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ABSTRACT

Social systems are increasingly relevant to computer science in general and artifi-
cial intelligence in particular. Such interest was first sparkled by agent-based systems
where the social interaction of such agents can be relevant to the outcome produced.
A more recent trend comes from the general area of Social Information Processing,
Social Computing and other crowdsourced systems, which are characterized by com-
puting systems composed of people and strong social interactions between them. The
set of all social interactions and actors compose a social network, which may have
strong influence on how effective the system can be. In this thesis, we explore the role
of network structure in social systems aiming at solving problems, focusing on numer-
ical and combinatorial optimization. We frame problem solving as a search for valid
solutions in a state space and propose a model - the Memetic Network - that is able to
perform search by using the exchange of information, named memes, between actors
interacting in a social network. Such model is applied to a variety of scenarios and we
show that the presence of a social network greatly improves the system capacity to find
good solutions. In addition, we relate specific properties of many well-known networks
to the behavior displayed by the proposed algorithms, resulting in a set of general rules
that may improve the performance of such social systems. Finally, we show that the
proposed algorithms can be competitive with traditional heuristic search algorithms in
a number of scenarios.

Keywords: Social Computing, Memetic Network, Search, Optimization, Artificial In-
telligence.



Redes Meméticas: solucao de problemas utilizando modelos de redes sociais

RESUMO

Sistemas sociais t€m se tornado cada vez mais relevantes para a Ciéncia da Com-
putacdo em geral e para a Inteligéncia Artificial em particular. Tal interesse iniciou-se
pela necessidade de analisar-se sistemas baseados em agentes onde a interagdo social
destes agentes pode ter um impacto no resultado esperado. Uma tendéncia mais re-
cente vem da area de Processamento Social de Informagdes, Computagdo Social e out-
ros métodos crowdsourced, que sdo caracterizados por sistemas de computacdo com-
postos de pessoas reais, com um forte componente social na interacao entre estas. O
conjunto de todas interacdes sociais e os atores envolvidos compdem uma rede social,
que pode ter uma forte influéncia em o quio eficaz ou eficiente o sistema pode ser.
Nesta tese, exploramos o papel de estruturas de redes em sistemas sociais que visam
a solu¢do de problemas. Enquadramos a solucdo de problemas como uma busca por
solucgdes vélidas em um espacgo de estados e propomos um modelo - a Rede Memética
- que € capaz de realizar busca utilizando troca de informagdes (memes) entre atores
interagindo em uma rede social. Tal modelo € aplicado a uma variedade de cendrios e
mostramos como a presenca da rede social pode melhorar a capacidade do sistema em
encontrar solucdes. Adicionalmente, relacionamos propriedades especificas de diver-
sas redes bem conhecidas ao comportamento observado para os algoritmos propostos,
resultando em um conjunto de regras gerais que podem melhorar o desempenho de tais
sistemas sociais. Por fim, mostramos que os algoritmos propostos sdo competitivos
com técnicas tradicionais de busca heuristica em diversos cendrios.

Palavras-chave: computacdo social, redes meméticas, inteligéncia artificial, busca,
otimizagao.
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1 INTRODUCTION

Social systems, those composed of many interacting actors involved in some sort of
social relation, have gained increasing attention in the computer science and Artificial
Intelligence (AI) communities for a number of reasons (LAZER et al., 2009; LEAKE,
2008). In one way, improved algorithms are needed to handle, analyze and extract
knowledge from massive datasets generated by social interaction (e.g. citation of sci-
entific papers, e-mail exchange, hyperlinks in websites). In that sense, just like the need
to analyze DNA and other biological structures spawned the area of Bioinformatics, the
need to analyze complex social structures is giving birth to the field of Computational
Social Science (LAZER et al., 2009), which uses computers and algorithms to analyze
and understand social systems. Hence, this area include social simulation of real social
systems, algorithms to extract patterns from social interactions, database structures to
store social relations and so on.

Running in the other direction, there is a growing interest in doing exactly the op-
posite: to use social systems to produce computation. This approach can be broadly
divided in two main types. In the first, social structures are used to compose artificial
systems that aim at solving problems. This is the case of Multi-Agent Systems (MAS),
which are composed of several independent and semi-autonomous agents that collabo-
rate (or compete) to solve a given task; insights on how real social structures emerge in
the real world can then be applied to such MAS in order to improve its performance or
reduce its costs of operation.

The second approach towards generating computation from social systems is com-
posed of using real social systems, with real people, and leveraging such systems so
that humans, and not computers, are responsible for producing reliable computation
(AHN; DABBISH, 2008; AHN; LIU; BLUM, 2006). This is the case of crowdsource,
Wisdom of CrowdsWisdom of Crowds, Social Computing and Social Information Pro-
cessing systems, all of which leverage the interactions of humans in order to solve prob-
lems in ways that are almost algorithmic (BRABHAM, 2008; SUROWIECKI, 2005;
PARAMESWARAN; WHINSTON, 2007; LERMAN, 2007). The main idea behind
this approach is that there is a great potential to solve complex problems by requiring
very little from a great number of people.

This latter approach can be further divided in different perspectives towards how a
problem is distributed to a social system and how a result is extracted from it. In one end
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of the spectrum, crowdsourcing is concerned with creating an open call for contributors
to solve a problem and once a volunteer takes up the task, he or she will solve it without
the help of others. On the other end, Social Information Processing (SIP) uses the
interaction of many actors to collaboratively and iteratively create a solution.

All of these social systems have in common the need for social interactions between
actors. By combining the set of all actors and their social interactions, we can compose
a social network. It is clear that such network has a central role in any social system,
since it represents and defines how actors interact with each other, by setting specific
network properties (such as the network topology).

One could ask how does these network properties relate to the system’s performance
at solving some task. In this thesis, we report on a number of algorithms, experiments
and results that tackle precisely this question. We do so by using a methodology that
fits in between the two approaches mentioned above: we propose a model that mimics
many aspects of social interactions and the exchange of information in social networks,
but that aims not at simulating these processes, but rather at producing computation in
the form of problem-solving, so that there is an objective definition and measurement
of performance.

Hence, as we will argue, this model, named Memetic Network, is close in its nature
to e.g. Genetic Algorithms (GA), which mimics a natural process (natural selection
and evolution) but aims at solving problems in general by automatic means (without
using actual genes or DNA). Likewise, we make use of concepts of social networks
to produce algorithms that are able to handle specific tasks in an automatic fashion,
without actual social actors being involved. Nonetheless, we argue that the model and
its associated algorithms are also useful to provide insights and understandings of real
social systems and that its greatest value lies precisely in that.

In order to pursue our objectives, we make use of the concept of memes - pieces
of information that propagate in a social network by copy - proposed by (DAWKINS,
1976). We also draw several concepts and tools from Network Theory (or the “Science
of Networks”) (NEWMAN; BARABASI; WATTS, 2006), both in the form of specific
network topologies and properties to apply in our algorithms and in the form of analysis
tools that are used to extract the results.

The act of solving problems is framed in this thesis as a search problem, where
the task is reduced to finding a particular desirable state (a solution) in a possibly very
large state space. Framing the problem as such allows for a very objective measure of a
system’s performance, which is one of the main advantages of the proposed model. The
proposed algorithms are therefore search algorithms which, as we will show in Chapter
8, can be very competitive with traditional search techniques (such as Hill-Climbing,
GA).

This work is organized as follows.

Chapter 2 summarizes aspects of the area of search and optimization, defining what
we consider to be a search and optimization task and presenting and discussing
several search algorithms commonly used in the literature, from Hill-Climbing
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algorithms to Genetic Algorithms.

Chapter 3 presents a revision on basic concepts, terms and previous results on the area
of Graph, Network Theory and Social Computing. The basic network models
used in this thesis are shown, along with the most relevant network properties.

Chapter 4 defines our general and specific goals and presents the methodology used in
this thesis. We detail how the model is built, how the experiments are conducted
and analyzed and other relevant details.

Chapter 5 presents the Memetic Networks model, a basic framework that allows ex-
perimenting with the influence of network properties in search. We introduce the
concept of memes and how it is used to compose our model, along with several
alternatives to aggregate information from multiple vertices in a network. We
also present initial experiments with basic instantiations of the model, in order to
better discuss its various parts.

Chapter 6 report on experiments with networks that are static in nature, so that the
topology is fixed a priori. We focus on the ubiquitous Small-World and Scale-
Free classes of networks, showing how different networks from these classes
affect optimization tasks.

Chapter 7 deals with dynamic networks, where we let the network adapt to the prob-
lem at hand and reconfigure itself on the fly. We show how properties of this type
of network influence the quality of the emerging solutions.

Chapter 8 compares the proposed algorithms with each other and with traditional
search techniques, showing that they can be competitive with other algorithms
and potentially useful as a general-purpose optimization algorithm.

Chapter 9 concludes this thesis, discussing the results and proposing future lines of
research.

Much of this work has appeared in a number of papers. The results present in
Chapter 5 and Chapter 7 include those published in (ARAUJO; LAMB, 2008a,b,c).
Some of the results in Chapter 8 have appeared in (ARAUJO; LAMB, 2008d).

The concepts and ideas proposed in this thesis are a greatly motivated by our pre-
vious works on synchronization of competitive agents in markets (ARAUJO; LAMB,
2007; ARAUJO; LAMB, 2009). In these works, each actor in a group compete to max-
imize her own utility function, while the system is designed so that only a minority of
the players can win; hence herd behaviors are always prejudicial and players must be
able to differentiate from each other as much as possible.

However, no communication is allowed between actors and considering systems
where such communication is possible and some cooperation is allowed was, and still
is, a matter for future work; but the pursue of such line of thought lead to the necessity
of creating a model of communicating agents, which end up becoming the central idea
in this thesis and springing the results we present hereafter.
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2 BASICS OF SEARCH TASKS AND ALGORITHMS

In this chapter we introduce the general problem we tackle in this thesis, namely
problem-solving through search. We describe how problem-solving can be posed as
a search problem and proceed to describe several successful search algorithms often
used for this purpose, focusing on the so-called population-based search, which uses
communicating parallel searches.

2.1 Search Tasks

A problem solving task can be understood as a search for a specific state (or a
sequence of states) in a solution space, satisfying the problem’s requirements (RUS-
SELL; NORVIG, 2002). For example, the problem of designing an airplane wing can
be reduced to the problem of finding an optimal (or good enough) set of wing’s parame-
ters that leads to the desirable performance according to some evaluation methodology.
The problem of winning a chess game can be seen as finding a sequence of moves
that lead to the desired winning configuration. Each combination of parameters in the
wing or possible board configurations can be regarded as a state and the problem be-
comes searching in a search space for a particular solution that contains the desirable
parameters.

What are the requirements to perform a search as a way to solve some problem?
Three basic requirements can be devised (MICHALEWICZ; FOGEL, 2004; RUS-
SELL; NORVIG, 2002; MITCHELL, 1997). The first requirement is a way to provide a
representation for possible solutions to the problem. This representation will configure
a search space, each point consisting of a candidate solution, and should be defined so
as to allow the inclusion of the goal state in this space. This is not always a straightfor-
ward task, since the goal state may not be known in advance for some problems (and
often is not). If the goal state is not included in the search space, then certainly the
solution obtained will be sub-optimal.

The second requirement is a way to enumerate all possible states. That is, we must
be able to systematically generate any possible solution allowed by the chosen rep-
resentation. Moreover, it is interesting to allow for generating a “next” state from a
current one, as this allows for visiting one state at a time, in a defined and repeatable
sequence.
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The third requirement to perform search as problem solving is a way to evaluate
each candidate solution in the search space. At the very least, there must be a way to
know when a goal state is reached. However, allowing for an evaluation function that
ranks higher solutions that are closer to the goal state allows for more efficient searches.
Indeed, if all we know is whether a state is the goal state or not, we can hardly do better
than evaluate all possible states.

While there are several types of search problems, this thesis focuses on optimization
problems. An optimization problem can be seen as a search problem where:

e The sequence of states that lead to a solution is not important. This is in oppo-
sition to, for example, a chess game, where the sequence of moves that lead to a
winning state must be known (i.e. there is little use in knowing how a winning
state looks like without knowing how to get there). However, even in this latter
case it is possible to understand a sequence of states as a single meta-state (e.g. a
sequence of moves in a chess game may be regarded as a single state); this would
lead to a much larger search space and consequently to a harder search prob-
lem. Nonetheless, while conceptually the two problems are not very different,
the distinction is useful in practice.

e Each solution can be evaluated and ranked, so as to have a preference order-
ing over solutions in the search space. In contrast, consider the SAT problem
(GAREY; JOHNSON, 1979), where one desires to find a set of values for boolean
variables in a logic statement such that the statement is made true; in this case,
either a solution satisfies the statement or it does not - it is not possible to directly
rank two “false” solutions’.

e There may not be a known goal state or its evaluation. In an optimization prob-
lem, one may want to find the best solution, but typically there is no way to know
whether a solution is the best one (otherwise, the solution would be known in
the first place). Hence, the goal is to find the best solution possible given some
resource constraint (e.g. time or space). An alternative is to set a threshold over
the evaluation function that yields a sufficiently good solution and stop the search
once such solution is found. Still, the goal state is not known, only its desired
evaluation, but this provides for an additional stop condition for a search algo-
rithm.

2.2 Search Algorithms

For very simple problems, it is possible to perform an exhaustive search - see e.g.
(RUSSELL; NORVIG, 2002; SPALL, 2003), where an algorithm enumerates all possi-
ble states and evaluates each one, returning the best found (if any). The starting state is
not important, since all states will be visited in the end. Exhaustive search algorithms

"Heuristics are often applied to add more information to the SAT problem, so that it can be treated as
an optimization problem. See MICHALEWICZ; FOGEL, 2004) for examples.
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are always complete and optimal. A complete search algorithm always finds a solution
if one exists. An optimal search algorithm always returns the optimum solution (i.e.
the solution that has the best evaluation among all possible solutions).

Completeness in optimization problems may not seem an issue, since - in principle
- every state is a possible solution. However, in constrained optimization a solution
may not always be viable, in the sense that it does not satisfy a set of constraints even
though it may be allowed by the chosen representation. Hence, an algorithm that is not
able to find a viable solution is said to be incomplete. Likewise, if a threshold is set
specifying a minimum evaluation value to be met, then an algorithm that is not able? to
meet this threshold is also incomplete.

As problems become more complex, in the sense that the number of states and
the cost of evaluating a state grow, exhaustive search can become computationally in-
tractable - typically time and/or space requirements will surpass any existing hardware
specification. In many cases this can happen even for problems with moderate sizes.

Take for example the Traveling Salesman Problem (TSP) (APPLEGATE et al.,
2007), consisting of a set of cities with roads with different lengths connecting pairs
of cities and where one wants to find the shortest path that visit each city exactly once.
Each combination of cities specifying the order that they must be visited is a possible
solution for the problem, but one aims at finding the best solution. This problem was
proved to be NP-Hard (APPLEGATE et al., 2007; MICHALEWICZ; FOGEL, 2004)
and the only way to guarantee an optimal solution in the general case is by enumerating
all possible solutions. Small instances of such problem (with a few cities) are tractable
in today’s computers. However, the number of possible solutions grows as a facto-
rial function of the number of cities, which is worse than exponential growth, quickly
making even moderately large instances of the problem intractable.

Hence, in these cases, it is no longer possible to generate and evaluate each possible
solution and a careful decision must be made towards choosing which solutions will
be evaluated. Moreover, for the general case, search algorithms that use a reasonable
amount of resources do not guarantee that the best solution will be found, or that any
reasonable solution will be found at all (even if it does exist). At best, it may be possible
to reduce arbitrarily the probability of not finding a solution (or the best solution) and/or
specify a lower bound for the solution’s quality (SPALL, 2003).

Non-exhaustive searches can be of two basic types (RUSSELL; NORVIG, 2002).
The first type simply starts an exhaustive search and stops whenever a resource is de-
pleted (e.g. the algorithm runs out of time or space), returning the best solution found
so far. This type is said to perform search without additional information, since a search
is not guided in any way - it is the same exhaustive search algorithm being used.

The second type of non-exhaustive search tries to use information from the problem
to guide the search, thus providing a preference ordering over which states are to be
evaluated next. This second type is said to perform search with additional information.

2The algorithm is not able to meet the threshold in the sense that the probability of reaching a solution
evaluated above the threshold is zero.
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Such information is typically provided by a heuristic (GLOVER; KOCHENBERGER,
2003; PEARL, 1984). A heuristic is a rule that provides some knowledge about the
problem that can help discarding bad solutions or favoring potentially good ones. For
example, an actual heuristic for the TSP takes the form “from the current city, visit
the nearest neighbor city first”, which seldom returns the optimum path, but under
certain conditions is able to find reasonable solutions with drastically reduced resource
requirements (GLOVER et al., 2000).

2.2.1 Local search

A heuristic can use existing knowledge about the problem or use information col-
lected during an ongoing search. The latter is the case of local search algorithms (RUS-
SELL; NORVIG, 2002; GLOVER; KOCHENBERGER, 2003; HART, 1994). These
algorithms try to use local information about the solution space itself. Typically, they
start from a single state and decide which state will be visited next by using a heuris-
tic. This heuristic may not be problem-specific because it is not about the problem, but
rather about the way a search is performed in general.

A well-known local search algorithm is the hill-climbing search. This algorithm
starts from a randomly chosen state Sy and proceed by enumerating only the neighbor
states of Sy. A state is said to be the neighbor of S if it can be reached from S, by mak-
ing a limited, small number of changes to it (RUSSELL; NORVIG, 2002). Whenever a
better state is found in this neighborhood, it becomes the current state and the process
is repeated. The heuristic in this case is “search in the direction of better evaluated
states”. If the considered state neighborhood is kept small, then this algorithm is very
resource efficient, as only a fraction of the solution space will be explored (of course, if
the neighborhood includes all possible states, then the algorithm performs an exhaus-
tive search). In this type of algorithm, it is said that solutions are being exploited - i.e.
information about previously evaluated solutions are being used to guide the search.

Exploiting information from the search space is only useful when there is infor-
mation to be exploited. Hence, the evaluation function must yield a search space that
provide such information. The topography or landscape of a search space is a graphical
visualization of the evaluation of each state, plotted for each possible state. Figure 2.1
depicts simple examples of topographies. For an evaluation function to provide useful
information for local search, it must typically generate a smooth topography, so that
similarly evaluated states are close together in the topography (i.e. the “geographical”
location of states is correlated to their evaluation). In an extreme case, the evaluation
function assigns random values to each state, hence completely removing any informa-
tion from the topography.

Several issues may arise when using local search algorithms and different heuristics
have been proposed to alleviate such problems. The basic hill-climbing algorithm, and
its derivatives, are prone to stagnate the search in local optima. This happens when no
neighbor is better than the current solution, leading the search to a halt. However, it is
not always the case that such solution is the optimal one. Consider the plots in Fig. 2.1,
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Figure 2.1: Different possible scenarios for optimization problems: (a) only a single
optimum; (b) single optimum with a plateau; (c¢) multiple optima.

where the topographies of fictitious function evaluations are shown. The topography in
Fig. 2.1(a) is said to be unimodal, as there is only one optimum. Hill-climbing provides
the best results on unimodal problems, because when they do converge, they converge
to the best possible solution.

Another instance where hill-climbing performs poorly is depicted in Fig. 2.1(b). In
this problem, there is a “plateau” where the evaluation of states do not differ from the
evaluation of its neighbors. A hill-climbing search will be unable to continue a search,
returning a solution that may not even be a local optima.

The topography depicted in Fig. 2.1(c) is said to be multimodal. Multimodal prob-
lems (i.e. those that induce multimodal, or rugged, topographies) are characterized by
multiple local optima, from which only a few may be global optima (i.e. provide the
best possible solutions). A hill-climbing search will stagnate in a local optima and there
are no guarantees that such local optima will also be a global one. The algorithm’s out-
come will depend on where it starts (i.e. the initial state). If it happens to start near a
global optima, then it will converge to this global optima, providing the best solution.
Otherwise, only a local optima will be returned, which may or may not be adequate for
the problem at hand.
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2.2.2 Avoiding local optima

In real-world problems, local optima are often present and the solution provided
at these points are not adequate (MICHALEWICZ; FOGEL, 2004). A considerable
amount of efforts has been put into developing algorithms that are able to avoid or
escape local optima. Some noteworthy examples are considered in this section.

Search algorithms that employ some technique to avoid being trapped in local op-
tima are often called global search algorithms, even though only local information
about the search space is still used.

One of the most well-known search algorithms that try to escape local optima is the
simulated annealing3 algorithm (KIRKPATRICK; GELATT; VECCHI, 1983). This
algorithm also starts at a single initial state and proceed like a hill-climbing search.
Whenever a better state is generated from the current state, this better state becomes
the current one. However, if a worse state is generated, the simulated annealing may
accept it (i.e. making it the current state) with some probability - the worse the state
is, the less likely it is to accept it. This provides a way for the algorithm to search
“downhill” and effectively abandon a local optimum or leave a plateau. To allow for
convergence, the probability of accepting worse solutions decreases with time, so that
eventually no worse solution is accepted and the algorithm converges to some solution.

The idea of the simulated annealing algorithm is to allow for some exploration
of the solution space instead of only exploiting the current solution (as is the case of
hill-climbing). The algorithm initially explores heavily the space, accepting frequently
worse solutions. In later rounds, the algorithms prefer to exploit known solutions, fa-
voring convergence speed.

Another approach towards global search is performing multiple restarts of the hill-
climbing algorithm (MUSELLI, 1997; MAGDON-ISMAIL; ATIYA, 2000). This meta-
algorithm then returns the best solution found over all runs. By restarting the hill-
climbing process at different points in the search space, the algorithm can potentially
find multiple local optima, improving the probability of one of them being the global
optima. Each run is completely independent and can be executed either in parallel or
sequentially, without altering the results.

2.2.3 Population-based search

Running multiple independent instances of a hill-climbing (or similar) algorithm
has often been applied in several search task with success (MUSELLI, 1997; MAGDON-
ISMAIL; ATTYA, 2000). However, one of the problems with this approach is that there
can be an inefficient use of computational resources. This can happen due to two main
reasons: resampling of the same solutions and exploration of unpromising regions of
the search space. If we allow for random initial states, there is a chance that many
hill-climbers will converge to the same local optima, returning identical results. On the
other hand, some hill-climbers may get stuck in local optima or plateaus even if other

3The term simulated annealing comes from the annealing process of materials, where they are heated
and slowly cooled so that large crystals are formed, avoiding defects.
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searches have found better solutions, thus wasting resources by exploring solutions that
are known to be sub-optimal.

Clearly these shortcomings can be improved by allowing some sort of communica-
tion between parallel searches. Several studies have tackled this problem, resulting in
different approaches and algorithms. They are usually classified as population-based,
indicating the use of a “population” of searches running in parallel and with communi-
cation or interaction capabilities.

2.2.3.1 Local Beam-Search

One of the simplest forms of population-based search is local beam-search (RUS-
SELL; NORVIG, 2002). In this approach, a number of initial states are generated and
evaluated. The next step is generating neighbor states for each state. For example, if
we start with N states and for each state we generate one neighbor, we have in total
2N states. Then, the IV best states among all 2V states are kept and the remaining
discarded. The process is then repeated. This is a case of best-first search with limited
memory requirements.

In local beam-search, we are effectively guiding our population based on results of
previous samples. Hence, it is a form of communication between searches. The effect
is that “promising” areas of the search space will receive greater attention (i.e. more
computational resources), while less promising areas are abandoned. Hence, visited
solutions are being exploited and exploration is reduced.

The term “promising” assumes that there is a strong correlation between the loca-
tion of solutions in the search space and their evaluation, so that in the neighborhood
of good solutions we expect to find other similarly good (and hopefully better) solu-
tions. Once the algorithm finds a good solution, it expects to find other good solutions
around it. Therefore, it makes sense to direct searches that were exploring worse solu-
tions to these areas. However, even such smooth topographies can be multimodal and
deceptive - the global optima may be surrounded by very bad solutions. Compared to
the hill-climbing algorithm, local beam search allows for more exploration, since not
only the very best state is kept, but a few worse ones are still allowed to remain in the
population.

Local beam-search implements one type of interaction between searches, but only
information about the states’ evaluation is used for that interaction. Information about
the state itself (i.e. its location in the search space) is only indirectly transmitted. An-
other approach comes from the area of Evolutionary Computation, that includes many
successful algorithms such as Genetic Algorithms, Genetic Programming and Evolu-
tion Strategies. In these algorithms, information on the states’ locations is transferred
between searches.

2.2.3.2 Genetic Algorithms

The best and most widely used example of Evolutionary Computation is arguable
Genetic Algorithms (GA) (HOLLAND, 1992; FOGEL, 2000; MICHALEWICZ, 1996;
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MICHALEWICZ; FOGEL, 2004; MITCHELL, 1997). The term GA has been appro-
priated and used in many different ways in the literature and is often used to encompass
the whole field of evolutionary computation, but we discuss it here as a specific algo-
rithm.

A GA is a population-based search algorithm that is loosely based on the idea of
genetic evolution and natural selection and originally proposed by John Holland (HOL-
LAND, 1992, 1986). In a GA, a number of individuals represent states in the search
space, each individual representing a state. Typically, states are represented as binary
strings, called chromosomes. In a chromosome, there is no distinction of individual
parameters of a state, so that if a state is composed of a set of real numbers, these are
coded in a binary form and stitched together in one single contiguous chromosome.

The algorithm starts by randomly initializing N individuals (i.e. randomly assign-
ing a state to each individual) and evaluating them using an evaluation function (often
called fitness function). Then, a new population is created from this population as fol-
lows. A selection algorithm picks pairs of individuals from the current population so
that the probability of selecting any individual is proportional to its fitness (evaluation)
- the more “fit” the individual, the greater the chance it has of being selected. Several
selection algorithms have been proposed. The original algorithm was called roulette
wheel selection, which assigns a larger “share” of selection probability to individuals
with higher fitness.

With probability (1 — p.), the selected individuals are put in the new population
without changes. With probability p., the individuals go through a crossover operation.
The most common type of crossover operation is the the single-point crossover, where
a random bit in the chromosome is selected and the two halves of the chromosomes of
each individual are exchanged, as shown in Figure 2.2, forming two new individuals
which are put into the new population.

parents OAAA00T0  FAOAOTAAO

offsprings OAMAOAAD  AO101010

Figure 2.2: Example of a crossover being performed over 8 bit strings. Two offsprings
are created by swapping bits from two parents at point c.

This selection-crossover process is repeated until the new population is filled with
N individuals. The last step of the algorithm applies a mutation to each individual in
the new population: each bit in each individual is flipped with probability p,,. Then,
this new population becomes the current population, the individuals are evaluated and
the whole process is repeated.

