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ABSTRACT

In recent years, a huge raise in networks’ complexity was witnessed. Along the raise
in complexity, many management challenges also arose. For instance, managed entities’
heterogeneity demands administrators and managers to deal with cumbersome implementa-
tion and deployment specificities. Moreover, infrastructures’ current size and growth-trends
show that it is becoming infeasible to rely on human-in-the-loop management techniques.
Inside the problem domain of network management, Fault Management is appealing be-
cause of its impact in operational costs. Researches estimate that more than 33% of
operational costs are related to preventing and recovering faults, where about 40% of this
investment is directed to solve human-caused operational errors. Hence, addressing human
interaction is mostly unarguably a need. Among different approaches, Self-Healing, a prop-
erty of Autonomic Network Management’s proposal, targets to avoid humans’ interactions
and decisions on Fault Management loops, thereupon unburden administrators and man-
agers from performing Fault Management-related tasks. Some researches on Self-Healing
enabling approaches suppose that Fault Management capabilities should be planned in
design-time. These approaches are impossible to apply on legacy systems. Other researches
suggest runtime analysis and instrumentation of applications’ bytecode. Albeit applicable
to some legacy systems, these last proposals are tightly-coupled to implementation’s issues
of underlaying technologies. For this reason, it is hard to apply such proposals end-to-
end, for example, in a scenario encompassing many managed entities implemented through
different technologies. However, it is possible to offer to administrators and managers fa-
cilities to express they knowledge about networks’ anomalies and faults, and facilities to
leverage this knowledge. This master dissertation has as objective to present and evalu-
ate a solution to imbue network management systems with self-healing capabilities. The
solution relies on workplans as a mean to gather administrators and managers’ knowledge
on how to diagnose and heal networks’ anomalies and faults. Besides that, the design and
implementation of a standard framework for fault detection and notification customization
is discussed while considering a P2P-Based Network Management System as its founda-
tions. At last, an experimental evaluation renders clear the proposal’s feasibility from the
operational point of view.

Keywords: Autonomic Network Management, P2P-Based Network Management, Self-
Healing Systems.






Um servico de Self-Healing baseado em P2P para Manutencao de Redes de
Computadores

RESUMO

Observou-se nos tltimos anos um grande aumetno na complexidade das redes. Surgiram
também novos desafios para gerenciamento dessas redes. A dimensao atual e as tendéncias
de crescimento das infraestruturas tem inviabilizado as técnicas de gerencimento de redes
atuais, baseadas na intervencao humana. Por exemplo, a heterogeneidade dos elementos
gerenciados obrigam que administradores e gerentes lidem com especificidades de implan-
tacao que vao além dos objetivos gerenciais. Considerando as &reas funcionais da geréncia
de redes, a geréncia de falhas apresenta impactos operacionais interessantes. Estima-se que
33% dos custos operacionais estao relacionados com a prevencao e recuperacao de falhas e
que aproximadamente 44% desse custo visa a resolucao de problemas causados por erros
humanos. Dentre as abordagens de geréncia de falhas, o Self-Healing objetiva minimizar as
interacoes humanas nas rotinas de gerenciamento de falhas, diminuindo dessa forma erros e
demandas operacionais. Algumas propostas sugerem que o Self-Healing seja planejado no
momento do projeto das aplicacoes. Tais propostas sao inviaveis de aplicacao em sistemas
legados. Otras pesquisas sugerem a andlise e instrumentacao das aplicagoes em tempo
de execucao. Embora aplicaveis a sistemas legados, andlise e instrumentacao em tempo
de execucgao estao fortemente acopladas as tecnologias e detalhes de implementacao das
aplicagoes. Por esse motivo, ¢é dificil aplicar tais propostas, por exemplo, em um ambiente
de rede que abrange muitas entidades gerenciadas implantadas através de diferentes tecno-
logias. Porém, parece plausivel oferecer aos adminitradores e gerentes facilidades através
das quais eles possam expressar seus conhecimentos sobre anoamlias e falhas de aplicacoes,
bem como mecanismos através dos quais esses conhecimentos possam ser utilizado no ge-
renciamento de sistemas. Essa dissertacao de mestrado tem como objetivo apresentar e
avaliar uma solucao comum que introduza nas redes capacidades de self-healing. A solu-
cao apresentada utiliza-se de workplans para capturar o conhecimento dos administradores
em como diagnosticar e recuperar anomalias e falhas em redes. Além disso, o projeto e
implementacao de um framework padrao para deteccao e notificacao de falhas é discutido
no ambito de um sistema de gerenciamento baseado em P2P. Por tltimo, uma avaliacao
experimental clarifica a viabilidade do ponto de vista operacional.

Palavras-chave: Gerenciamento Autonémico de Redes, Gerenciamento Baseado em P2P,
Self-Healing.
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1 INTRODUCTION

The growth of data communication networks is pushing classic network management
techniques to their limits. Also, the requirements of services provided through these net-
works changed dramatically, becoming more diverse and resource demanding. Then, be-
cause of the high complexity, heterogeneity, and low reliability arising from that growth
and diversification, it is becoming infeasible to effectively manage networks when the man-
agement in place highly depends on human intervention. Furthermore, traditional network
management techniques usually rely on premises, such as low-latency data exchange and
permanent connectivity, that are not always met in novel networking environments. Thus,
new network management techniques are needed in order to fulfill the requirements of these
novel environments and to tame networks’ increasing complexity.

Among other proposals, the Autonomic Network Management — or ANM for short — is
emerging as a promising approach to handle the increasing complexity of modern networks
(JENNINGS et al., 2007). The ANM approach is inspired in the behavior of the human’s
autonomic nervous system, in which multiple biological elements dynamically interact in
order to monitor, evaluate, and react, at cellular level, to environmental changes, unbur-
dening the somatic nervous system! from primitive but essential tasks, such as keeping
the heart and lung functions. Alike the humans’ autonomic nervous system, the ANM
approach aims to free administrators from low-level tasks, such as devices configuration
and monitoring, enabling them to focus on high-level systems goals.

The ANM approach envision the self-management of networks through complementary
properties, which are commonly referred the self-* properties. From all ANM properties,
four of them are considered the core of its approach. These properties are self-configuration,
self-optimization, self-protection and self-healing.

Conceptually, the self-healing property concerns the autonomic systems’ ability to dis-
cover, diagnose, and react transparently to failures or errors in system components, without
requiring further decisions from users or administrators (GHOSH et al., 2007a). Self-
healing-enabled systems shall, on a best effort way, diagnose and readjust their run-time
parameters or replace faulty elements by spare ones on the occurrence of failures or defects,
requesting administrators attention only on exceptional or unknown cases.

! The somatic nervous system is responsible for conscious and rational tasks, like moving body parts,
evaluating mathematical problems, etc.
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The self-healing property has called researches’ attention because a total cost of own-
ership’s reduction opportunity may arise from its development. Among 33% to 50% of
nowadays networks’ total cost of ownership is spent in fault prevention and recovering
(FOX; KICIMAN; PATTERSON, 2004). Besides, about 40% of the investment on fault
prevention and recovery is related to human administrators’ injected faults. In other words,
almost a third of the total cost of ownership is concerned with operational errors. Along
with the total cost of ownership reduction opportunity, the self-healing property may also
positively impact the dependability of the communication infrastructures and systems.

Primordial solutions to achieve self-healing capacities are based on additional engineer-
ing efforts during systems’ development. Garlam & Schmerl suggest that systems shall be
instrumented with monitoring and configuring interfaces (GARLAN; SCHMERL, 2002).
PANACEA framework’s design proposes the use of code annotations to imbue systems
with entry points for healing agents, entities responsible for monitoring and healing the
system in run-time (BREITGAND et al., 2007). Despite showing satisfying results, these
solutions are tightly coupled to the applications, requiring reengineering efforts to adapt to
new scenarios. Moreover, these solutions do not present standardized communication and
synchronization primitives, thus, demanding application developers to implement them.

Recently, peer-to-peer (P2P) overlays have been figuring as a basis for developing self-
healing-enabled systems. Marquezan et al. proposed a mechanism embedded in the moni-
toring overlay to monitor and heal a Network Access Control (NAC) infrastructure (MAR-
QUEZAN et al., 2007). Considering the problem of Service Level Agreement’s Quality
of Service maintenance on virtualized infrastructures deployments, Marquezan et al. en-
deavor the use of a self-healing enabled self-organizing scheme (MARQUEZAN et al., 2010).
Relying on the management overlay features, Marquezan et al. presents a standard com-
munication and synchronization mechanism for the management entities. However, both
solutions lack an interface to change or adapt self-healing strategies to new scenarios and
applications. Beyond their specific limitations, none of the solutions so far addresses con-
nection intermittence or high delays in data links, which are common problems in modern
network environments.

Considering the limitations of the previously presented solutions, this master disser-
tation has as objective to propose a solution to imbue networking environments with
self-healing capabilities. This solution is then based on the fulfillment of two main re-
quirements. The first requirement to be fulfilled is to provide a mechanism to abstract
management elements’ monitoring and healing process. The second requirement is to pro-
vide a framework through which administrators may apply those abstractions to monitor
and heal their infrastructures. This framework must consist in an event notification bus
and a standard distributed fault detection mechanism with a customization interface so
administrators may specialize its functionality to aid them in the monitoring of the services
provided in their infrastructures.

In order to address the first requirement, this master dissertation presents the work-
plan concept. Workplans are descriptions written in a high-level language that gather the
knowledge of system administrators on how to maintain network devices and systems. To
address the second requirement, this master dissertation proposes the use of P2P manage-
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ment overlays and also the split of self-healing into two complementary mechanisms, which
are provided as management services through the management overlay. The first one is the
monitoring service, responsible for executing fault and anomaly detection procedures; the
second one is the healing service, responsible for treating the faults and anomalies detected
by the monitoring service.

The self-healing mechanism was then implemented as a management component for the
prototype P2P-Based Network Management (P2PBNM) System ManP2P-ng (DUARTE
et al., 2011), exploiting the overlay’s intrinsic characteristics and using its communication
infrastructure as basis. ManP2P-ng is briefly described in this master dissertation. The
Ponder2 toolkit was used for the interpretation and execution of the workplans (TWIDLE
et al., 2009).

An experimental evaluation is presented in order to assess the proposal’s design prin-
ciples. This evaluation consists on the use of the self-healing mechanism as a support for
a Distributed Host-Based Intrusion Detection System deployed in two scenarios. The first
evaluation scenario is a conventional TCP /TP network encompassing three different admin-
istrative domains. The second evaluation scenario is a Delay-Tolerant Network that follows
the connectivity island model. Besides these evaluations, this dissertation also features a
Keystroke-Level Model analysis in order to set forth proposal’s productivity leveraging
capabilities.

The experimental evaluation results are reassuring and the main insights achieved
through these results show that the proposal is promising. First, the management traffic
overhead is minimal when compared to the manual execution of the procedures described
in the workplans. Second, the self-healing mechanism performs better as the managed
environment grows when compared to the manual healing procedure execution or when
compared to the manual execution assisted by standard management tools. Third, the
results show that the proposal is able to assist modern network set-ups, such as delay and
connection disruption tolerant environments.

The remaining of this dissertation is organized as follow. Chapter 2 presents the state-
of-the-art and also the main challenges of developing self-healing-enabled systems. Chapter
3 details dissertation’s proposal and also outlines components’ organization and behaviour.
Chapter 4 exposes ManP2P-ng and self-healing service internals. Chapter 5 describes a
Host-based Intrusion Detection System, the environment-of-choice for evaluation. More-
over, Chapter 5 details experiments and presents their results. At last, chapter 6 discusses
the conclusions of this dissertation.
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2 BACKGROUND

The current trends on the growth of data transmission networks and networked systems
has been pushing classical network management techniques to their limits. Given the
high complexity, dynamics, heterogeneity, and low reliability that arose from this growth,
it is becoming more and more difficult to maintain effective management policies when
these policies depend on human intervention for their consolidations (JENNINGS et al.,
2007). Therefore, tools and technologies that minimize human intervention during network
management related task are been pursued as outcome in many research efforts.

Among many new and novel proposals, the Autonomic Network Management — or
ANM, for short — gained much attention because its ambitious objective: to build network
management architectures that are capable of managing most of its operation without hu-
man intervention. The ANM proposal has its basis on the homeostasis process, mostly
performed by the Autonomic Nervous System, where multiple organic elements dynami-
cally interact to monitor and react to environmental changes in order to maintain one’s
stability irregardless of the harmfulness of the environmental changes involved.

Autonomic Network Management proposals are composed of four basic properties,
which are maintained through control loops (HUEBSCHER; MCCANN, 2008). Largely
known as self-* properties, the basic ANM’s properties are self-configuration, self-optimi-
zation, self-protection, and self-healing.

Conceptually, the self-healing property concerns the ability of autonomic systems to
transparently discover, diagnose, and react to anomalies and faults on its components.
Therefore, given the occurrence of any anomaly or fault in any network’s managed entity,
a self-healing enabled system shall diagnose and solve them by readjusting specific param-
eters, inserting a new service provider, or triggering any other set of actions that may seem
plausible.

The self-healing property presents a high potential to reduce systems’ Total Cost of
Ownership. Some researches show that 33—50% of networking systems’ ownership costs are
related to the maintenance and replacement of defective managed entities (PATTERSON
et al., 2002). Besides that, the deployment of a self-healing mechanism would also improve
systems’ availability since most diagnosis and recovering tasks finish faster when executed
by computers than when executed by human staff.
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This chapter presents the state-of-the-art and the main challenges faced when designing
and developing self-healing-enabled systems. Although starting with a broad discussion of
the topic, its main focus is on proposals applicable to networking and distributed systems.
It is organized as follows.

Section 2.1 presents ANM’s basing concepts, from which self-healing concepts came
originally. Section 2.2 discourses about self-healing proposals, their mechanics, compo-
nents, development methodologies and how they adapt to a legacy-aware environment. At
last, section 2.5 presents current work’s and conclusions about the discussed proposals.

