deve refinar a representeacao uzeisicse baseando-se na
aproximacao calculada anteriormente.

O segundo método apresentado nesta tese consiste em uina &dwiente para ex-
tracdo de estruturas lineares descritas pelo operadotales@aralelos a partir de dados
de alta ordem. Este segundo método é baseado na seguiate idéi

A representacédo do operador de vetores paralelos em suaafdamn-
cluséo permite uma aproximacao eficiente e precisa das esausturas lin-
eares existentes em dados de alta ordem. O processamentmgmto de
dados elemento a elemento, ao invés de estagio a estaguy, dsgnandas
relacionadas a largura de banda necessaria ao trafego deodad mesmo
tempo que permite o processamento dos elementos em paralelo

Os pontos levantados em relacao as declaragcbes apresent@dam uma represen-
tacdo para a expressao do operador de vetores paralelosjgudizavel, a escolha de
uma forma de inclusdo que possa ser eficientemente impldemerdvaliada, e uma es-
tratégia eficiente de subdivisdo espacial do conjunto deslbdseada na avaliacdo da
forma de inclusdo do operador de vetores paralelos. A formaausao do operador
de vetores paralelos é representada por uma forma afim denbsederivada a partir
de uma extensdo da aritmética afim. A avaliacdo do formatmadaséo do operador
de vetores paralelos é utilizada para guiar a subdivisgotaiilza do conjunto de dados,
utilizando-se estruturas de dados baseadas@armese quadtrees Adicionalmente, é
proposta uma estratégia para a eficiente avaliagdo do apeatad/etores paralelos que
utiliza os coeficentes de seus componentes de menor ordem.
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D.4 Resultados

As principais contribui¢cdes deste trabalho incluem:

* Um método hibrido para a extracao eficiente de isosupesfecpartir de dados de
alta ordem;

* Um método para redimensionamentsgétsbaseado na teoria dos sistemas dinami-
COoS;

* Um método para extracdo de estruturas lineares a partindesdde alta ordem
gerados por DFC baseado na avaliagédo da forma de inclusgedador de vetores
paralelos;

* A anadlise experimental de uma estratégia eficiente de wshdiespacial para o
refino de estruturas lineares descritas pelo operador decggharalelos;

» Uma estratégia para a avaliacao eficiente de dados de détsn@am GPU.

* Um esquema de tracado de estruturas lineares baseado amentms preditores
e corretores que eficientemente reparametrizam o camp@no pbrretor.

» Uma estratégia para agrupamento de faces baseado enmadinios e que aumenta
a performance do algoritmo de extracdo de estruturas eritetrqas SIMD através
da reducao da divergéncia entre fluxos de execucdao.

D.5 Conclusdes e Trabalhos Futuros

Este trabalho apresentou extensGes a métodos de vis@alizage extracdo de es-
truturas existentes e que permitiram a eficiente explordeddados de alta ordem. Os
métodos propostos sao eficientes, escalaveis e ndo depeledesramostragens. Esta
secao apresenta um sumario dos principais pontos dissut@kia tese. A secao termina
com uma lista de topicos considerados como possibilidaai@esfpturas investigacoes.

O primeiro método apresentado trata da extracdo de isd&uperm partir de dados
de alta ordem. O método opera sobre dados cujas fun¢bes dmmepto contenham
somente transformagdes afins, ndo conta com o uso de eatrdeidados complexas e
nao reamostra os dados originais. Embora néao tenha sidetgutojpara gerar isosuper-
ficies com alta precisao, as superficies resultantesemees muito boa qualidade. Uma
série de parametros pode ser ajustada de forma a controddarmcb entre a eficiéncia e
a precisao do método, embora se possa explorar ambos uregxerformance) através
do ajuste de apenas alguns destes parametros.

O segundo método trata da extracdo de estruturas lineasestds pelo operador
de vetores paralelos. O método é composto por uma série @gfassyue extraem es-
truturas dos dados de forma eficiente e em paralelo. Atravésa de aritmética afim
reduzida podemos eficientemente subdividir o conjunto deslde alta ordem, descar-
tando porcdes de dados que seguramente ndo contém estmaferantes. Atraves da
avaliacdo do campo de fluxo de estruturas, utilizando-seadaptacdo capaz de gerar
vetores tangente mais estaveis numericamente, podenmsstedr as estruturas com
maior precisdo. Adicionalmente, apresentamos uma eagigigdéra subdivisdo espacial
adaptativa cuja implementacao em paralelo é mais eficier@asg existentes.



102

D.5.1 Trabalhos Futuros

Em relacdo ao método de extracéo de isosuperficies, alguriegpdevem ser con-
siderados em trabalhos futuros: a reducdo de computagdesdantes durante a fase
de refino das isosuperficies, o desenvolvimento de umasgtiearpara uma melhor dis-
tribuicdo inicial de pontos, o tratamento de conjuntos dkd@randes e otimizacdes que
considerem células menores que um pixel.

A técnica para extracdo de estruturas lineares tambémesugex série de possibil-
idades para trabalhos futuros. Um ponto a ser investigadoa raelhor comparacao
qualitativa entre os resultdos gerados pelos métodosaxist e 0s gerados pelo método
proposto. O melhor gerenciamento da memoria pode permgirugn maior nimero de
celulas possa ser processada em paralelo. Os efeitos,rapstde desempenho, do pro-
cessamento assincrono de elementos e o processamentidusenwde células de taman-
hos diferentes séo possibilidades para estudos. Simpb#sano estagio de tracado das
estruturas pode permitir o refino progressivo destas asasit A extensdo do método
proposto, objetivando a extragéo de estruturas com diresmséaiores, também é consid-
erado.

Um topico adicional para pesquisa, e que poderia benefigiaoa os métodos pro-
postos, seria a manipulacdo de conjuntos de dados contandoes de mapeamento
ndo-lineares. A resolucdo deste problema tornaria os gtapazes de tratarem o caso
geral dos dados de alta ordem. Outro tdpico interessanéepesquisa € a remocéo de
discontinuidades no caso de dados discontinuos.
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