To some extent, a GA resembles a local beam-search: the selection algorithm dis-
cards most of the worse-performing individuals, favoring better solutions. However,
this selection is now stochastic, hence even the worse evaluated solution has some
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(low) probability of being selected (just like simulated annealing). This reduces the
pressure on exploiting only the very best solutions. Nonetheless, the main difference is
the crossover operation, which allows for searches to effectively and directly commu-
nicate information about their states with each other. Russell and Norvig (RUSSELL;
NORVIG, 2002) note that “the primary advantage, if any, of genetic algorithms comes
from the crossover operation”. Such recombination is used to generate “neighbor” so-
lutions, but using information from two solutions instead of just one. Of course, this is
inspired in sexual reproduction in nature and justified by the belief that it provides an
evolutive advantage over asexual reproduction. Under this light, local beam-search can
be understood as an asexual GA with a very strong selection algorithm.

There is a long and on-going debate in the literature about how exactly crossovers
can really help a search (and whether it helps at all), but many, if not most, researchers
in the area (HOLLAND, 1992; FOGEL, 2000; MICHALEWICZ; FOGEL, 2004; GOLD-
BERG, 1989) believe that this operation does provide benefits. There are evidences that
the crossover operation works by modifying the granularity of the search, which is pos-
sible by combining large chunks of useful information. This theory was formalized by
the notion of schemes as the supporting representation.

Several alternatives to each element of a Genetic Algorithm have been proposed.
For instance, it is now common to use any representation that is more natural to the
problem at hand, in contrast to using only binary strings (MICHALEWICZ, 1996); it
has been shown that the representation should not influence the overall search perfor-
mance (FOGEL, 2000). Different selection and crossover methods have been proposed,
including the recombination of more than two individuals and spatially structured se-
lections (we will return to these particular cases later in this thesis).

2.2.3.3 Ant Systems

Another interesting example of population-based search is the so-called Ant Sys-
tems (AS) (DORIGO; COLORNI, 1996) . These algorithms mimic a colony of ants
(or other social insect) in order to transfer information between searches and that have
been successfully applied to combinatorial optimization, such as the Traveling Sales-
man Problem (DORIGO; GAMBARDELLA, 1997). The inspiration is justified due to
observations that ant colonies are able to find the shortest route to a food source without
centralized control. Each search is thus seen as an ant foraging for good solutions

For example, in an Ant Colony Optimization (ACO) (DORIGO; BIRATTARI; STUT-
ZLE, 2006) algorithm applied to the TSP, a population of ants try to find a Hamiltonian
cycle - a cycle that goes through each city exactly once - with minimum cost in a graph.
Initially, ants wander through the graph randomly. Each ant that completes a full cycle
leave a “pheromone trail” over the found path. This trail is a stigmergic* indication of
the quality of the found path, and the amount of pheromone laid on the path is pro-
portional to the quality of the solution. Other ants are probabilistically attracted to the

4Stigmergy is a mechanism of indirect coordination between agents, which exchange information by
modifying some shared environment (BONABEAU; DORIGO; THERAULAZ, 1999).
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pheromone, and stronger pheromone trails end up attracting more ants. Additionally,
pheromone “evaporates” with time, so that a constant flow of ants is necessary to keep
a trail’s pheromone level strong.

Searches communicate with each other through pheromones, probabilistically in-
fluencing each other towards certain areas of the search space. In effect, a single ant is
influenced by all ants that have performed searches before it. Hence, a new solution is
formed by combining several previous solutions, with the addition of some random de-
cisions due to the probabilistic attraction towards pheromone trails (which guarantees
some exploration). The result is that the surroundings of good paths in the search space
are explored more often (i.e. they are exploited), while bad paths receive less attention.

2.2.3.4  Other population-based algorithms

Several other population-based search algorithms have gained attention in the last
few years. Particle Swarm Optimization (PSO) perform a search with a population
of “particles” that constantly move on the search space and have its direction and ve-
locity determined by other particles (EBERHART; KENNEDY, 1995; OLORUNDA;
ENGELBRECHT, 2008). All particles may influence each other, or a specific structure
may be set to restrict influence to a particular neighborhood. A particle knows its own
position (in the search space), the position of the best particle in its neighborhood, the
best particle in the whole system and the best particle it has seen during a run and adjust
its direction and velocity by combining these information.

Artificial Immune Systems (AIS) is a more recent class of search algorithms, in-
spired by the immune system of vertebrates (DASGUPTA, 1999; FARMER; PACKARD:;
PERELSON, 1986). It is presented in several forms, each adapted to some specific task.
Most of these forms are based on the selection of specific structures (antibodies) based
on their “affinity” to some problem. Hence, a process of natural selection is also in
place. AIS algorithms are also population-based, even though the selection algorithms
used in AIS are typically more involved than that of evolutionary algorithms.

2.3 Information Exchange

In population-based algorithms, information collected during a search can influence
and guide how it is conducted. Since multiple searches are performed, either sequen-
tially or in parallel, they can influence each other. We can understand this influence
as a form of communication. Each search communicates some information to other
searches, regarding the value of the region being explored or their raw position in the
search space.

This communication may be very direct, as is the case of Genetic Algorithms, where
pieces of solutions are effectively exchanged. On the other hand, in Local Beam Search,
this communication is very indirect, as searches do not exchange parts of the solution,
but rather “broadcast” their evaluation. Table 2.1 summarizes the discussion so far,
showing how communication takes place in each mentioned population-based algo-
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rithm.

Search algorithm | Individual search Communication method
Local Beam Search state selection by evaluation
Genetic Algorithms chromosome | crossover, selection by evaluation

Ant Systems ant pheromone trail
PSO particle position and velocity

Table 2.1: Short summary of population-based search algorithms.

For all non-exhaustive search algorithms, there is a trade-off between exploiting
known solutions and exploring unvisited solutions. Random sampling of the search
space provides maximum exploration, as all solutions have the same probability of
being selected at any time. On the other hand, a steepest ascent hill-climber will exploit
the initial solution by only exploring its best neighbor.

When using a population-based search, increasing exploration means that less re-
sources will be allocated for promising areas of the search space (i.e. for areas where
good solutions have already been found). Hence, if indeed better solutions are to be
found near good solutions, convergence towards these better solutions will be slower.

Increasing exploitation of found solutions have the reverse effect and improves con-
vergence speed towards better solutions that can be found near the good solutions al-
ready found. However, since less resources are dedicated for exploration of unknown
areas of the search space, there is a higher probability that the algorithm will miss the
global optimum or better local optima possibly located at these unvisited areas. The
trade-off is, then, between faster convergence speed towards local optima and lower
probability of missing global optima.

All population-based algorithms allow for some control of exploitation and explo-
ration. In Evolutionary Algorithms, increasing selection pressure increases exploita-
tion. This control can be attained, for example, by using tournament selection. Tour-
nament selection randomly selects A individuals in the population and selects the best
one to compose the next generation. By tuning K, one can control how much exploita-
tion is being performed - if the group is of the same size as the population, exploitation
is at a maximum (the best individual is always selected, limiting exploration to its sur-
roundings only).

In Ant Systems, exploitation is controlled mostly by the pheromone trail - faster
“evaporation” leads to higher exploration; more attraction towards pheromone leads to
higher exploitation. In Particle Swarm Optimization, the trade-off can be controlled by
setting the weight given to how much a particle is influenced by others.

These algorithms provide such control because different problems require differ-
ent trade-offs. A problem whose topography is highly multimodal will require more
exploration, while a less rugged topography may allow for more exploitation to speed
convergence up. Of course, if time is not an issue, we can always allow for as much
exploration as possible or, even better, simply perform an exhaustive search. Since time
is very often an issue, we need a balance between exploration and exploitation when
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solving the problem, so as to guarantee a good enough solution in a reasonable amount
of time.

We can thus conclude that knowing how to control the trade-off between exploita-
tion and exploration is crucial for any search algorithm and, hence, for problem-solving
techniques. In order to provide solutions with a high quality in a limited amount of time,
one must know how ‘“hard” the problem is and adjust the algorithm accordingly. This
is important because in this thesis we examine the relationship between network prop-
erties and the ability of the algorithms described in the next chapter to perform well in
diverse tasks.
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3 GRAPHS, NETWORKS AND SOCIAL COMPUTING

3.1 Graph Theory

A network is a general term used to specify any set of objects with relations, or in-
terconnections, between them (NEWMAN; BARABASI; WATTS, 2006; BARABASI,
2003). These objects may not be physical objects, but can also be concepts or abstrac-
tions. Connections are representations of any arbitrary kind of relation between two
objects. Hence, the term network can be applied to a variety of systems. For example,
a computer network is a collection of computers that are able to communicate with each
other through physical connections. On the other hand, a social network is a collection
of people with relations that can be more intangible, such as friendship and trust bonds.

Graphs are used as abstract representations of networks. Formally, a graph is usu-
ally represented by an ordered pair G = (V, E'), where V' is a set of vertices, or nodes,
and £ € V x V, aset of edges. A vertex v is said to be adjacent to another vertex v if
(u,v) € E -1i.e. there is a connection from v to u. The neighborhood of a vertex u is
the set of all vertices adjacent to u.

Several types of graphs can be devised based on properties of its elements. The
most relevant to this study are very briefly detailed below. For the explanations that
follow, u and v are vertices in a graph G. Figure 3.1 depicts examples of graphs. The
definitions below follow (NEWMAN; BARABASI; WATTS, 2006).

Directed and undirected graphs An undirected graph has reflexive relations, so that
(u,v) € E = (v,u) € E. A directed graph, on the other hand, has no such
restriction. Directed graphs are often called digraphs.

Weighted and unweighted graphs A weighted (or valued) graph associates a number
or symbol to each edge. This allows for representing additional information about
the connections, such as costs or lengths.

Connected and disconnected graphs An undirected graph is said to be connected if
there is a path from any vertex u to any other vertex v. Otherwise, the graph
is said disconnected. For directed graphs, if the statement holds then the graph
is said to be strongly connected. It is weakly connected if it is connected when
edges’ directions are discarded.
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Cyclic and Acyclic graphs A graph is said to be acyclic if for any vertex v there is no

path that starts and ends on v. If any such cycle is present, then the graph is said
cyclic.

(a) Undirected graph (b) Directed graph

®

(c) Weighted graph (d) Disconnected graph

Figure 3.1: Examples of different types of graphs.

A number of properties are useful to describe graphs and its components. We recall
those relevant to this thesis below.

Degree In an undirected graph, the node’s degree is the number of edges that the node

Path

is part of, i.e. the number of nodes it is connected to. For directed graph, two
types of degrees can be defined. The in-degree of a node is the number of in-
coming connections (number of nodes that “point” to the referred node). The
out-degree is the number of outgoing connections (number of nodes that the re-
ferred node “points” to). For example, in the graph depicted in Fig. 3.1(a), the
node A has degree 3, while in the graph in Fig. 3.1(b), node A has an in-degree
of 2 and out-degree of 1.

A path exists between two nodes, v and v, if it is possible to reach u from v
through a succession of edges. If a path exists between these nodes, then it is said
that u is reachable from v. In undirected graphs, paths are always symmetric, but
that may not be the case for directed graphs. The s between two nodes is the
number of nodes that must be traversed from a starting node to reach a target
node.

Diameter The diameter of a graph is the longest shortest path between any two nodes.

In cyclic graphs, cycles must be excluded to calculate the diameter (otherwise,the
diameter is infinite).
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Hamiltonian cycle A Hamiltonian cycle, or Hamiltonian circuit, is a cycle that visits
every node in the graph exactly once. That is, starting from any node, we return
to the same node by creating a path that visits each node once. No particular
order is imposed on the order of the visits.

Graphs are typically used to represent networks, and tools from Graph Theory can
be used to analyze such graphs and, thus, the networks they represent. Nonetheless,
Graph Theory may fall short when used to analyze certain types of networks, particu-
larly massive networks that are complex and dynamic.

3.2 The Science of Networks

The study of networks has gone through a major paradigm shift over the last few
years. The previous dominating paradigm viewed networks as mostly static structures,
representing static models. The pioneer work of the mathematician Leonhard Euler
in Graph Theory illustrates this line of thought. In such work, Euler was posed with a
simple problem, known as the Seven Bridges of Konigsberg: given a set of islands in the
city of Konigsberg and a set of bridges connecting these island, is it possible to perform
a complete walk such as every bridge is crossed exactly once? Euler introduced the
graph concepts to model the problem and proved that the task for the city of Konigsberg
was an impossible one. Euler proved a theorem stating that for any graph modeling the
defined problem, if the graph had a specific property, then the task was impossible.
This property stated that there could be at most two vertices (i.e. islands) with an odd
number of bridges connected to it.

The problem, and its solution, is obviously static in nature, as neither bridges nor
islands would change, and the graph used as a model was custom-tailored to the prob-
lem at hand. Moreover, the problem statement (and its solution) says nothing about
how the actual bridges and islands are used (e.g. by the population). Graph Theory is
mostly concerned with graphs as pure structures (WATTS, 2003) that are static in time.
As dynamic aspects are introduced, either by allowing the network itself to change or
by having dynamic processes making use of the network, Graph Theory fails to provide
the necessary tools to analyze such aspects.

The so-called new science of networks was devised as a new research area with a
research agenda aimed at tackling the shortcomings of Graph Theory. While it can
be seen simply as an extension of Graph Theory, it has been argued (NEWMAN;
BARABASI; WATTS, 2006) that the agenda of this new research area is different
enough from Graph Theory to make it reasonable to call it by a different name. This
area evolved from the need to understand real complex network structures, that are
often massive in size, without applying too much abstractions, which could hide the
complexities that make the problem interesting in the first place. Several distinguishing
items in this research agenda can be identified, according to (NEWMAN; BARABASI;
WATTS, 2006):

e Focus on modeling real-world networks. While most previous studies on graphs
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focused on artificial constructs that were amenable for analytical analysis, the
New Science of Networks is mostly concerned with providing the tools and
means to tackle real-world networks, with as little abstractions as possible. This
include social networks, biological networks, citation networks, transportation
networks and so on.

o Networks are assumed to be evolving structures. Graph theory is mostly con-
cerned with networks that are static in nature, or representing a snapshot in time
of a dynamic network. The New Science of Networks, on the other hand, recog-
nizes that most real-world networks evolve over time. For example, the network
composed of all websites and the hyperlinks between them changes every sec-
ond, with new websites entering and leaving the network and new hyperlinks
being created or deleted. Hence, a major area of research focus on understanding
how structure at a global scale emerges from local interactions.

e Networks can be understood as dynamic systems. The traditional approach to-
wards modeling using networks oversimplified the relationship between what
happens over a network and its structural properties. The New Science of Net-
works, in contrast, is much concerned with understanding networks as part of
dynamic systems, in which vertices are entities that are tightly coupled by their
interconnections. Hence, dynamic processes may take place over a network and
be influenced by its topology, but also the reverse is true and the topology may
be modified by the interaction of the vertices.

In practice, one of the main distinguishing differences of the new science of net-
works is its statistical approach towards networks. Instead of defining a network by
its structural properties, this approach is interested in its statistical properties, which
emerge only from a macro-view of the network as a whole. Such properties are then
used to create classes of networks. A major line of research in this area is concerned
with classifying real-world networks and creating theoretical generative models that
induce the same properties.

This new Science of Networks spawned several modern studies on all types of net-
works, from biological networks to computer networks. The tools provided by this area
are central to understand modern issues such as disease epidemics (MOORE; NEW-
MAN, 2000), information cascading (LESKOVEC; ADAMIC; HUBERMAN, 2006),
web search (ADAMIC; ADAR, 2005), computer network robustness to attacks (AL-
BERT; JEONG; BARABASI, 2000), possible outcomes of trading networks (KLEIN-
BERG; TARDOS, 2008) and many others. This new Science of Networks has been
mostly useful for Artificial Intelligence, in different sub-areas, such as semantic anal-
ysis, natural language processing and collaborative web search (MITCHELL, 2006;
MENCZER; WU; AKAVIPAT, 2008; BERNERS-LEE; KAGAL, 2008; RADEV; MI-
HALCEA, 2008).

There are several statistical properties that are used to analyze and classify a net-
work and that takes into account its evolving and dynamic properties. Three of them are
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central to the discussion in this thesis, which are described below, following (WATTS,
1999).

Degree distribution The degree distribution is the histogram of degrees for each node
in the graph. It measures how degrees are distributed among nodes. A regular
network is one where all nodes have the same degree (thus, the histogram is flat).
A random network, on the other hand, is characterized by a Poisson distribution.

Characteristic Path Length The Characteristic Path Length (L) of a network G is the
median of the means of the shortest path lengths between all pairs of vertices.
Hence, it can be found by first calculating, for each vertex v € V((), the average
over all shortest path lengths to all other vertices; then, we calculate the median
over all |V (G)| means, yielding L. This represent how “close” vertices are from
each other - the lower L is, the shortest are the average distance between vertices.

Clustering Coefficient Let C, be the clustering coefficient of vertex v and ', be the
set of adjacent vertices to v and k, = |[',|. Then, let:

_|B(T)]
(%)

where |E(T,)| is the number of edges between vertices in I', and (%) is the

total number of possible edges in I',. Hence, C, measures for a single vertex

Cy

the extent to which vertices adjacent to v are also adjacent to each other. The

clustering coefficient for an entire graph G is then defined as C, averaged over
allv € V(G).

3.3 Small-World Networks

The class of Small-World Networks was first proposed by Duncan Watts (WATTS;
STROGATZ, 1998; WATTS, 1999, 2003), in an attempt to provide an explanation for
the so-called Small-World Phenomena. This phenomena states that every person in the
world is connected to every other person by a very short path of intermediate friends
and acquaintances. The phenomena became first known in the scientific community
due to a series of pioneering experiments conducted by Stanley Milgram (MILGRAM,
1967)'. In his most well-known experiment, Milgram sent letters to several random
people; these letters roughly stated that he was trying to reach a final specific individual
in a US city and that the recipient should forward the letter to whomever they thought
could bring the letter closer to the final individual (or deliver to the individual himself, if
the recipient knew the person). Before forwarding the letter, however, the recipient was
asked to add his or her name to the end of the letter, so that Milgram could trace the path

'Tt then became known for the general public mostly due to the popular website The Oracle of Bacon,
which proposed that any actor in the world has a path to the actor Kevin Bacon in a network where an
edge connects two actors if they starred together in a movie. See http://oracleofbacon.org.
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to the destination. Milgram showed that, for the letters that did reach the destination,
the average path length was between 5.5 and 6.0, which later lead to the popularization
of the term “six degrees of separation”.

Even though Milgram’s experiments were subject to criticism, mostly due to the
fact that it did not account for letters that never reached the destination (KLEINFELD,
2002), other experiments showed similar results. The puzzlement over this problem
comes from the fact that such short path lengths are expected for random networks,
but the social network connecting people is hardly random - e.g. there is certainly
a higher probability of knowing a neighbor than knowing someone in a far country.
Moreover, the probability of two people with a common friend knowing each other is
much higher than the probability for two random people. Social networks have some
inherent structure. However, if we do accept that social networks are structured (and
thus highly clustered), like a geographical grid for example, in order to account for such
non-randomness, then the short path lengths should not exist.

Watts developed a model that accounted for both the apparent structure and short
path lengths of social networks (even though the origin of the model is related to the
study of synchronization of cricket chirps (WATTS, 2003; STROGATZ, 2003)). This
model is known as the Small-World Network (SWN) model. The central idea is to
start with a very regular and clustered network and then add a few shortcuts between
random nodes. Such shortcuts drastically reduce the otherwise long path lengths of the
otherwise structured network.

In its most common form, the SWN model starts with a simple regular ring network
(a 1-lattice network) with N nodes and each node is connected to only a few (K)
immediate neighbors. Then, each edge in the network, with probability /3, is reassigned
to a random node. More precisely, the algorithm to perform such rewires is described
in (WATTS; STROGATZ, 1998) as follows:

1. Each vertex ¢ is chosen in turn, along with the edge that connects it to its nearest
clockwise neighbor (7,7 + 1).

2. A uniformly random real number r is generated. If > 3, then the edge (7,7 + 1)
is unaltered. If » < /3, then (¢, i+ 1) is deleted and rewired such that i is connected
to another vertex j, which is chosen uniformly at random from the entire graph
(excluding self-connections and repeated connections).

3. When all vertices have been considered once, the procedure is repeated for edges
that connect each vertex to its next-nearest-neighbor (that is, ¢ + 2), and so on.
In total k/2 such rounds are completed, until all edges in the graph have been
considered for rewiring exactly once.

The above algorithm describes the SWN generative model, which yields networks
that possess characteristics of SWNs for a range of (relatively low) values of 5. In
particular, such networks are characterized by a characteristic path length that grows in
O(logN), i.e. logarithmically with the number of nodes, while presenting a high clus-
tering coefficient. In contrast, a random network have short path lengths, but also a very
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low clustering coefficient; on the other hand, a regular ring network is highly clustered,
but have a long characteristic path length (that grows in O(NV)). This is the reason why
SWNs are often described as being “between order and randomness” (WATTS, 1999).
Indeed, /3 controls how much randomness is introduced into the network.

Figure 3.2 shows different networks generated using the SWN generative model and
different values of 5. For 8 = 0.0, the ring network is unchanged and remains perfectly
structured and regular. For 5 = 1.0, all edges are rewired and the network becomes
completely random. Intermediate values of 3 generate networks that are SWNs. Figure
3.3 shows how characteristic path length (L) and clustering coefficient (C') scales with
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Figure 3.2: Examples of networks with different rewiring probabilities. The starting
topology is a regular ring network with neighborhood size of four.

Small-World Networks were found to be quite ubiquitous and it is conjectured
that most naturally occurring, as well many men-made, networks have the small-world
property (WATTS, 1999). For instance, electric power grid networks, protein interac-
tion networks, the neural network of the C. Elegans worm, social influence networks,
e-mail exchange networks, scientific paper citation networks, all have characteristics of
a SWN. This model became a more realistic alternative to model systems which other-
wise would be modeled by either structured or random networks (WATTS, 1999, 2003;
NEWMAN; BARABASI; WATTS, 2006).

SWN are not only distinguished by their topology, but also by the effects such
topology has on dynamic processes taking place on the network. A disease that spreads
through a SWN will spread faster than a structured network due to its short charac-
teristic path length (KEELING, 1999; KUPERMAN; ABRAMSON, 2001). Global
computations in celullar automata were also found to be possible by allowing cells to
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Figure 3.3: Characteristic Path Length (solid line) and Clustering Coefficient (dashed
line) for different values of rewiring probabilities (p,), starting with a regular ring net-
work. Replicated results after experiments originally performed in (WATTS; STRO-
GATZ, 1998).

interact through a SWN instead of the more traditional grid network, and then manip-
ulating the network to improve convergence time(WATTS, 1999). Agent cooperation
in artificial societies also emerges faster if interactions are performed through a SWN
(OLFATI-SABER; FAX; MURRAY, 2007).

3.4 Scale-Free Networks

Another class of networks recently discovered is composed of Scale-Free Networks.
This class was first proposed by (BARABASI; ALBERT, 1999) as a way to describe
the growth of a network formed by hyperlinks between websites. This network is com-
posed by websites and each time a new one is created, it creates hyperlinks to a number
of existing websites. Typically, a researcher would use a random network to model such
network: when a new node enters the network, it creates connections to nodes chosen
uniformly at random. Hence, any currently existing node has the same probability of
receiving the connections of the entering node.

However, Barabasi observed that on the World Wide Web, some websites are ex-
tremely popular, attracting a very large number of connections, while most failed to
attract more than a few links. Such highly connected nodes, named hubs, should not
exist if the network was indeed growing randomly. The degree distribution of a ran-
dom network follows a Poisson distribution, which presents a typical (average) degree.
Lower or higher degrees are increasingly unlikely - a node with several standard devi-
ations from the average, as hubs are, has essentially zero probability of existing. The
degree distribution found on website networks, however, displayed a strikingly differ-
ent behavior (Fig. 3.4): most nodes have a very low degree, while a few have extremely
high degrees. This distribution follows a power-law distribution, in that the probability
P(k) that a node will have degree k is defined by: P(k) ~ k™7
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Figure 3.4: A stylized power-law distribution, reproduced from (BARABASI, 2003).

For the World Wide Web, an estimate for v is of v = 2.1 & 0.1. This means
that a node having twice as many connections as another node is approximately twice
more likely to attract a new link, rendering a version of the popular phrase “the rich
gets richer”. Such distribution is clearly not predicted by the random network model,
or even by the Small-World network model. This distribution allows the existence of
hubs due to its “fat tail” - a slow decaying probability to the right (much slower than a
Poisson distribution).

Barabdsi and Albert proposed a generative model for networks that display the
power-law distribution that characterizes scale-free networks?. The algorithm proposed
introduces the concept of preferential attachment, in which nodes connect preferen-
tially to highly connected nodes. This generative model, known as Barabdsi-Albert
model, executes the following basic steps:

1. Start with a small number (m) of pre-existing vertices;

2. Atevery time step, a new vertex is introduced with m < mg edges that link the
new vertex to m existing different vertices;

3. The probability P(v) of an existing vertex v receiving a link from the new vertex
is proportional to its degree k,, such that:

ko

P<U) Zue\/ ku

After running the above steps a few times, the emergent network will display the
power-law degree distribution with v = 2.9 4+ 0.1. A Scale-Free network is often also
a Small-World network; the reason for that is the presence of hubs which, by attract-
ing many connections, end up serving as shortcut between many nodes. Therefore,
characteristic path lengths are typically very short in these networks.

2The term scale-free is a reference to the fact that such networks lack “scale”, in the sense that
many nodes have low degrees and a few have high degrees, rendering the average between these non-
informative (WILLINGER; ALDERSON; DOYLE, 2009).
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Figure 3.5: A Scale-Free Network with 500 nodes generated by the Barabasi-Albert
generational model. The resulting network is pictured in (a) and the corresponding
degree distribution function is shown in (b).

This preferential attachment mechanism, and the resulting scale-free network, are
often found in real networks. Both the network formed by hyperlinks between websites
(BARABASI; ALBERT, 1999) and the underlying infrastructural network that com-
pose the Internet (ALBERT; JEONG; BARABASI, 2000) are scale-free. The network
of citations in scientific papers is also scale-free, having a majority of papers that are
seldom cited and a few papers cited extremely often. The collaboration network of
movie actors is also scale-free, with a few actors prominently being cast for movies,
while a vast majority play a very few roles in their careers.

Framing a network as a Scale-Free network is also important to make predictions on
its properties and to take action to control the dynamics on the network. For instance,
the knowledge that the network formed by sexual partners is scale-free (LILIJEROS
et al., 2001; SCHNEEBERGER et al., 2004) allows for targeting specific individuals
(the hubs) for testing or treating for sexually transmitted diseases. Another example
is the robustness of the Internet to attacks by hackers: if the infrastructural Internet is
scale-free (ALBERT; JEONG; BARABASI, 2000) (a fact that is still disputed (WILL-
INGER; ALDERSON; DOYLE, 2009)), it means that it is very resilient to random
attacks, but very vulnerable to targeted attacks; that is, if the hubs are specifically tar-
geted, then the Internet can become essentially disconnected by disabling very few
nodes, while random attacks would very rarely hit one of these hubs (because there are
many more non-critical, low degree, nodes).