2.1 Autonomic Network Management Essentials

Nowadays, networking and distributed systems are becoming more and more dynamic
and heterogeneous (JENNINGS et al., 2007). Therewith, these systems are also becoming
harder to integrate, deploy, tune, and maintain by applying only legacy network manage-
ment techniques and tools (KEPHART, 2005).

Legacy network management techniques and tools mainly rely on human intervention
and supervision during systems’ deployment, monitoring, and maintenance tasks. Then, by
observing current trends on systems’ complexity growth, it is projected that the systems’
deployment will become unfeasible because of the extremely high quantity of human staff
needed to manage them, alike what happened with 1920’s telephone switching networks
(HUEBSCHER; MCCANN, 2008).

Foreseeing a crisis, IBM launched in 2001 the Autonomic Manifesto, proposing to
academy and industry to pursue a new approach to design complex computing systems.
Autonomic Computing — the terminology by which this approach became known — has as
main objective to imbue computing systems with the necessary elements required to these
systems to auto manage (PARASHAR; HARIRI, 2005). The concepts behind Autonomic
Computing were specialized to the network management research field, giving birth to
Autonomic Network Management research.

As early stated, Autonomic Computing, and therefore Autonomic Network Manage-
ment, is inspired in the autonomic nervous system’s behaviour. The autonomic nervous
system constantly monitors body’s perception of external environment’s variables like tem-
perature and luminosity, to cite a few, and then autonomously adjusts body’s behaviour
in order to maintain its homeostasis. However, autonomic nervous system and autonomic
computing diverge in the sense that, while the former behaves totally unaware of individu-
als” purposes and goals, the latter bases its decisions on high level systems’ administrators’
decisions on how to deal with changes (STERRITT et al., 2005).

Autonomic Elements are autonomic systems’ building blocks. These elements must
guide systems to self-manage by constantly reading and reacting to relevant environmen-
tal variables and changes (KEPHART, 2005). Autonomic elements must have embedded
mechanism to implement their functionalities, export execution restrictions, manage their
behaviour according to administrative decisions, and to interact and collaborate with other
autonomic elements (PARASHAR; HARIRI, 2005).
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Figure 2.1: Autonomic Element’s reference structure.

Analyze | Plan

Monitor

Knowledge

Figure 2.1 depicts a reference structure of an Autonomic Element (KEPHART; CHESS,
2003). As seen in Figure 2.1, an autonomic element is composed of at least one Managed
Element assisted by at least one Autonomic Manager. In the context of autonomic com-
puting, an Managed Element may consist of any kind of system, from a single HTTP server
instance to a whole content distribution infrastructure (STERRITT et al., 2005).

On its turn, an Autonomic Manager is a software entity responsible to collect managed
entities’ runtime data through different sensors and to execute management actions through
different actuators (HUEBSCHER; MCCANN;, 2008). In Figure 2.1, autonomic manager’s
sensors and actuators are respectively abstracted by incoming and outgoing edges of the
managed entity.

2.1.1 Autonomic Control Loop

Autonomic manager’s basic behaviour consists in four actions: to monitor, to analyse,
to plan, and to ezecute (KEPHART; CHESS, 2003). The continuous repetitions of these
four actions is denoted as the autonomic control loop.

Monitoring consists in periodically collecting environmental attributes and properties
that are relevant to system’s policy maintenance. For example, in a system that adminis-
trators stated that memory usage and CPU utilization must stay bellow a given threshold,
memory usage and CPU utilization would be constantly monitored by autonomic managers.

Given that data is collected, it is intuitive that an analysis takes place. This analysis
shall verify administrative invariants, transform data to human interpretable formats, and
any other task that may assist the autonomic manager itself and systems’ administrators.

Besides that, an autonomic manager may also figure that anything must be done, been
it to optimize resource usage or systems’ performance, or to try to keep administrative
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invariants. However, before taking any action, an autonomic manager must plan its actions
so these given actions do not reflect on invariants breaking on other managed entities or
even in its own managed entity. At last, the planned actions are executed and then the
autonomic element repeats these four actions once and again, closing the control loop.

Autonomic computing research has identified a subset of properties that are present
in virtually any computer’s systems. Therefore, the main purpose of autonomic managers
presented at most proposals is to maintain invariants over these properties (PARASHAR;
HARIRI, 2005). These properties are presented in the section that follows.

2.1.2 Self-* Properties

As mentioned before, autonomic managers’ control loops are usually engineered to
maintain invariants on systems’ common properties. In autonomic computing research,
these properties are grouped in what is called Self-* Properties'. Self-* properties are
self-configuring, self-optimization, self-protecting, self-healing.

Self-configuration is the ability of a system to adapt to configuration-related changes
in order to obey administrative decisions (KEPHART; CHESS, 2003). These changes may
consist, for example, in the availability of new services instances, network routes, or Quality
of Service requirements.

Self-optimization expresses the aptitude of autonomic systems to adjust themselves
to maximize their efficiency at runtime. Then, based on their initial configuration and
environmental readings, autonomic systems seek to maintain the maximal of the function
that represents their global state (BERNS; GHOSH, 2009).

Given that many current systems have rigorous dependability requirements, autonomic
computing encompasses security-related issues in the self-protecting property. This prop-
erty has its foundations in the implementation of mechanisms that enable systems to
pro-actively resist to malicious usage attempts or even erroneous usage patterns (HUEB-
SCHER; MCCANN;, 2008).

Self-Healing is the property that enables systems to monitor their own state and react to
changes that put them in faulty or anomalous states (GHOSH et al., 2007b). This property
presents some cross-cutting concerns with other self-star properties since to perform some
repairing actions it might be necessary, for example, to change entities’ configuration.

2.1.3 Secondary Characteristics

Besides the main self-* properties, literature also defines some extra properties that
largely impact autonomic behaviour. Often referred as secondary properties or character-
istics, these properties are self-awareness, openness, context-awareness, and anticipatory
behaviour (SALEHIE; TAHVILDARI, 2005; HUEBSCHER; MCCANN, 2008).

Self-awareness denotes the autonomic elements’ need to be always aware of their inter-
nal state and behaviour (JENNINGS et al., 2007). Although knowing and reasoning about
the internal state may lead to concise and thoughtful local choices, greedy behaviours would
mostly lead system to a chaotic or even collapsing state. For this reason, context-awareness

Tt is said "self star properties"
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Figure 2.2: Relation among self-* properties, secondary autonomic systems’ characteristics
and systems’ quality factors.
Self-* Properties
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is largely regarded given that through it autonomic elements may choose a course of actions
that may lead systems to a global maximum that considers the whole infrastructure and
service providing in its calculations. Besides that, it is not desired that applications stand
still waiting to react to changes at the system’s deployment environment. It is desired that
the autonomic system can show an anticipatory behaviour, where the runtime is quietly
tuned while environment changes.

At last, networking environments are generally based on standardized technologies so
multi-vendor solutions may coexist and cooperate, consisting virtually all of them in het-
erogeneous environments. Therefore, it is vital that open and vendor-agnostic interfaces
exist. Also, it is essential that these interfaces concisely and uniformly abstract the low-
level details and specificities of managed entities.

Figure 2.2 relates self-* properties and secondary systems characteristics with systems’
quality factors embraced in software engineering literature (SALEHIE; TAHVILDARI,
2005). Through the previously mentioned figure it is possible to see that, although the
distinctions between self-* properties and the secondary characteristics, there is an inter-
section among the software engineering’s quality factors impacted by them. Moreover, it
is quite clear that they all contribute to an even end, the self-management.
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2.2 Self-healing Property

The self-healing property consists in the ability of autonomic systems to discover, di-
agnose, and react to disruptions caused by anomalies or faults in a transparently man-
ner, when considering users’ and administrators’ perspectives (SALEHIE; TAHVILDARI,
2005). To this end, self-healing enabling mechanisms somewhat mimic administrators’
behaviour by constantly monitoring the managed infrastructure and taking specific over-
coming actions when they are necessary.

Self-healing has gathered researchers’ attention because of the Infrastructures’ Total
Cost of Ownership reduce that would arise from its development. Some results have shown
that 33% up to 50% of network infrastructures’ Total Cost of Ownership is devoted to
prevent and recover failures (PATTERSON et al., 2002). Also, the results have shown
that 40% of investment on fault diagnosis and recovery is related to faults inserted by
systems’ administrators themselves. Besides its impacts in the Total Cost of Ownership,
self-healing may also severely impact network systems’ dependability, since this later is
intimately related to the overall monitoring and diagnosing process duration; duration
which would be greatly reduced by a standardized anomalies and faults’ monitoring and
diagnosing framework.

Next sections discourse about self-healing mechanisms’ proposals. However, first Sec-
tion 2.2.1 discusses the challenges related to diagnosing systems’ normal, faulty, and anoma-
lous states. Thereafter, Section 2.3 exposes a common abstract self-healing process while
Section 2.3.1 enumerates and describes the essential components of a self-healing mecha-
nism.

2.2.1 Normal and Faulty states

Self-healing mechanism is triggered by the occurrence of anomalies, faults, or even
defects. Then, the first effort to an effective self-healing mechanism development is to
figure — according to systems’ behaviour — which parameters characterize normal operation
and which parameters characterize anomalies or faults.

Nevertheless, the definition of normal system’s behaviour is related to temporal and
subjective questions such as users’ expectations on performance (SHAW, 2002). For in-
stance, it might be considered that an application server hosting a real-time data streaming
application is anomalous if there is high delay between itself and its client applications,
but normal while considering it is hosting of a less demanding application.

Exposed the aforementioned, drawing a discrete distinction among normal, anomalous,
or event faulty state is not a trivial task (SHAW, 2002), although most scenarios for faults
may seem clear and thinkable instinctively. In most cases, the transition among states may
be thought as gray area that represents a gradual degradation of systems’ performance
until an unacceptable threshold is reached. Therefore, it is important that self-healing
mechanisms observe this gradual degradation and also identify threshold reaching so they
can initiate rectifications in order to maintain systems’ healthy (GHOSH et al., 2007b).
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2.2.2 Autonomy

When viewed from human intervention needs, self-healing mechanisms are classified
into two categories (GHOSH et al., 2007b). In an ideal scenario, in which all self-healing
related tasks are performed automatically without human intervention other than high-
level systems’ objective settings, a self-healing mechanism is said to be non-assisted. Self-
healing mechanisms that require humans’ decisions on matters not related to high-level
management’s objectives are said to be assisted.

Although a self-healing enabled system’s objective is to show complete autonomy while
detecting and recovering faults and anomalies, this objective is currently too pretentious.
Many anomaly and fault’s detection and recovery scenarios demand techniques that are
beyond current knowledge gathering, interpretation, and analysis capabilities. In these
scenarios, mechanisms require human administrators’ guidance to diagnose and recover
systems.

Notwithstanding the previously exposed limitation, some proposals still suggest that
administrators must only define high-level policies (CHENG et al., 2002). Though remark-
able from a theoretical point of view, most of these proposals are unrealizable in practice
given the state-of-the-art of cross cutting technologies. Some other proposals suggest that
besides defining systems’ policies, human administrators must also aid systems to derive
new related policies. In the NxGrantt-Hacker, the self-healing constantly presents admin-
istrators new correlations rules. Administrators then must decide whether these rules shall
or shall not be integrated into systems’ policies set (STERRITT, 2004).

2.3 The Healing Process

From a functional point of view, the healing process implemented by self-healing mech-
anisms try to mimic human administrators while they are performing maintenance and
recovery tasks (ROTT, 2007). Thus, the expected self-healing mechanism’s behaviour
shall arise from the observation of human administrators acting.

When implemented and deployed, systems are instrumented with tools that enable ad-
ministrators to collect runtime performance data, offering therefore a monitoring interface,
even primitive ones, such as raw logs. The collected data is then manually or automat-
ically processed and summarized so they can be easily understood and reasoned. From
their understanding and reasoning, administrators evaluate systems’ state. If the evalua-
tion reveals a deviation of what is considered its normal state, administrators i) diagnose
its root-cause, i) evaluate possible remedies, #i7) apply normalizing actions and feedback
systems’ deployment so the very same problem does not occur once again.

The diagram in Figure 2.4a is based on the behaviour previously described and presents
systems’ states while considering self-healing mechanisms’ point of view. For these mech-
anisms, systems transit from normal to anomalous state when any deviation occur. At
this moment, the self-healing mechanism must evaluate and choose an action that solves
the anomaly and that puts the systems back to normality. Thereafter, the self-healing
mechanism must apply these actions and verify if systems returned to their normality.
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Given quality thresholds, the continuous service degradation takes systems to faulty
state. Although in place, it is possible that the self-healing mechanism is unable to find
suitable actions to restore systems’ normality. This inability is represent in Figure 2.4a as
Faulty State’s self-transition (GHOSH et al., 2007D).

Lastly, if the self-healing mechanism is able to restore the system, it transit to normal
state. The processing flow executed by the self-healing mechanism is presented at figure
2.4b.

Figure 2.3: Systems’ states diagram and Self-healing basic execution flow.
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(a) Systems’ state diagram when considered by self- (b) Self-healing mechanism’ basic execution flow.
healing mechanisms.

2.3.1 A Functional Component Analysis

Self-healing mechanisms can be dissected in four main functional components. These
components are monitoring, adaption, interpretation, and resolution components (ROTT,
2007). Figure 2.4 depicts these components and their interactions (ROTT, 2007); these
will be detailed at subsequent paragraphs.

Monitoring components are responsible for collecting the data required to analyse sys-
tems’ state. Because of the high variability of operating environments and their high
heterogeneity, many aspects of these components are tightly coupled and devoted to deal
with operating environment’s details. Therefore, it is recommended that monitoring com-
ponent’s implementations employ a software layer that may easily adapt and abstract envi-
ronments specificities and also translate these specificities into globally known primitives,
just like device drivers in an operating system.

Interpretation components’ main objective is to analyse monitoring component’s col-
lected data aiming to determine if the systems is running according to high-level objectives.
Upon anomalies or faults detection, this component notifies the resolution component so
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Figure 2.4: Self-healing mechanisms’ basic functional components and their interactions.
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this last may find suitable amendments to get systems back to their normal operation. It
is suggested that this component may contact the adaption component directly, so simple
premeditative actions may be taken, such as restarting simple services or asking applica-
tions’ servers new instances.