3.5 Social Systems and Computing

Consider a group of people trying to solve some difficult problem - for instance,
how to predict the stock price of a company in a stock exchange market. Each person
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can, and usually does, have a hypothesis on how to predict the price and applies this
hypothesis with some degree of success. But these people are not independent, as they
write books about their hypotheses, read books from others or simply exchange ideas
during lunch. Each of these interaction transfer some information from one person to
another, which ultimately have an effect on the hypotheses each one use. Even without
the participation of any other person, a single individual would be able to create such
hypotheses, but how does the interaction patterns inside a group affect the quality of
such hypotheses?

If we, as observers, consider the above mentioned group as a system that is trying to
come up with a correct hypothesis to the problem at hand, then we should ask whether
we should allow more or less communication between the participants, so that we could
improve how effective the system will be. This is a decision that managers often have
to make in business organizations: should employees be able to communicate more
(say, by grouping them in open spaces, sharing desks etc.) or should communication
be constrained (e.g. by putting each employee in a separate closed office), so that the
organization productivity is improved?

This idea of seeing a group of people as a system trying to solve a problem is gaining
momentum in the form of crowdsource. To crowdsource a problem is to delegate its
solution to an undefined, large group of people (a crowd), in the form of an open call,
in such a way that no single individual has the responsibility of solving the problem but
any of these individuals may step up and propose a solution (BRABHAM, 2008). Given
adequate incentives for individuals to want to solve problems, this creates a problem-
solving system that can be quite different from conventional employee-based systems
and very effective in generating solutions for certain problems (HOFFMANN, 2009).

Many successful examples of crowdsourcing exists. A recent example is Amazon’s?
Mechanical Turk?*, which is often referred to as an “artificial artificial intelligence”.
Amazon makes available a web-based system where anyone can post problems to be
solved. The poster set a price for the problem and a detailed description of what is to be
done and how a solution quality is to be evaluated (whether it is acceptable or not). This
problem then becomes visible to all users of the service, so that any user may decide to
solve it, receiving the stipulated value in the end. The poster does not know beforehand
who may solve it or whether it will be solved at all.

For an example of such system in action, consider Amazon Remembers service for
the Apple’s” iPhone. This service allow customers to send a photo of an item to Ama-
zon and it will then return a link to that item (or a similar item) in Amazon’s online
catalog. Instead of using complex algorithms to process the image, extract its compo-
nents, identify the item and search for it on the database, Amazon chose to crowdsource
the problem. When an image is sent by a customer, it is forwarded to the Mechanical
Turk as a problem, stating something like “find an item in Amazon’s website that is
similar to the item in the photo” and setting a value for a solution (often a few U.S.

3http://www.amazon.com
“http://www.mturk.com
3> Apple Computers Inc.
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dollar cents). Any user may then simply browse Amazon’s website to try and find
the product and post the link back to the customer. With a high enough incentive (i.e.
price) and enough users, the system replies very quickly and with a high quality to such
simple requests.

A distinguishing characteristic of the Mechanical Turk, and most crowdsourcing
systems, is that there is no collaboration between users to solve a problem. Once a
problem is taken by a user, it is not available anymore for other users, so that each
problem is assigned uniquely to a single user®.

A different crowd-based problem-solving method is known as wisdom of crowds
(SUROWIECKI, 2005), where a group of people is responsible for finding a solution
to a problem. In such setting, each individual in the crowd still works alone (i.e. they
are independent of each other) but their solutions are aggregated so as to compose
one final solution. In a very simple example, a group undertake the task of counting
the number of balls inside a jar. Each individual propose an independent solution and
then all solutions are averaged to compose the final answer. If each individual answer
is kept independent of each other and there is enough diversity, then this average is
often a better estimate than any of the individual estimates. The reason for that is that
individual biases and errors cancel each other out. Examples of systems that make
explicit use of the wisdom of crowds concept include prediction markets and online
auctions.

While this latter approach use effectively a group to solve a given problem, still
during the problem-solving process there is no interaction between individuals. In fact,
in order for the wisdom of crowds to work, it requires that there is no such interaction
(otherwise, individual biases and errors will be shared and spread).

These problem-solving techniques have received a great share of attention due to
their easy applicability and manageability. Models of such systems are also easy to
create and analyze making them ideal testbeds to investigate (theoretically and experi-
mentally) properties of problem-solving by groups. However, they do not include any
social component, as each problem-solver acts independently of each other.

A more social approach can be found in the areas of Social Computing and Social
Information Processing. These terms are often used in a general sense to include any
system where humans, and not machines, are used to produce some outcome. Social
Computing is more commonly used to describe computational systems that provide
support for social interaction (e.g. forums, social network sites, chats), while Social
Information Processing (SIP) is used to describe computer-mediated systems where
social interactions are able to produce useful outcomes for some task.

An example of SIP system is its application to image tagging. The problem is to
create useful rags (i.e. keywords) that can be used to describe the contents of an image.
This is useful for online search engines, since tags allow users to search for images
based on their content. Google uses a SIP system to perform this task by transforming

0f course, the “user” may consist of a group of people itself, but such granularity is not important
for the present discussion.
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it into a game and using human players to tag images (AHN; DABBISH, 2004). The
process is simple: by accessing a website, users are paired randomly and the same
image is shown to both of them; these users must then type words or phrases that
describe the image. Every time both users type the same tag, it is stored and used
to describe the image afterwards; the players then receive a reward for reaching such
agreement.

The idea behind this SIP is that if two unrelated people agree on describing a com-
mon image using the same tag, then it must be the case that this tag is a good descriptor
for the image. While we do have a social interaction and the system does solve a well-
described problem, interaction is somewhat limited (non-persistent, only between two
random people) and the system’s goal is effectively to extract knowledge from a crowd,
rather than solve general problems.

Most SIP’s have these characteristics. Social interaction are very restricted in some
way and the task’s goal is often to extract knowledge from users. This can be very dif-
ferent from general problem-solving, because when extracting knowledge the problem
is already solved in some way - in the example, users already know tags to describe the
images and the system is only validating the tags in order to avoid malicious/erroneous
uses.

Another example of a system that can be considered a SIP is wiki systems, of which
the best example is the Wikipedia’. In a wiki system, a document is shared among a
group of writers and anyone can add or edit information contained in the document.
After a number of editing iterations, the document may reflect the whole knowledge
contained in the group, which can be more than what any single member knows. This is
in contrast to the image tagging task, where the knowledge extracted was a intersection
of the knowledge contained in the two users, while in a wiki the captured knowledge
can be seen as the union of the group’s knowledge. All social interaction happens in
the document itself and is completely unstructured - every change to the document is
automatically shared with everyone else.

None of the mentioned systems capture the full complexity of the example given
in the beginning of this section - a group of independent social actors interacting to
progressively solve a problem by exchanging information. For another example, con-
sider the engineering problem of designing a product. An organization will deliver this
problem to a group of employees, which will come up with a solution (e.g. a prototype
or final product). It is not the case that each employee will come up with a product
and then all these solutions will be combined to deliver the final product (as in wisdom
of crowds). Neither it is the case that any single employee will take hold of the whole
process and deliver one final product (as in crowdsourcing).

Rather, it is more likely that there will be an interactive process where employees
will exchange ideas and knowledge in pairs or in group so as to reach an agreement on
what the product should be and how it is to be built. There will be meetings, brain-
storms, talks with consultants outside the company and several iterations of (hopefully)

"http://www.wikipedia.org
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increasingly better designs, until a single final product is reached. This is also the same
process that guides modern scientific research. A researcher will work typically within
a group, going through the same basic processes as employees in a business organi-
zation, but will also attend conferences to exchange ideas with peers, publish papers
in journals and proceedings to share findings with others and read several papers from
peers.

While these interactive processes are closer to a SIP system due to the possibility of
social interactions, they are also much less restricted - e.g. employees certainly do not
interact only in pairs, a paper published by a researcher will be read by an unspecified
and variable number of other researchers, a trader looking for a new system to beat the
stock market will read books from several authors and so on. In the most general case,
information must be allowed to flow in diverse ways: one-to-many, many-to-one and
many-to-many.

In these cases, a social network, composed of otherwise independent actors, collab-
orate and interact to solve a problem. How these actors interact seems to be of major
importance, since this network ultimately constraints how information flows between
one actor to another, guiding the problem-solving process. To the best of our knowl-
edge, there is no existing model for a system that makes primary use of communication
between a set of networked agents to solve problems. To come up with one such model
is a central part of this thesis, as detailed in the next chapter.
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4 GOALS AND METHODOLOGY

In this chapter we define our general and specific goals and present the methodology
used in the research carried out in this thesis.

4.1 Goals

In a broad sense, this thesis fits in a research agenda that focuses on understanding
how social interactions in social networks can be used to solve problems. Our main ob-
jective is to better understand how social systems can be organized or built so that they
can solve problems efficiently. That is, we are interested in how to extract computation
from social networks. Two guiding research hypotheses are considered in this thesis:

Hypothesis 1: Given a set of independent agents acting to solve some arbitrary prob-
lem, the collective problem-solving capabilities can be improved by allowing
these agents to exchange information on the problem.

Hypothesis 2: Given a set of interacting agents composing a problem-solving system,
the network formed by the interaction patterns of these agents can affect the qual-
ity of the solution.

The first hypothesis aims at verifying whether allowing communication between in-
dependent problem-solvers can improve the collective outcome of a system composed
of all such interacting actors. Hence, we are interested in comparing two types of re-
lated systems; one where a group of problem-solvers act individually and independently
to solve some problem, and another where the same basic type of problem-solvers are
allowed to exchange information on partial solutions.

The second general goal aims at understanding how network properties can affect
distributed problem-solving performance. Assuming a system composed of interact-
ing problem-solvers, we ask how the specific patterns of interaction and the resulting
network can affect the performance of such system. Moreover, we ask how different
common topologies compare to each other.

We consider strictly homogeneous actors, each running the same algorithm to pro-
cess and distribute information. In addition, we are not interested in problems where
the solution requires the cooperation of multiple problem solvers (e.g. pushing a heavy
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box that no single robot can push by itself), but rather in problems that can be solved by
a actor, but where cooperation can lead to improved efficiency and/or efficacy. This lat-
ter case is better suited for performance analysis, as the raw number of actors involved
is not important for how the solution is composed (i.e. they are not part of the solution).

Hence, we are also not interested in problems where the network itself is part of the
final solution. That is, we do not wish to find a particular network configuration that
is required to solve a problem (e.g. graph-colouring problems), but rather we view a
network simply as a “facilitator” that helps reaching solutions that could be obtained
without a network at all.

Under this general scope, several previous studies aimed at understanding the role of
networks in a system composed of social actors. Most of these studies focused on relat-
ing specific network topologies to properties of a system (e.g. (MASUDA; AIHARA,
2007; KIRLEY, 2006; FORTUNATO, 2005; DELGADO; PUJOL; SANGUESA, 2003;
BIN; YU; SINGH, 2000)). For instance, in (FU; LIU; WANG, 2007) a set of learning
artificial agents played a spatial version of the Prisoner Dilemma problem, each choos-
ing whether to cooperate or defect based on interactions with neighbors; it was shown
that the fraction of cooperating agents changed as a function of the network topology
being used (the Small-World Network, for example, yields faster convergence towards
cooperation when compared to a regular grid). In (FORTUNATO, 2005), it was shown
that a transition towards dramatic opinion changes in a population happens earlier in
Scale-Free Networks.

In these cases, a solution to the problem being solved is endogenous - while the
network is not strictly part of the solution, the solution only makes sense in the context
of the system: it is generated by and to the system itself. We, however, are interested in
systems that generate solutions that are exogenous to the problem-solvers, in the sense
that the solution is generated by the system, but the system is not necessarily the direct
beneficiary of the solution. Hence, a solution can be extracted and used without any
knowledge of the system and the processes that generated it, and the evaluation of this
solution is effectively performed outside the system.

The following are specific goals of this thesis:

e To propose a model of social problem-solving where a network plays a strong
part in the process of finding solutions;

e To identify relevant network properties and its effects in problem-solving perfor-
mance;

e To compare the efficacy of common network structures in problem-solving sce-
narios;

e To verify the utility of social-inspired search algorithms as general search tools
for automatic problem solving.
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4.2 Methodology

Our approach is to propose a model and associated algorithms that are able to solve
specific instances of well-stated problems and that make use of multiple agents acting
in parallel towards solving the same problem; such agents are allowed to exchange
information by means of a configurable network, so that it is possible to modify the
network as we please in order either to fine-tune the algorithm to specific problems, or
to represent cases where a network structure is predefined and fixed.

The proposed model uses recent ideas from Network Theory and is particularly in-
spired on concepts of Social Networks, in the way that vertices in a network consume
and distribute information. It does not try to mimic social behavior in all its speci-
ficities, but rather tries to capture what we perceive as being the basic mechanisms
for information to be processed in such environments. Therefore, the proposed model
must use as much as possible the exchange of information as the main driving mech-
anism for solving problems. Models of networked problem-solving are nonexistent in
the literature, as far as our knowledge goes, hence the need to propose one such model.

The algorithms studied in this thesis are composed of networks with hundreds of
vertices and an even larger number of edges, which may be dynamic. The size, com-
plexity and variety of these models make it difficult to study them by analytic means.
Therefore, our approach is based on numerical simulations of the models on a com-
puter, with posterior analysis of the outcomes.

We frame problem-solving tasks as search tasks, in which one desires to find one or
more solutions that satisfy the problem statement. This means that our proposed model
must be able to build solutions and evaluate them to verify whether or not a viable
and acceptable solution was found. The social aspect of the model comes from its
ability to build solutions by aggregating information from a social network. Moreover,
we focus on optimization tasks, which provide a more objective measurement of the
quality of solutions, as any solution can be evaluated and mapped to a real-valued
number representing its quality.

The performance of a search algorithm can be measured by at least two methods
(RARDIN; UZSQY, 2001). The first one measures the quality of solutions and the
second how fast the algorithm finds a reasonable solution.

The former can be measured by setting a limit on resources (e.g. time, space, num-
ber of rounds, number of evaluations) after which the best found solution is returned
and used to compose the evaluation of the algorithm. This is a reasonable methodol-
ogy if the resource constraint is a natural part of the problem. Otherwise, setting the
resource limit can be tricky, as the evaluation may change depending on how we set it.
For instance, some algorithm may take a long time time to find very good solutions,
while another find reasonable solutions very quickly, but is unable to reach very good
solutions. If the limit is set high enough, the first algorithm is the winner, but with tight
resource constraints, the second would be the choice.

The second method of evaluation consists in measuring how long the algorithm
takes to find a reasonable or the best solution. The term “reasonable” can be applied
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in different ways, but often means reaching a solution that is “good enough” for the
problem at hand. Of course, finding the best solution accounts for finding a solution
that has a better evaluation than any other possible solution. The latter can only be used
when the best solution’s evaluation is known a priori (but note that the solution itself
may not be known, only its evaluation) and the former requires the problem statement
to define what accounts for a reasonable, acceptable, solution.

In practice, search algorithms are tested over either benchmark problems or real-
world problems. In benchmark problems, many of the problem’s properties are known
(or specified) and, often, so is the best possible solution. For these, it is possible to
relate an algorithm’s performance to specific properties of the problem. Moreover, the
complexity of the problem is often controllable in some way. Hence, evaluation is made
easier since not only we know what the best solution is, but we can also have a better
grasp on why the algorithm is performing as measured.

In real-world problems, the problem’s structure and properties may not be known
or well-understood and, more often than not, the best solution is unknown. When these
problems are used, they are used to evaluate an algorithm in a very specific environment
and its applicability to that type of problem, rather than unveiling insights about the
algorithm itself. Nonetheless, some real-world problems are often used in the literature,
making it possible to compare different algorithms applied to the same problem, even
if an analysis on the reasons behind the performance may be somewhat more limited.

In this thesis we use both benchmark and real-world problems to evaluate and com-
pare algorithms. We apply the algorithms to benchmark multi-parameter functions,
with well-known properties, in order to better understand the algorithms themselves
and their many parameters. We also use some real-world problems to compare the
algorithms with other optimization approaches.

We chose five benchmark functions to conduct the evaluation of the algorithms.
Two functions are unimodal (only one optima) and three are multimodal (multiple op-
tima). Table 4.1 describes each function. Their dimension is a parameter that can be
set and used to control how complex is the function, since it directly controls the size
of the search space. We consider dimensions ranging from 2 up to 200 in our experi-
ments. The number of dimensions is set differently for each case and is described in
the appropriate sections.

The unimodal functions are considered easy to solve by most optimization algo-
rithms, while the multimodal functions chosen are considered quite hard, for different
reasons. In what follows, we provide a brief description of each function.

The sphere function, depicted in its two-dimensional form in Fig. 4.1(a) is a sim-
ple unimodal function that can be easily solved by hill-climbing. The hyper-ellipsoid
function (Fig. 4.1(b) is also an unimodal function, but each parameter has a different
optimum value (while for the sphere function, all parameters have the same optimum
value). Having different optimum values for each parameter may decrease performance
of search algorithms that exchange parameters outside their locale in the function (e.g.
crossovers in Genetic Algorithms).

The Schwefel function (Fig. 4.1(e)) is multimodal and it has a second best mini-
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Figure 4.1: Two-dimensional plot for benchmark functions used for performance eval-
uation of the algorithms.



48

Sphere | f1(z) =) .7, ;

Hyper-Ellipsoid | f2(Z) = 3217, 5ix?2

1zl 2 1

|71 _
el -1 00sri) o0 4 o

=
w
—~
8
S~—
I
|
o)
o
D)
(e}
no
o
vl
Il &
L
8

Ackley

Schwefel | f4() = 418.9829|Z| — S —x;sin(+/abs(x;))

Griewank | f5(7) = Z'ﬁl Ei H'-i COS(COi}?i)) i

7

Table 4.1: Benchmark functions used in this thesis.

mum that is located far from the global minimum, leading many search algorithms to
become trapped. The Ackley function (Fig. 4.1(c)) has a deep valley, full of increas-
ingly better local optima leading to the global optimum; it requires local optima to be
constantly overcome. Finally, the Schwefel function (Fig. 4.1(d)), is the sphere func-
tion with added modulation, which creates a highly multimodal function, where the
global optimum is surrounded by large hills.

Throughout most of the thesis, a greater focus is put into the multimodal functions,
as they represent more realistically the sort of problems involved in general optimiza-
tion problems. In particular, the Griewank function is the “hardest” of these functions,
as it is both multimodal and non-separable, hence we shall use it more extensively and
provide comparison with other functions where appropriate. As we shall see, since our
proposed algorithms make no assumption on the underlying topography of the function
being optimized, the results presented do not vary qualitatively across these functions.

As for real-world problems, we applied the algorithms to two test scenarios. The
first one is the Traveling Salesman Problem, using data from real cities and from VLSI!
circuits. The second one is concept learning, with data taken from real classification
problems.

Given the stochastic nature of the studied models, a statistical analysis is performed
over the results of each experiment. Therefore, we will report average results over
multiple independent runs, along with information on standard deviation or standard
deviation of the mean where the variation itself is not relevant. Unless otherwise noted,
these statistics are applied over data extracted from 20 independent runs. Where com-
parisons are made, a standard 7-fest was applied to test for significance at 5% level of
significance - i.e. whenever we say something is or is not significant, we are referring
to this level of significance.

We also make extensive use of boxplots to graphically visualize distributions. A

'Very Large Scale Integration
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boxplot (or box-and-whiskers diagram) is a graphical visualization of five statistical
features of the data, namely: the sample minimum, the sample maximum, the lower
quartile (Q1), the median (Q2) and the upper quartile (Q3). We also include the visu-
alization of any outliers, which we consider to be any observation that lies more than
1.5 interquantile range(IQR) lower than QI or that lies more than 1.5 IQR above Q3,
following (TAMHANE; DUNLOP, 1999).

The experiments were implemented using the programming language C++, us-
ing both the GNU G++ and Microsoft VC++ compilers running on multiple x86-
compatible computers. The large number of experiments consuming random num-
bers required a careful decision over the pseudo-number generator to be used in the
implementation. We used the Mersenne Twister MT19937 32-bits algorithm (MAT-
SUMOTO; NISHIMURA, 1998), as it provides a very large period (2!%937 — 1), with
relatively low time and space requirements.
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5 MEMETIC NETWORKS: A MODEL OF NETWORKED
SEARCH

As argued in Chapter 3, an adequate search algorithm that makes use of explicit net-
works is nonexistent in the literature. In this section we propose a general model that
aims at performing search by using an underlying network to explicitly structure com-
munication between multiple parallel searches. This model is inspired on the exchange
of information in social networks and have the following main characteristics:

e It is population-based, executing multiple communicating searches in parallel;

e Communication between searches is structured by an explicit, controllable, net-
work;

e New states are generated by aggregating information from neighbor states.

The inspiration for this model comes from Richard Dawkins’ concept of memes
(DAWKINS, 1976; DISTIN, 2004; BLACKMORE, 2000). Dawkins argues that cul-
tural evolution takes place using similar mechanisms as genetic evolution. He coined
the term meme as the cultural equivalent of the gene. A meme is anything that can be
copied from one mind to another by any means. As Dawkins (DAWKINS, 1976) put it:

Example of memes are tunes, ideas, catch-phrases, clothes fashions,
ways of making pots or of building arches. Just as genes propagate
themselves in the gene pool by leaping from body to body via sperms
or eggs, SO memes propagate themselves in the meme pool by leaping
from brain to brain via a process which, in a broad sense, can be called
imitation.

Cultural evolution, Dawkins argues, proceed by a process of natural selection of
memes. Individuals expose their memes to audiences, which copy (remember) those
that are considered interesting or useful. These copies will then be able to propagate
further, to other minds. In the process, some memes will be changed, effectively creat-
ing new memes, which will go through the selection process too. After many iterations,
like in genetic evolution, only the fittest memes survive in the cultural pool. Of course,
what is considered “fittest” is difficult to define precisely, but in general one may con-
sider a fit meme one that provide some value, an incentive to be copied. Despite the
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common basic mechanisms, it is argued (BLACKMORE, 2000; DAWKINS, 1976) that
memes seem to evolve at a much faster pace than genes.

Although meme evolution share much in common with gene evolution, it is by no
means identical. Dawkins observed that memes seem to be more prone to continuous
changes than genes. Genes are able to replicate with a high-fidelity, with mutations be-
ing rare. However, memes are more susceptible to changes and blending - i.e. memes
are rarely passed on in their original form, but are changed by the “current” meme
holder by adding his or her own ideas and blending with other memes. For exam-
ple, when we read an article in a newspaper, we may comment about this article with
a colleague, but we certainly never forward the article word-by-word to him or her;
we emphasize those parts that we found more compelling, possibly adding our own
opinion and other sources, maybe even citing incorrectly some date or name due to a
misinterpretation.

However, it can be the case that such changes are not important at all, as they may be
happening just on peripheral information surrounding the “real” meme. A similar pro-
cess exists in genes, where parts of a DNA, called introns (RODRfGUEZ—TRELLES;
TARRO; AYALA, 2006), are non-coding - i.e. they do not code proteins and were often
called junk DNA (although this is now very disputable). It has been argued that introns
have the role of absorbing much of the mutation (WANG et al., 2007), so that the parts
responsible for coding proteins have a smaller probability of being “hit”, increasing the
fidelity of copies. Likewise, much of the information contained in memes can be just
accessories to a smaller part which is being transmitted with high-fidelity. Therefore,
it is currently unknown whether this higher mutation plays a role in how fast meme
evolution can happen.

We argue here that there is another significant difference between memes and genes,
which may account for such faster evolution, and that we try to capture in our model.
This difference is in how memes are propagated. While genes are transmitted to ge-
ographically close offspring, memes have no such limitation. With the invention of
the press and with the current telecommunication infrastructure, memes are much less
restrained by geography - i.e. they may propagate quickly to (almost) any part of the
world. But it is not the case that memes are transmitted (broadcasted) to all individuals
in the world, nor are transmitted randomly to any subset of individuals. Rather, memes
diffuse through a social network, which impose restrictions on who may receive a meme
generated at any node of this network. Such social network can be much more dynamic
than any genetic diffusion system, as individuals can choose to create new connections
(or have these connections created by random chance), effectively changing whom they
may receive memes from or to whom they will pass on their memes. In genetic terms, it
would be like an offspring that could receive genes not only from its parents, but from
any other individual in the world.

Additionally, in a biological setting, there are two ways to create a new set of genes.
The first one is by mutation, the sole driver of changes in asexual organisms. The sec-
ond one is sex, which combines genes from exactly two individuals. In a cultural set-
ting, however, a new meme can be created by changes in a single meme or by blending
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information from several memes. There seems to be no restriction on the maximum
number of “parents” that may take part in such blending. A scientific paper is a good
example of this property: the fact that a paper cite multiple sources is an evidence
that the ideas being presented are an aggregation of these sources, in addition to some
original thoughts and data from the author.

Moreover, the number of “parents” is not fixed at any number. Each meme may
be affected by a different number of other memes. As we have argued, memes diffuse
using a social network, where each vertex may represent a collection of memes (or an
individual holding such memes). Hence, the number of influencing memes is ultimately
defined by a node’s degree.

The following properties summarize what we believe are the most relevant differ-
ences concerning meme evolution when compared to gene evolution:

Memes diffuse through a social network;
e Memes can influence a potentially large number of other memes;

e Memes can be influenced by a potentially large number of other memes;

The number of memes influencing and being influenced by any other meme is
not fixed and may vary from meme to meme and through time.

5.1 The Memetic Network Model

In this section we describe our model of networked search, named Memetic Net-
works. The name reflects a fundamental characteristic of this model: the inspiration
on the diffusion of memes in a social network. The model’s goal is to allow for search
using basic social principles involving the exchange of information (memes) between
nodes in a network, while retaining the relevant properties of meme evolution discussed
in the previous section.

The central idea is to have multiple parallel searches exchanging information on the
state being visited through a network. Each search can be understood as a container
for memes, while memes are propagated through the network to and from other con-
tainers. A meme in this model is any piece of information relative to the state held
by a search, which include the state itself (i.e. a candidate solution to the problem)
and meta-information about this state (e.g. its evaluation). Each search aggregates
the memes received in some way, possibly adding local information to it, and makes
available the resulting new memes to the network.

To comply with the desired properties, the model must be able to aggregate any
number of memes relative to a candidate solution into a single candidate solution. The
number of memes being received and the number of recipients of the new meme must
be defined by network itself, without further restrictions. Moreover, we require some
level of autonomy to each node, so that even a single node could perform search and
improve a solution. This is necessary because we understand the network much more
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as a facilitator that allows for a better use of multiple parallel searches, rather than a
necessary condition to perform search.

We also allow for some level of selfishness to the nodes, but do not allow them to
be deceitful. Hence, a node will not make its own solution worse even if that may help
the global search. The solution they make available to the network is always their best
known solution.

Our model is a basic framework that guides how a network is formed and how it is
used to perform search. The model uses of a graph G = (V, E), where V' is a set of
nodes representing candidate solutions to the search problem at hand and £ is a set of
edges {(u,v)|u,v € V'} representing adjacency between vertices. These edges are not
weighted, but may be oriented. Additionally, an evaluation function eval evaluates the
utility of the candidate solution.

The set F defines the network topology and its properties, i.e. the dynamics of the
network. It can be construed in two different ways: statically or dynamically. In the
static case, [ is predefined and remains fixed during the execution of the algorithm. On
the second case, £/ may be modified in runtime by following rules to guide the creation
of new connections and deletion of old ones. In the next chapters we will consider both
cases.

The set V' is composed of containers for memes, which encode candidate solutions
for the search problem. Each node holds exactly one candidate solution. Once E is
defined, V' is updated by following update rules that make use of £ to structure how
information is to flow through the network (thus defining the dynamics on the network).

The evaluation function eval evaluates the state, indicating its value to the search
problem at hand. For example, it may indicate whether the state is a goal state or map
the state to a real number, indicating its utility to an optimization problem.

To better separate each stage of the model, we divide the general algorithm into
three main steps: Connection Step, Aggregation Step and Appropriation Step. In what
follows, we justify and explain each of these steps in turn.

5.1.1 Connection Step

The Connection Step is responsible for defining the structure of the network by set-
ting its edges appropriately. Any changes made to F, the edges of the network, is thus
part of the Connection Step. It may be executed only once, hence composing a fixed
structure. In this case, network properties can be set a priori and remain unchanged
during a search. Conversely, this step can be executed regularly, inducing a dynamic
network. As we will see, dynamic networks can use information about the ongoing
search to adjust connections, in order to try and improve performance.

Naturally, the latter is a more general case of the former, but we find useful to
differentiate them nonetheless - Chapter 6 is concerned solely with the static case, while
Chapter 7 deals with dynamic networks.
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5.1.2 Aggregation Step

In the Aggregation Step, each node copy memes available to it through its connec-
tions (as specified in the Connection Step), blending them into a new candidate solution.
This step is the social part of the search, as nodes may influence each other’s search by
exchanging information about their current states. It defines the precise way that memes
are to be aggregated into a new solution, which, as we will see, is a problem-dependent
issue. In order to do so, it must specify what a meme is in the context of the problem -
hence, the framework provides a way to formalize the definition of a meme.

It is also the responsibility of this step to specify what kind of information is to
flow through the connections. While communicating memes relative to each candidate
solution is a natural choice, it is also useful to allow for the evaluation of each solution
to be also propagated through the connections, so that nodes can decide whether to use
the received memes based on their relative utility to the problem. Naturally, for some
problems, each node could re-evaluate the received memes to measure their utility, but
since evaluation may be a costly process it is more efficient if each node propagates its
own utility through the network.

Any number of memes may potentially take part in the aggregation process. How-
ever, an aggregation method may decide not to use all information available, or select
a subset to make use of.

5.1.3 Appropriation Step

In social sciences, an information is said to be appropriated when it is assimilated
by the individual, making some concept or idea that was someone else’s into his or
her own (BLACKMORE, 2000). Following this definition, the Appropriation Step is
responsible for adding to the recently-aggregated candidate solution any local infor-
mation or process to it. It is in this step that external' information, not present in the
received memes, can play a role and become integrated with the existing memes.

Such local information may take form of heuristics or as information available only
to a single node. For an example of the latter, in a multi-robot foraging scenario the
Appropriation Step could be responsible for adding information about a robot’s sensors,
which is not available to or from other robots. In a more abstract search, this step could
apply for example other search algorithms (such as hill-climbing) to the solution before
making it available to the network.

This step represents the independent search - i.e. the search that would be performed
if there was no communication present. This step may be empty, in which case the
Aggregation Step is the sole responsible for the search. On the other extreme, the
Aggregation Step may not be present (or the network may not have any edge) and the
model acts as |V'| completely independent searches.

'External in relation to the aggregation step.
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5.2 Instantiations of the model

The described model is only a framework to guide the construction of networked
search algorithms. An implementation of the model requires the specification of each
step, which are to some extent problem-dependent. We call an instantiation of the
model a Memetic Network Algorithm (MNA).

As we have argued, the Connection Step can be used to create a static network, with
fixed topology, or a dynamic network, where connections can be created and removed
at runtime. It is important to distinguish between two types of neighborhood implicit in
the model. The first is the physical neighborhood, defined by the network itself, which
represents access to information - i.e. given any node, it can receive information from
any node in its physical neighborhood. On the other hand, the actual neighborhood is
a subset of nodes in the physical neighborhood from which the node effectively access
information from.

This is certainly true in a social space. For example, in a workplace, we work near
several colleagues and they constitute our physical neighborhood. However, when ex-
ecuting a job, we may choose not interact with all of them, but only with a subset.
This can happen for several reasons - in the workplace, we will interact with colleagues
that can help get a job done and will avoid those that have nothing to contribute. This
defines the actual neighborhood. From this example it is clear that the actual neigh-
borhood may be dynamic even when the physical neighborhood is static; if the job
changes, or suddenly some colleagues are suddenly able to help us, we may change
with whom we are interacting.

The Connection Step is responsible for defining the physical neighborhood, while
the Aggregation Step defines the actual neighborhood. In this section we detail possible
Aggregation Steps for different scenarios, but we delay the discussion on the Connec-
tion Step for later chapters.

The Aggregation Step is responsible for using information from a node’s neighbor-
hood to build a new solution. As such, the exact implementation can be dependent on
the codification used for the problem. As we have argued, the concept of memes is
mostly based on the idea of imitation. This social/memetic approach leads to a very
simple aggregation method that is based on copying successful solutions from nodes’
neighbors, as follows:

Definition (Aggregation by Copying the Best Neighbor) Let A be the set of adjacent
vertices to any vertex v; let u = argmaz,caeval(z). If more than one vertex in A
may satisfy this condition, u is chosen randomly among these. Then, make v < u,
otherwise v is left unaltered.

This method, for each vertex, copies the whole solution of the best neighbor to the
vertex. Naturally, the way a solution is copied is dependent on the implementation
details, but it is also clear that the general idea would work at least for a wide range of
problems using very different codifications. While the physical neighborhood is defined
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by the network’s topology, the actual neighborhood is restricted to a single node - the
best node in the physical neighborhood. It is with this node that other nodes interact.

This Aggregation by Copy, as we will refer to the described method hereafter, is
very simple and does indeed use some information from all neighbors. However, ex-
cept for the best neighbor, only the evaluation of the solutions are being used, not
information contained in the solutions themselves. Copying is the very essence of the
concept of memes and this method treats a solution as a single, complete, meme. As
we have argued, the issue of memes’ granularity (i.e. what particular division of in-
formation is to be treated as a meme) is still an open question and the model proposed
here allows for experimenting with different granularities.

We have also argued, following (DAWKINS, 1976), that memes can be recombined
and blended to create new memes and that that is a central characteristic of meme evo-
lution. In our model, to effectively blend the solutions available in multiple neighbors,
one must know how a solution is represented so as to devise an aggregation method
that fits the problem. Such method may not be immediately obvious, and certainly
more than one method exists for any given representation. In what follows, we de-
scribe possible implementations for several problems, using different representations
for solutions.

5.2.1 Real-Valued Parameter Optimization

In this scenario, an arbitrary multi-parameter function f (%) is given for which we
want to find Z* so that f(#) is the minimum possible value of the function. Hence,
this constitutes a minimization problem?. A candidate solution for the problem is rep-
resented by a vector ¥ of real values inside some specified range. Hence, it is a case of
bounded, constraint-free, real-valued optimization (MACNISH; YAO, 2008).

A straightforward aggregation method that makes use of information contained in
neighbors can be created by exploiting the chosen representation: compose a new vec-
tor by averaging over elements of the solution.

Definition (Aggregation by Averaging over Neighbors) For every vertex v, let A(v) =
{u|(v,u) € EAeval(u) = eval(v)}. Let x; represent the candidate solution contained
in vertex 7, and x; ; the 7 — th component of this solution. Create a new aggregate
candidate solution zy such as x ; = % > icA Tij-

Note that this aggregation method compute the average over only better-evaluated
neighbors. This is again a case where the actual neighborhood is different from the
physical neighborhood. The network topology works in the direction of limiting each
node’s choice, but otherwise set no constraints in how the defined neighborhood will be
used. The reasoning behind this heuristic is that when solving a problem, it is not in our
interest to interact with sources that are not doing very good at solving that problem;
rather, we will pursue interaction with nodes that are actually doing better than we are.

>The maximization problem is symmetrical; any minimization problem can be described as a maxi-
mization problem and vice-versa without loss of generality.
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Averaging over components of solutions is not something new. Genetic Algorithms
applied to real-valued parameter optimization often make use of this approach to per-
form the crossover between pairs of individuals. In a Memetic Network, however, the
average may be performed over an unspecified and potentially variable number of so-
lutions. Averaging is a scalable method - unlike, for example, a single-point crossover
in GA, it supports seamlessly and efficiently any number of components.

Averaging is also used in ensemble learning, where a group of independent clas-
sifiers are trained and their output is averaged to compose the final result, which is
often more accurate than the output of any individual classifier. This idea became pop-
ularized by the term wisdom of crowds and the book of the same name. However, to
obtain “wisdom of crowds” it is required that the individual problem-solvers are inde-
pendent from each other, which is not completely the case here - nodes are constantly
exchanging information with each other, making their solutions correlated.

We can calculate the computational efficiency of running such method. Let NV, be
the number of physical neighbors, N, the number of actual neighbors and C' the number
of components in a solution, running this algorithm takes time in 6(N, + N,C) for each
node, since we have to find the best performing neighbors (6(1V,,)) plus take the average
over all components of every actual neighbor (0(N,C)).

A minor variation to this aggregation method is to perform a weighted average, thus
allowing a stronger influence by better solutions in the construction of new solutions.
Such variation allows for a smooth transition between the Aggregation by Averaging
and Aggregation By Copy - given enough weight, the best solution will dominate the
average, hence reducing the method to the copy mechanism. A different approach
altogether is detailed below.

Aggregation By Shuffle over Neighbors. For every vertex v, let A(v) = {u|(v,u) €
E A eval(u) > eval(v)}. Let 7} represent the candidate solution contained in vertex 4,
and z; ; the j-th component of this solution. Create a new aggregate candidate solution
%o so that each component x ; = x j, where for each value of j, £ € A is randomly
selected.

This aggregation method uses information from multiple sources to compose a new
solution, but in opposition to the Aggregation by Averaging, it blends the solutions
by randomly shuffling components of each solution, so that each component is fully
copied from a single vertex - i.e. blending is coarser than in the previous case, as it take
place in the solution as a whole, but not in individual parameter. In this case, a meme
is considered to be a single component of a solution.

This method is more efficient than the previous one, since we do not have to access
all components of all actual neighbors. It rather can be implemented so as to run in
6(N, + C') (for each node) by constructing an array of the best performing physical
neighbors (A(N,)) and then for each component of the solution selecting randomly a
component from the nodes in this array (0(C)).

There are also several choices for the appropriation step. As discussed previously,
the appropriation step can perform any local changes to the solution in addition to the
aggregation process. For instance, we could apply some local search heuristic to the
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aggregated solution, such as a hill-climbing or a gradient search. However, the simplest
form of local modifications is arguably a simple random search, as follows.

Definition (Appropriation by Randomization) For each real-valued parameter, with
probability p,,, replace the parameter with a random number inside the domain’s range.

This implements (for small values of p,,) a random walk - i.e. small changes create
a new solution in the neighborhood of the current solution. Of course, this aggregation
method alone it is not an effective search method, as we are only randomly generating
new solutions, without concerns on guiding the search in any way. Nonetheless, we
shall use such appropriation in most of our experiments.

A complete algorithm using Aggregation by Shuffle and Appropriation by Random-
ization is depicted in Algorithm 1.

Algorithm 1 Memetic Network Algorithm using Aggregation by Shuffle
Initialize set V' with N solutions with £ random components each
while termination condition not met do

initialize network (Connection Step)
newNodes <+ ()
for node € V do
evaluate solutions in nodes
C < emptyset
for each n € neighbors(node) do
if eval(n) > eval(node) then
C+CUn
end if
end for
if C' # () then
for j =1to kdo
randomN ode < random node from V'
newNode(j) < randomN ode(j)
end for
else
for j < 1tok do
if random(0, 1) < p,, then
newNode(j) < random(lowerbound, upperbound)
end if
end for
end if
newNodes U newN ode
end for
V < newNodes
end while
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5.2.2 Binary Function Optimization

Genetic Algorithms introduced the idea of manipulating information in a low, ge-
netic level instead of working on coarser, phenotypical, granularities. Binary strings
are often used for that purpose. However, it has been shown that the original rea-
soning in favor of such low-level representation does not hold and that the choice of
representation does not affect how search is performed, at least for any two bijective
representations (FOGEL, 2000). Therefore, other representations that are more natural
to the problem have been preferred in the literature.

Binary representation, nonetheless, has the advantage of being very general and
relatively standard codification. That is, if a search technique exists that works on
binary representation then, if the original representation can be converted to a binary
form, the technique can be used without changes *. This is particularly useful in search
algorithms that perform some sort of recombination between solutions (e.g. crossover);
such recombination operators must typically be custom-built for the representation used
and using a standard representation may reduce the hassle of customizing the algorithm
to the problem. Therefore, it may still be useful to provide search algorithms that
operate over binary representations. If, for nothing else, at least because many problems
are naturally represented by binary strings. Additionally, it allows for a more direct
comparison with the canonical GA.

The scenario is the same as the one in the previous section: we are interested in
optimizing a multi-parameter function by adjusting its parameters. However, now pa-
rameters are represented by a single contiguous binary string, instead of real numbers.
More formally, a candidate solution is composed of a bit vector B = bi,bs, ..., b, of
length n; each of the C' parameters is encoded using k contiguous bits, hence n = Ck.

Again, we wish to use a simple method to aggregate multiple sources of infor-
mation. Unlike recombination in GA, the method must be scalable and support any
number of sources. For instance, the proposed Aggregation by Shuffle over Neighbors,
proposed previously, can be applied to binary representations in a straightforward way,
simply by considering each bit as a parameter. Hence, bits are copied from random
neighbors, forming a new solution. A different approach made possible due to the dis-
crete nature of the problem is to aggregate a new solution by taking the most common
value for each bit among solutions in the neighborhood.

Definition (Aggregation by Majority Voting) For every vertex v, let A(v) = {u|(v,u) €
E A eval(u) = eval(v)}. Let B; represent the candidate solution contained in vertex 4,
and b; ; the j-th bit of this solution. Create a new aggregate candidate solution B, such
as:

0, lf% ZiEA biJ’ < 0.5
b(],j =41, lf% ZieA bi,j > 0.5

boj, otherwise

30f course, this is true for all representations, but conversions to binary strings tend to be effortless.
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This method performs a majority voting and takes the most common value as the
value to be used when composing a new solution. If there is a draw for any bit, that bit
remains unchanged. Again, an alternative method is to use weighted voting, allowing
more “votes” to better evaluated solutions. This method clearly runs in (N, + CkN,)
and can be less efficient than those previously presented because £ increases exponen-
tially with the required precision and domain’s range.

A random search can be implemented in the appropriation step in a similar fashion
as the real-valued case. We simply flip each bit of the aggregated solution with some
probability.

Definition (Appropriation by Binary Randomization) Flip each bit of a solution with
probability p,,.

As with the real-valued method, for small values of p,, this method implements a
random walk, generating solutions near the aggregated solution.

5.2.3 Combinatorial Optimization

In a combinatorial optimization problem, we wish to find a permutation of elements
that optimizes some evaluation function. This is the case of e.g. scheduling problems,
vehicle routing problems and the Traveling Salesman Problem (TSP) (APPLEGATE
et al., 2007). We focus on the latter in our discussions to exemplify this class of prob-
lems.

The TSP consists of finding the optimal Hamiltonian path in a graph. That is,
given a graph, the goal is finding a path that include every vertex in the graph exactly
once such that the cost of this path is minimized. This is a NP-Hard problem in its
general form (APPLEGATE et al., 2007). We consider the case where the graph is fully
connected, hence it is always possible to reach directly any vertex from any another
vertex.

A candidate solution for the TSP can be represented as a vector 7 of integers, where
each integer represent a city* in the graph and the vector represent the order that the
cities must be visited (see Fig. 5.1). The evaluation of such candidate solution is
straightforward. Therefore, the problem is finding the best of all @ possible per-
mutations.

Since a candidate solution for the TSP is discrete in its nature, we could consider
using the same Aggregation by Shuffling or Majority Voting proposed in the previous
section. However, it should be clear that this could lead to solutions that are not well-
formed. Figure 5.2 depicts a case where shuffling can lead to a solution where some
cities appear more than once, while other are excluded.

Some repairing algorithm would have to be used to fix the cases where a malformed
solution arises. Instead of fixing solutions, we propose an aggregation method that al-
ways returns well-formed hamiltonian paths. The idea is to compose a path by looking

“We use the term city to refer to a vertex in the TSP graph, so that there is no confusion with vertices
of the Memetic Network.
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Figure 5.1: A hamiltonian path over 8 vertices and the corresponding representation
using a vector.
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Figure 5.2: Three well-formed hamiltonian paths are aggregated using the Shuffle
mechanism into a new candidate solution, but this new solution is not a hamiltonian
path.

for common transitions between cities, instead of the absolute position of each vertex
in the vector.

Definition (Aggregation by Common Transitions) For every vertex v, let A(v) = {ul(v,u) €
E A eval(u) = eval(v)}. Start the new path with an arbitrary city ¢y. The next city ¢;

will be the one that follows ¢y most frequently in the solutions in A(v). The process is
repeated until a full path is formed. Ties are solved by random chance.

This procedure will always return well-formed paths that include the most common
transitions in the solution’s actual neighborhood. Unlike the Aggregation by Majority
Voting, this method introduces heuristic knowledge about the problem into the aggre-
gation process - a good path is formed by good partial routes, hence it may be worthy
to find and keep these.

The appropriation step must also be adapted to retain well-formed solutions. Ran-
domly swapping two cities is an adequate choice, as any well-formed solution will
remain well-formed after the swap.

Definition (Appropriation by Swap) For each city in the solution, swap it with a ran-
dom city with probability p,,.



62

Hence, the application of a MNA to the TSP shows that for certain scenarios, the
aggregation and appropriation methods must be adapted to the problem.

5.2.4 Experiments

In order to have a better understanding on the role of each component of a Memetic
Network Algorithm, we conducted some comparative experiments disabling some parts
of it. In what follows, we used the binary shuffle method for binary-encoded function
optimization described in Section 5.2.1, with 16 bits used to encode each dimension.

Figure 5.3 shows results for 1000 rounds of the algorithm applied to the Griewank
function in three different cases: without the Aggregation Step (with p,, = 0.01), with-
out the Appropriation Step (or with p,, = 0.0) and with both steps (full algorithm, with
prn, = 0.01). For all cases, a static network with 100 nodes, a regular ring topology and
neighborhood size of eight is used. The same qualitative results was observed for all
other functions.

10° : ; ;

best solution found

i 1 i
0 500 1000 1500 2000
round

Figure 5.3: Evaluation of the best solution found for each round of the full MNA (solid
line), the algorithm without the aggregation step (dashed line) and the algorithm with-
out the appropriation step (dotted line).

It is possible to observe that the full algorithm performs much better than any step
running individually. When only the Aggregation Step is absent from the algorithm,
the algorithm is reduced to a random search, no communication is present and new
solutions are randomly and independently generated from the current set of solutions.
We observe that the probability of finding good solutions, or even of improving the
initial solutions, is small in this case.

On the other hand, without the Appropriation Step, the algorithm has limited ability
to explore the search space, becoming restrained by the initial set of solutions generated
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randomly at the beginning of the algorithm. When building new solutions by shuffling
the neighbor’s bits, initially new solutions can be formed, and such solutions have a
better-than-random chance of being an improvement over the existing solutions; how-
ever, not all bits have the same probability of appearing in a new solution, since this
is dependent on the initial set of solutions. This may lead to a state where no further
search is performed. The simplest example happens when all nodes encode the same
solution - shuffling over any number of nodes create no new solutions in this case. Once
the information available is depleted, the algorithm becomes stuck, because it can no
longer create new information (i.e. explore other areas of the search space).

The Appropriation Step must guarantee that the whole search space is potentially
available for the algorithm to explore. This is the case for all appropriation proposals
so far: any possible solution in the search space has a non-zero probability of being
generated at this step. Hence, new information is always available to be aggregated,
making the algorithm less susceptible to premature convergence. This step guarantees
convergence to the global optimum in the limit, since at each step the global optimum
can be generated.

This is akin to Evolutionary Algorithms, where mutation is only used as a back-
ground operator to keep the whole search space available to the search being performed.
Since it is a background operator, mutation rates are kept small. The same holds for
our algorithm, as shown in the next section.

5.2.4.1 Effects of Noise

Apart from the network, the only parameter of the algorithm is p,,, the probability of
each bit being flipped. Small values of p,, means that new solutions are created, during
appropriation, near the current solutions, hence exploring a small neighborhood in the
search space. Large values, on the other hand, allows larger “jumps” in the search space
- 1n the limit, for p,, = 1.0, a completely random solution is generated every time.

We tested several values for p,, and evaluated the impact in search performance.
The results shown in Figure 5.4 are relative to the best solution found after 2000 rounds
using a regular ring network and the Aggregation by Shuffling method applied to real-
valued solutions for the Griewank function. The best result is obtained for a very small
value of p,. For large values, any information obtained from the aggregation step is
destroyed, by replacing the outcome with random solutions.

The same qualitative behavior is observed for all tested functions, but the precise
optimum value of p,, changes with the particular function, its particular number of di-
mensions and the aggregation method used. Nonetheless, this value is always very low,
ranging approximately from 0.01 to 0.05. While we try and fine-tune this parameter in
later chapters, for most of the arguments in this thesis we are not interested in obtain-
ing the best performance from the algorithm, but rather provide comparative results.
Hence, we use for most experiments the value of p, = 0.01, which provides a good
average performance on the functions being considered.
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Figure 5.4: Best solution after 5000 rounds for different values of p,,, using the Ackley
function and a ring network. Adding too much or not enough noise make the algorithm
unable to find good solutions.

5.2.4.2 The advantage of aggregating

Let us consider two different MNA. The first, uses the Aggregation by Copy, which
simply copies the best solution in the neighborhood. The second, uses the Aggrega-
tion by Shuffle, which takes information from the better evaluated neighbors’ solutions
to compose a new solution. We experimented with both algorithms on different opti-
mization functions using networks with identical properties. Even though the results
presented here are useful to provide a general idea on the behavior of each method,
we will see in the next chapter that each aggregation method performs their best us-
ing strikingly different parameters. The following parameters were used: regular ring
network, neighborhood size of eight, 200 nodes, p,, = 0.01.a

Figure 5.5 shows the quality of the best function value after 10000 rounds using
each method for different 10-dimensional functions. We can see that in this case, both
methods present very similar performance. Indeed, no statistical significant differences
can be found between the results provided by the two methods.

However, for a higher dimensionality, aggregating from multiple sources provides
a considerable advantage. Figure 5.6 shows box-plots for the same functions, but now
with 100 dimensions. In all types of functions tested, Aggregation by Shuffle provided
better results when compared to Aggregation by Copy. Not only the found solutions
were better on average, but also deviations were smaller for the shuffling method (i.e.
the algorithm provides improved solutions consistently). Such difference in perfor-
mance is persistent throughout any single round, as shown in Fig. 5.7.
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Figure 5.5: Comparative box-plot of the best function evaluation after 10000 runs and
20 independent runs using Aggregation by Copy and Aggregation by Shuffling for dif-
ferent 10-dimensional functions.
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Figure 5.6: Comparative box-plot of the best function evaluation after 10000 runs and
20 independent runs using Aggregation by Copy and Aggregation by Shuffling for dif-
ferent 100-dimensional functions.
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Figure 5.7: Convergence history when optimizing the Griewank function using Aggre-
gation by Copy (dashed line) and Aggregation by Shuffling (solid line). Averages over
20 independent runs are presented. Shuffling provides better solutions throughout the
whole run.

5.3 Discussion

To the best of our knowledge, there is no general search model that captures the
features that characterize meme evolution. There are, however, a few works that are
related to ours and aim at studying the same basic problem tackled here.

In (LAZER; FRIEDMAN, 2005), a study was conducted on a group of interacting
people trying to find a solution to a simple problem under different conditions. In the
experiments, they allowed the participants to interact under an strict environment, so
that several network topologies could be forced upon then. They then commented on
the results, showing that different network topologies resulted in differences in how fast
the group was able to converge to a solution. The problem in question was how fast
did the solution spread through the group, an issue close related to how technological
advances propagates through the society, rather than how good was the solution found
(because the problem was very simple).

A similar study was conducted by (MASON; JONES; GOLDSTONE, 2008), where,
again, a group of people was asked to solve a simple problem (number guessing) and
the particular network structure forced upon the group was related to how fast did the

group find the optimal solution. Only four (fixed) network structures were tested and
similar results to that presented in (LAZER; FRIEDMAN, 2005) were found.

The model and results here presented distinguishes themselves from these previ-
ous work in three main features. First, we consider search tasks that are considerably
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more complex than previous approaches, which mostly consider exceedingly simple
search tasks. In contrast, we consider optimization in multiple dimensions and scenar-
10s, which may benefit from more sophisticated mechanisms to build new solutions,
as we have discussed. Second, we provide extensive comparison with more traditional
search techniques, effectively evaluating in which domains a network search can per-
form well or badly. Third, we conduct a more systematic approach towards experiment-
ing with networks, examining multiple network types and their full range of relevant
parameters - conversely, previous work deal with a very restricted number of networks
and almost no experiments are made on variations of the same type of network.

Those familiar with evolutionary algorithms, and genetic algorithms in particular,
may have noticed that the proposed model have similarities to these algorithms. Indeed,
there are studies on spatially structured GAs, where the population is distributed in
such way that parent selection occurs only over a limited neighborhood. Moreover,
other studies investigate the utility of combining multiple parents during a crossover.
Therefore, the Memetic Networks model could possibly be classified as a particular
type of multi-parent spatially structured evolutionary algorithm. However, we observe
the following differences:

o [n multi-parent evolutionary algorithms, the number of parents is fixed during
a run of the algorithm. Hence, every crossover will use the same number of
parents. In a MINA, the social network allows for each “individual” (node) to use
a different number of “parents” to compose its new solution. If the network is
dynamic, these numbers may change during a single run of the algorithm.

e With a few noteworthy exceptions, studies in spatially structured evolutionary
algorithms are motivated by the need to create distributed versions of the al-
gorithms, running on clusters and computer networks, which impose a natural
structure over the problem - the result is that most works are concerned with
grids or toruses as the underlying structure, limiting the network’s properties that
may affect performance.

e As far as our knowledge goes, there are no studies that merge both lines of re-
search and investigate multi-parent recombination in spatial structures.