Resolution components are responsible for defining appropriate treatments given the
data sent by the interpretation component in place. In this context, a treatment denotes
a high-level set of actions necessary to get systems back to their normal operation state.
Generality /effectiveness is the main trade-off that implementations need to address, since
a too general approach may lose many cases and a too specific one would burden systems
administrators.

Adaption components translate treatment descriptions into instructions that managed
elements can execute. Therefore, any high-level action must be submitted to the adaption
component in place so all specificities are decoded to locally concise operations.

As Figure 2.4 implies, monitoring and adaption components are more likely to be
coupled with the management element since these are the only components theoretically
truly required to know systems’ specificities. However this coupling cannot be literally
fulfilled since many legacy systems lack the appropriate interfaces to effectively implement
the required functions, amendments are possible having as basis legacy interfaces like SSH
and Telnet based terminals.

2.4 Self-healing mechanism proposals

Faults detection and recovering methods and mechanisms have existed for a while.
Their most well known instances are Object Orientation’s exceptions flow support, proto-
cols’ retransmissions, and algorithms such as byzantine fault tolerant ones. However, these
techniques are limited to detect and recover problems that were envisioned at projects’
design. This section is devoted to present and discuss some proposals to overcome current
limitations.
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2.4.1 Model-based

Model-based proposals suggest that running concurrently the actual systems and mod-
els based on these systems can leverage the overall self-healing process (GARLAN; SCHMERL,
2002). In these proposals, running models are used to feed external monitoring and in-
terpretation components so they may compare models’ runtime data and actual systems’
runtime data. Then, comparing these data would guide self-healing mechanism to the
actual adaption needed to restore systems to their normal operation.

Systems models are created through components interactions graphs, which are for-
mally specified through Architecture Description Languages — or ADL, for short — such as
Acme, xADL, and SADL (MILLER; VANDOME; MCBREWSTER, 2010). In components
interactions graphs, nodes represent systems’ components such as database management
systems, web servers, users interfaces, among others management-aware entities, whilst
edges, referred as connectors, represent systems’ interactions and data paths. Figure 2.6a
depict a system that was modeled as a components interactions graph.

Applying systems models, the monitoring occurs by means of annotations that guide
monitoring components to collect systems’ runtime data pertinent to high-levels objectives
in place. Besides guiding data collecting, annotations may also contain constraints over
this data. These constraints then enable gauging, permitting models to alert self-healing
components about actual applications’ misbehaviours. Figure 2.6b depicts a components
interactions graph as it would be described in Acme language.

With models and annotations in place, administrators must then set-up repair plans.
These plans describe the actions needed to take systems back to normal operation. Their
execution is triggered by constraints trespassing. Figure 2.6¢ presents a repair plan that
will be executed when the constraint Avg Latency <= max Latency is trespassed.

The main advantage of the application of models as self-healing assistance mechanism
is to enable the use of different models in different scenarios. In this way, no further
adaptation to the self-healing mechanism is required in order to conform to applications’
deployment scenarios. Also, using different models permits one to apply various analytical
methods and adaption /recovering technique while managing one single scenario.

The main disadvantage of model-based proposals is its poor suitability to legacy appli-
cations, since it requires embedded monitoring and adaption interfaces. Besides that, it is
difficult for administrators to maintain systems’ models in face of constantly changing sce-
narios, which are more likely to be the case for the application of autonomic management
techniques.

2.4.2 Development framework-supported

PANACEA is a development framework for systems with embedded self-healing mech-
anisms. This framework main proposal is to instrument systems’ code at development
time with self-healing enabling annotations. At runtime, healing agents will use the an-

notations to guide themselves to monitor, configure, heal, and, utterly, manage systems
(BREITGAND et al., 2007).
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Figure 2.5: Model-based Modeling.
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graph.

Two development facilities are exposed to programmers. The fist one consists in stan-
dardized interfaces — as defined by the Java Programming Language — that developers
may implement to benefit at runtime of PANACEA’s functionalities. This approach is
seen at Listing 2.1. The second facility is the use of annotations, as seen in Listing 2.2.
@Manageable interface marks annotated class as an managed entity. In both facilities,
PANACEA-manageable classes are loaded through a special loader, which keeps track of
instances and state. Both Manageable interface and @Manageable annotation provide three
basic primitives for self-healing. These primitives are usable through @FEzecutionCategory,
@HealerAgent, and @DefinedLatencyMonitor interfaces.

@FEzecutionCategory purposes to categorize classes to a known category relevant to
self-healing. For example, annotating a class with @FEzecutionCategory(I0) indicates to
that the developer thinks that I/O will be the major component of the class or method
annotated. PANACEA defines four major categories, I/O, CPU, memory, and network,
but developers are given the interfaces to implement their own categories.

@Healer Agent associates the annotated component to a set of Healer Agents (explained
afterwards) and Metric Types, stating then which healers and metrics must be invoked and
monitored, respectively, in order to manage a given component. At runtime, annotations
result in the instantiation of healer agents, ¢.e., overhead in objects’ construction phase.
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@DefineLatencyMonitor is used to transparently instrument a method to produce mea-
surements of its performance. Therefore, this annotation is fed with an implementer of
PanaceaPredicate, an observer-like interface that defines methods to state if an assertion
about a metric was transposed while executing a monitored class method. These annota-
tions may be fed with healer agents other than declared in class @FEzecutionCategory in
order to specialize healing actions for the annotated method. Also, this annotation can
take a data collecting frequency parameter.

Listing 2.3 presents a sample component which is annotated with all three aforemen-
tioned annotations. By loading the sample component, PANACEA will then automatically
instantiate and manage instances of MyCPUHealer and MyLatencyHealer classes.

Through PANACEA facilities, application development occurs twofold. First, the ap-
plication is formerly functionally developed. In other words, its is submitted to all the
engineering process, such as design, development, verification, and validation, as any ap-
plication would.

Second, a self-healing overlay is applied. This overlay identifies systems’ components
to monitor by asking the PANACEA’s class loader artifacts annotated with @Manageable
annotation or implementers of the actual interface. The overlay then notifies healing agents
about these components so the actual monitoring can start.

Listing 2.1: Interface-based

public class PseudoClass implements Manageable {
/* And the code flows */
}

Listing 2.2: Annotation-based

@Manageable
public class PseudoClass {

/¥ And the code flows */
}

As early stated, PANACEA’s healer agents are special objects managed by PANACEA’s
runtime components. These special objects have systems’ monitoring and healing as task.
To easy the use of both monitoring and healing provided by its framework, PANACEA
divides healer agents in two categories: generic and application specific healers. Generic
healers encompass agents that can be reused in many context. Moreover, PANACEA
further categorized generic healer agents based on the tradeoff that exits between the
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Listing 2.3: Sample implementation

@ExecutionCategory ({CPU,10})

@HealerAgent (
type={MetricType .CPU, MetricType .LATENCY}
valyes={MyCPUHealer. class , MyLatencyHealer.class}

)

public class SampleComponent implements Manageable {

@DefineLatencyMonitor (
healer=IOLatencyHealer.class ,
predicate=MyPredicate. class ,
frquency =5, enable=true

)

public void IOMethod (int time){
DolOBenchmark (100);

}

/% And the code flows */

improvement it gives on the healing-targeted system’s property and the deterioration its
actions will present on other system’s properties. Application Specific Healers are mostly
not reusable since their tasks are very related to their application domain. However,
proposers state that they can provide fine-grained healing and optimization properties to
developers and operators.

When compared to alternative frameworks, e.g., Glassboxr, PANACEA imposes lower
impact in systems’ performance. For instance, the processing overhead of PANACEA’s
runtime components is responsible for less than 2.5% of systems’ total processing demands.

Besides that, PANACEA proposals’ has the advantage of been built atop of well
known programming interfaces. Code annotations are ubiquitous in modern program-
ming paradigms, such as Inversion of Control and Aspect Oriented Programming, and
then would demand little effort from developers. Moreover, since annotations transpar-
ently couple with systems’ components, these components can be progressively adapted as
self-healing supporting code is developed.

Despites its performance characteristics, PANACEA demands legacy applications to
be redesigned so they may benefit of its self-healing primitives. Therefore, PANACEA
may be unfeasible in most legacy deployment scenarios. Besides that, PANACEA lacks a
proper standardized interface to coordinate distributed agents. Given current trends on
computer systems, distribution is essential to many applications if these applications are
expected to scale. Thus, healers’ interactions and the interfaces used to coordinate these
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interactions must be developed in-house. Lastly, Java annotation mechanism requires most
of the code to make use of static instances and fields, making it difficult to operators to
adjust parameters at runtime and also to use many Aspect Oriented Techniques. However,
it is understood that this is a implementation-specific problem and that it might not exist
on alternative implementations of the framework.

2.4.3 Runtime instrumentation-based

Some proposals target directly applications developed using interpreted programming
languages (FUAD; OUDSHOORN, 2007; SCHANNE; GELHAUSEN; TICHY, 2003; HAY-
DARLOU; OVEREINDER; BRAZIER, 2005), such as Python, Perl, and many others, or
target to virtual machines, such as Java, Scala, Haskel, and many others. In this ap-
proach, applications’ runtime is analysed in order to determine partition blocks, all of
which are considered distinct managed entities, and self-healing interfaces are introduced
on the boundaries of these blocks. This technique targets CPU-bound parallel applications
that can be modeled as a collection of independent resources.

These proposals show some intrusiveness since they are based on runtime code instru-
mentation that add proxies (as defined by the proxy design pattern) to methods calls in
order to implement self-healing interfaces. Therefore, proxies are created for every class of
the system. However, proposed proxies are much more than the classical design pattern
proxies as they are aware of object migration and are thus able to delegate calls even if the
object is now residing in another machine. Proxies then monitor systems’ state before and
after each partition blocks’ boundary cross in order to assert about performance anomalies
and transient faults.

In some proposals (FUAD; OUDSHOORN, 2007), self-healing actions are then ex-
pressed as statements in Autonomic Computing Policy Language. According to authors,
by using this language it is possible to address policy management consistency across the
system and provide an user friendly form of policy definition and an API to work with.
Other proposals (SCHANNE; GELHAUSEN; TICHY, 2003; HAYDARLOU; OVEREIN-
DER; BRAZIER, 2005), use standard programming interfaces to implement self-healing
behaviour.

Best experimental results show that there is an average 51% growth in applications’
original bytecode, regardless the complexity of the healing behaviour associated with its
monitoring and healing (FUAD; OUDSHOORN, 2007). Besides that, average memory and
processing requirements increase in 15% and 45%, respectively. Despites its overhead, all of
which is mostly solved with better machinery, these approaches may give satisfiable results
when dealing with legacy applications and also applications for which code is unavailable.
Anyway, all proposals lack standardized interfaces that enable proper communication and
synchronization for monitoring and healing tasks that involve complex scenarios.
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2.5 Self-healing’s Future perspectives

It was proposed the utilization of Model-Driven and Aspect-Oriented programming to
address the lack of self-healing behaviour in systems (LIU et al., 2008a,b). In this proposal,
an analysis framework is used to model and inspect UML diagrams of applications in order
to identify anomalies and faults detection and recovering opportunities. After identified,
pointcuts are placed so Aspec-Oriented frameworks can plug-in monitoring and healing
advices (i.e., self-healing additional behaviour).

Although no experimental result has been presented till date, the utilization of Aspect-
Oriented techniques seems promising since most frameworks will natively enable self-
healing techniques that can adapt to systems’ execution contexts. Moreover, Aspect-
Oriented enables even dynamically exchanging execution contexts.

Some proposals explore artificial intelligence techniques. For instance, intelligent agents
are applied in a technique known as roles (FUNIKA et al., 2010). In order to achieve self-
healing, roles communicate and synchronize through an overlay network. This classifies this
proposal as the first one to address standardized communications issues. Efforts to design
a fully operational management system based on roles are running (FUNIKA; PEEGIEL,
2010).

Neural networks are also considered (AL-ZAWI et al., 2009). Initially, a neural network
has its weights tuned through supervised learning. After initialization, the neural network
becomes able to suggest new parameters for reconsideration in its adaption step. A case-
study (AL-ZAWT et al., 2009) shows proposal’s feasibleness even in scenarios that lack of
a good training data set.

Although techniques and proposals that merge insightful and most advanced technolo-
gies in fields like software engineering and artificial intelligence are arriving, a de facto
solution for self-healing stills missing. Challenges such as autonomic elements’ interac-
tion, environmental heterogeneity, self-learning, data gathering and representation, and
scalability will demand many efforts.

2.6 Delay and Disruption Tolerant Networks

It is well known that most Internet protocols fail if inherent networking assumptions
unmet (VOYTATZIS, 2012); assumptions such as the existence of continuous and bidirec-
tional end-to-end paths, short round-trip time, almost symmetrical data rates, and low
errors. Although mostly met in current widespread networking scenarios, low delay, con-
tinuous end-to-end connectivity is absent in deployment scenarios such as Interplanetary
networks, mobile ad-hoc networks, and connectivity islands, to name a few.

In the context of this research area, delay and disruption are expressed as a function of
the Transmission Latency, Link Disruption, and the Action Latency Limit (BIRRANE IIT;
BURLEIGH; CERF, 2011). The Transmission Latency is defined as the latency between
placing the data on a transmission queue at one node and retrieving it from a receiving
queue at another node, if even the last node is not the final destination of the communica-
tion (i.e., is a path section to the destination such as a router or switch). A Link Disruption
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consists in a loss of communication across the data link. For purpose of engineering link-
layer and network-layer protocols, minor link degradations such as transient high error
rates are not considered disruption if data exchange may still progress. The Action La-
tency Limit is a requirement associated with a maximum latency permitted between the
occurrence of an event and the application of a proper response to such an event.

Using the aforementioned terms, Delay and Disruption Tolerant Networks (DTN) are
the networks that transmission latencies and link disruption frequencies demands extra
techniques to comply with applications’ action latency limits and to proper operate in
face of an unstable and constantly partitioned topology. The tolerance level a DTN must
commit to may call for achieving traditional networking functions by using alternative
enabling techniques.