The main reason, however, for this work not to be classified under the broad area of
evolutionary algorithms is that it departs from the basic analogies typically used in that
area. The genetic analogy breaks down as there are no known natural occurrence of
recombination of more than two chromosomes. Memes provide a much better analogy
and justification for the recombination of multiple sources of information. The social
network analogy is also more suitable to model such recombination than the simpler
pair mating, allowing more flexibility in not only controlling, but also analyzing pat-
terns of information diffusion using tools from Network Theory.

Maybe one of the main differences between a GA and a MNA is the statistical
approach towards building new solutions. While a GA builds its solutions from two
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parents, a MNA using the appropriate Aggregation Step will build a solution using
several “parents”, which is amenable to statistical analysis - e.g. in the Aggregation by
Common Transitions we build a new solution by taking the transitions that occur most
often in the connected vertices. This is a central social aspect of the MNA, where new
solutions are based in other solutions that are performing well - the higher the frequency
of a solution (or partial solution), the higher the probability of it being adopted by
others.

The term Memetic Algorithm was introduced in (MOSCATO, 1989) to denote a type
of Genetic Algorithm that uses some local search heuristic along with the traditional
genetic operators. It is however mostly unrelated to our approach both in its goals and
its embedded concepts of memes.

While we used the term social network to denote the framework’s underlying inspi-
ration, our attempt is to capture the basic features of constrained information exchange
and distributed processing, without concerns at effectively modeling actual social be-
havior. Therefore, the framework is composed of what we believe are the essential
features to perform a networked search, but we leave out complexities from real social
networks. The implementation of each step into a working model may be done so as to
display characteristics of real-world systems, such as cognitive traits, local heuristics
or preferential connections between nodes. We however make no attempt at emulating
any existing system in its full complexity.
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6 SEARCH IN STATIC NETWORKS

We begin our studies on networks by asking how well-known network properties
of common network classes affect search performance. Experimenting with static net-
works allows for a finer control over the network’s parameters, hence making it easier
to relate properties to performance. Nonetheless, several real-world scenarios present
a fixed, or slow-changing, network. In a business organization, a hierarchy is typi-
cally fixed and employees consult with approximately the same colleagues when solv-
ing problems. Friends consult with roughly the same groups of friends (BARABASI,
2003).

In these cases, the network topology, and its structural properties, can be considered
fixed. Hence, the physical neighborhood of vertices remains unchanged, even if the
actual neighborhood is allowed to change (e.g. even though our group of friends are
somewhat stable, for a specific problem we may consult only with a subset of these
friends).

In order to create static networks using the Memetic Network model presented in
the previous chapter, we define the Connection Step and execute it only once, at the
beginning of a search. When executing multiple independent runs, we allow each run
to create a new network.

6.1 Search in Small-World Networks

Let us start by using Small-World networks to structure the information flow for our
search tasks. Several studies - see e.g. (BIN; YU; SINGH, 2000; KLEINFELD, 2002;
KUPERMAN; ABRAMSON, 2001) - suggests that real social networks have indeed
many properties of small-world networks, making this class particularly interesting to
our studies. Our interest resides in instantiating a MNA to perform search using a
small-world network and then implement experiments to understand how properties of
these networks can impact the search.

The Connection Step implements the generative model for small-world networks
shown in Chapter 3. We start with a regular ring network, with each vertex connecting
to the ' immediate neighbors, and then add random shortcuts - for each edge in the
network, we rewire it to connect to a random vertex with probability 3. It is immedi-
ately clear that K (the neighborhood size) and (3 (the rewiring probability) are central
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parameters for the model and we focus on analyzing them.

6.1.1 The Effects of Neighborhood Size

The neighborhood size K defines the average vertex degree in a network. For the
regular ring network, K defines the exact network degree, since all vertices have the
same degree. In our model, K defines the maximum number of solutions that may be
used to compose a new solution, i.e. the physical neighborhood. Also, K is always
even, since the neighborhood is always increased by adding two new vertices to it (one
neighbor on each “side” of vertices). Hence, the smallest value that induce a connected
network is two and we may vary K in increments of two. The largest value for K
is N — 1 (or the closest even value smaller than N — 1), in which case the network
is fully connected. The higher the value of K, the more sources are available for the
aggregation step. Hence, for each node, K defines the amount of information available
to build new solutions.

To verify how neighborhood size affects search performance, we consider regular
ring networks with different values for K. In the following experiments, we use both
Aggregation by Copy and Aggregation by Shuffle applied to the optimization problems
described in Section 4.2. We report on experiments using N = 100 and p,, = 0.01,
running each algorithm for 5000 rounds and performing 20 independent trials. We
consider the following neighborhood sizes: K = 2, K = 6, K = 12, K = 30 and
K = 98. These were chosen so as to represent a variety of scenarios, respectively
a minimally connected network, a small number of neighbors, a moderate number of
neighbors, a large number of neighbors and a fully connected network.

Figure 6.1 shows the results using Aggregation by Shuffle in two different moments
of the algorithm applied to the Griewank function. Figure 6.1(a) shows the best function
value after a long run, defined as 7' = 2000 rounds of the algorithm. The first thing
we can observe is that K has a strong influence on how well the algorithm performs.
The worse analyzed case (K = 2) provides solutions that are on average more than an
order of magnitude worse than the best case (K = 98); more precisely, the best case
provides solutions that are on average about 16 times better than those provided by the
worst case. Moreover, after 2000 rounds, larger values of K always lead to solutions
that are at least as good as those obtained with smaller values of this parameter; the
best solutions are obtained for X' = 30 and K = 98. It is not statistically significant
the performance difference for these two values; the difference between K = 30 and
K = 12 is somewhat small, but significant. Therefore, allowing a more dense network
is beneficial to the search being performed after such large number of rounds.

However, Figure 6.1(b) depicts a different behavior for a smaller number of rounds
(T'" = 200). For such shorter run, the best performance is actually obtained for an
intermediate value of K (in this case, K = 12). Either setting K above or below
such value leads to a decrease in performance. As in the previous case, the worse
performance still happens for sparsely connected networks and the difference between
the best and worse cases is still quite steep, but less so.
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Figure 6.1: Best function values when optimizing the Griewank 200-dimensional func-
tion using Aggregation by Shuffle and real-value encoding, with different neighborhood
sizes and at different moments of the algorithm.

In order to better visualize this latter behavior, Figure 6.2 shows a complete plot
for all possible values of K. A smooth transition between each performance level is
present, with a clear optimum value for K being visible. In the same figure we also
show that the same general behavior is present for the Sphere function. Applying the
algorithm to any of the tested functions provide similar results, and the optimum value
of K varies only slightly over these functions.
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Figure 6.2: Average best function value after 200 rounds for the full range of values
of K using a 200-dimensional Griewank function (a) and a 200-dimensional Sphere
function (b), Aggregation by Shuffle and real-value encoding. Averages are over 5
independent runs.

Using binary encoding instead of real-values leads to a similar behavior and the
presence of an intermediate optimum value for K is present even in longer runs. Figure
6.3 shows the results using this encoding method. We can see that the differences in
performance for different values of K become more extreme. While the worse situation
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in a long run is still to have a very sparse network, in shorter runs it is actually much
worse to have a fully connected network. In both cases, the best case is to have an
intermediate (but relatively small) number of neighbors.

o1
a
T

o1
o
T

= 1800}

e —

'S
[
T

'S
o
T

=
T T
N
o
=]
T

best function value
Iy
=]
o
T

NN W W
[
T

=]
T

best function value

1000} -
|

o
T

10 + + = 800} ; -
5 — = == a
K=2 K=6 r=h K=30 K-98 k=2 k=6 k=12 K=30 K-58
(a) T=2000 (b) T=200

Figure 6.3: Best function values when optimizing the Griewank 200-dimensional func-
tion using Aggregation by Shuffle and binary encoding, with different neighborhood
sizes and at different moments of the algorithm.

These results also make more evident that, for longer runs, the effect of & becomes
less pronounced, since the difference in performance is much less accentuated for long
runs. This is expected, since the algorithm guarantees convergence to the global opti-
mum in the limit (i.e. for very large runs); hence, it must be the case that eventually the
algorithm will reach the global optimum regardless of the value of K.

The relation between K and performance is clearly non-linear. This hints that K
may be modifying some underlying network property that is responsible for such be-
havior. We can use the observed optimum in early rounds when using the Shuffling
mechanism to try and assess the underlying property that influence the optimum. By
changing K, we are not only changing the vertices’ degree, but also several other prop-
erties of the network, such as its diameter, density, characteristic path length and clus-
tering coefficient. Naturally, all these properties are dependent on K, but also on N,
the number of vertices in the network.

Hence, by repeating the experiments with different network sizes, we can observe
whether and how the optimum value of K moves. If it does move with changes in N,
this is evidence that some network property is responsible for the observed behavior,
rather than the vertices’ degree (which is independent of /V for regular networks).

Table 6.1 shows the location of the optimum value of K for several values of NV,
along with relevant global network properties, calculated for those specific values of
N and K. We can see that the optimum does change with N; K, is shifted towards
larger values as we increase the size of the network. We can also see that none of the
considered global properties is kept constant. Nonetheless, it seems that K changes so
as to maintain the following relation roughly constant:
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The values for o are shown in the last column of Table 6.1. We currently do not
know why « seems to play a role in how efficient the search can be, since for the reg-
ular ring network no known global property scales inversely with K? (or, equivalently,

proportionally to v/N).

N | K, | Diameter | Density | Path Length «
50 6 8.33 0.061 4.59 | 1.39
100 8 12.50 0.040 6.69 | 1.56
150 10 15.00 0.034 7.95 | 1.50
200 12 16.67 0.030 8.79 | 1.39
300 14 21.43 0.023 11.18 | 1.53
400 16 25.00 0.020 12.97 | 1.56
500 18 27.78 0.018 14.36 | 1.54
1000 26 38.46 0.013 19.71 | 1.48

Table 6.1: Optimum value of K for different network sizes when optimizing the
Griewank function using the Aggregation by Shuffle method over binary encoding.
Calculated values for several network properties that depend on N and K are also
shown.

Switching to Aggregation by Copy, on the other hand, leads to a qualitatively dif-
ferent behavior in earlier rounds. Figure 6.4 shows the results of using this aggregation
mechanism. For long runs we see the very same monotonic improvement in perfor-
mance with increases in K, but now the same behavior is observed even for short runs.
Hence, when using this aggregation method, we can do no better than using a fully con-
nected network. Note that, in this case, the algorithm is reduced to a form of stochastic
hill-climbing: the single best solution is replicated in all N nodes and each explore a
neighbor of this solution, repeating the process at every round of the algorithm.

These results show that when using information from multiple sources, networks
where nodes have a large number of neighbors are able to perform better than a mod-
erately sparse network, but requires a large number of algorithmic rounds to do so. If
only a moderate number of rounds is to be performed, having too much neighbors leads
to a poor performance. If a copy mechanism is being used, however, having a highly
connected network is the best strategy to obtain improved performance, independently
of the number of rounds available. In both cases and at any round of the algorithm,
having a very small number of neighbors is highly detrimental to performance.

In addition, we can see that for long runs, the best cases for both Aggregation by
Copy and Aggregation by Shuffle (fully connected network) provide comparable so-
lutions. However, for all other values of K, Aggregation by Shuffle provides a better
performance. For shorter runs, when using the best value of K in each aggregation
method, shuffling again provides an advantage but for other values of K the copy mech-
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tion using Aggregation by Copy and real-value encoding, with different neighborhood
sizes and at different moments of the algorithm.

anism often performs better. Hence, unless the network is set close to the optimal value
of K, in short runs the copy mechanism will on average outperform shuffling.

6.1.2 Effects of rewiring probability

We now turn our attention to another central aspect of the Small-World generative
model, the probability of randomly rewiring connections of a regular network. As
we have discussed previously, such random rewiring allows for shortcuts to be created
between otherwise distant parts of a network, drastically reducing its characteristic path
length. The amount of rewiring controls a transition between a fully structured network
and one that possess properties of a random network.

Our methodology is the same as the one used in the previous section. With a MNA
starting from a regular ring network, we vary the probability of rewiring (), recording
the best found solution for each case. We consider only networks that are connected. In
order to do so, we discard any disconnected network generated by the rewiring process!.

We must, additionally, specify the network density (i.e. /). In the previous section
we observed that K can have a strong impact on how well the algorithm can perform.
Therefore, we must experiment with random rewires in different performance regimes
associated to different values of K. We experimented with the same values of K used
in the previous section: K = 2, K = 6, K = 12 and K = 30. The fully connected
network was naturally not considered, since random rewires do not change the network
in any way. In the following experiments, the initial network is again a regular ring
network with 100 nodes and p,, = 0.01.

We varied 3, the probability of rewiring each edge of the network, from 0.0 to 1.0
with 0.05 increments. For 5 = 0.0 the network is kept completely regular, i.e. no

IDisconnected networks are nonetheless interesting, as they allow for sub-graphs to search indepen-
dently from one another, in a similar fashion as Island models in Evolutionary Algorithms (FOGEL,
2000).
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rewiring is performed. For 5 = 1.0 all edges are randomly rewired, leading to a close
approximation to a random network.

Figure 6.5 shows results for X = 2. We can observe that both in the long and short
runs the fully structured network performs poorly and better solutions are found as (3 is
increased. A random network was found to provide the best performance in any round.
The performance differences between the two extreme cases is again quite accentuated
- a random network is able to find solutions that are on average about 83% better than
a structured network - evidencing that this parameter too has a strong influence on how
effective a search can be. This behavior is essentially unaltered for different functions
or when using Aggregation by Copy or binary encoding.
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Figure 6.5: Average best function values using Aggregation by Shuffle applied to the
Griewank 200-dimensional function and different values of 3 and at different moments
of the algorithm. Boxplots shown for selected values of 5. Network density is set at
K =2.

For K = 6, shown in Figure 6.6(a), in the long run we observe a similar behavior,
but now effectively for 5 > 0.35 no statistically significant differences in performance
is detected. Also, the average difference between solutions found for 5 = 0.0 and
£ = 1.0 is of about 30%, much smaller than the one measured for X' = 1. This is
evidence that the influence of § decreases with increases in /. This is to be expected,
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Figure 6.6: Average best function values using Aggregation by Shuffle applied to the
Griewank 200-dimensional function and different values of 3 and at different moments
of the algorithm. Boxplots shown for selected values of 3. Network density is set at
K =6.

since in the limit, for a fully connected network, /3 cannot have any influence (random
rewirings cause no changes in the network).

Interestingly, for X' = 6 the observed behavior is effectively reversed when con-
sidering shorter runs. Figure 6.6(b) shows that increasing 3 actually decreases the
measured performance. The differences in performance are somewhat small (at most
about 15%), but significant. This is only observed when aggregating from multiple
sources (the same happens when using Aggregation by Average or binary encoding),
but not when using Aggregation by Copy, which provides a monotonic increase of
performance with increases in 3 in all rounds of the algorithm (see Figure 6.7); also,
performance differences are much more accentuated when using the copy mechanism
in the long run, showing that such aggregation method is considerably more affected
by .

Why would the general behavior be effectively reversed for shorter runs? The an-
swer relies on how better solutions are distributed on the search space. In initial rounds,
it is easy to find better states, since we start with random solutions which are poorly
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evaluated. Hence, on average, it pays to explore as much as possible the search space
since the probability of finding increasingly better solutions is high. However, as the
algorithm progress, finding better solutions becomes harder and exploring anything but
the neighborhood of good known solutions is, more often than not, fruitless.

As we increase K, we are reducing the distance between nodes; this allows for good
solutions found anywhere in the network to spread faster to all nodes. Therefore, by
increasing K we are increasing exploitation. On the other hand, smaller neighborhoods
mean that any information will take time to spread, allowing for a greater independence
of the nodes, which effectively allows them to explore relatively independent areas of
the search space.

As we have previously argued, the shuffle mechanism favors exploration, since the
worse nodes will combine information from a large number of sources, which leads
to large changes in the solution being aggregated. This is in contrast with the copy
mechanism, which does not generate new recombinations by aggregation; rather, it
relies on the appropriation step only to produce new solutions. Hence, when using this
latter mechanism, even in a short number of rounds

Making K = 12 still leads to a situation where short and long runs differ in how
they behave as 3 is changed. Figure 6.8(a) shows that in earlier rounds increasing 3
decreases performance, but for 5 > 0.25 the differences are not significant. Finally, for
K = 30, (8 has no influence whatsoever on performance, as shown in Figure 6.8(b).

As in the last section, we have a case where improving communication between
nodes in the network leads to an improvement in performance. For long runs, as we
increase (3, the network’s Characteristic Path Length (L) decreases quickly, reducing
the average number of intermediate nodes between any two nodes, hence allowing for
information to spread faster. However, the same is not always true for shorter runs. As
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we have shown, for shorter runs the behavior can be precisely the opposite and reducing
L leads to a decrease in search performance. As with neighborhood size, this peculiar
behavior is only present when aggregating information from multiple sources - when
using the copy mechanism, shorter path lengths always lead to improved performance.

We have applied the same experiments to all other proposed benchmark functions
and found that the same behavior is present at all of them, independently of the func-
tion’s modality or separability.

6.1.3 Discussion

The results in this section show that different SWNs generated using diverse param-
eters for the Small-World generative model can have strikingly different performance.
We observed that when there are still a high probability of finding better solutions, as in
early rounds of a search, it is beneficial to allow a wider exploration. This is obtained
by reducing path lengths in the network, so that information is spread slowly through
vertices, by either reducing the number of neighbors for each vertex or by restricting the
number of shortcuts allowed. However, as less better solutions are available, exploit-
ing the few good solutions is the best choice. Hence, in long runs, allowing as much
communication between nodes always lead to better performance, since we decrease
the number of steps for a good solution to reach all vertices.

In any case, having an excessively sparse network with very high characteristic
path length always performed poorly, which constitute further evidence on the benefits
of allowing some communication between independent searches.
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6.2 Search in Scale-Free Networks

In this section, we provide results of experiments on using MNAs over Scale-Free
Networks (SFN). Like in the previous section, where we focused on Small-World Net-
works, we are interested in generating networks that possess SFN properties and ob-
serve how parameters of such networks affect search performance.

We use the SFN generative model described in Chapter 3. Starting with a small
number of connected vertices, we add N new vertices one by one; each new vertex
creates M edges, probabilistically connecting to existing vertices with a bias towards
those already well-connected. Hence, the network density is defined by M and the
preferential attachment mechanism allows for a power-law distribution of degrees to
emerge.

Our first parameter of interest on this network model is naturally the network den-
sity. However, SFN’s main characteristic is the existence of hubs, which are highly
connected vertices. Hence, we are interested in verifying the utility of such hubs dur-
ing a search. In order to so, we shall allow egalitarian networks, where the size of hubs
are limited, by setting a parameter // ({ > M) that specify the maximum number of
edges that any vertex may be part of at any time.

6.2.1 Effects of density

The parameter M controls the number of edges created by new vertices entering the
network. It therefore directly controls the network density. Unlike the neighborhood
size (K) in regular networks, it does not directly control the vertices’ degree, since we
have an uneven distribution of the newly formed edges. This parameter does, however,
set the minimum degree of a node - every vertex must be part of M edges, even though
later on they may attract more edges to themselves. Therefore, the maximum degree in
the SEFN considered here is N — 1 and the minimum, M.

We tested varying M inside a reasonable range and observe how this parameter
affects the search performance. Note that for M/ = N, the network becomes fully
connected due to the way the generative model works (it starts with M fully connected
nodes), which is not a case of interest here. Rather, we keep M relatively low so that
the power-law distribution is maintained. We thus used 1 < M < 10 using a network
with 100 nodes.

Figure 6.9(f) shows results over different functions and 2000 iterations of the algo-
rithm. We show here only results using Aggregation by Shuffle; when using the copy
mechanism or binary encoding, the basic qualitative behavior is unchanged. A behav-
ior comparable to the effect of K in Small-World networks is visible, as low density
leads to poor performance and increases in M quickly leads to better solutions until
a saturation point is reached, after which no further gains are attained by increasing
M. Just like in Small-Worlds, in Scale-Free networks, denser networks provide better
performance, but the gains are diminishing - a moderately dense network provides the
same performance as a much denser network. Indeed, what we observe is that for most
part of the tested range, M does not influence performance at all, with the exception of
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very sparse networks: for M > 4 differences are not significant.

We can also observe that unimodal functions are more influenced by M than mul-
timodal functions. For the Sphere and Hyper-Ellipsoid functions, the average best so-
lution (M = 10) is a little over 4 times better than the worse solution (M = 1), while
for the other functions the average best solution evaluation does not exceed 2 times the
evaluation of the worse. For shorter runs and different functions we found no qualitative
differences in behavior.

However, the observed influence of M on performance is very small when com-
pared to the influence of K in Small-World networks. Both parameters have a direct
impact on the network density and nodes’ degree and are, thus, comparable. Varia-
tions in K lead to performance differences that were up to an order of magnitude, but
variations in M in Scale-Free networks did not have such impact. The reason for that
seems to be that in SFNs the overall characteristic path length is already very small,
even for small values of M. While in regular ring networks networks a small K was
associated with high diameter and path lengths, the structure of Scale-Free networks
allows for shortcuts to occur naturally. Indeed, networks formed by using the genera-
tive model employed here have also the small-world property?. Moreover, the model
requires that only a minimum degree is set for nodes; while the majority of nodes will
indeed have a degree that is close to this minimum, some nodes will be part of many
more connections.

Nonetheless, these results are in accord with the results for Small-World networks:
networks with sparsely connected nodes perform poorly, but performance is quickly
increased by even small increases in density. Continuing to increase density leads to a
case of diminishing returns in both network types.

6.2.2 Effects of hubs

In the previous section, we allowed hubs to grow without limits - it was possible
for a node to be connected to all other nodes in the network. Unlimited sizes for hubs
are possible in a number of scenarios (e.g. the network composed of websites and their
hyperlinks - it is possible for all sites to link to one single site), but often there will be a
limit over which a node cannot receive further connections. SFN whose hubs’ sizes are
limited are called egalitarian, because the connections that would otherwise be given to
a hub will go to other nodes. For example, the network composed of air routes between
airports is egalitarian: an airport can only handle a certain maximum number of flights
- once this maximum capacity is reached, flights have to be routed to other airports.

We define a parameter [ that specifies the maximum number of edges any node
can have at any time. Certainly, / must be greater than M and at most NV — 1. This
parameter controls how egalitarian is the network; the lower is H, the more egalitarian
it becomes. On the other side of the spectrum, a network is said aristocratic if hubs can
grow without limit (or at least very large). We tested networks with different values of

’This is not always the case, though. Some generative models lead to networks that possess the
scale-free property but have low clustering and long path lengths(BARABASI, 2003).
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H with M = 2.

Note that the smallest possible value for H is H = 2M, so as to guarantee that new
entering nodes will have available nodes to connect to (Figure 6.10 shows an example).
Figure 6.11 shows the results using real-value encoding, Aggregation by Shuffle and
different values of M. Only for small values of i does M influence the resulting
search performance. For H < 3, no significant differences can be measured between
any two values of M. For H = 1 and H = 2 we can observe that small values of M
leads to a very bad performance, which improves quickly as we increase M. Further
increasing M beyond a relatively small value do not continue to improve performance.

Figure 6.10: Graphical representation of the initial steps of the generational model for
SEN using M = 2 and H = 3 (below the required I = 2)/). The black nodes are the
initial nodes. The fourth and fifth node (in white) are able to enter the network, as there
are still connections available in the initial nodes. The sixth node (in gray), however, is
able to create the first of its two connections, but the second cannot be made since all
nodes are at their maximum degree.

The largest difference in any of these two cases happens when switching from
H = 2M to H = 2M + 1. Other differences are much smaller or non-existent. By
analyzing the emergent network for M/ = 2 and = 4 and comparing to a network
with I = 5 we can understand better why performance is so different. Figure 6.12
shows two typical networks generated with these parameters. We can see that the way
the generative model works lead, for H = 4 to a network that is very regular, close to a
grid. By increasing H by a single unit, a very different network emerges, without regu-
larities and many shortcuts between different parts of the network. In fact, the network
for H = 4 is not scale-free at all: all nodes have approximately the same degree (4, in
this case). For H = 5, however, there is enough connections available so that a few
nodes can attract a larger number of edges, leading to a few (small) hubs; this results in
a case where most nodes have a 2 connections and a few are part of 5 edges.

Qualitatively, networks with H > 5 are indistinguishable. The main difference
between these networks is precisely the maximum size of the hubs, but all of them
present a power-law distribution to some extent. Hence, the scale-free property seems
to be beneficial to the search process, but the precise value of H plays a somewhat
limited role, as very small improvements in performance are measurable for H >=
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Figure 6.11: Best function value for a 100-dimensional Griewank function and different
values of the maximum degree for the network’s vertices (H).

6.2.3 The role of location in SFN

One could ask if the position of a node in the network matters for its success. Sev-
eral studies argue that being well positioned (i.e. well connected) in any social network
is a major advantage for matters of e.g. collecting social capital, electing trust or lever-
aging influence over others. In the context posed in this thesis, we could ask whether
the position of a node in the network influence its search performance. Since we do not
take into account geographical positions, the role of a node in a network is uniquely
defined by its connections. The most relevant property of a node in SEN is arguably
its degree. Hence, the problem can be posed as a relation between a node’s individual
search performance and its degree.

In order to tackle this issue, we must abandon, momentarily, our general approach of
considering the whole network as composing a single entity responsible for performing
search and focus on the performance of individual nodes. This is straightforward, since
each node has its own associated solution.
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(b)y H=5

Figure 6.12: Emergent networks using the Scale-Free generative model with a forced
limit on the maximum degree (H) and M = 2. Plots generated by maximizing the
distance between nodes with maximum edge length (MCGRATH; KRACKHARDT;
BLYTHE, 2003).

We proceed as follows. We generated a (aristocratic) SFN network with N = 500,
M = 2 and kept it fixed. Over this network, we ran 20 independent trials of 1000 rounds
each, registering for each trial and each round the evaluation of each node, along with
its degree. We then averaged the evaluations over the trials and also over the rounds, in
order to get the average evaluation of each node throughout a full run.

Figure 6.13 shows the nodes’ evaluations when optimizing the 100-dimensional
Griewank function against their degrees. It is possible to see that the worst perfor-
mance is associated to a very low degree, while the best performance is associated to
a high degree. The correlation coefficient between these two parameters is of —0.497,
which is a medium correlation (TAMHANE; DUNLOP, 1999). When considering only
the average performance at the 1000th round (without averaging over all rounds), the
correlation is still moderate, at —0.332. When using Aggregation by Copy, the correla-
tion is only slightly stronger, at —0.510 and is essentially unchanged when optimization
is applied to other functions.
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This result shows that even though all nodes have the same internal capability (i.e.
they run the same algorithm), their position alone in the network can predict how well
they will perform in an individual basis. Just like most other results so far, we have a
positive correlation between a node’s performance and its connectedness.

6.3 Discussion

We have observed in this chapter that both density and hubs’ sizes can affect the
search being performed over a SFN, but differences in performance were much smaller
when compared to the differences observed for SWNs, an evidence that SFNs are some-
what more robust to changes in its parameters (even though this robustness comes at
the cost of losses in performance, as we will show in Chapter 8). In similar fashion
to SWNs, increasing the network density leads to a direct increase in performance.
Unlike SWNs, however, we found no cases where sparser networks provided bet-
ter performance. Simpler, unimodal, functions were found to be more susceptible
to changes in the network’s density, but otherwise the same qualitative behavior was
present. Changes in the maximum node degree were only significant for very sparse
network; for even moderately dense networks this parameter did not affect performance
at all.

Therefore, when using the SFN model, we can do no better than trying to design
dense networks in order to improve search performance. However, the gains are only
considerable when improving from an extreme case of very sparse network. By allow-
ing vertices to create as few as M = 4 connections, any further increases are essentially
irrelevant to the search being conducted. For that density, the choice between an aris-
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tocratic and egalitarian network is also irrelevant. For sparser networks an aristocratic
network always provided better solutions; the significant correlation between a vertex
degree and its performance is evidence that the improvement in performance for aris-
tocratic networks is a direct product of the existence of hubs.
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7 SEARCH IN DYNAMIC NETWORKS

In this chapter, we turn our attention to dynamic networks, those networks whose
edges may change during a search. This is in contrast to the networks we have dealt
so far, where a well-known network topology was imposed upon the algorithm. Now,
we allow for an MNA to execute the Connection Step at each round of the algorithm,
making it possible for vertices to create and destroy edges at any time.

The Connection Step is now not concerned with an overall topology and is rather
egocentric - each node can decide by itself to create connections as it pleases. Nonethe-
less, each edge must reflect in some way the benefit of creating such connection be-
tween nodes. That is, an edge is created if there is a perceived benefit of doing so for a
node. Hence, we define a general rule for connections to be created, which take into ac-
count only the relative benefit of doing so, without concerns on the impact on network
topology.

The above approach requires that we deal with asymmetric, directed, edges. There-
fore, unlike in previous chapters, we have that if (a,b) and (b, a) are edges and FE is
the set defining all edges, than it is not the case that (a,b) € E — (b,a) € E. This
requirement becomes clear after defining the Connection Step:

Definition (Dynamic Connection Step) Let E be the set of edges and V' the set of
vertices in the network. Then, £ = {(u,v)|u,v € E A eval(v) > eval(u)}.

The idea of this connection step is that a node can only benefit from other nodes that
are better evaluated than itself. This simplistic method is reasonable, since we are to
expect that sources that are better off than ourselves have information that may benefit
us - few people would seek financial advise from an economist that went bankrupt, for
example.

By allowing unrestricted connections to be made, we can observe the emergence
of two types of hubs. The first hub, which we will call suppliers, are well-evaluated
nodes that receive many connections - i.e. they have a high in-degree'. If a single best
node exist in the network, for instance, it will receive connections from all other nodes.
These nodes have a high influence over the network, acting as major distributing hubs.

"Note that in our notation an edge (u,v) implies that node u have a directed edge towards v, but
information flows in the other way, from v to w.
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They will also have a low out-degree since, being well-evaluated, there will be fewer
nodes better evaluated.

The second type of hub is composed of sinks, which are nodes with a high out-
degree. These are badly evaluated nodes, which create connections to many other
nodes. If a single worse node exist in the network, it will have connections to all
other nodes. These nodes do not influence the network as much (since they typically
will have a low in-degree), but can receive information from , and thus are influenced
by, many other nodes.

This is similar to our previous discussion on Scale-Free networks. When using an
aggregation method that use information from several sources, the worse a solution is,
the more it will be modified. When using the copy mechanism, however, the worse
a node is the more options it will have to choose a source to copy information from.
Good solutions, on the other hand, are only slightly modified: the best solution is only
modified by the Appropriation Step, while other slightly worse solutions will aggre-
gate information from a few other nodes, hence keeping mostly intact the information
contained in them.

7.1 The Effects of Limiting In-degree

As previously defined, suppliers are nodes with a large number of incoming con-
nections and, thus, providers of information to a large number of other nodes. Up until
now, our dynamic model allows nodes to receive an unlimited number of connections.
Hence, any time a node try to connect to another node, this connection is granted.
Since nodes only connect to better evaluated nodes, this means that good information
is available to all other nodes in the network, without restrictions.

We are interested in studying how limiting the number of connections a node can
receive affect the search performance. In order to do so, we establish a parameter
max In that defines the maximum number of incoming edges a node can support, i.e. its
maximum in-degree. Whenever this number of edges is reached, no further connections
are allowed. Hence, we force a restriction on the influence of well-evaluated nodes
and the maximum size of suppliers. Note that unlike our experiments with Scale-Free
networks, this does not necessarily imply an egalitarian network, since a connection
that is denied is not forwarded to another node, it simply ceases to exist.

In order to implement this new parameter, we have to specify which nodes are
granted connections. This is specified in the Connection Step and it proceeds as follows.
If n < maxIn vertices are trying to connect to a vertex v, then all requesters are
granted the connection. If n > maxzIn, then maxIn vertices among these n are chosen
uniformly at random and granted the connection. We can then rewrite the Connection
Step as follows:

Definition (Dynamic Connection Step (with maximum in-degree)) Let E be the set of
edges and V' the set of vertices in the network. Then, F = {(u, v)|u,v € EAeval(v) =
eval(u) ANindegree(v) < mazxIn}, where indegree(v) returns the number of incoming
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connections of vertex v. Each edge (u, v) is added to F in a random order.

The imposed in-degree restriction effectively limits how large suppliers can be-
come, restraining their effects on the network by limiting their reach. Since suppliers
are the best evaluated nodes in a network, we are setting limits on the flow of good infor-
mation. We are interested in observing the influence of maxIn in search performance,
which can be done by varying this parameter and observing the resulting performance.

Figure 7.1 shows the best function values for different maximum in-degree values
and different moments of the algorithm using the above described Connection Step.
From the boxplots shown in Fig. 7.1(a), we can observe that, after 2000 rounds, inter-
mediate values of maxIn provide similar performance; the differences for maxIn = 10,
maxIn = 50 and mazIn = 90 are not statistically significant. The two extreme cases,
maxIn = 1 and maxIn = 100, however, severely deteriorates performance.

In the lower end of the spectrum (maxIn = 1), the MNA algorithm is unable to
reach very good solutions at all, but the upper bound on the worse solutions is tight and
close to the median. On the other end of the spectrum (maxIn = 100), the algorithm
is able to reach reasonable solutions eventually (the lower percentile and median are
much better than for maxzIn = 1); however, the upper percentile is much worse than
the former case. Hence, for unlimited in-degrees, the quality of solutions vary in a
wide range, resulting in a poor performance on average. The intermediate cases are
better in all measures: they provide a lower deviation, much better median and better
best solutions than any of the two extreme cases. Figure 7.2(a) plots the average best
function value for a wider range of maxIn, showing that performance deteriorates very
quickly as we approach the extreme values of this parameter.

For earlier rounds (Fig. 7.1(b)), the main difference is that a low value for maxzIn
(= 10) provides the best performance. The extreme cases still perform poorly, but now
high but non-extreme values also provide poor solutions. Figure 7.2(b) shows that there
is a sharp optimum value for maxIn; increasing or decreasing this parameter quickly
degrades performance.

Comparing a full run for the best and worse values of maxzIn provides insights on
the reasons behind the observed differences in performance. Figure 7.3 shows 1000
rounds of the algorithm using both maxIn = 10 and maxIn = 100. What we see is
that in very early rounds using maxIn = 100 actually performs better than the more
restricted case, but in the long run max/n = 10 outperforms the former case by a large
margin.

An explanation for this behavior that is consistent with the networked nature of the
algorithm is that for mazIn = 100, we maximize how much good information is spread
through the network; at any moment that a node finds a solution that is better than any
other solution, all nodes have immediate access to this information. In other words, we
are encouraging exploitation of good solutions. Hence, we expect that in early rounds
convergence is faster. However, as the algorithm progress, local optima are reached
and must be overcome. Therefore, in later rounds, it pays to reduce exploitation and
improve exploration, which is enabled by restricting access to the best solutions so far.
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These results are evidence that during a search, it is not beneficial to spread good
information as much as possible. The best solutions were obtained when we restricted
the influence of good nodes in the network, by limiting the number of nodes these well-
evaluated solutions could reach directly. However, restricting excessively the influence
of such nodes is also detrimental to search performance.
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Figure 7.1: Best function values for different maximum in-degree values. Results ob-
tained when optimizing a 100-dimensional Griewank function using a dynamic network
with 100 nodes, p, = 0.01 and Aggregation by Shuffle. Boxplots are shown for 20 in-
dependent runs.
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Figure 7.2: Best function values for different maximum in-degree values. Results ob-
tained when optimizing a 100-dimensional Griewank function using a dynamic network
with 100 nodes, p,, = 0.01 and Aggregation by Shuffle. Each point is the average over
only 5 independent runs and is shown here to give a rough idea of the behavior over a
wider range of values.
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Figure 7.3: Best solutions found for a 100-dimensional Griewank function for 1000
rounds of the algorithm using maxIn = 100 (dashed line) and maxIn = 10 (solid
line). Aggregation by Shuffle is used in a network with 100 nodes and p,, = 0.01.

7.2 Effects of limiting out-degree

Limiting the nodes’ in-degree restricts the number of incoming connection and,
thus, the number of nodes that any single node can send information to. A different
restriction is also possible, namely the maximum number of nodes that any single node
can be receive information from. In our model, this is accomplished by setting a limit
in the number of outgoing connections that can be formed by a node - i.e. a maximum
out-degree.

We modify our basic dynamic algorithm to include a new parameter mazOut which
specifies the maximum out-degree possible for any node. Without this parameter, nodes
can connect to all nodes that are better evaluated. In a similar fashion to maxIn, if a
node tries to connect to n > maxzOut nodes, then mazOut nodes are chosen uniformly
at random from among the n nodes. All connections that were not selected are simply
discarded. We can then rewrite the Connection Step as follows:

Definition (Dynamic Connection Step (with maximum out-degree)) Let E be the set
of edges and V' the set of vertices in the network. Then, F = {(u,v)lu,v € E A
eval(v) = eval(u) A outdegree(u) < maxOut}, where outdegree(u) returns the
number of outgoing connections of vertex u. Each edge (u,v) is added to F in a
random order.

Note that the above Connection Step applies a limitation on the source of connec-
tions, while the one presented in the previous section was applied to the destination
nodes. Setting such limit restrict the number of sources of information that any node
may use to compose a new solution. For example, consider a node u in a network where
n other nodes are better evaluated than u; if maxzOut = 1, then one single node among
the n will be randomly selected to become the provider of information to u. Likewise,
if maxOut = N then connections are allowed without restrictions.

We must also factor mazIn in since, as we showed in the previous section, this
parameter defines two levels of performance - intermediate values of maxzIn leads the
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algorithm towards good solutions, while either very low or very high values generate
poor solutions. Hence, we also allow the number of incoming connections to be re-
stricted along with the number of outgoing connections. The following rule describes
this more general case:

Definition (Dynamic Connection Step (with maximum out-degree and in-degree)) Let
E be the set of edges and V' the set of vertices in the network. Then, E' = {(u, v)|u,v €
E A eval(v) = eval(u) A outdegree(u) < maxOut A indegree(v) < mazxIn}. Each
edge (u,v) is added to £ in a random order.

We experimented varying maxQOut in order to observe how this parameter af-
fects search performance. Figure 7.4 shows average best function values for differ-
ent maximum out-degree and different maximum in-degree values, using the above
described Connection Step. We can see that the behavior for the two “inefficient”
states (maxIn = 1 and maxIn = N) are quite different. For maxIn = 1, maxOut
has a substantial influence in the algorithm’s performance; however, such influence
is only significant when severely restricting the number of outgoing connections - for
maxQut > 3 no statistically significant differences could be measured. The same is
true for other values of maxIn that are well below the maximum, and the same behav-
ior is observed for mazIn = 10 and mazIn = 50. For maxIn = 100, however, the
system produces very poor solutions for all values of maxQOut. In this case, there is a
small benefit in increasing maxQOut from 1 to 2, but no significant improvements are
observable by further relaxing the restriction on out-degrees.

In any case, the worst performance was obtained for maxOut = 1. For this value,
vertices connect to only one single vertex and the shuffling mechanism is rendered use-
less, since this single vertex will provide all information to the connecting node. Hence,
the mechanism is reduced to the copy mechanism, which at least partially explain the
reduced performance (we have shown in Chapter 5 that copying can be considerably
worse than shuffling). Unlike maxzIn, we did not observe that allowing out-degrees to
grow without limit is detrimental to performance.

7.3 Discussion

Unlike search in static networks, the dynamic MNA is allowed to reconfigure the
network on the fly. As we will show in the next chapter, this allows for improved
performance in several scenarios. In this chapter we showed that when the network is
dynamic, it is possible to devise two distinct parameters, namely the maximum number
of incoming connections vertices can receive (in-degree) and the maximum number of
outgoing connections a vertex can create (out-degree).

The experiments shown here lead to the conclusion that there is a wide range of
maximum in-degree values that yield approximately the same search performance.
However, very extreme values of this parameter caused a huge decrease in performance.
While for severely restricted maximum in-degree the algorithm was consistently un-
able to reach good solutions, very bad solutions were also somewhat rare. On the other
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Figure 7.4: Average best function value when optimizing the 200-dimensional
Griewank function with different values of mazOut. Solid line represents the case
with mazIn = 1. Dotted line depicts the case with maxzIn = 10. Dash-and-dotted
line depicts the case with maxIn = 50. Dashed line is for mazIn = N.

side of the spectrum, when the vertices are allowed to capture an unlimited number
of incoming connections, the quality of the solutions varies considerably - the algo-
rithm’s outcome can be anything between very good solutions and very bad solutions.
Intermediate values of maximum in-degree allowed for better solutions to be reached
consistently.

As for the maximum out-degree, its influence in the quality of the provided solutions
was found to be very small. Only in the extreme case of severely limiting this parameter
did the algorithm performed differently and provided very low-quality solutions. For
all other values of maximum out-degree, no significant differences were found in the
quality of the resulting solutions.

In our memetic framework, these results are evidence that it is in our best interest
to allow for a vertex to receive information from as many sources as possible, but some
care must be put into restricting the influence of individual sources in the network, by
restricting the number of vertices any single vertex is allowed to send information to.
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8 COMPARISONS AND APPLICATIONS OF MEMETIC
NETWORKS

In this chapter, we compare the approaches proposed so far with three traditional
local search algorithms. Moreover, we consider their application to two real-world
scenarios that require extensive and efficient search algorithms to provide good solu-
tions. The first one is the Traveling Salesman Problem (TSP), the problem of finding
the shortest hamiltonian cycle in a graph. The second one is concept learning, where
we are interested in finding a hypothesis that is able to represent a given domain by
generalizing over known examples taken from the domain.

We are interested in verifying direct applicability of the proposed algorithms and
compare them with each other and with traditional search algorithms. Three search
algorithms were chosen to be used for comparison: Hill-Climbing, Local Beam Search
and Genetic Algorithms. These algorithms were chosen due to their local search char-
acteristics (i.e. they do not require gradients or information about the search space)
and their wide acceptance in the academic community as general-purpose search algo-
rithms.

8.1 The search algorithms

We consider three types of MNAs. The first two use static networks, with both
small-world and scale-free networks. The third one uses a dynamic network. Each
type is set to use the best observed parameters, as shown in Chapters 6 and 7 and made
explicit in what follows. The Aggregation and Appropriation Steps are set according to
each scenario. All networks are set with NV = 100 vertices.

The MNA using the small-world generative model (SWN-MNA) is set with a neigh-
borhood size of six (K = 6) and rewiring probability of zero (8 = 0.0). The MNA
using the scale-free generative model (SFN-MNA) is set with each node creating H = 4
connections an aristocratic network (i.e. hubs may grow without limits). The MNA us-
ing a dynamic network (DYN-MNA) is set to have maximum in-degree of ten (maxIn =
8) and unlimited maximum out-degree. It must be noted that while the SWN-MNA uses
the small-world generative model, the network parameter that performed best in our
experiments generated a network that is not small-world at all, since 3 = 0.0. Hence,
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while we do refer to this algorithm by the name of the generative process being used,
the network being used here is actually a regular ring network.

The Hill-Climbing (HC) search algorithm used here is a first-choice stochastic hill-
climbing as described in (RUSSELL; NORVIG, 2002): starting from a random state
in the search space, a random neighbor state is generated and evaluated; if this state
is better than the current state, then it becomes the current state, otherwise it is dis-
carded and a new neighbor is considered. Since this method is not population-based,
in order to provide a fair comparison in terms of the number of function evaluations
being performed, when comparing to a MNA with a network containing N vertices, we
execute /V such searches in parallel, picking the best solution provided by any of these
searches. The neighbors are generated by applying small random perturbations to the
current state and we use the same basic algorithm used for MNAs in the Appropriation
Step.

The Local Beam Search (LBS) method implemented is also the version described
in (RUSSELL; NORVIG, 2002): it initializes N states at random and at each step of the
algorithm, a neighbor of each state is generated and evaluated, totaling 2N states. Then,
the best NV states are kept, the remaining are discarded and the process is repeated. Un-
like multiple independent Hill-Climbings, there is useful information being indirectly
transferred to each search, since computational resources are directed towards promis-
ing states. In the former HC case, if a search is relatively unfruitful, it is allowed to
continue anyway; in a LBS, these bad searches are discarded in favor of better ones.
Once again, the neighbors are generated by applying small random perturbations to the
states.

Finally, the Genetic Algorithm (GA) is the standard basic algorithm described in
(MICHALEWICZ, 1996), using N individuals and roulette wheel selection. The algo-
rithm for mutation is the same used in the Appropriation Step for MNAs. The crossover
operation, however, is problem-dependent and specified in the next sections.

8.2 Function optimization

We begin by experimenting with the algorithms in function optimization tasks, us-
ing the functions proposed in Section 4.2. For all functions, 100 real-valued dimensions
are used. Neighbor solutions, for all algorithms, are generated by applying a small ran-
dom perturbation to the solution as follows: each variable, with probability p,, = 0.01
is replaced with a new value chosen uniformly at random from the function’s domain.
The MNAs all make use of the Aggregation by Shuffle.

Figure 8.1 shows the results after 5000 rounds of each algorithm. It is quite clear
that HC perform very poorly in all instances, setting an upper-bound for the algorithms’
performances. The LBS performs better than HC, but still worse than GA and the
MNAs. Both HC and LBS perform at least one order of magnitude worse than the
other algorithms, for all tested functions.

All MNAs perform better than the GA, in all tested functions. The difference is
slightly more accentuated in simpler (unimodal) functions and, while small, it is sig-
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Figure 8.1: Best function values after 5000 rounds when optimizing different functions
using different algorithms and 20 independent runs.

nificant. Of course, the GA used is somewhat conservative and many variations exist
to improve on the traditional algorithm. Nonetheless, effort was put into tuning the al-
gorithm’s parameters so that it performed adequately on those functions. Hence, these
results do not imply that MNAs are better than GAs, but rather that simple MNAs can
be better than a equally simple GA. However, the huge differences when compared to
LBS and HC are strong evidences that indeed MNAs are much better than these two
methods. Among the MNAs, both SWN-MNA and DYN-MNA have comparable per-
formance, but using a dynamic network yields a slightly better median, although this is
not highly significant.

The SEN, however, performed 10%-20% worse than the other two networks in all
cases. The performance using a SFN is actually closer to the performance obtained
with the GA. Interestingly, the emergent mating network in GAs was actually shown to
be scale-free (ONER; GARIBAY; WU, 2006). However, the connection between this
two results is somewhat weak, as in a GA the mating network is not hard-wired and
all individuals potentially have access to all other individuals. Rather, the DYN-MNA
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possess a closer relationship to the GA, in terms of the resulting interaction network,
since the dynamic network also induce hubs and nodes have irrestricted access to all
other nodes. Nonetheless, the DYN-MNA outperformed the GA in all test cases, an
evidence that while the interaction network is adequate, the difference in performance
comes from how information is used - in particular, due to the fact that MNAs are able
to aggregate information from multiple sources.

Figure 8.2 shows convergence results for all tested algorithms. It is possible to
observe that the GA is a quick starter, providing the best results in initial rounds, but
failing to find good solutions in the long run. Even though DYN-MNA and SWN-MNA
perform equally well in the long run, the DYN-MNA provides improved solutions ear-
lier, approximating the GA in initial rounds (but lagging behind in intermediate rounds).
Altogether, DYN-MNA provides a transition between the initial fast convergence of a
GA and the long term performance of the SWN-MNA, performing at least as good as
the latter in final rounds.
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Figure 8.2: Average best function values when optimizing different functions using
different algorithms. Averages are over 20 independent runs.

8.3 Traveling Salesman Problem

We apply the search algorithms to symmetrical TSP problems, taken from the
TSPLIB '. We consider three datasets with increasing number of points. The small-
est dataset, ulysses22 is composed of 22 points representing locations mentioned in
Homer’s Odyssey poems. The second largest is the art48 dataset, composed of 48
points representing the geographical location of 48 state capitals of the USA. Finally,
the largest dataset considered is the xgf/31, composed of 131 points representing a
VLSI board. All three problems represent points in a euclidean space and are depicted
in Figure 8.3.

Thttp://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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(a) ulysess22 (b) att48

(c) xqf131

Figure 8.3: Plots of the three TSP dataset used.

8.3.1 Settings

For all algorithms, a solution is a hamiltonian cycle and is represented by a vector
of integers representing the order that points must be visited. Each point is represented
by an integer from 1 to R, where R is the number of points in the problem. Hence, each
integer must appear exactly once in the vector and the problem is a combinatorial one.

For the MNA, we use the MNA described in Section 5.2.3, which deals with com-
binatorial optimization. We also use the simpler Aggregation by Copy, in addition to
the Aggregation by Common Transitions proposed in that section. The Appropriation
Step proposed swaps each integer in the solution with a random position with proba-
bility p,,; following Section 5.2.4, we keep this parameter low and fix it at p,, = 0.01.
The network is initialized with N = 100 vertices, containing random initial solutions.
Therefore, IV function evaluations are performed per algorithmic step.

The HC algorithm starts with a random solution and at each step, a neighboring
solution is generated by using the same method presented above: each integer is ran-
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domly swapped with another position with probability p,, = 0.01. This new solution is
evaluated and becomes the current solution if, and only if, it is better than the current
solution. We allow N = 100 of these searches to be performed in parallel (but syn-
chronously) and independently from one another, so that N functions evaluations are
also performed and a direct step-by-step comparison to the MNA is possible. The best
solution among these NV is chosen to represent the best found solution in each round of
the algorithm.

The LBS algorithm also start with NV random solutions and at each step generates
new neighbor solutions. These neighbors are generated by the same procedure of the
two previous algorithms and each integer is randomly swapped with other position with
probability p,, = 0.01. All (new and current) solutions are evaluated and the best NV are
kept to compose the new set for the next round of the algorithm.

Finally, the GA must use a specific-purpose crossover operator so that offsprings
are generated without creating inviable solutions. Several crossover operators have
been proposed in the literature. We implement the successful order crossover (OX)
(DAVIS, 1985), which choose a subsequence of a path from one parent and tries to
preserve the relative order of cities from the other parent to build a complete, valid,
solution. The OX operator is a two-point crossover and as such selects randomly two
points in the parents’ solutions; to build an offspring, the part between these cut points
from parent A is copied to the offspring and the remaining cities are copied from parent
B in the same order that they appear, omitting the existing cities. The second offspring
is generated identically, but inverting parents A and B. Mutation is also performed by
the random-swap method of the previously presented algorithms, keeping p,, = 0.01.

8.3.2 Results

Figure 8.4 shows the results for each dataset and all search algorithms. In all
datasets the LBS and HC performed much worse than the other four algorithms. We
therefore focus our analysis on these four. For the smallest dataset, ulysses22, it is pos-
sible to observe that using a Small-World Network provided the best results - the me-
dian route length was considerably shorter and the standard deviation was also smaller
than in other algorithms. The GA performed better than both SEFN-MNA and DYN-
MNA, while the SFN-MNA while providing a larger median, also provided a few over-
all better solutions than GA and SWN-MNA, at the cost of a wide variance.

For the intermediate case, att48, the gap between different MNAs and the GA is
much smaller and not significant. All four algorithms provide comparable medians.
The SFN-MNA, however, presents a larger variance among these four.

For the largest case, xgf131, the SFN-MNA provides the best results, with shorter
median route lengths and smaller variance. Both SWN-MNA and DYN-MNA pro-
vide comparable results, with the DYN-MNA providing a better median. The GA now
performs much worse, approaching the performance of the LBS.

Two conclusions can be possibly inferred from these results. First, they show that
the aggregation method used, which aggregates common transitions, is quite effective
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to compose new routes for the TSP, an evidence that exploiting statistical features from
multiple sources can be useful for this scenario. Moreover, the precise topology of
the network to be used seem to be dependent on the problem at hand. The second
conclusion is that it seems that Scale-Free Networks become more suitable as the TSP
instance grows, while Small-World Networks are better for smaller instances.

Of course, more data is still required to generalize such conclusion to other in-
stances. Nonetheless, the aggregation method used compose new solutions by aggre-
gating common transitions; therefore, it performs better if there is a large number of
sources to extract such regularities. The more vertices using a transition, the more
likely it is that that transition is useful. Since in a SFN there are hubs that concentrate
edges, these hubs do have access to many sources. A better performance in SFNs is
then expected.

4

7)( 10
65 é 9000} i
|
i 8500} . J
6,
8000} ]
T ]
£55¢ t 5 + :
12 o -+
5 g 7500 +
g 8
§ 5h . + g +
= ! 2 7000}
] J— T ]
45 ! ‘ [ ! . +
+ Enp
N E| -
4 | - i 8000} - — T
- — J
— L e ] = =
35} — —

L n I | L | ] 5500 ks Loveee e i e toiend
SWN-MNA SFN-MNA DYN-MNA GA LBS HC SWN-MNA SFN-MNA DYN-MNA GA LBS HC

(a) ulysses22 (b) att48
2400_ PP PP
+
2200} (===
2000+
1800 ....... |
+
1600+ *
= =
1400 e
+ +
1
1200_ T PP |
-
1000+ p— =
s00l ‘ ‘ ‘ . ‘
SWN-MNA SFN-MNA DYN-MNA GA LBS HC
(c) xqfl131

Figure 8.4: Boxplots showing the best routes found for different TSP instances after
1000 rounds of the MNAs using Small-World Networks (SWN-MNA), Scale-Free Net-
works, (SFN-MNA), Dynamic Networks (DYN-MNA), as well as results for a Genetic
Algorithm (GA), Local Beam Search (LBS) and Hill-Climbing (HC).
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8.4 Concept Learning

In this second application, we consider a Machine Learning task. Given a set of
labeled examples taken from a domain, the task asks to learn the underlying concept
from these examples and classify unseen ones. An example is a pair <input,class> that
is drawn from a domain with a fixed distribution. The input is a set of attributes used
for classification and the class is the class to which the object with the specified set of
attributes belongs to.