2.6.1 Networking Architectures

Delay and Disruption Tolerant deployment scenarios require new protocols or complete
architectures (BURLEIGH et al., 2003), given that is a common consensus and knowledge
that only new protocols are unable to overcome all challenges that arose. This section
presents proposal of architectures and protocols to aid the deployment of such challenged
networks.

2.6.1.1 Delay Tolerant Networking Architecture

The Delay Tolerant Networking Architecture emerged as a generalization of Interplan-
etary Internet design (FARRELL; CAHILL, 2006). This architecture suggests the usage of
message bundles and the separation of networks in regions. In this proposal, each region
is characterized by high homogeneity in their communication capabilities (FALL, 2003).

Given that each region presents different communication constraints, delay and disrup-
tion tolerant communication is then handled by DTN Gateways, specially crafted nodes
that are able to understand and translate different regions’ protocols. These gateways are
expected to interoperate with current technologies and also to offer reliable communication
capabilities instead of the best-effort approaches that Internet’s routers provide. To pro-
vide reliable communication capabilities, DTN Gateways are suggested to store messages
in a non-volatile way, thereby employing a storage and forward message delivery approach.

For routing messages among regions, gateways must be enable to translate technology-
specific addressing schemes into globally valid named-tuples. These name-tuples are com-
posed of an unique and hierarchically structured region name, and region-unique name
used to identify a resource inside that region. The proposal suggests standardization of re-
gion identifiers while suggesting resource identifiers to stay flexible enough to easily adapt
to different delay and disruption tolerant technologies.

Besides specific addressing schemes, the Delay Tolerant Networking Architecture con-
siders path and hop selection to be too critical to region’s functionalities so it does not
propose any one size fits all selection strategy. Instead, the proposal suggests the use
of region-specific routing algorithms given that algorithms pose high influence in region’s
functionalities and data delivery performance.
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Although not requiring standardized routing schemes, Delay Tolerant Networking Ar-
chitecture does propose that gateways support custody transfers of message bundles (CERF
et al., 2007). In this context, custody transfer refers to a special communication operation
that permits a gateway to dispose of its responsibility over a message bundle and give it to
another gateway. After transferring the custody of a message bundle to another gateway,
the transferrer may forget any state-related data it had to maintain.

2.6.1.2 RFC 5050: The Bundle Protocol

RFC 5050 describes the protocol, block formats, and abstract service description for
the exchange of messages bundles in Delay Tolerant Networking (SCOTT; BURLEIGH,
2007). Aiming to interoperate with existing deployments, the Bundle Protocol defines
Bundle Protocol Agents, the Convergence Layer, and Convergence Layer Adapters.

The Convergence Layer is defined as the interface between the Bundle Protocol and a
specific internetwork protocol suite. Convergence Layer Adapters therefore are the inter-
faces through which communication agents — or Bundle Protocol Agents — send and receive
bundles utilizing the services provided by the technologies supported at a node.

Bundle Protocol capable nodes are then identified through Endpoint IDs. In the con-
text of the Bundle Protocol, an endpoint is a set of zero or more nodes registered with a
single Endpoint ID. For flexibility, Endpoint IDs are specified as Uniform Resource Iden-
tifiers, consisting in a scheme definition and a scheme-specific part. The scheme definition
abstracts a set of syntactic and semantic rules applied by Bundle Protocol Agents to in-
terpret the scheme-specific part. Therefore, Endpoint IDs are expected to adapt to many
existing and novel deployment scenarios. The only reserved scheme and scheme-specific
parts reserved are din and none, used to represent dtn:none, the Null Endpoint ID.

Given that an Endpoint ID may contain an arbitrary number of registered nodes, the
Bundle Protocol discusses extra semantics for communications. Hence, Bundle Protocol
defines the Minimal Reception Group, which may be any of the following: ALL, where all
nodes registered for a Endpoint ID will perceive the communication; ANY (n), where n
nodes registered for Endpoint ID will perceive the communication; and, SOLE where a
singleton node will perceive the communication. The Bundle Protocol states that Minimal
Reception Group characteristics might be inherent to the Endpoint ID’s scheme or lexically
expressed within the scheme-specific parts.

Following Delay Tolerant Architecture recommendations, the Bundle Protocol says that
implementers must provide some level of store-and-forward capabilities to overcome delays
and constant disruptions. For calculating the undeliverability of a given bundle, the Bun-
dle Protocol Agent must associate a lifetime, hence requiring partial clock synchronization
among agents. Nevertheless, the clock source is considered a convergence layer’s imple-
mentation issue.

2.6.1.3 Internet Draft: HI'TP-DTN

Many criticisms on the Bundle Protocol arose. First, authors argue that the protocol
alone is not well suited or mature enough to address the problems it proposes to tackle



34

(WOOD; EDDY; HOLLIDAY, 2009). For example, Bundle Protocol does not standard-
ize common convergence layer capabilities neither endpoint resolution methods, therefore
opening road to the existence of many incompatible delay and disruption tolerant net-
working technologies. Experimentation with the Bundle Protocol (WOOD et al., 2008)
has demonstrated that Bundle Protocol is affected by physical concerns and effects that
trespass convergence layers’ boundaries. For example, Bundle Protocol has no native error
detection or correcting neither has checksumming mechanisms.

As an alternative to the Bundle Protocol, HTTP-DTN has been proposed (WOOD;
EDDY; HOLLIDAY, 2009). This proposal suggests the Hypertext Transfer Protocol as a
session layer so independent transport layers may communicate. The main argument is
that HT'TP is a well understood and widely deployed protocol and thereupon of easily and
straightforward adoption.

For this matter, HI'TP-DTN benefits from the special handling that current comply-
ing implementations must do with Content-* headers: implementations must deny the
processing of any unknown Content-* header containing request. Then, Content-source
and Content-destination headers are proposed as end-to-end routing information providing
mechanisms, proposal which creates a separated overlay for DTN purposes. Along with
other already standardized Content-* headers, such as Content-type and Content-MDSJ,
HTTP-DTN would leverage development and deployment of delay and disruption tolerant
applications.

2.6.2 Management of Delay and Disruption Tolerant Networks

Communication requirements of societies have grown to surprising levels. To meet these
demands, networking requirements have grown likewise. Although mainly targeting users,
many requirements aim networking infrastructure itself. Manageability, for instance, is a
requirement that mostly concern infrastructures and service providers.

Despite the fact that Delay and Disruption Tolerant Networks arose from specific appli-
cations requirements such as interplanetary communications, these networks still demand
manageability if they are to be seamlessly deployed. Regardless, just a few investigations
have explored management capabilities of DTNs. For example, the Delay Tolerant Network
Research Group (DTNRG), a special interest group inside the Internet Research Task Force
(IRTF), have produced many investigations related to DTN’s concepts and practical imple-
mentation issues, however producing just a little few investigations targeting management
of such networks.

In a glance, most management approaches do not fit for Delay and Disruption Toler-
ant Networks since they rely on the establishment of end-to-end control loops; i.e., the
continuous fetching, processing, and acting upon managed entities’ data. Besides that,
management solutions must provide some degree of self-management because the larger
propagations delay of sending operational commands prevents managers to promptly per-
form remote actions.

Furthermore, novel management solutions will have to deal with the instability of Delay
and Disruption Tolerant Networks’ topologies. For instance, the network topology may
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Figure 2.6: DieselNet topology at two different time instants of the same day.

partition itself in uncommon and unpredictable ways. To illustrate, Figure 2.6 presents
the topology of a subset of DieselNet (BURGESS et al., 2006) nodes at different snapshots
of its operation.

Given all these facts about challenges of Delay and Disruption Tolerant Networks, it
is thereupon straightforward to argue that management solutions must inherently support
distributed deployment of management entities. Indeed, some authors are already investi-
gating towards applying Distributed Network Management (DNM) techniques to manage
such challenged networks.

The Internet Draft DTN - Network Management Requirements (IVANCIC, 2009) repre-
sents a major step of DTNRG because it was the first document discussing Delay and Dis-
ruption Tolerant Networks’ management issues. This work describes general requirements
and properties, and also suggests technical challenges that implementers must consider
specially while addressing configuration and monitoring tasks.

Another Internet Draft (CLARK; KRUSE; OSTERMANN, 2010) presents the Diagnos-
tic Interplanetary Network Gateway (DING). As its name imply, DING aims to provide
manageability to Interplanetary Networks. In Interplanetary Networks delay tolerance
must achieve new levels since the expected transmission latency range from some hours to
months. For this reason, DING relies on a subscription model to gather management data.
This model is implemented using two concepts, schema and schedule.

The schema is a static data model that defines management data to which managers
would need to subscribe to. Roughly, schemes represents Object Identifiers (OIDs) data
that follows standardized representations. In their turn, schedules describe time intervals
and conditions management data must comply in order to be useful to management.

The Internet Draft Initial Requirements for Remote Network Management in Delay-
Tolerant Networks presents initial considerations and requirements for designing manage-
ment protocols for DTNs. Authors discuss current protocols’ deployments challenges and
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propose several distinct architectures, as do comment on their strong and weak points.
Authors propose data gathering mechanism similar to the subscription model envisioned
by DING and also propose to apply proxies and caches to achieve better performance.
Although expired, these Internet Drafts represent major steps into the development of
an architecture for Delay and Disruption Tolerant Network Management. They are the
first attempts of managing challenged networks. They present knowledge mostly acquired
trough experimentation and also point trade-off, do and don’t, and the question one should
query while trying to implement and deploy management solutions for these networks.

2.7 Perspectives on Delay and Disruption Tolerant Management

The infeasibility of maintaining control loops over Delay and Disruption Tolerant Net-
works’ deployments have pushed researchers to explore the application of Autonomic Net-
work Management for such scenarios. Context-Aware Broker (PEOPLES et al., 2010)
proposes a policy-based framework for DTN management. Context-Aware Brokers (CAB)
incorporates network environment data and applications requirements to configure data
transmission automatically. CABs would then enable resource saving and adaptive man-
agement.

MonidVDTN (ISENTO et al., 2012) proposes an application-layer approach where a
dedicated server is deployed to collect load-related data from managed entities. This
proposal targets mainly Vehicular Delay-Tolerant Networks, remaining an open issue how
the interaction between managed and management elements would occur when considering
different deployment scenarios.

Peer-to-peer based Distributed Network Management has also figured in proposals.
Nobre et al (NOBRE et al., 2014, 2013) present experiments that extend Peer-to-Peer
based Network Management Systems to operate atop challenged networks. Their proposal
encompass a full implementation of the HTTP-DTN Internet Draft. In these proposal,
authors show that is possible to rework current management tools to run over DTNs,
obviously observing the coherence of tools’ purposes and DTN limitations.

It is clear that Delay and Disruption Tolerant Network Management research is in its
beginning and there is much efforts yet to be spend in this area. However, it seems feasible
to think of a common substrate for managing such networks given that their main challenge
is the availability of data and the maintenance of control loops, challenges to which already
exists proposals.
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3 ASELF-HEALING SERVICE FOR P2P-BASED NET-
WORK MANAGEMENT SYSTEMS

Previous investigations have show that merging network management systems and P2P
communication models introduces interesting characteristics. For example, Application-
Layer Routing provides extra flexibility for administrator since this routing technique easily
adapts to administrative domains boundaries; Gossip-based peer membership management
algorithms, on their turn, improve management systems’ connectivity robustness, avoiding
network partition by exploiting random graph-like structures’ properties.

In this dissertation we exploit P2P-Based Network Management systems capabilities
to propose, implement, and evaluate a self-healing service aimed to aid administrators in
their daily network maintenance tasks. The self-healing service is then described in this
chapter. Besides that, the last section of this chapter presents considerations about the
deployment of the proposed solution in conventional and challenged networks.

3.1 Self-Healing Service overview

The self-healing service proposed in this dissertation divides the self-healing into two
different services, both of them implemented as management components for a P2PBNM
system. The first service, the monitoring service, is responsible to periodically poll and
evaluate managed entities' searching for anomalies and faults on these entities. The mon-
itoring service is also responsible to notify anomalies and faults to the healing service, the
second service proposed in this dissertation. The healing service, is responsible to execute
healing procedures in order to recover faulty managed entities. Healing service healing
procedure execution is triggered upon receiving special notifications from the monitoring
service. These notifications will be referred from now on by unhealthy notifications.

Before the self-healing can take place, system administrators must develop monitoring
and healing workplans. Briefly, workplans are high-level descriptions that gather adminis-
trators’ knowledge on how to evaluate and fix anomalies or faults in order to reestablish
system’s operation. The step in which workplans are assigned to managed elements is
called service binding, and it is described as follows.

I In the context of the present work, managed entities may refer either to physical entities, such as
routers and switches, or to software entities, such as HTTP and SSH daemons.
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Figure 3.1: Self-healing service biding.
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The binding of the self-healing service and its managed entities is done at run time by
system administrators and consists of three major steps, depicted in Figure 3.1. First, the
system administrator issues a healing service request to the healing service’s peer group,
which will then return a healing service identifier. Second, the system administrator issues
a monitoring service request to the monitoring service’s peer group, which will then return
a monitoring service identifier. Finally, the system administrator issues a monitoring-
healing binding request to the monitoring service’s peer group, which binds a monitoring
service identifier to a healing service identifier. This binding tells the monitoring service
which healing service instance to activate when anomalies or faults are noticed in managed
entities.

3.1.1 Healing Service Request

A healing service request is issued by system administrators to request the healing
service’s peer group to handle anomalies and faults in managed entities and consists in a
tuple:

((targety, ... , target,), workplan, unhealthy threshold, candidate peers)

The first attribute of the tuple is a target list. This list enumerates the managed entities
managed by this service instance. The target list shall bundle management-relevant infor-
mation, like transport layer protocol and service port, or system-specific parameters, such
as operating system and daemons implementations, etc.
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The workplan attribute of the tuple is the managed entities healing workplan, a high-
level description that defines how anomalies and faults shall be treated. The extra infor-
mation bundled in the target list is passed to the healing workplan upon its execution in
order to assist the healing peers to deal with managed entity specificities and to provide
more flexibility and reuse possibilities for the healing workplan.