We consider the popular Iris dataset (FISHER, 1936), where the goal is to distin-
guish between three types of flowers: Iris Setosa, Iris Versicolour and Iris Virginica.
Four attributes are available, all in centimeters: sepal length, sepal width, petal length
and petal width. The specific dataset used provides 150 labeled examples.

We divide the example set in two sets. The training set is a subset from the available
examples that is used for training; training is the process of acquiring a concept from
examples. The validation set is a subset from the available examples, disjoint from
the training set, which is used to validate the learned concept, so that the task is not
reduced to memorizing the training set. We randomly divided the Iris dataset in two
disjoint sets, in order to compose a training set and a validation set.

The problem is then to create a mapping from an input to a class, so that the largest
number of examples in the validation set is correctly classified. There are several
choices for a structure to create such a mapping (e.g. production rules, decision trees,
bayesian networks) and we use an Artificial Neural Network, more specifically a Feed-
forward Multi-layered Perceptron (FF-MLP) (HAYKIN, 1998).

A FF-MLP is composed of interconnected artificial neurons (perceptrons). A typi-
cal perceptron is composed of a numerical input vector & and one output y. The inputs
are coupled to a weight vector, 1, one weight per input. At each time step, the percep-
tron calculates output such as

y(&) = f(&- )

where f() is some predefined function that limits the output to a range of values, such
as a step function or a hyperbolic tangent. A FF-MLP is composed of layers of percep-
trons, so that the output of a layer is the input of the next one. A typical FF-MLP has an
input layer, which simply receives the inputs & from the environment and propagates
them to one or more hidden layers. Each hidden layer is composed of predefined num-
ber of perceptrons and, usually, each perceptron receives as inputs the outputs of every
unit in the previous layer (and only from this layer). Then, all hidden units compute
an output and send them to the next layer and so on, until the output layer is reached,
whereas the output of this last layer is the “answer” of the network to the input vector.
A much more detailed description of FF-MLPs and its many variants can be found in
(HAYKIN, 2001).

Provided the FF-MLP possess at least one hidden layer, by setting the weights ap-
propriately it is possible to create arbitrary complex mappings. In fact, it has been
shown that a FF-MLP can be an universal function approximator. Given a network
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structure, the problem of learning using a neural network is that of finding the appro-
priate weights that produce the desired mapping. The most popular algorithm to per-
form learning in FF-MLPs is the Backpropagation algorithm. This algorithm performs
a gradient search in the weight space that minimizes the error of the network. There are
many ways to define such error and the most common one, used here and called mean
squared error (MSE), is as follows:

B() = - S0~ )’

deD

where D is the training set, ¢, is the desired output for the training example d and y4
is the output generated by the network given the weights w and training example d.
The Backpropagation algorithm performs an iterative search by adjusting the weights
so that at each step E'(w) is reduced:

Wy

511)2‘

Wi = W; — 1

where 7) is a positive constante called the learning rate, and determines the step size of
the gradient search. Setting 7 too low slows convergence down, but setting 7 too high
may cause the algorithm to overshoot the optimum, making convergence impossible.
Also, since it is a gradient search, it may converge to local optima which are not the
global optimum. Nonetheless, this algorithm is widely used and the central reason for
the success of neural networks in general.

We use a FF-MLP to act as our learning structure and apply it to learning the widely
used Iris dataset. The neural network used is shown in Fig. 8.5; Four input units, one
for each attribute available, one hidden layer with five units and one single output unit
are used. A hyperbolic tangent function is used to compute the output of all units -
hence, the output is limited between —1.0 and +1.0. Given the Iris dataset is composed
of three distinct classes, we set the following rule for classifying the output generated
by the neural network: -1 represents the Iris Setosa; O represents the Iris Versicolour
and +1 represents the Iris Virginica.

8.4.1 Experiments

In order to learn the weights for the proposed FF-MLP, we used two approaches.
The first one used the Backpropagation algorithm, as described in (HAYKIN, 2001).
The second one uses a MNA to search for the best combination of weights. Both
approaches initializes all weights with values picked uniformly at random from the
range —1, +1. We tested all MNA variants described so far, namely SWN-MNA, SFN-
MNA and DYN-MNA, and compared the results with the Backpropagation.

For the MNAs, we again set N = 100. Hence, effectively there are 100 neural
networks being evaluated in parallel, one in each node of the memetic network. In
order to perform a fair comparison in terms of number of evaluations, we performed
100 runs of the Backpropagation algorithm, picking the best performing run to represent
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Figure 8.5: Feedforward Multi-layer Perceptron used to learn the Iris dataset.

the result. We then repeated each batch of 100 runs 20 times. The results presented here
are the results of these 20 trials.

The training examples are presented to the neural networks in batch mode - i.e.
all examples are presented, the error is calculated and only then weights are updated?.
The presentation of the entire training set to the neural network is called an epoch. We
conducted a maximum of 500 epochs for each neural network, in each run and each
trial. Therefore, each algorithm performed in total one million epochs (20 trials x 100
runs/nodes x 500 epochs).

For the MNAs, the same parameters used in the previous sections were applied. The
learning rate for the Backpropagation algorithm was set ad hoc at n = 0.1, which was
the best performing value for tested values between 0.05 and 1.0 (in 0.05 increments).

Figure 8.6 shows the results. From the boxplots, we can see that all three MNAs
reach lower values of MSE when compared to the Backpropagation. This shows that
MNAss are interesting alternatives to perform learning in neural networks. At least in
part, the advantage comes from the fact that MNAs are less likely to get stuck in local
optima, since the shuffling mechanism allows large changes to occur. Therefore, the
algorithms are able to find weight configurations that are more suitable for the problem
in hand.

Among the MNAs, the SWN-MNA provides the best overall results, but at the cost
of a wider variability in performance: this variant provided both the best and the worse
runs, but the median was better than the other two. The Backpropagation also displayed
a large variance, an evidence of its susceptibility to the initial state.

Figure 8.6(b) brings a epoch-by-epoch comparison between the SWN-MNA and
the Backpropagation algorithms. As expected, the Backpropagation performs much
better in initial rounds, since it is able to exploit the gradient very effectively. However,
in later rounds it is surpassed by the SWN-MNA, which is then able to reach better

2This is in constrast with on-line learning, where the weights are updated after each presented exam-
ple.
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Figure 8.6: Boxplots (a) and averages (b) for different search techniques applied to the
concept learning task. In (a) mean-squared errors are for the 500th epochs. In (b), the
dashed line represent the Backpropagation algorithm and the solid line represent the
SWN-MNA.

8.5 Discussion

This chapter compared the proposed algorithms with other traditional algorithms in
a number of search scenarios. In every scenario considered, at least one of the proposed
algorithms fared better than the traditional ones. The specific MNA that provided the
best result varied with the problem, which is to be expected given the No Free Lunch
Theorem (WOLPERT; MACREADY, 1997). This shows that network properties must
be matched to the problem at hand. As we showed in previous chapters, this can be
accomplished by setting how much the algorithm exploits known solutions or explores
unknown areas of the search space, which can be translated to specific network proper-
ties.

Nonetheless, the MNA did much better than the HC and LBS algorithms in all
problems. The HC algorithm is a local-only search algorithm and thus it is expected
that it would perform poorly in the multimodal problems proposed. The LBS, while
being more able to further explore the search space, provides a very strong exploitation
mechanism, which quickly limits the space being searched. The MNAs, on the other
hand, can be tuned so that there is a better balance between exploitationd and explo-
ration, hence providing better average solutions on these problems. The GA is also able
to provide such balance, and did provide results comparable to those provided by the
MNAs, but showed to be less scalable for the TSP problems (i.e. for larger instances,
the solutions were worse).
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9 CONCLUSIONS AND FUTURE WORK

This thesis presented a model of social search applied to problem-solving tasks.
The proposed model is based on the concept of memes and the exchange of information
through a network as the main search mechanism, hence the name Memetic Network.
In this approach, candidate solutions to a problem (states) are encoded into the vertices
of a network and new solutions are generated by the aggregation of elements of exist-
ing solutions in the network; such interaction between vertices is constrained by the
network’s topology.

The main purpose of the Memetic Network model is to provide a framework over
which we explored one of the major goals of this thesis, which is the hypothesis that
network properties can affect the problem-solving capabilities of systems composed
of multiple interacting actors. This goal was motivated by the increasing number of
systems that aim at solving problems and that require social interactions in some way,
either by artificial actors, as in Multi-agent Systems, or by human beings, as in crowd-
sourcing. Setting the right social network to improve the solution quality or conver-
gence rate of such systems is then of a major concern.

By building several instances of Memetic Networks, named Memetic Network Al-
gorithms (MNAs), we conducted experiments aiming at verifying how network proper-
ties can affect the algorithm’s performance. We showed that the presence of a network
is often beneficial and a system that does not allow communication (i.e. the system
perform several parallel independent searches) converges much slower than one that
allows such interactions, often resulting in poor solutions. Hence, regarding our Hy-
pothesis 1, we conclude that allowing communication can be beneficial, and that this
is true for a wide range of network configurations and induced dynamics; nonetheless,
for networks with some properties, the system performance can be considerably poor.

It also became clear that several network properties play a substantial role in how
well a system can perform., thus confirming our Hypothesis 2. In most cases, we
found that allowing excessive communication is harmful to the algorithm’s perfor-
mance, hence modifying the network so as to restrict interactions can improve the out-
come’s quality. For example, in the popular Small-World network model, we found
that the best performance was often obtained when neighborhood sizes were restricted.
When analyzing dynamic networks, we found that there in asymmetry in how infor-
mation is spread: while solutions should be built by using information from as many
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sources as possible, there are benefits in restricting the reach of good information in
the network. We have argued that most of these results can be mapped to the duality
of exploitation of good known solutions and exploration of unseen areas of the search
space.

While the Memetic Network model is most useful to provide insights on how com-
plex interacting social actors are influenced by the underlying social network, we also
provided evidences that instances of the model applied to optimization problems are
actually useful as general-purpose optimization algorithms. We compared MNAs with
other traditional search algorithms, namely Hill-Climbing, Local Beam Search and Ge-
netic Algorithms, in benchmarks functions and the real-world instances of the Traveling
Salesman Problem. The MNAs performed better than the Genetic Algorithm in most
functions; there was no specific MNA (Small-World, Scale-Free or Dynamic) that fare
well in all scenarios, an evidence that the network must fit the problem at hand.

We also applied the MNAs in a Machine Learning scenario, where the task was to
learn the weights of a neural network so that it was able to correctly classify as many
examples as possible. Again, the MNA did better than the Backpropagation algorithm
in the long run, finding weights that allowed the neural network to classify the examples
with smaller error; in the short run, however, the Backpropagation algorithm did better,
providing a faster convergence.

In summary, the main contributions of this thesis are:

A new model of social search based on meme exchange over a social network
was proposed. To the best of our knowledge, no previous attempts were made
to capture into a model social characteristics aiming at problem-solving in such
general way. This model is useful as a starting point towards understanding the
role of social relations in social systems target at problem-solving;

e Instantiations of the proposed model were provided. Algorithms implementing
several variations of each step of the Memetic Network model were proposed,
along with results of experiments validating the implementations and exploring
their different parameters. Such instantiations can be directly applied to a number
of problem-solving scenarios, such as numerical and combinatorial optimization;

e Results on the role of network properties in search performance were obtained
from extensive experiments. Both Small-World and Scale-free networks have
been considered and their main properties were related to the algorithm’s per-
formance in optimization tasks. Given the ubiquity of these network models in
social systems, these results are stepping stones towards a more complete theory
of problem-solving in social systems;

e Results on the effectiveness of using the model as a general-purpose search al-
gorithm were provided. Instances of the model performed better than tradi-
tional general-purpose algorithms in several scenarios. These results, along with



108

Dawkins’s hypothesis that memetic evolution proceeds at a faster pace than ge-
netic evolution, are evidence that further studies on social search are worthy pur-
suing as a way to build automatic problem-solvers or social information process-
ing systems.

Several paths for further research can be devised. While we considered some of the
most popular and widespread network models (e.g. random, structured, small-world,
scale-free, aristocratic, egalitarian), still there are several network types and properties
that may play a role in Memetic Networks’ performance. For example, geographically-
constrained networks (HOFFMANN, 2009) can present interesting properties and may
be necessary to model systems where such constraints are a natural part of the scenario
(such as in foraging with robots).

Our study also only focused on computational simulations of the model. Another
interesting line of research is to apply the concepts and methodologies used here in
systems composed of real people, in a similar fashion to the experiments described
in (LAZER; FRIEDMAN, 2005). In contrast to this latter study, it is interesting to
ask how humans fare against traditional algorithms and the simulated Memetic Net-
works in solving difficult problems; if it is the case that humans can perform better
under controlled environments, then one can try and understand why they perform bet-
ter and improve the existing algorithms. If, however, the algorithms perform better than
humans, then the reverse is true and one can apply policies to improve social problem-
solving, which could have an impact in the intellectual productivity of companies and
organizations. We hypothesize that, in any case, the difference should be in how hu-
mans aggregate information from several sources and how they dynamically adapt the
network to improve the filtering of useful information.

Finally, the results presented here are only part of an initial movement towards a
better understanding of social systems and how they can be used to solve real-world
problems, either by using artificial or human actors. An interdisciplinary effort must
be pursued in order to provide such better understanding. The field of Artificial Intel-
ligence is a natural candidate to lead such endeavour, as it already aggregates diverse
fields such as psychology, sociology and computer science, which, we believe, are the
central disciplines needed in order to meet this challenge.
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A REDES MEMETICAS

Sistemas sociais, compostos de muitos atores interagentes envolvidos em alguma
forma de relacdo social, tém sido alvo de interesse nas dreas de Ciéncia da Computacao
e Inteligéncia Artificial. Um dos motivos para o crescente interesse € a necessidade de
algoritmos especializados para gerenciar, analisar e extrair conhecimento de conjuntos
de dados massivos gerados por interagdes sociais (e.g. rede de citagdes de artigos cien-
tificos, troca de e-mails, hyperlinks em websites). Neste contexto, da mesm forma que
a necessidade de analisar cadeias de DNA e outras estruturas bioldgicas deram origem
a area de Bioinformatica, a necessidade de analisar estrutras sociais complexas estd
dando origem a drea de Ciéncia Social Computacional. Esta drea utiliza computadores
e algoritmos para analisar e entender sistemas sociais, incluindo simulacao de sistemas
sociais reais, algoritmos para extrair padrdes de interacdes sociais, bancos de dados
especializados e assim por diante.

Por outro lado, hd cada vez mais interesse em fazer exatamente o oposto de uti-
lizar computagdo para analisar sistemas sociais: utilizar tais sistemas para produzir
computacdo. Esta abordagem pode ser dividida em dois tipos basicos. No primeiro
tipo, estruturas sociais sao utilizadas para compor sistemas artificiais que almejam a
solucdo de problemas. Este é o caso de Sistemas Multi-Agentes (SMA), compostos de
diversos agentes independentes e semi-autobnomos que colaboram (ou competem) para
solucionar uma dada tarefa; resultados de como estruturas sociais emergem no mundo
real podem entdo ser aplicados em tais SMA de forma a melhorar seu desempenho ou
reduzir seu custo de operagao.

O segundo tipo de abordagem almejando a geracdo de computacdo a partir de
sistemas sociais € a utilizacdo de sistemas reais, compostos de pessoas, e fazer uso
destes sistemas de tal forma que pessoas, € ndo mdquinas, seja responsdveis por solu-
cionar tarefas e produzir computagdo. Este € o caso de sistemas de crowdsource, Wis-
dom of Crowds, Computagdo Social e Processamento Social de Informacdes; todos
estes utilizam a interagcdo entre pessoas para solucionar problemas de maneira quase-
algoritmica (i.e. com comportamento e resultados bem definidos). A principal idéia
por trds desta abordagem é que ha um grande potencial em solucionar problemas com-
plexos exigindo pouco de um grande niimero de pessoas. Esta ultima abordagem, foco
desta tese, pode ainda ser dividida em diferentes perspectivas em relacdo a como um
problema € distribuido para o sistema social e como os resultados sdao extraidos. Em
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um extremo do espectro, crowdsourcing preocupa-se com criar uma chamada aberta
para um grupo por contribuidores interessados em solucionar um problema e, uma vez
que um voluntdrio toma posse da tarefa, este a solucionard sem ajuda dos demais. No
outro lado do espectro, Processamento Social de Informacdes (PSI) utiliza a interagao
de muitos atores para colaborativamente e iterativamente construir uma solucao.

Todos estes sistemas tem em comum a necessidade de algum tipo de interacdo entre
atores. Ao combinar o conjunto de todo atores e suas interagdes sociais, podemos
compor uma rede social. E claro que tal rede tem um papel central em qualquer sistema
social, uma vez que ela representa e define como atores interagem uns com 0s outros,
através da especificacdo de propriedades de rede especificas (como a sua topologia).

Uma pergunta extremamente relevante €, entdo, como propriedades de redes se
relacionam com a capacidade de um sistema social em solucionar problemas. Nesta
tese, relatamos um conjunto de modelos, algoritmos, experimentos e seus resultados
direcionados a responder precisamente esta questdo. Fazemos isso através de uma
metodologia que encaixa-se entre os dois tipos de abordagens apresentados acima:
propomos um modelo que imita diversos aspectos de interacdes sociais e a troca de
informacdes em redes sociais que nao se restringe simular tais sistemas, mas sim pro-
duzir computagdo na forma de algoritmos capazes de solucionar problemas, de forma
a garantir um meio de definir e medir desempenho.

Assim, como argumentaremos, este modelo, denominado Redes Meméticas, é prox-
imo em sua natureza de Algoritmos Genéticos (AG), que imitam processos naturais (se-
lecdo natural e evolu¢do), mas que tem como objetivo a solu¢ao de problemas em geral
através de meios automadticos (sem utilizar genes ou DNA reais). Da mesma forma,
fazemos uso de conceitos de redes sociais para gerar algoritmos que sdo capazes de
lidar com tarefas especificas de forma automatica, sem que atores sociais reais estejam
necessariamente envolvidos. Ainda assim, defendemos que o modelo e seus algoritmos
associados, sdo também uteis para prover uma maior compreensao de sistemas sociais
reais e que seu maior valor estd exatamente nesta utilidade.

De forma a alcancar nossos objetivos, fazemos uso do conceito de memes - infor-
macao que se propaga por copia em redes sociais - proposto por Dawkins (DAWKINS,
1976). Também fazemos uso de diversos conceitos e ferramentas de Teoria das Redes
(ou “Ciéncia das Redes”), tanto na forma de topologias e propriedades especificas de
rede para serem aplicadas aos nossos algoritmos, como também no uso de ferramentas
de andlise para extrair resultados. O ato de solucionar problemas nesta tese é definido
como um problema de busca, onde a tarefa € reduzida a encontrar um estado dese-
javel em um espaco de estados potencialmente muito grande. Definir o problema dessa
forma permite que se meca de forma objetiva o desempenho de sistemas. Os algorit-
mos propostos sdo, portanto, algoritmos de busca que, como mostraremos podem ser
bastante competitivos com técnicas de busca tradicionais (tal como Subida de Encosta
e Algoritmos Genéticos).



111

A.1 Objetivos e Metodologia

De forma geral, estamos interessados em compreender como interagdes sociais em
redes sociais podem ser utilizadas para solucionar problemas. Nosso objetivo principal
€ estudar como sistemas sociais podem ser organizados ou construidos de forma a serem
capazes de solucionar problemas de forma eficiente. Isto é, estamos interessados em
extrair computacao de redes sociais. Duas hipéteses guiam este trabalho:

Hipétese 1 : Dado um conjunto de agentes independentes agindo para solucionar um
problema comum, a capacidade de solucionar o problema de forma coletiva pode
ser melhorada ao permitir que estes agentes troquem informagdes sobre o prob-
lema.

Hipétese 2 : Dado um conjunto de agentes que interagem entre si para solucionar um
problema, compondo um sistema, a rede formada pelos padrdes de interacdes
pode afetar a qualidade da solu¢@o encontrada.

Os objetivos especificos desta tese sdo como segue:

1. Propor um modelo de solugdo social de problemas onde a rede social tenha uma
parte central no processo de encontrar solucoes;

2. Identificar propriedades de rede relevantes e seus efeitos na capacidade de solucao
de problemas de sistemas sociais;

3. Comparar a eficicia de topologias de rede comuns em cendrios de solucdo de
problemas;

4. Verificar a utilidade de algoritmos de busca inspirados em redes sociais como
ferramentas genéricas para solucionar problemas.

Para atingir nossos objetivos, propomos um modelo, com algoritmos associados,
capazes de solucionar problemas utilizando multiplos agentes agindo em paralelo, ca-
pazes de trocar informagdes sobre solugdes individuais através de uma rede config-
urdvel subjacente. Assim, é possivel modificar tal rede para verificar sua influéncia no
desempenho do sistema como um todo.

Instanciamos tal modelo para que possa ser aplicado em problemas diversos, re-
alizando simulagdes numéricas sobre problemas de benchmark. Configuramos tais
problemas como tarefas de busca, onde desejamos encontrar um estado desejado entre
multiplos estados possiveis, representando solu¢des. Mais ainda, restringimos nosso in-
teresse em problemas de otimizagdo. Assim, nosso modelo deve ser capaz de construir
solucdes e avalid-las. Os resultados de tais simulacdes sdo analisados estatisticamente,
de forma a permitir o relacionamento entre propriedades de redes e desempenho do sis-
tema. A Tabela A.1 mostra as funcdes utilizadas como benchmark - nelas, desejamos
encontrar os valores de X que minimizam as funcoes.
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Table A.1: Funcdes de benchmark utilizadas nesta tese.

Em seguida, comparamos os algoritmos gerados com outros algoritmos tradicionais
- Algoritmos Genéticos, Backpropagation, Busca em Feixe Local e Subida de Encosta
- e com diferentes versdes do algoritmo utilizando redes distintas, em problemas mais
complexos. Aplicamos tais algoritmos em problemas de TSP e de Aprendizado de
Conceitos.

A.2 Redes Meméticas: um modelo de busca em rede

Propomos um modelo de busca que utiliza uma rede subjacente para explicitamente
estruturar a troca de informacgdes entre multiplas buscas paralelas. Este modelo € in-
spirado na troca de informacdes em redes sociais e tem as seguintes caracteristicas
principais:

1. E baseado em populagio, executando miltiplas buscas em paralelo;
2. Comunicagao entre as buscas € estruturada por uma rede explicita e configuravel,

3. Novos estados sdo gerados agregando informagdes de vértices adjacentes na rede;

A inspirac¢do deste modelo vem do conceito de memes, proposto por Richard Dawkins.
Dawkins argumenta que evolucdo cultural ocorre utilizando mecanismos similares a
evolugdo genética. O termo meme foi criado como o equivalente cultural do gene. Um
meme € qualquer coisa que pode ser copiado de uma mente para outra, através de qual-
quer meio - por exemplo, idéias, borddes, musicas, conceitos. Um meme “salta” de
cérebro para cérebro na sociedade, transformando-se, unindo-se com outros memes,
dando origem a novos memes.

A evolugdo cultural, Dawkins argumenta, procede por meio de uma sele¢do natural
e memes. Individuos expdem seus memes a audiéncias, que copiam (lembram) aqueles
que consideram uteis ou interessantes. Estas cOpias tem a chance de se propagar mais,
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para outras mentes. No processo, alguns memes sdo modificados, seja por ruido, seja
por inclusdo de novas informacdes locais (que s@o outros memes) a seu “hospedeiro”,
e estes passardo também pelo processo de selecdo. Apds algumas iteragdes, apenas
aqueles memes mais bem “adaptados” permanecem no conjunto de memes.

Apesar das semelhangas, memes possuem diferengas cruciais em relacdo a genes.
Dawkins observou que memes sdo mais suscetiveis a mudangas e unides - memes sao
raramente passados na sua forma exata original, sofrendo modifica¢des sutis no pro-
cesso de comunicacdo, através da agregacdo de outros memes. Por exemplo, quando
lemos uma matéria no jornal, podemos comentar o conteddo com um colega, mas nunca
reproduziremos palavra por palavra a matéria. Pelo contrario, omitiremos partes, adi-
cionaremos nossa propria opinido ou idéias lidas em outras fontes.

Argumentamos que hd outra diferenca central entre memes e genes, que pode ser um
dos fatores capazes de explicar a aparente maior velocidade de evolu¢do de memes, e
que tentamos capturar em nosso modelo. A diferenca € em como um meme se propaga.
Enquanto genes sdo transmitidos com fortes restricdes geograficas, memes nao tem tal
limitagdo. Com a invenc¢do da imprensa e com as tecnologias atuais de comunicacao,
memes sofrem muito menos restricdes geograficas - i.e. memes podem se propagar
para qualquer lugar do mundo de forma rdpida. Mas ndo é o caso que memes sao
transmitidos para todos individuos do mundo, nem para um subconjunto aleatério de
individuos. Memes propagam-se através de uma rede social, que impdem restri¢cdes em
como o meme pode se difundir. Tais redes sociais podem ser muito mais dindmicas que
qualquer sistema de difus@o genético.

Adicionalmente, em um arranjo bioldgico, hd duas maneiras de criar um novo con-
junto de genes. A primeira é através da mutagdo, inico motor de mudangas em or-
ganismos assexuados. A segunda maneira € através do sexo, que combina genes de
exatamente dois individuos. Em um ambiente cultural, por outro lado, novos memes
podem ser criados a partir de mudangas em um tnico meme, ou através da agregacao
de multiplos memes. Nao h4 restricdes no nimero maximo de "pais" envolvidos na
criacdo de um meme. Mais ainda, o nimero de "pais" ndo € fixo. Cada meme pode ser
afetado por um nimero diferente de outros memes.

A.2.1 O modelo

Denominamos nosso modelo de Redes Meméticas. Este nome reflete a caracteris-
tica principal do modelo: a inspiragdo na difusdo de memes em redes sociais. A idéia
central é ter multiplas buscas paralelas trocando informacdes sobre solucdes através de
uma rede. Cada busca pode ser compreendida como um container de memes, enquanto
memes sdo propagados pela rede para outros containers. Um meme nesse modelo €
qualquer informagao sobre o estado mantido por uma busca, que inclui o estado em si
(e.g. uma solucgdo candidata para um problema) e meta-informacao sobre o estado (e.g.
a avaliacdo da solucdo candidata). Cada busca agrega memes recebidos de alguma
maneira, possivelmente adicionando informacdo local, e torna o resultado disponivel
para a rede novamente.
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Para obter as propriedades desejadas, o modelo deve ser capaz de agregar qualquer
nimero de memes em uma tnica solucdo candidata. O nimero de memes sendo rece-
bidos por qualquer vértice na rede, e o nimero de vértices que recebem um meme, ndo
sdo especificados e dependem apenas da topologia da rede. Adicionalmente, exigimos
algum nivel de autonomia para cada n6, de forma que uma Rede Memética composta
de um tunico no seja ainda capaz de realizar buscas e melhorar solugdes. Isto é impor-
tante, pois entendemos a rede como um facilitador que permite um melhor uso para
multiplas buscas paralelas, e ndo como uma condi¢do necesséria para realizar busca.