The unhealthy threshold specifies how many unhealthy notifications must be received
before executing a healing workplan. In short, unhealthy notifications are messages that
signal that anomalies or faults were diagnosed in a managed entity.

As will be explained on the next sections, workplans are replicated among a subset
of management peers in order to provide load balance and fault tolerance. In most man-
agement scenarios, these peers may be picked at random. However, in scenarios such as
challenged networks with poor bandwidth or connectivity, it may be required to assign
management tasks to specific managed entities, given that optimizing locality is mostly
advantageous in such scenarios (BENAMAR et al., 2014). Therefore, requests may encom-
pass the candidate peers parameter. This parameter will hint the healing service about
peers that should host and execute the workplan.

As a response to a healing service request the healing group sends a healing service
identifier (HsId). This identifier is used to globally identify the healing workplan, to bind
it to a monitoring service instance in the services binding phase, and for future modification
or update of the plan.

3.1.2 DMonitoring Service Request

A monitoring service request is issued by the system administrators to request a mon-
itoring service for a managed entity. A monitoring service request consists of a tuple:

((targety, ... , target,), workplan, schedule, confirmations, candidate peers)

The target attribute of the tuple specifies the target managed entity and any other relevant
information, just like in a monitoring service request.

The workplan attribute is the management element’s monitoring workplan, a high-level
description that defines how the managed entity shall be monitored and which parameters
identify its normal and anomalous state. Alike the healing service request, the extra
information passed through the target attribute is used to aid dealing with the specificities
of the managed entities and for reuse purposes.

The third attribute of the monitoring service request tuple is the schedule of a moni-
toring service instance. This schedule tells the monitoring group when peers shall trigger
the evaluations process for the managed entities targeted on a request.

It is known that many networking related problems are due partitions or transient con-
nectivity. Considering novel deployment scenarios, partitions and transient connectivity
may mislead monitoring service’s diagnosis. To lessen this issue, the monitoring service
request encompass the con firmations attribute. Acting as a mechanism to provide consen-
sus, this attribute forces con firmations number of peers to reevaluate the managed entity
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before issuing a unhealthy notification. Through this mechanism, many peers may be con-
sulted about anomalies or faults before contacting the healing group to heal a managed
entity.

Analogously to the healing service request, the last attribute, candidate peers, serves
primarily to deal with requirements such as static mappings of mangement elements to
managed entities. The use of candidate peers serves as a mechanism for topology-awareness.
For example, an external topology service or administrators expertise would aid the service
to avoid poor management performance due to bad choices of monitoring service’s peers.

As response for a monitoring service request, the monitoring service group issues back
a monitoring service reply. The content of this reply is a monitoring service identifier
(MsID), which globally identifies a service request and may be used for reference updat-
ing purposes. As a reference, a MsID can be used to apply its monitoring workplan to
another managed entity (i.e., sending the MsID instead of the actual workplan during the
monitoring service request).

3.1.3 Monitoring-healing Binding Request

The last request, the monitoring-healing binding request, ties a monitoring service in-
stance to some healing service instances (in other words, a monitoring service may trigger
several healing services). This request consists in a tuple (MsID, [HsIDy, HsIDy, ...,
HsID,)), where the first parameter specifies the monitoring service instance and the sec-
ond parameter lists the healing service instances that shall be activated on anomalies or
faults detection.

In scenarios where point-to-point communication can severely impact in the biding
process, the biding may be issued with hash values based on the contents of the healing
service request and the monitoring service request. Given that no acknowledgement is
required, it becomes possible to issue requests in parallel.

3.2 DMonitoring Service

The monitoring service is the peer group responsible for monitoring-related tasks. Then,
the assignment of this group is to diagnose anomalies and faults in managed entities based
on the administrators knowledge contained in monitoring workplans.

The output of a diagnose is the managed entities’ evaluation. The evaluation is healthy
when no anomalies or faults are diagnosed. The evaluation is unhealthy when anomalies or
faults are diagnosed. Upon an unhealthy evaluation, the monitoring service contacts the
healing service to activate the healing service’s instances previously binded to the faulty
monitoring service instance.

As early stated, a monitoring service instance is started just after the monitoring service
request and its execution is activated based on the schedule sent along the request. Besides
the schedule, the request also encompass detailed data about the managed element targeted
in a service instance and the workplans which defines how the managed element shall be
monitored.
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After processed and accepted, monitoring workplans are distributed among a subset
of monitoring service’s peers. Previous results shown that this subset must grow log-

arithmically to the size of the entire managed network in order to reliably monitor it
(MARQUEZAN et al., 2010).

3.2.1 Monitoring of Managed Entities

The monitoring of managed entities is mandated by the value of the confirmations
attribute of the monitoring service request. Then, if confirmations is equal to zero,
the monitoring workplan will be concurrently executed by the monitoring service peers
following the schedule.

However, if con firmations is greater or equal to one, the subset of peers chosen for a
monitoring service instance organize themselves in a logical ring. The monitoring workplan
is then executed in a token-signalized round-robin fashion, where the peer currently holding
the token is the one responsible for the next scheduled evaluation.

The monitoring service’s peer holding the token executes the monitoring workplan
against its target and i) if the results indicates that the target managed entity is healthy,
that is, no anomalies or faults were noticed during the diagnosis, the token is passed in the
logical ring flagged as successful; ii) if the workplan indicates that the managed entity is
unhealthy, the token is passed in the logical ring flagged as unsuccessful. Figure 3.2 depicts
these interactions.

Figure 3.2A, depicts service interactions for subsequents healthy evaluations, while
Figure 3.2B, depicts an unhealthy evaluation in a scenario where diagnose confirmation was
requested. As shown in Figure 3.2B, when confirmations are needed, a monitoring service
peer immediately executes its diagnosis when an unsuccessful flagged token is received,
ignoring, then, the workplan schedule. This measure is taken in order to assure that
the anomalies or faults are not related to connectivity problems between the targeted
management entity and the previous evaluation executor. In the case that con firmations
peers also identify anomalies or faults, an unhealthy notification is sent to the healing
service to start the healing service instance associated with the current monitoring service
instance, thus executing the healing workplan. The monitoring service’s peers associated
with this service instance will stop monitoring the ill managed entity until the healing
service notify them if the workplan shall be resumed, that is, that they successfully healed
the managed entity, or if it shall be dropped, when the healing process failed to recover
the managed element.

3.3 Unhealthy Notifications

The unhealthy notifications are the triggers of healing workplans executions. These
notifications feed the healing service with helpful information for the proper execution of
the healing workplan. To achieve that, monitoring workplan execution’s output is appended
to the notification, hence enabling the healing service to consume it and to make decision
with current state data.
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Figure 3.2: Monitoring workplan execution.
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3.4 Healing Service

Considering a scenario with low faults and anomalies rate, the healing service will stand
still most of the time. The healing service main task is to wait for unhealthy notifications
sent by the monitoring service. This is shown in Figure 3.3.

At the arrival of an unhealthy notification, the healing service extracts from it the heal-
ing service identifier and instantiate it. The instance is then fed with the data specified at
the service request and also the data sent by the monitoring service through the unhealthy
notification’s payload. At last, the healing process is started.

After executing the workplan, the healing service may take two courses of actions. If the
healing workplan was executed as expected, the healing service will notify the monitoring
service to continue monitoring the managed entity.

However, if the healing service readily state that the healing workplan failed (for ex-
ample, when the managed entity is steadily unreachable), the healing service will notify
monitoring service to stop monitoring the anomalous or faulty managed entity. Both sit-
uations can be seen in Figure 3.4.
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Figure 3.3: An unhealthy notification arriving at the healing service.
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Figure 3.4: Healing execution and monitoring service notification for a) unsuccessful work-
plan execution; and b) successful workplan execution and monitoring resuming.

Managed Element Monitoring Service Healing Service

L]

Evaluation

Unhealthy

Unhealthy Notification

Healing workplan execution

Drop monitoring of MsID

Resume monitoring

Evaluation B )




44

3.5 Workplans

As early stated, workplans are the abstractions through which administrators’ knowl-
edge about network maintenance is gathered. Initially, workplans were designed to be
represented only as Ponder2 policies (TWIDLE et al., 2009). However, current trends on
the adoption of networking maintenance tools (HAIGHT, 2011) reveals that high-level,
general-purpose programming languages such as Python and Ruby are feasible choices.
For instance, Metasploit Framework (RAMIREZ-SILVA; DACIER, 2007) and w3af (KE;
YANG; AHN, 2009) leverage the power of the aforementioned languages to provide system
administrators basic tooling and abstractions to automate their networking-related tasks.
Then, Python-like workplans are also considered in the context of this research. This em-
powers the monitoring and healing capabilities by enabling administrators to employ an
increasing number of tools, APIs, and yet to come technologies to represent their thinking
while managing infrastructures. Listings 3.1 and 3.2 show the same monitoring workplan,
which notifies the healing service when the processor usage is above a threshold (90% in
the examples).

Listing 3.3 shows a healing workplan suitable to be deployed along the monitoring
workplans at Listings 3.1 and 3.2. This healing workplan uses a third-party library to
request through a REST API the instantiation of a new server at a famous cloud-computing
service provider. This workplan presents the flexibility and simplicity that can be achieved
by the means of this proposal.

Listing 3.1: Monitoring workplan developed using Python Programming Language

from system import cpu
from service.healing.client import notifyHealingGroup

if cpu.usage > .9:
notifyHealingGroup (cpu.highUsage)

3.6 Deployment Considerations

Virtually any technology — ranging from algorithms up to application-level software —
will need adaption to cope with Disruption Tolerant Networks singularities. This is due
to the premise that most of the current technology base on: low delay, partial reliable
end-to-end connectivity. Following subsections will discuss how to deploy this proposal in
conventional and challenged networks.
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Listing 3.2: Monitoring workplan developed using Ponder2’s PonderTalk

cpuHigh := newpolicy create.
cpuHigh
event: root/event/cpuUsage;
condition: | :cpuUsage |
cpuUsage > .9 |;
action: |
root/service /healing /notify highCpuUsage |;
setActive: true.

Listing 3.3: Healing workplan developed using Python Programming Language

from requests import post

payload={
"Imageld’: ’server—template’,
"MinCount ’: 1,
"MaxCount ’: 2,
# here goes authentication data

}

post ("https://ec2.amazonaws.com/? Action=Runlnstances’,
data=payload)

3.6.1 Service Request

As previously discussed, when dealing with challenged scenarios, managers and man-
agement systems cannot rely on low latencies or the actual message ordering. Because of
that, services request shall preferably occur without confirmations. In order to attain a
non-confirmation service request, hash-based requests must be used. The hashes must be
based on workplans content since the same workplan may be applied to many managed
entities.

3.6.2 Monitoring Workplan Execution

Section 3.2.1 explains how the monitoring service performs its job. The same section
exposes the purpose of the confirmations parameter of the monitoring service request.
Deepening on this matter, this subsection discusses when to apply confirmations and when
not to apply them.
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Informally, it is arguable that a monitoring service peer would diagnose a managed
entity as unhealthy if some of the diagnosing messages get lost (e.g., if some of path’s
router or switch fails). For conventional deployment scenarios, such as low delay TCP/IP
networks, confirmations may be used as a reliability mechanism that would largely prevent
such mistaken diagnose. For example, setting confirmations during service request to one
would require another monitoring service peer to confirm the diagnosis before contacting
the healing service to heal the managed entity.

Although the informal argument before mentioned holds for challenged networks, using
confirmation and the logical ring topology can be infeasible in many challenged networks
scenarios. For instance, two monitoring service peers present a delay high enough to
unacceptably retard further actions. Deployments on these scenarios should consider to
concurrently execute workplans (i.e., confirmations equal to zero during request). This
leads to the following property.

Let g(w) be the projection of the monitoring group responsible for a workplan w, e(x, y)
be the event of peer z having an encounter with peer y, and P(e) a function that returns
the probability of an event e, it is trivial to show that the concurrent workplan execution
renders the workplan w a reachability r to its targeted managed element ¢ equal to

r(w,t) =1 =[] Ple(i,)), Vi€ g(w) (3.1)

In other words, concurrent execution guarantees a workplan a probability to reach its
target equal to the probability of any of monitoring peer responsible for its execution to
have an encounter with the targeted managed element. In Equation 3.1, the probability is
expressed through the opposite probabilities of events e(x,y).



47

4 |IMPLEMENTATION

This chapter presents the design decisions of the implementation of the ManP2P-ng and
the self-healing service. It is organized as follow. Section 4.1 presents the basic concepts
behind ManP2P-ng design and implementation. Section 4.2 presents the details of the
management overlay. Section 4.3 presents the details of the self-healing service.

4.1 P2P-Based Network Management foundations

In face of the constant growth of networking infrastructures, researchers and practi-
tioners have envisioned that classical centralized management approaches would not stand
against the scalability issues that would arise. For instance, centralized approaches would
poorly perform when dealing with big infrastructures, since a single manager will be un-
able to poll device data, keep up-to-date views of devices’ configuration and status, process
asynchronous network events such as traps and notifications, among other challenges.

To deal with scalability issues, researchers suggest the application of some kind of dis-
tribution strategy (SCHONWALDER,; QUITTEK; KAPPLER, 2000). Management by
Delegation (MdB) proposes the delegation of management tasks to management entities
distributed onto network locations (GOLDSZMIDT; YEMINI, 1995). This enables, for
example, placing management entities and elements at the same physical substrate, then
benefiting from lower transmission delays and higher throughput. In MdB, the manage-
ment entities are classified as Top-Level Managers and Mid-Level Managers. Top-Level
Managers are the entities responsible to monitor and coordinate delegated management
tasks. Mid-Level managers, in their turn, are the entities responsible to execute the man-
agement tasks themselves.

Other proposals suggest the use of Peer-to-Peer technologies to scale management in-
frastructures (GRANVILLE et al., 2005). In a Peer-to-Peer Based Network Management
System — or P2PBNMS — peers are categorized into groups. The categorization is based to-
tally on the services provided by each peer. For illustrating the concept, all peers providing
a Secure Shell Transport Layer (SSH) Service would be grouped together in the SSH peer
group. Besides logically disposing peers, the grouping mechanism is conceptually thought
as to provide transparent balancing and fault-tolerance. However, complex services would
need custom service dispatching policies and coordination strategies.
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In such an organization, clients (i.e., system administrators and network operators)
would not interact directly with management entities — the term through which peers are
going to be referred from now on. Instead, users use the overlay client protocol to generate
management service’s requests which shall be transparently dispatched to peers providing
the service. For example, an administrator wishing to establish an interactive shell session
with some managed entity only needs to request the service through the overlay client
protocol and the overlay itself shall find a peer to serve it or signaling the unavailability of
the service.

Besides that, Peer-to-peer Based Network Management Systems better adapt to ad-
ministrative domains boundaries given that these management systems employ Application
Layer Routing (ALR). through ALR it is possible to create different transport protocols by
defining a single high-level substrate to abstract addressing issues. Therefore, it is possible
to fully isolate management elements, management entities and clients. Also, inter-domain
management is made easy since it is possible to plug-in protocol adapters for allowing man-
agement entities to operate over services and protocols that are already in place. Figure
4.1 illustrates the concepts presented in this section.

Figure 4.1: P2P-Based Network Management System.
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4.2 ManP2P-ng implementation

The main purpose of ManP2P-ng is to provide a platform to ease the implementation of
novel management applications by developers and network administrators. An Application
Programming Interface (API) is provided for extending its capabilities. The API enables
the implementation of different management applications as well as modifications in the
overlay basic mechanisms (e.g., for better adequacy to a specific scenario such as delay
and disruption tolerant networks). Likewise, the APT itself can be extended. The basic
building blocks of ManP2P-ng are the Python Programming Language (VANROSSUM;
DRAKE, 2010) and Twisted Framework (LEFKOWITZ; SHTULL-TRAURING, 2003),
an event-driven networking engine licensed under the open source MIT license. Figure 4.2
presents the high-level architecture of the ManP2P-ng and will guide the discussion in this
section.

Figure 4.2: ManP2P-ng high-level architecture.
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The ManP2P-ng architecture is composed of four layers, depicted in Figure 4.2. Fach
layer groups related interfaces, which are exposed as new abstractions for upper layers.
This design eases the development of management applications without restricting com-
plex modifications such as the introduction of new transport protocols or distributed algo-
rithms. The principal line of thought was to provide a simple and convenient framework
yet powerful and flexible. The features of each layer are described in the next subsections.

4.2.1 Low-level Interfaces Layer

This layer provides the basic building blocks for the management overlay. It encom-
passes interfaces related to Input/Output of data: abstraction for networking and storage.
These interfaces are separately explained bellow.
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4.2.1.1 Networking Interfaces

The low-level networking interfaces have two objectives. The first objective is to deliver
a networking-technology agnostic message sending and receiving interface. This interface
acts as a mean to develop high-level primitives, enabling the implementation of common
overlay maintenance algorithms, regardless of low-level details. Therefore, upper layers
must deal with a compact set of standardized operations since all the specificities are
hidden by networking low-level interfaces.

The second objective is to provide developers a set of ready to use networking protocols,
such as SSH, HT'TP, F'TP, among others. This was achieved mainly by exposing Twisted
Framework interfaces.

4.2.1.2  Storage Interfaces

The low-level storage interfaces provide abstractions for common storage options and
it is divided in two categories. The first category encompasses transactional persistence
engines, like SQL and Not Only SQL (NoSQL) back-ends. Through transactional storage
interfaces developers may leverage their management components by using relational or
document-oriented storage. These interfaces consist in wrappers over Python’s PEP 249:
Python Database API Specification v2.0.

The second category is the file system-like abstraction. They are used for local and
distributed storage. When concerning local storage, Python’s portable file-systems ab-
stractions and persistent dictionaries-like structures are exposed. However, when concern-
ing distributed and reliable storage, Zookeeper/Kazoo’s (HUNT et al., 2010) wrappers are
provided. These wrappers simply auto-configure Zookeeper’s interfaces so any node that
joins the distributed.storage peer group may join the service infrastructure.

Zookeeper offers distributed execution of atomic operations create, delete, setData, get-
Data, and getNode. These operations are available for creating an Unix-like distributed
directory structure. For example, calling create("/data") would add a node called data
as a sub-node of the root node.

By the means of Zookeeper’s operations, the management overlay is enhanced with
distributed reliable and secure storage. Besides that, the distributed storage may be used
for coordination purposes (e.g., distributed locking) since there exists guarantees about
the atomicity of operations and the consistency of the data stored in a node.

4.2.2 P2P Overlay Maintenance Layer

The P2P overlay maintenance layer is responsible for application layer message routing
and peers’ membership maintenance. Natively, the architecture supports the utilization of
different Application Layer Routing strategies, however only two are implemented. The
first strategy uses the Cyclon protocol (VOULGARIS; GAVIDIA; STEEN, 2005) to create
a gossip-based overlay for scenarios where connectivity is unreliable. Although primarily
following Cyclon protocol, the implementation also follows best practices on gossip-based
algorithms implementation (RIVIERE et al., 2007), enabling this way the experimentation
of different gossip-based protocols.
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The second strategy uses the ZeroM(Q) protocol to maintain a structured however bro-
kerless multi-protocol overlay. This way, a subset of more robust nodes may form a logical
backbone for the management overlay, thus enabling more flexibility while defining net-
work boundaries (e.g., fewer connections would need to be maintained on firewalls and
other devices). This ALR strategy applies when structured topologies are feasible choices
for message passing.

Peer’s Membership Management is highly coupled with the ARL strategy mainly due re-
liability issues. When the gossip-based ARL strategy is applied, the membership is achieved
though exchange operations and its properties (STAVROU; RUBENSTEIN; SAHU, 2002).
When structured ARL strategy is applied, membership is maintained at infrastructure’s
nodes, as it is stated in the protocol.

4.2.3 Peer Grouping and Discovery Facilities Layer

As early stated, Peer Grouping is the basis for implementing management services in a
P2P-Based Network Management System. Besides that, nothing would work without nodes
knowing where and how to reach services. Supporting primitives for group communications
and discovery is then a must.

4.2.83.1 Group Membership Management

Two algorithms are provided for grouping. The first one, suitable for unstructured
deployment scenarios, keeps a copy of the group membership information on every node
that composes the group. Joins, departures and faults are managed gossip-like: a node
may actively join a peer group; other peers may inform the joining; and departures and
faults detections are broadcast.

The second algorithm uses the distributed storage to keep peers’ grouping information.
This algorithm reserves /groups as base node. Then, each group is registered as a sub-
node of /group (e.g., /groups/ssh/) and memberships are registered as sub-nodes inside
/peers sub-node (e.g., /groups/ssh/peers/sdn_dmz_manager).

4.2.3.2  Service and Resource Discovery

Service discovery is essential to any overlay because it is the facility that enables admin-
istrators and services to reach themselves. Since discovery is closely related to deployment
scenarios, the latter must dictate the discovery algorithm to use. Therefore, there are two
discovery strategies that may be applied at run-time: iterative deepening with checking,
and directory based.

Iterative deepening works by asking neighbours if they provide a service (MESHKOVA
et al., 2008). If they do provide, the search is over and the provider is contacted with
actual service request data. However, if all of its neighbours are unaware of the service,
the requester now asks its neighbours’ neighbours about it. The request still deepening a
level until a provider is found or fails if there is no new level to deep.

For structured overlays, service discovery is already provided by the Group Membership
Management facility. Finding services consists only in checking the existence of the corre-
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sponding /group sub-node. For example, if one is interested in a SSH service, one must
check the existence of /group/ssh node. For brevity, the tilde character (~) will be used
to shortly refer to a previously mentioned path. Requesting services consist in creating a
sequential leaf-node at the child-node named /requests (e.g., ~/requests/101010) with
the necessary data. Figure 4.3 presents the services’ organization as a tree-like hierarchy.

Figure 4.3: Service and Resource Discovery organization.

/101010 /sdn_mngr /dmz mngr

If the service was once provided by any peer, its /requests node will exist regardless
if there is any peer capable to serve the request. Hence, requests may be later served when
some peer can serve it. Also, this opens the risk of starving. For this reason, requests
that must be served respecting some deadline shall specify this deadline during the service
request. Requests are asynchronously dispatched for execution.

4.2.4 Components and plug-ins layer

The Components and Plug-ins layer provides the interfaces through which new services
are implemented and provided. This layer deals with two kinds of software entities, plug-ins
and components.

4.2.4.1 Plug-ins

In ManP2P-ng, plug-ins have the same semantics that they have in other domains: a
software entity that builds up new functionalities atop of another software entity. There-
fore, plug-ins are meant to extend ManP2P-ng with capabilities that are too specific to be
implemented at the overlay’s core. Plug-ins are reached through usual import statements.

4.2.4.2 Management Components

Management Components are how new services are implemented. Thus, management,
component’s functionalities are reachable throughout the overlay. Besides that, manage-
ment components are also provided with messaging facilities, enabling different entities
that provide the same service to coordinate their behaviour.
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Management Components are given two communication channels. The first one is used
to internal communications between peers providing the service. Messages sent to this
channel are broadcast to all peers providing the service. This channel is also used by the
overlay to send control messages, such as join, departure, and failures.

The second channel is used by other peers to request services. An interface is given so
specific service providing peers may chose to listen to these messages while other peers do
dedicate to service providing.

4.3 Self-healing Service implementation

The self-healing service was implemented using the management component interfaces
provided by the ManP2P-ng. Analogously the proposal, the self-healing service was im-
plemented as two different management components: the monitoring service management
component and the healing service management component.

4.3.1 monitoring service

The monitoring service is responsible for monitoring managed elements and contacting
the healing service when any anomalies or faults are detected. Aiming to avoid classifying
transient or locality-related network errors as anomalies or faults, the monitoring service
assigns a subset of its peers to execute a monitoring workplan. Then, a decision about the
anomalies or faults are based on the result of a given number of monitoring attempts, all
of them executed by different peers or at different moments.

The subset of peers responsible for executing a workplan is composed of any peer that
were listed as a candidate peers (refer to section 3.1.2) plus the quantity of peers necessary
to reach a total of log(size(monitoring group)) monitoring peers. The peers chosen are
then stored in the /monitors node, which is a sub-node at the request node. No criteria
is used for choosing non-candidate peers, albeit is plausible to argue that some peers may
get overloaded given bad choices.

The monitoring starts afterwards the request serving peer chooses all the monitoring
peers responsible for executing the workplan. The execution follows the order that the
peers were added to the /monitors node. The next scheduled monitoring executor is
pointed by the node /token/owner.

For storing the monitoring results, sequential nodes are created at /results, which in
turn resides into the request node. Therefore administrators, managers, and other peers
may check the contents of a result anytime, given that no other process has deleted the
results. Results may be erased periodically or on demand (i.e., administrators request).

Given that anytime administrators and managers are expected to create new revisions
of workplans, a sub-node /workplans is used to store sequential nodes that represent
the revisions of the workplan. The overall picture of /groups/monitoring sub-node is
presented in Figure 4.4.
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Figure 4.4: monitoring service data organization.

/groups/monitoring/request

/101010

/result /workplans /monitors

/result-0001 /result-0002 /rev-0001 /rev-0002 /owner /mntr 0 /mntr 1 /mntr 2

4.3.2 healing service

The healing service internals shares most of the decisions taken for the monitoring
service. Therefore, the various worplans’ revisions are also stored at requests’ /workplans
sub-node. Also, log(size(healing group)) peers are chosen to serve the request and this
subset is again places at the storage facilities, this time in the /healers sub-node.

Different from the monitoring service, the healing service does not need synchronization
of execution aside from asserting that only one peer will be executing a healing workplan
in a given moment. Thereupon, no sub-node is used to store synchronization information,
however an ephemeral /state/running is used to signalize that some peer is currently
executing the workplan. The result of healing workplan execution is then stored at the
/result sub-node. The overall picture of /groups/healing/ sub-nodes is presented in
Figure 4.5.

Figure 4.5: healing service data organization.
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4.4 DTN Management Component implementation

The Delay and Disruption Tolerant Management Component is implemented as a pro-
tocol adapter for the operation of the P2P management overlay in DTN environments.
The protocol adapter defines mainly interfaces and, hence, is not tied to any specific DTN
protocol implementation, although these protocols strongly influenced its interfaces.

Since untied of any specific protocol, the management component enables flexible de-
ployments: managers and administrators are free to choose the protocol — or even a full
stack — that best suits their needs. As a consequence, the management component is un-
concerned with IP or IP-related protocols (e.g., TCP or DNS), and because of that overlay
namespace is used for addressing and routing purposes. The design choice of keeping the
management component technology agnostic also supports the transport layer indepen-
dence which is necessary in long delay environments.

This research is primary interested in opportunistic connections without too long de-
lays. For this reason, TCP is used as the Proof of Concept transport protocol imple-
mentation. HTTP-DTN draft, in turn, is used to deal with network disruptions. Despite
using TCP and HTTP-DTN in this current research, the management component can
easily handle long delays and TCP limitations through the use of alternative transport
protocols, such as Saratoga (WOOD et al., 2012). For store-and-forward purposes, this
implementation uses overlay’s transactional persistence engines. To this end, HTTP-D'TN
packages features were modeled using Entity-relationship Model and accessed according
the Object-Relational Model.

The HTTP-DTN protocol is a superset of HT'TP /1.1 and, in this context, HTTP /1.1
pipelining and persistence allows multiple transmissions to be made in sequence. Address-
ing information is provided through DTN specific header fields, all of which inter-operate
transparently with current HTTP/1.1-compliant implementations. For addressing pur-
poses, Content-Destination and Content-Source fields identify the destination and the
source of the data, which are filled with peers’ identifiers.

The current management component implementation works considering the premise
that all peers in a peer group have this extension enabled. This premise may not be true
in some scenarios, which decreases network efficiency. However, it is feasible to develop a
DTN gateway-like feature (in order to interconnect networks with different characteristics)
through adaptations in the management component.



o6



o7

5 EXPERIMENTAL EVALUATION

In order to analyse and assert the feasibility the self-healing service proposed in chap-
ter 3, two experiments and their experimental set-ups are presented and discussed in this
chapter. Both experiments encompass the maintenance of a Distributed Host-based Intru-
sion Detection System’s Infrastructure. Moreover, the maintenance of this infrastructure is
considered when operating over both conventional and challenged networks. When apply-
ing the proposal to a challenged network scenario, the analysis focuses on Internet Access
for Remote Villages, an instance of a Delay and Disruption Tolerant Network.