Nosso modelo especifica como a rede é formada e como ela usada para realizar
buscas. O modelo utiliza um grafo G = (V, E), onde V' é um conjunto de vértices
representando possiveis solucdes para o problema sendo tratado e £ € um conjunto
de arestas (u,v)|u,v € V representando adjacéncias entre os vértices. Estes vértices
ndo sdo valorados, mas podem ser orientados. Adicionalmente, uma funcdo de avali-
acdo eval mapeia um valor real para cada solucdo, de acordo com sua adequacdo ao
problema.

O conjunto F define a topologia da rede e suas propriedades, i.e. a dinamica da
rede. Este pode ser construido de duas formas: estaticamente ou dindmicamente. No
caso estético, I é pré-definido e permanece fixo durante a execucdo do algoritmo.
No segundo caso, I pode ser alterado em tempo de execucdo, seguindo critérios de
conexao. Consideramos ambos 0s casos nesta tese.

O conjunto V' é composto de containers para memes, que codificam solugdes para
o problema. Cada vértice representa exatamente uma solu¢do completa. Uma vez que
E esteja definido, as solugdes em V' s@o atualizados utilizando informacdes que sdo
acessiveis através de E. Para melhor especificar esses procedimentos, dividimos o
modelo geral em trés passos, descritos a seguir.

Passo de Conexao

O passo de conexao € responsavel por definir a estrutura da rede. Pode ser exe-
cutado apenas uma vez, no inicio do algoritmo, definindo uma rede estética, ou a cada
iteracdo, tornando possivel redes dindmicas. De forma geral, a inicializac¢do e quaisquer
modificacdes em E sdo parte do Passo de Conexao.

Passo de Agregacao

Neste passo, os vértices tornam disponiveis suas solucdes para a rede através de
suas conexoes (definidas no Passo de Conexao), e agregam as solu¢des que lhe sdo
disponibilizadas, construindo uma nova solucdo. Este passo € a parte “social” da busca,
j4 que vértices podem influenciar a busca de outros vértices, trocando informagdes
sobre os estados sendo visitados.

Este passo define precisamente como multiplas informac¢des (memes) vindos de
diferentes fontes devem ser agregados em uma tnica solucao. A maneira de realizar tal
agregacdo é, como veremos, dependente do problema.

Passo de Apropriacao

Este passo € responsavel por apropriar uma solucdo agregada, introduzindo nela
informacdes locais ao vértice. E neste passo que informacgdes externar (em relagdo ao
passo de Agregacdo) podem influenciar a construcdo da solucdo. Tal informacao local
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pode ser uma heuristica ou informacdo disponivel apenas para um dnico vértice. Por
exemplo, este passo pode incluir a aplica¢do de alguma heuristica de busca local, como
subida de encosta, a solucio antes de disponibiliza-la para a rede.

Este passo representa uma busca independente - i.e. a busca que seria realizada por
cada vértice se ndo houvesse a possibilidade de comunicacdo pela rede. Se este passo
for vazio, entdo o Passo de Agregacdo torna-se o unico responsdvel pela busca. No
outro extremo, o Passo de Agregacdo pode ser vazio, e o sistema comporta-se como
|V'| buscas independentes.

A.2.2 Instanciacoes do modelo

O modelo descrito até entdo apenas fornece um framework para a construcio de
algoritmos de busca em rede. Uma implementacdo do modelo exige a especificacdo
de cada passo descrito. Chamamos uma instancia¢do de Algoritmo de Rede Memética
(MNA, na sigla em ingl€s).

Adiamos a discussdo do Passo de Conexao para adiante, ja que um dos focos desta
tese € o estudo da influéncia deste passo no desempenho de um MNA. O Passo de Agre-
gacdo € central para o modelo e discutimos algumas opc¢des para sua implementacao.

O Passo de Agregacao € responsével por usar informacao de n6s vizinhos para con-
struir uma nova solugdo. Assim, a implementagcao depende da codificacdo utilizada no
problema. Como argumentamos, o conceito de memes is baseado na idéia de imita¢ao
e copia. Este conceito leva a um método de agregacao simples que se baseia em copiar
boas solucdes dos vizinhos:

Definicao Agregacdo por Copia do Melhor Vizinho Seja A o conjunto de vértices ad-
jacentes a qualquer vértice v; seja u = argmaz,caeval(z). Se mais de um vértice
satisfizer esta conicdo, u € escolhido aleatoriamente entre estes. Entdo, faca v < u,
caso contrario v € inalterado.

Este método, para cada vértice, copia a solucdo completa do melhor vértice adja-
cente. Naturalmente, a maneira que uma solucdo é copiada depende de detalhes de
implementagdo, mas também € claro que esta idéia funcionna para pelo menos uma
grande quantidade de problemas diferentes. Enquanto a vizinhanga fisica, composta
pelos potenciais parceiros na agregacao, € definida pela topologia da rede, a vizinhanga
de fato € restrita a um tinico né - o melhor né da vizinhanca fisica.

Esta Agregacdo por Copia é simples e de fato usa informacao de todos vizinhos. No
entanto, exceto para o melhor vizinho, apenas a avaliacdo dos demais € utilizada, ndo
os memes que compdem as solu¢des individuais. E parte central da idéia de memes
a possibilidade de recombinacio e unido de memes e exploramos este conceito em
seguida.

A.2.2.1 Otimizagdo de Pardmetros e Valores Reais

Neste cendrio, uma fun¢io com mdltiplos pardmetros arbitraria f (%) é dada para
a qual queremos encontrar Z* de forma que f(Z) é o menor valor possivel para a
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funcdo (i.e. um problema de minimiza¢do). Uma solu¢@o candidata para o problema é
representada por um vetor & de valores reais dentro de valores determinados.

Um método de agregacdo possivel para este tipo de codificacdo faz uso de infor-
macdes nos vizinhos e explora a representa¢ao: uma nova solu¢ao é composta tomando
a média sobre todos elementos das solucdes.

Definicdo Agregacdo por Média sobre Vizinhos Para cada vértice v, faca A(v) =
ul|(v,u) € E A eval(u) > eval(v). Seja x; a solugdo candidata contida no vértice ¢
e x; j 0 j-ésimo componente desta solugdo. Crie uma nova solucdo agregada zy tal que

- 1 o
xOJ - A ZZGA x/LJ.

Um método mais geral, mas que potencialmente utiliza informag¢des de todos viz-
inhos, é uma variacdo da Agregacao por Copia, que faz a copia de partes especificas de
uma solucdo.

Definicdo Agregacdo por Combinagdo sobre Vizinhos Para cada vértice v, faga A(v) =
ul(v,u) € E A eval(u) = eval(v). Seja z; a solugdo candidata contida no vértice i e
x;; 0 j-ésimo componente desta solu¢do. Crie uma nova solugdo agregada zj tal que
Zo.; = T, onde para cada valor de j, k € A é aleatoriamente selecionado.

Neste método, uma nova solugdo € criada combinando partes de solugdes de vér-
tices vizihos melhores avaliados. E mais geral pois nio exige que Z seja composto de
valores numéricos, ao contrdrio da Agregacdo por Média.

Haé também diversas opcdes de implementacao para o Passo de Apropriacdo. Neste,
podemos inserir técnicas de busca local, tais como subida de encosta ou busca por
gradiente. No entanto, a forma mais simples de modificar localmente uma solugao é
realizar uma simples busca aleatéria.

Definicao Apropriacdo por Aleatorizacdo Para cada parametro, com probabilidade p,,,
substitua o parametro com um valor aleatério dentro da faixa de valores possiveis do
dominio.

Esta especificacdo implementa uma caminhada aleatdria para valores baixos de p,,.
Naturalmente, este ndo é um método que, sozinho, é eficiente para realizar buscas.
Ainda assim, utilizamos tal apropria¢do na maior parte dos nossos experimentos.

Os métodos descritos podem ser modificados para outras representagdes. Por ex-
emplo, se representarmos uma solug¢do por uma cadeia de bits, devemos modificar os
passos de Agregacdo e Apropriagdo para refletir tal mudanca. A Agregacio por Com-
binacdo € trivialmente modificada para lidar com bits, simplesmente tomando como
parametro cada bit individual. Nesse caso, a granularidade do meme torna-se menor -
ao invés de um meme representar um parametro completo, este passa a representar ape-
nas parte do parametro (um bit). A Apropriacdo por Aleatorizacdo pode ser modificada
de forma idéntica.

Outras representacdes podem exigir implementacdes bastante diferentes. Se es-
tivermos interessados em otimizacdo combinatério, devemos levar em conta que certos
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elementos ndo podem se repetir e, portanto, a simples copia de elementos de outras
solucdes torna-se invidvel.

Tomando como exemplo o Problema do Caixeiro Viajante (TSP, na sigla em inglés),
uma solu¢do pode ser representada por um vetor de inteiros indicando a ordem que
cidades devem ser visitadas. E claro que o mesmo valor nio pode aparecer duas vezes
na mesma solucao, levando ao problema de como extrair informagdes titeis dos vizinhos
para compor uma nova solu¢do. Um método vidvel € como segue.

Definicdo Agregacdo por Transicdes Frequentes Para cada vértice v, fagca A(v) =
ul(v,u) € E A eval(u) > eval(v). Inicie um novo caminho com uma cidade arbitraria
co- A proxima cidade c; serd aquela que segue ¢y com maior frequéncia na solucdes em
A(v). O processo é repetido até que um caminho completo esteja formado. Empates
sao resolvidos escolhendo aleatoriamente entre as opgdes.

O Passo de Apropriagdo também deve ser modificado, o que pode ser feito de forma
trivial:

Definicao Apropriacdo por Troca Para cada cidade na solucdo, troque-a de posicao
com outra cidade em uma posi¢do aleatdria com probabilidade p,,.

A.2.2.2 Experimentos

Para compreender melhor o papel de cada componente de um MNA, conduzimos
experimentos comparando a eficicia do algoritmo quando desligamos certos passos.
Apresentamos aqui os principais resultados obtidos.

A Figura A.1 mostra o resultado de uma instancia de MNA que utiliza Agregacdo
por Combinagdo e Apropriagdo por Aleatorizacdo, executada sobre uma rede em forma
de anel quando tentando minimizar a funcdo Griewank.

Observa-se que o algoritmo completo encontra solugdes muito melhores do que
com qualquer passo desativado. Quando o Passo de Agregacgao esta desativado, o algo-
ritmo € reduzido a uma busca aleatéria e nenhuma comunicagdo se faz presente; cada
no realiza uma busca independente. Sem o Passo de Apropriacdo o algoritmo tem sua
habilidade de explorar o espaco de estados limitado pelo conjunto de solugdes geradas
no inicio do algoritmo, resultando em uma busca muito ineficaz.

A.3 Busca em Redes Estaticas

Iniciamos nossos estudos analisando como diferentes tipos de redes estéticas afetam
o desempenho de Redes Meméticas. Experimentar com redes estdticas permite um
maior controle de propriedades das redes estudadas. Para obté-las, o Passo de Conexao
€ executado uma unica vez, no inicio do algoritmo, definindo uma rede que se mantém
inalterada no decorrer de uma busca.



118

10 ! g !

10°

best solution found

i | ;
0 500 1000 1500 2000
round

Figure A.1: Avaliacdo da melhor solu¢do encontrada para cada rodada do algoritmo
completo (linha sélida), do algoritmo sem o passo de conex@o (linha tracejada) e sem o
passo de apropria¢do (linha pontilhada).

A.3.1 Busca em Redes de Mundo Pequeno

Uma Rede de Mundo Pequeno tem como principais caracteristicas um alto grau de
clusterizacdo e um baixo comprimento médio de caminhos. Para estudar este tipo de
rede, utilizamos o modelo proposto por Watts. Iniciamos com uma rede em forma de
anel, onde cada vértice € vizinho de /K vizinhos mais proximos. Entdo, com probabil-
idade 3, cada aresta (u, v) é redirecionada para conectar o vértice u a um novo vértice
w escolhido aleatoriamente.

Assim, dois parametros podem ser analisados: K e 5. K define o tamanho da viz-
inhanga na rede e especifica o niimero de vértices que podem compor novas solucdes.
A Figura A.2 mostra resultados usando Agregacdo por Combinac¢io em dois momentos
do algoritmo aplicado a fun¢do Griewank. Observamos que K tem grande influéncia
no algoritmo. O pior caso (K = 2) gera solu¢des que, em média, sdo mais de uma
ordem de magnitude pior que o melhor caso (K = 98).

Observa-se também dois comportamentos diferentes quando analisamos diferentes
momentos do algoritmo. Para um grande numero de rodadas, valores maiores de K
sempre levam a solucdes que s@o melhores ou tdo boas quanto as encontradas para
valores menores de K. Porém, no curto prazo, para um pequeno nimero de rodadas,
observa-se que o melhor desempenho € obtido para um valor intermedidrio de /. Val-
ores maiores ou menores que este valor 6timo levam a uma degradag@o no desempenho
do algoritmo.

Testamos também os efeitos de variar 3, a probabilidade de redirecionar arestas.
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Figure A.2: Melhores valores encontrados quando otimizando a fun¢do Griewank com
200 dimensoes, para diferentes valores de /' e em diferentes momentos do algoritmo.

Quanto maior o valor de , mais a rede se aproxima de uma rede aleatéria. Baixos
valores, por outro lado, levam a uma rede altamente estruturada.

Observamos que o comportamento quando variamos /3 depende da densidade da
rede, isto é, do valor de K. Para valores baixos de K (e.g. K = 2), um aumento de 3
sempre leva a um melhor desempenho do algoritmo. Porém, para valores maiores de
K (e.g. K = 6), observamos que, para um pequeno nimero de rodadas do algoritmo,
o comportamento inverso é obtido: um aumento de 3 leva a um pior desempenho.

A.4 Busca em Redes Sem Escala

Redes Sem Escala sdo redes cuja distribuicao de graus dos vértices ndo segue uma
distribui¢cdo normal, mas sim uma curva de lei de poténcia. Isso leva a existéncia de
hubs, nés altamente conectados.

Utilizamos o modelo de constru¢cdo proposto em (BARABASI; ALBERT, 1999).
Introduzimos os vértices um a um. Cada vértice conecta-se a M vértices ja existentes
narede. A probabilidade de um novo vértice u conectar-se a um vértice v é proporcional
ao grau do vértice v.

Além de M, definimos um segundo parametro, H, que define o nimero maximo de
arestas que qualquer vértice pode fazer parte - isto é, o nimero maximo de conexdes
possiveis. O parametro / controla o tamanho maximo dos hubs.

As Figuras A.5 e A.6 mostram os resultados da variacdo destes parametros no de-
sempenho do algoritmo. E possivel observar que maiores valores de M sempre levam
a um melhor desempenho do algoritmo. Isto €, redes sem escala densas se saem melhor
do que redes esparsas. Ja M tem pouca influéncia sobre o algoritmo. Apenas para redes
muito esparsas (M < 4) o tamanho maximo do hub tem alguma influéncia.

Interessantemente, o grau individual dos diferentes vértices tem influéncia no de-
sempenho individual destes vértices. Em geral, quanto maior o grau de um vértice,
melhor o seu desempenho médio. A Figura A.7 mostra tal relacao.
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Figure A.3: Avaliacdo da melhor solugdo para a fun¢cdo Griewank, com 200 dimensdes,
e diferentes valores de 3 e diferentes momentos do algoritmo. K = 2.

A.5 Busca em Redes Dinamicas

Ao permitirmos que a rede subjacente se altere durante a execu¢do de um MNA,
estamos permitindo que os diversos vértices reconectem-se de alguma forma. A intro-
ducgdo de tais reconexdes também introduzem outros parametros que potencialmente
influenciam o desempenho do algoritmo. Neste capitulo, exploramos as implica¢des da
introducgdo de redes dinamicas.

O Passo de Conexao agora € executado a cada rodada do algoritmo e novos vértices
podem ser introduzidos e destruidos. Nao hd mais uma preocupacdo em induzir uma
topologia especifica e cada n6 € mais egocéntrico, decidindo criar ou eliminar conexdes
conforme lhe convém. Ainda assim, cada aresta deve refletir de alguma forma o bene-
ficio de criar tal conexdo. Isto €, uma aresta deve apenas ser criada se isso for benéfico
para o né que a estd criando. Assim, definimos um Passo de Conexao que introduz tal
raciocinio sem se preocupar com a topologia que podera gerar.

Definicdo Passo de Conexdo Dindmico Seja o grafo G =< V, E >, onde V € o con-
junto de vértices e £ o conjunto de arestas direcionadas. Este tltimo € definido como:
E = (u,v)|u,v € E A eval(v) = eval(u) Aindegree(v) < maxIn A outdegree(u) < mazOut.
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Figure A.4: Avaliacdo da melhor solu¢do para a funcdo Griewank, com 200 dimensdes,
e diferentes valores de (3 e diferentes momentos do algoritmo. K = 6.

Nessa defini¢do, outdegree(u) representa o grau de saida do vértice u; indegree(v)
representa o grau de entrada do vértice v; maxIn e maxQOut sdo parametros que de-
terminam, respectivamente, o maximo grau de entrada e saida para qualquer vértice na
rede.

Cada vértice na rede, portanto, conecta-se a outros vértices que sio, segundo a
funcdo de avaliacdo eval, melhores o proprio, respeitadas as limitagdes de grau. A
idéia por trds € que hd um interesse dos vértices em conectarem-se a outros vértices
melhores avaliados de forma a extrair informacdes uteis destes.

Mantemos inicialmente maxQOut = N e variamos maxIn. A Figura 7.1 mostra que
valores intermedidrios deste parametro levam aos melhores resultados, mas ha pouca ou
nenhuma diferenca entre os diversos valores intermedidrios. Porém, valores extremos
levam a resultados bastante ruins. Para rodadas iniciais, vemos que um valor baixo
(mas ndo limitrofe) para maxIn leva aos melhores resultados. Assim, para os valores
testados, vemos que maxIn = 10 garante um bom desempenho tanto no curto prazo
como no longo prazo.

Ja a Figura A.9 mostra resultados para diversos valores de maxOut e mazxin.
Vemos que o comportamento para os dois estados mais ineficientes (maxin = 1 e
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Figure A.5: Melhores avaliacdes das fungdes apds 2000 rodadas usando diferentes
funcdes e diferentes valores de M.
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maxIn = N) € bastante diferente. Para maxIn = 1, maxOut influencia de forma
significativa o desempenho do algoritmo, mas tal influencia se limita a valores baixos
de maxQOut. Para maxOut > 3, ndo ha diferenca significativa de desempenho. Para
maxin = 100, porém, maxOut ndo tem influencia alguma e diferentes valores para
este parametro levam a um mesmo desempenho ruim.
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Figure A.9: Avaliacdo média da fun¢do Griewank de 200 dimensdes para diferentes
valores de maxQOut. A linha s6lida representa o caso onde maxIn = 1. A linha
pontilhada representa o caso onde max/n = 10. A linha tracejada-e-pontilhada mostra
o caso para maxIn = 50. A linha tracejada mostra o caso para maxIn = N.

A.6 Comparacoes e Aplicacoes

Comparamos os algoritmos apresentados até entdo com outros algoritmos tradi-
cionais para otimizacdo. Trés algoritmos de Rede Memética sdo utilizados. SWN-
MNA implementa a versdo de MNA que utiliza redes de mundo pequeno. SFN-MNA
implementa a versao que utiliza redes sem escala. J4 DYN-MNA utiliza redes dindmi-
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cas. Cada uma dessas versdes utiliza os melhores parametros encontrados durante os
testes apresentados nas respectivas segoes.

Trés algoritmos tradicionais sdo utilizados para comparacdo: Subida de Encosta
(Hill-Climbing - HC), Busca em Feixe Local (Local Beam Search - LBS) e Algoritmos
Genéticos (Genetic Algorithsm - GA).

Estes seis algoritmos foram aplicados a dois cendrios, contendo diversos problemas
em cada. O primeiro cendrio é o de otimizacdo de fun¢des com varidveis reais. O
segundo cendrio € o Problema do Caixeiro Viajante (TSP).

A Figura 8.1 mostra os resultados para a otimizacio de quatro funcdes. Nota-se
que os MNA se saem melhor que os trés algoritmos tradicionais. O GA, no entanto,
tem desempenho bastante similar aos MNA. A diferenca observada € estatisticamente
significativa.
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Figure A.10: Melhores avaliagdes apos 5000 rodadas ao otimizar diferentes fungdes
com diferentes algoritmos.

Para o TSP, cujos resultados encontram-se na Figura A.11, observamos comporta-
mento similar. Desta vez, porém, as diferencgas sdo mais acentuadas, especialmente para
0 maior problema utilizado (com 131 pontos). Nesse caso, 0 SEFN-MNA obteve o mel-
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Figure A.11: Melhores rotas encontradas para diferentes instancias do TSP ap6s 1000
rodadas, utilizando diferentes MNAs: Small-World Networks (SWN-MNA), Scale-
Free Networks, (SFN-MNA), Dynamic Networks (DYN-MNA). Também sao mostra-
dos resultados para Algoritmos Genéticos (GA), Busca Local em Feixe (LBS) e Subida
de Encosta (HC).

hor desempenho entre todos os algoritmos. Para o problema de tamanho intermediario
(48 pontos), todos os MNA e o GA tiveram exatamente 0 mesmo desempenho. Para o
menor problema, observou-se uma grande variancia, mas o SWN-MNA obteve consis-
tentemente os melhores resultados com baixo desvio padrao.

A.7 Conclusoes

Esta tese apresentou um modelo de busca social aplicado a tarefas de encontrar
solucdes para problemas. O modelo proposto é baseado no conceito de memes e na
troca de informacdes através de uma rede como o principal mecanismo de busca. Nesta
abordagem, possiveis solucdes para um problema (estados) sao codificados em vértices
de uma rede e novas solucdes sdo geradas pela agregacdo de elementos de solucdes ja
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existentes na rede; tal interacao entre vértices € restrita pela topologia da rede.

O principal objetivo do modelo de Rede Memética € prover uma base sobre a qual
podem ser exploradas os principais objetivos da tese, que envolve testar a hipétese de
que propriedades de rede podem afetar a capacidade de solucionar problemas de sis-
temas compostos de multiplos atores sociais. Este objetivo foi motivado pelo cada vez
maior ndmero de sistemas que almejam solucionar problemas e que requerem interacao
social de alguma forma, seja por atores artificiais, como em Sistemas Multiagente, or
por seres humanos, como em crowdsourcing. Ajustar a rede social correta para melho-
rar a qualidade e velocidade de convergéncia desses sistemas e, portanto, nossa princi-
pal preocupacao.

Através da construcdo de diversas instancias de Redes Meméticas, os Algoritmos
de Redes Meméticas (MNA), conduzimos experimentos com o objetivo de verificar
como propriedades de rede afetam o desempenho dos algoritmos. Mostramos que a
presenca de uma rede pode ser frequentemente benéfica e sistemas que ndo permitem
comunicacdo convergem mais lentamente que um sistema que permite tais interacoes.
Assim, com relagdo a Hipétese 1, concluimos que permitir a comunicacao pode ser
benéfico, e que isso é verdadeiro para uma grande diversidade de configuracdes de rede;
ainda assim, para redes com determinadas propriedades, o desempenho do sistema pode
ser arbitrariamente ruim.

Também ficou claro que diversas propriedades de rede tem um papel fundamental
em o quao bom um sistema pode ser, confirmando a Hipétese 2. Na maioria dos casos,
observamos que permitir um excesso de comunicagdo é danoso para o desempenho
do algoritmo e alterar a rede para restringir taiis interacdes pode melhorar consider-
avelmente o resultado final. Por exemplo, no modelo popular de Redes de Mundo
Pequeno, descobrimos que o melhor desemepnho é obtido quando o tamanho da viz-
inhanca de cada vértice é pequeno. Ao analisarmos redes dindmicas, vimos que ha
uma assimetria em como a informacao € difundida: enquanto solucdes devem ser con-
struidas usando informagdes de muitas fontes, hd beneficios em restringir o alcance de
boas informacdes na rede. Argumentamos que a maioria desses resultados podem ser
explicados pela troca entre o uso de estados conhecidos (exploitation) e a exploragdo
de estados nao-visitados (exploration) no espago de busca.

Enquanto o modelo de Redes Meméticas € itil para prover informacdes sobre como
atores sociais complexos sao influenciados pela rede social subjacente, também mostramos
evidéncias que instancias do modelo aplicados a problemas de otimizacdo sao uteis
como algoritmos de otimizacdo de propdsito geral. Comparamos MNAs com out-
ros algoritmos de busca tradicionais em funcdes de teste e cendrios reais. Os MNAs
mostraram um desempenho melhor que Algoritmos Genéticos na maioria das funcdes,
mas nenhum MNA especifico se saiu melhor em todos os cendrios, uma evidéncia de
que a rede ideal € dependente do problema em maos.

Em resumo, as principais contribui¢des desta tese sao:

e Um novo modelo de busca social baseado na troca de memes em uma rede social
foi proposto. Até onde sabemos, nenhuma tentativa anterior foi feita em tentar
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capturar em um modelo as caracteristicas sociais capazes de solucionar proble-
mas de uma forma geral. Este modelo € titil como um ponto de inicio em dire¢dao
a entender o papel de relacdes sociais em sistemas sociais que visam a solu¢do
de problemas.

Instanciacdes do modelo proposto foram providas. Algoritmos implementando
diversas variagcdes de cada passo do modelo foram propostos, em conjunto com
resultados de experimentos validando as implementacdes e explorando seus difer-
entes parametros. Tais instanciagdes podem ser diretamente aplicadas a diver-
sos cendrios de solu¢@o de problemas, tais como otimizagdo numérica e combi-
natoria.

Resultados foram apresentados sobre o papel de propriedades de redes no de-
sempenho de buscas. Tanto Redes de Mundo Pequeno como Redes Sem Escala
foram consideradas e suas principais propriedades foram relacionadas ao desem-
penho dos algoritmos em diferentes tarefas. Dada a ubiquidade destes modelos
de rede em sistemas sociais, estes resultados sdo passos iniciais em direcdo a uma
teoria mais completa sobre solucdo de problemas em sistemas sociais.

Resultados sobre a eficicia de usar o modelo como um algoritmo de busca de
proposito geral foram apresentados. Instancias do modelo mostraram-se mel-
hores que outros algoritmos tradicionais em diversos cendrios. Estes resultados,
em conjunto com a hipétese de Dawkins de que evolugdo memética procede em
uma velocidade maior que a evolugdo genética, sdo evidéncias de que mais estu-
dos em busca social sao interessntes de serem conduzidos como uma maneira de
construir solucionadores de problemas ou sistemas de processamento social de
informacdes.
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