At last, given the automation purpose of the self-healing service, this chapter compares
the performance of human-in-the-loop fault management and the performance of the self-
healing service proposed at chapter 3. To realize this comparison, this chapter presents a
Keystroke-Level Model analysis of the self-healing service

This chapter follows the forthcoming organization. Section 5.1 discusses and presents
the managed environment and also its management infrastructure. Sections 5.2 and 5.3
shows results gathered through experiments and their analysis. Section 5.4 discusses the
Keystroke-level analysis and shows the differences between human-in-the-loop approaches
and the proposed self-healing service.

5.1 Description of the Case Study

The case study is based on the use of a self-healing service to assist a Host-based Intru-
sion Detection System (HIDS). A HIDS monitors and analyzes hosts in order to determine
whether they are being attacked or compromised. Ideally, a HIDS must employ a correla-
tion engine able to detect patterns in misuse scenarios (DEBAR; DACIER; WESPI, 1999).
Moreover, HIDS also must produce human-readable outputs so system administrator may
diagnose threatening events and respond to these events. However, HIDS still subjected
to new or unknown attacks (FUNG et al., 2010), or even non-malicious faults.

Though most HIDS employ manager-agent approaches, they devise from standard
management-agent approaches since they rely on data pulls, where each intrusion detection
agent periodically collects data from its hosting system and sends this data to its manager.
In the context of HIDS, agents are usually referred as sensors, and so they will be referred
along this case study.
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5.1.1 Failure Scenarios

There are two scenarios for faults in an HIDS deployment. The first scenario is when
a sensor node fails. A well-designed HIDS must continue to function properly without the
failing node. It is not essential, but it is strongly recommended that administrators get
informed about these faults. The second and most critical scenario is when the manager
node fails. In this scenario, an HIDS must notify the administrator about the manager
fault and graciously halt the sensor nodes to prevent misuses.

Given the primary role that Information Technology (IT) security plays in nowadays
communication networks infrastructures, both scenarios described in this section are un-
desirable as they partially or completely stop the intrusion detection facility. In the first
scenario, the sensor’s host may be compromised and used for malicious purposes without
knowledge by the systems administrators. In the second scenario, the misuse would have
more comprehensive scales. For example, an 0-day worm-like threat would indiscriminately
spread itself through the infrastructure.

5.1.2 Self-healing of HIDS Manager and its Sensors

The self-healing of HIDS can be performed in different ways and may involve differ-
ent failures scenarios, reasons and recovery procedures. In this subsection, we discuss a
common procedure to recover sensors and managers nodes.

Fault monitoring is traditionally performed through periodical polling by a network
management system. When faults occur, human administrators have to manually perform
the healing procedure. The traditional procedure to heal a HIDS manager or its sensors
consists in i) remotely access the machine; i) verify its latest entries in the system log
files; 7i1) determine the cause of the failure or degradation; iv) readjust its parameters or
develop a new set-up; and finally, v) put it on-line. In HIDS manager failure scenario, this
is more critical, as some modifications needs to be propagated to all the sensors managed
by the faulty manager.

The utilization of a self-healing service brings advantages as the traditional procedures
for monitoring and healing HIDS have concerns related to scalability and robustness. First,
in a large HIDS system, it would be infeasible for human administrators to deal with a
faulty manager that has a high number of sensor nodes associated with itself. Second, the
decisions related to how to deal with most faults, usually, do not involve complex analysis
and action performing, thus, these faults would be easily healed though simple healing
workplans. As minor faults are the most frequent, this would greatly reduce the demands
for the attention of the system administrators. Finally, the repeated execution of the same
tasks by human resources is proved as error prone.

Challenged networks require characteristics other than scalability. However, most of
their challenges, i.e., frequent disconnections and network partitioning, can be overcame
by P2P approaches. For instance, self-healing service implemented over P2PBNM premises
most transparently deals with partitioning by redistributing tasks among remaining peers.
Alike, moderate churn rates (i.e., arrival and departure of peers) is gracefully handled by
overlay maintenance algorithms.



99

5.2 First evaluation: conventional networks

In this section, assuming the previous statements about self-healing of HIDS infrastruc-
tures, experimental measurements are presented to show the feasibility of the proposed
self-healing service when considering its deployment in a conventional network. These
experiments aim to measure the total management traffic generated throughout the self-
healing process and its average duration time. The results of the first experiment shows
the service impact in the infrastructure while the second presents its performance.

Both experiments were conducted in a management overlay composed of 32 peers,
evenly divided into monitoring service peer group and healing service peer group. These
peers were instantiated as virtual machines running over two bare-metal hosts. In order to
evaluate the relation of the size of the HIDS infrastructure and the parameters observed,
the number of sensor nodes vary as 1, 2, 4, and 8. The HIDS deployment was based on
OSSEC!. All the HIDS infrastructure was instantiated as virtual machines running over a
single bare-metal host. The overall evaluation scenario is depicted in Figure 5.1.

Figure 5.1: Evaluation Scenario for conventional networks.
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The experiments considered two healing workplan implementations. In the first imple-
mentation, the healing workplan is completely executed by the healing service peer that
received the unhealthy notification from the monitoring service. In the second implementa-
tion, the healing workplan makes heavy use of the management overlay capabilities. Hence,
some of workplan’s operations involve the use of services provided by other management
components deployed at the management overlay. For simplicity, we refer to the former im-

LOSSEC - http://www.ossec.net /
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plementation as independent healing workplan execution, and the last as cooperative healing
workplan execution. From a practical point of view, the workplans can be considered equal
since their operational purposes are identical.

For the cooperative workplan implementation, two peers of each service were also used
to implement and provide a Remote Procedure Call (RPC) service used by the healing
workplan. Besides these services, overlays’ basic services where running.

In the first experiment, the total amount of management traffic generated during the
healing process is measured. The objective of this experiment is to show the impact of
the self-healing related traffic in the communication network as the number of managed
entities grows. Figure 5.2 shows the results of this experiment.

Figure 5.2: Total management traffic during the Self-Healing process.
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Figure 5.2 shows that, although essentially the same tasks are performed in both sce-
narios, as both workplans are functionally the same, the independent workplan execution
requires less network traffic than the cooperative workplan execution. Inspection of net-
work traces reveals that the differences presented are due to extra data exchange required
for the cooperative workplan execution.

During the independent workplan execution, the monitoring service’s peer who notes
the fault and the healing service’s peer who executes the healing workplan are the only
peers to exchange data. On the other hand, when collaborative execution is in place, in
addition to the regular messages’ flow, the healing service’s peer and the RPC service peer’s
must exchange extra messages for procedure invoking and result gathering. This difference
was intuitively expected given that synchronization primitives are in place for interprocess
coordination.
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In the next experiment, the average duration time of the healing process is measured
considering both workplan implementations. The motivation of this experiment is to eval-
uate the impact of the cooperation among the overlay’s peers in the time needed to heal
managed entities. The results are shown in Figure 5.3.

Figure 5.3: Average duration time of the Self-Healing Process
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Figure 5.3 shows that the cooperation among peers of the management overlay benefi-
cially impacts the healing duration time. Further analysis shows that this impact is mostly
related to the distribution of management tasks and better utilization of management
elements’ resources.

The independent workplan execution demands resources from a single peer of the heal-
ing service. Then, although some tasks run in parallel, the peer responsible for the workplan
gets overloaded as the number of HIDS sensors grows. Collaborative workplan execution
permits a more fine grained distribution of resource usage, allowing peers to share tasks’
workload. Thus, as the management overlay grows and peers implement services necessary
to a specific healing procedure, the duration time of this procedure would mostly reduce.

The results shown in Figures 5.2 and 5.3 make explicit the trade-off between the amount
of traffic generated by the execution of a healing workplan, and the total time it takes.
While an independent healing workplan execution is less resource demanding, a cooperative
healing workplan execution is most suited for time-critical situations, as the workload it
imposes might be shared among the peers of the management overlay.
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5.3 Second evaluation: disruption tolerant networks

For this second evaluation, which considers the employment of the proposal in Delay
and Disruption Tolerant management scenario, the experimental setup was composed of
three DTN islands interconnected by a data mule. The data mule travels through each
island always in the same order, from island #1 to #2 and then #3. A wisit is a whole
round of the mule arriving and leaving all islands to deliver and collect DTN traffic.

Each island hosts its own HIDS infrastructure, which encompass one HIDS manager
and eight sensors nodes. Besides, the islands host eight management elements able to both
monitor and heal managed entities. Figure 5.4 depicts the overall scenario. The Figure
omits the management overlay and the actual HIDS for presentation purposes.

Figure 5.4: Evaluation Scenario for Disruption-Tolerant Networks.
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Inside an island, three peers are chosen to monitor the local HIDS infrastructure. Six
other peers are picked up to monitor other islands’ infrastructures, three peers for each
island. Since there are eight peers per island, but nine peers are required to monitor local
and remote HIDS, one of the eight original peers ends up responsible to monitor two HIDS
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infrastructures. The same strategy of using nine peers is employed for healing purposes.
The motivation for performing intra-island monitoring is to provide a location agnostic
diagnosis of the problem. For example, a monitoring peer in the very same island would
incorrectly state the system as healthy even if it is unreachable by HIDS managers outside
the island. Besides that, given the stochastic nature of challenged networks’ communi-
cations, a monitoring service peer might have missed workplans updates. Therefore, this
peer would fail to verify new issues that might be affecting managed entities.

The experiments were performed using a set of two virtual machine (VM) servers and
one commodity computer. The first VM server hosted nine VMs (three VMs per DTN
island), each one executing one instance of the ManP2P-ng. The second VM server hosted
another nine VMs: one for the HIDS manager and other eight for the HIDS sensors, all of
them positioned in the third DTN island. Similarly the previous case study, OSSEC was
used to realize HIDS deployment. Finally, the third computer was used to simulate the
data mule. Basically, this computer runs a ManP2P-ng instance and simulates the travels
by performing the bootstrap process with the peers of each island. Moreover, the mule
and peers exchange pending data through HTTP-DTN protocol (Section 2.6.1.3).

Aiming to understand behaviour and impacts of the proposal in a Delay and Disruption
Tolerant Network, three experiments have been carried out. The first experiment measures
the management traffic generated while delivering monitoring and healing workplans. The
second experiment emulates anomalies and faults at HIDS managers and measures the
management traffic related to the detection and notification of these events. The third
experiment evaluates the total management traffic required to employ the self-healing ser-
vice on challenged networks. In order to compare the impact of using HT'TP-DTN as the
underlying protocol, conventional networks’ results are used as baseline.

In the first experiment, the total generated traffic from the data mule to deliver nine
different monitoring and nine different healing workplans for nine peers (three in each
island) is measured. Given that it is impossible to optimize communication as payloads
and destinations completely differ, this task characterizes the worst case scenario for the
data mule when concerning workplan delivery. This experiment aims to show the impact
of the workplans’ distribution in the data mule workload and, consequently, in the network
infrastructure.

Figure 5.5 shows the traffic inside each island during the first nine visits in the managed
DTN concerning a typical experimental run with no transmission failures among the data
mule and island’s gateways. In wvisit #1, the management overhead is higher because of the
workplans distribution across the management overlay. In wvisit #2, workplan acceptance
notifications are still carried around the managed DTN, so the traffic is still considerable.
From wisit #3 and on, it is possible to observe that the management traffic reduces sig-
nificantly (less than 70 kb per visit). This remaining traffic consists of regular overlay
maintenance and monitoring service’s monitoring messages.

In the second experiment, the HIDS manager from island #3 was forced to go down,
emulating, for example, an attack or a non-malicious fault. Thus, following the previous
statements about HIDS infrastructures, aside fixing the broken manager node, the eight
sensors from island #3 must be reconfigured also.
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Figure 5.5: Monitoring and Healing plans distribution
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When a fault emulation occurs, three monitoring service’s peers from each island detect
the faulty HIDS manager and issue unhealthy notifications to report it. This way, the
unhealthy threshold is crossed - since it was setted to 6 and then 9 notifications are sent
- and the healing service starts executing the healing workplans. Because intra-island
monitoring was setted up, a healing service’s peer of each island is activated. Although
less efficient, permitting many activations avoids the poor timing synchronization presents
in challenged environments.

Figure 5.6 presents the impact of the entire self-healing procedure while concerning a
typical fault injection experiment. The failure in the HIDS manager is emulated during
the mule’s visit #52 and its effects are more perceptible in wvisit #53. The increased traffic
at these visits is mainly due to unhealthy notification issuing by the monitoring service’s
peers of all three islands.

During wvisit #54, the management traffic increases even more because the mule carries
remaining unhealthy notifications from the previous visit in addition of carrying action
requests resulting from the execution of the healing workplans. In wvisit #54 the faulty
HIDS manager is recovered and the first resume monitoring messages are issued by the
healing service’s peers from island #3. That contributes to the increased traffic of visit
#54 too.

In wvisit #55, the last resume monitoring messages are issued. The monitoring service’s
peers from all three islands then resume their monitoring workplans. From wisit #56 on the
healing procedure is complete and then the management traffic returns to normal levels.

In the last experiment, in order to evaluate the relationship between the size of the
HIDS infrastructure and the generated management traffic, the number of sensor nodes
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Figure 5.6: Management traffic during the self-healing process.
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in the HIDS infrastructure is varied from one, two, four, and eight, although only one
manager node is still in place. Different than the previous two experiments, the focus is to
measure the traffic generated by a single healing service’s peer while executing a healing
workplan.

This experiment considers two message passing strategies. The first strategy consists
in sending individual messages through single HI'TP-DTN packages. In the second strat-
egy, HI'TP-DTN message packaging is employed; in this case, management messages are
grouped into a HTTP-DTN package that is constantly reassembled until the mule visits
the DTN island that hosts the healing service’s peer. When the mule finally arrives at the
island, the message grouping stops and the HI'TP-DTN package is forwarded.

Figure 5.7 presents the traffic generated by the healing workplan executed by a single
healing service’s peer considering a varying number of sensor nodes, as mentioned before.
Three curves are depicted: one for P2P healing traffic without employing HI'TP-DTN
(included just as a baseline since it does not support delay-tolerant management), a second
one for HI'TP-DTN packages carrying a single management message, and a last one using
HTTP-DTN packages carrying several management messages, as discussed in the previous
paragraph.

The results presented in Figure 5.7 show that transporting management messages
through HT'TP-D'TN in P2P overlay is feasible since the overhead is not significantly
higher than when the same management tasks are performed in a non-DTN environment.
Moreover, HTTP-DTN packaging features smooth the overhead growth, which can be seen
in the similar angular coefficient of both curves (P2P only self-healing and HTTP-DTN
Packed P2P self-healing).
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Figure 5.7: Total management traffic during the Self-Healing process.
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The results present in this Section show important features of our proposal. First, the
traffic produced during workplan distribution and regular monitoring does not impact too
much, considering our deployment scenario. Second, despite an increase in management
traffic, the healing procedure still keeps an acceptable traffic load. Third, it is also shown
that the introduction of HT'TP-DTN in P2P overlay does not increases significantly network
overhead, specially when using HT'TP-D'TN message packaging.

5.4 Keystroke-level Model discussion

The Keystroke-level Model, or KLM, is a quantitative tool to predict the time it takes
a user to perform a task with a given method on an interactive computer system (CARD;
MORAN; NEWELL, 1980). Then, the application of KLM techniques hence enable user
interface designers to compare and quantitatively evaluate different implementation pro-
posals or actual implementation themselves. A concise discussion besides with examples
of applications of this technique are presented in (KIERAS, 2001).

KLM’s basic building-block are operators, standard interactions performed by users on
control interfaces. Operators represent actions such as single key presses, mouse’s point-
and-clicks, and word typing. Using KLM, an interface is then modeled by the juxtaposition
of the Operators required to interact with that interface. The output of the model is
the average interaction time. The average interaction time is based on the average time
users take while performing operators. The average time users take while performing the
operation an Operator defines was set trough actual applications’ usage trace gathering.



67

In the context of this discussion, the Keystroke-level Model is used to argue that the
proposed self-healing service has advantages over operators reacting to failures on demand.
We therefore consider two operations scenarios. The first scenario encompasses a primitive
management deployment, where no automatized tool assists managers and administrators.
The second scenario encompass most management deployments, where management ele-
ments able to collect and process data are in place. For each scenario, two user classes
are considered: an experienced system administrator, a user which is mostly familiar with
faults in HIDS and is able to rapidly respond to these faults; and a newbie administrator,
a user which is getting familiar with HIDS management but is not yet an expert. The
evaluation scenarios are illustrated in the next subsections.

The behaviour of systems administrators was derived using real data. Several his-
tory of several autonomous systems deployed Brazil-wide were collected and characterized.
This characterization then was used to feed developed models. By this mean the analysis
presented in this section attempts to better comply reality.

5.4.1 Modeling naive management scenario

The first operation scenario considers that only basic monitoring facilities are available,
such as a central monitoring entity able to contact all hosts in the network and gather
information like running processes, and basic performance data, while, however, being
completely unable to perform any inference on this data. Besides that, this entity has no
capability to react to any event.

In this scenario the monitoring of a Distributed HIDS is considered to be composed of
the following tasks:

1. Logging into the system

e Typing the host name: T'(n)
e Typing its username: 7'(n)

e Typing its password: T'(n)
2. Gathering root-cause-related data
e Typing commands: T'(n) X ¢
3. Analyse the cause of missing processes
e Mental act of routine thinking or perception: M (m)

Therefore,

monitoring = T(n) X (3+ ¢) + M(n) (5.1)

Considering then a simple failure scenario where the process died for a trivial miscon-
figuration reason, the reaction to the failure would be composed of the following actions:
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1. Open the configuration file
e Typing editor and file name: T'(n)
2. Edit the configuration file:

e Navigating through lines on modal interface: K(I)

e Editing lines: T'(n)
3. Run process:
e Typing commands: T'(n) X ¢
Therefore,
reacting = T'(n) X (c+2) + K(I) (5.2)

5.4.2 Modeling common management scenarios

The second scenario, the most conceivable on medium to large network deployment
scenarios, a centralized general-purpose monitoring facility is deployed and is able to collect
and perform basic inferences, like figuring missing processes, and trespassed performance
thresholds. Also, this second entity is able to actively alert administrators by sending
e-mails, SMSs, playing sounds, or any other alerting medium it seems plausible. Alike the
entity in the naive scenario, this second one is unable to react to events besides alerting
administrators. At this scenario, then, only the reaction to the failure would be performed.
The reaction for this scenario follows the same pattern described for the naive scenario at
Equation 5.2.

5.4.3 Characterization of Users’ Behaviour

To better estimate users’ behaviour, CLI traces were collected and analysed. This
analysis then gives support for choosing concise values for variables required by KLM
analysis. The traces were collected at Federal University of Rio Grande do Sul, State
University of Rio Grande do Norte, and Federal Technology Institute of Ceara, besides
other autonomous systems that prefer to remain anonymous. The traces contained 8551
commands, which then encompassed 26388 words, and 207142 characters.

The first step was to verify if users presented similar behaviour. To this end, the
quantity of words of each sample were calculated and used to plot the graphs at Figure 5.8
and 5.9. The graphs at Figure 5.8 presents the relation between issued commands and the
quantity of words they contain. The graphs at Figure 5.9 presents the relation between
the typed words and the quantity of characters they contain.

In both figures, data analysis revealed two patterns. When concerning the quantity
of words in a single issued command, Figure 5.9a shows that most commands contains 3
words. Whereas, in Figure 5.9b most commands contains 2 words. All data traces shows
similar behaviour when considering 4-words-length commands and onwards.
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Figure 5.8: Words per Command.
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As early stated, when concerning characters per word, there are also two patterns. In
Figure 5.10a most words are composed of 2 or 3 characters. Whereas, in Figure 5.10b most
words are composed of 2 or 4 characters. From 5 characters onward both graphs behave
mostly equal.

The second step was to summarize the data. To this end, the arithmetic mean of values
was chosen. This choice seems appropriate for the ongoing analysis given that Figures 5.8
and 5.9 show that differences occurs mostly at the beginning of the series and that these
differences are unable to bias the result in a misleading way. Thereupon, the average word
length will be 6 characters and the average command length will be 3 words.

While plotting Figure 5.8, 1-word-length commands were discarded since they are com-
monly used to assert the successfulness of previous commands. However, 1-word-length
commands can be interpreted as thinking time. The traces contain 8551 commands, of
which 1714 were 1-word-length. Therefore, by calculating the quotient of these quantities,
the average thinking will be considered 4.

5.4.4 Comparison of naive, common, and self-healing scenario

To perform the comparison of the scenarios, an experimental environment was set-up.
The experimental environment was composed of eleven machines. Ten machines were 2.22
GHz Pentium Core 2 Quad with Intel VT-x extensions enabled. These ten machines were
used to virtualize ten other machines each, which then served as the managed entities. The
managed entities were virtualized through User-mode Linux. The remaining machine, a
2.3 GHz Pentium Core 2 Duo, served as the self-healing service instance hosting machine.
The network environment was a switched Ethernet network presenting approximately 0.225
milliseconds of round trip time with 0.009 standard deviation.

Figure 5.10 presents the plotting of the time a theoretical administrator needs to flaw-
lessly perform the procedure denoted by Equation 5.1 and the plotting of the time that the
monitoring service executing an actual implementation of the same equation needs. This
figure intends to contrast the time needed by an administrator to monitor a given number
of managed entities and the time needed by the proposed monitoring service to achieve the
same goal.

To plot the Keystroke-level Model’s curve in Figure 5.10, the standard values for typing
and thinking (KIERAS, 2001) were applied. Besides that, resting time and network-related
delays were ignored. In other words, context switches between tasks and delays presented
by most networks are unaccounted, characterizing then the best-case scenario.

However, to plot monitoring service results, raw experimental data was considered and,
therefore, all delay is accounted. For this reason, it is clear that using the monitoring
service yields productivity given that, while an administrator handles 5 managed entities,
the monitoring service has already handled 100 managed entities.

By regarding real network management scenarios, it might be arguable that the thinking
time present at Equation 5.1 may disappear or mostly fade since, after some executions,
administrators will be very familiar with tasks they are performing, becoming hence less
thoughtful. This is the expected behaviour that emerges with experience.
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Figure 5.10: Plot of Keystroke-level Model of Equation 5.1 and experimental data.
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On the other hand, it is also arguable that the thinking time might return because
of inconsistencies among managed entities configurations, or as eventual errors that occur
during recurring tasks. Notwithstanding both arguments, Figure 5.10 already encompass
these assumptions and shows that differences are insignificant when compared to the mon-
itoring service performance.

Figure 5.11 presents the plotting of the time a theoretical administrator needs to flaw-
lessly perform the procedure denoted by Equation 5.2 and the plotting of the time that
the healing service executing an actual implementation of the same equation needs. This
figure aims to explicit disparities of the time an administrator takes to recover a growing
number of managed entities and the time that the healing service takes to achieve the same
goal.

To plot the Keystroke-level Model’s curve in Figure 5.11, standard values for an ex-
perienced typist (KIERAS, 2001) were applied. Alike the previous analysis, resting time
and network-related delays were ignored. Also, Equation 5.2 considers that the adminis-
trator already knows exactly what to do, since administrator had it all analyzed during
the monitoring, and hence exhibits the best-case behaviour.

Once more, healing service’s plots are raw experimental data and therefore encompass
all delays presented by the implementation and by the network environment it interfaces.
Besides encompassing the serial execution of tasks, Figure 5.11 also encompasses parallel
execution-related data.
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Figure 5.11: Plot of Keystroke-level Model of Equation 5.2 and experimental data.
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Figure 5.11 shows the same discrepancies previously observed when comparing admin-
istrators behaviour and the monitoring service. Moreover, this same figure also appraises
insights primarily gathered at Figure 5.3: management resources availability largely im-
pacts self-healing related tasks because of the workload sharing of management tasks that
are inherently present in P2P-based Network Management solutions.

Figures 5.10 and 5.11 mostly explicit that human-based or human-assisted manage-
ment is unfeasible for even small networking scenario. For instance, considering the naive
scenario, results show that a theoretical flawless administrator, working in a theoretically
perfect computer networking environment would required at least 3 minutes to manage a
network composed of 10 managed elements. Awhile, results show the self-healing service
required approximately 10 seconds to manage such a management infrastructure.

By considering monitoring infrastructures present in most common medium to large
scale networks, human-assisted management improves. Still, the self-healing service con-
tinues to exhibit advantages. For example, 100 management elements are handled in
approximately 1 minute and 40 seconds when tasks are serially executed and less than 45
seconds when workload is shared among services instances. These results, however, con-
sider that the monitoring service will analyse all managed elements before contacting the
healing service. An administrator would need at least 13 minutes given that interpreting
the monitoring infrastructure would be necessary and then take time.
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6 CONCLUSIONS

Networking applications are changing and so must do management techniques if the
latter are to be up to date with the former. Time has come to invest in techniques and
tools that unburden administrators from repetitive and recurrent tasks, hence enabling
then to focus on intelligently applying resources and efforts in order to achieve high-levels
business’ goals and objectives.

Among other proposals, Autonomic Computing and Autonomic Network Management
highlight themselves by arguing that only by combining cutting edge and novel monitor-
ing, analysis, planning, acting and knowledge gathering strategies will any management
technique overcome challenges and truly leverage human resources’ potential.

Autonomic Network management proposals are based on four properties, widespread
known as self-* properties. These properties are self-configuration, the ability of a system
to configure itself on changes; self-optimization, the ability of a system to optimize its own
operation to cope to environmental specificities; self-protection, the ability of a system to
deal with known and unknown threats; and self-healing, the ability of a system to diagnose
and react to anomalies and faults.

The last of the aforementioned properties, self-healing property, gained researchers
attention due to the known impact that the fully development of this property would show
when concerning systems’ maintenance costs and overall dependability. Therefore, many
proposals were developed in order to fulfil this gap.

Garlan & Schmerl (2002) proposed modeling systems through interactions graphs and
using code annotations so systems would be monitored and anomalies would be eventu-
ally healed. Although adaptable — since it allows total swapping of its models in runtime,
thus adjusting itself to new scenario — this proposal is mostly unfeasible given the diffi-
culty to model current systems’ complexities. Besides that, model-based proposals suit
themselves only when applications provide runtime monitoring and tunning interfaces. Al-
though monitoring can be achieved through ad-hoc mechanisms, runtime tunning is not so
straightforward.

Breitgand et al. (2007) presents PANACEA, a development framework devoted to
self-healing enabled applications’ development. PANACEA proposes developers to instru-
ment their code with self-healing primitives. These primitives then unfold into runtime
monitoring and tuning capabilities. Albeit providing novel capabilities, PANACEA bases
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itself over well-known programming primitives, code annotations. PANACEA main draw-
back is its lack of coordination interfaces, which are essential while considering distributed
applications deployment scenarios. Moreover, PANACEA requires access to source code.
Therefore, it might be impossible to apply it in many networking scenarios.

Fuad & Oudshoorn (2007) propose to analyse applications bytecode at runtime in order
to identify autonomic entities and to attach monitoring and healing capabilities to these
entities. Therefore, this proposal is applicable to interpreted languages-based systems for
which no source code is available or no further development effort is feasible. Regardless,
a distributed coordination mechanism still missing besides proposal’s impact on systems’
performance.

Notwithstanding all current development and their foundations, it is clear that most ap-
plications that target at solving conventional networking-related problems will need adap-
tion in order to cope with novel and challenging network scenarios. As early stated, many
networking scenarios do not share the characteristics and soft constraints that current
applications are built upon, like high connectivity and low delays. Known as Delay and
Disruption Tolerant Networks, these networks have gather wide attention due to interest
of players like NASA and Google (BURLEIGH et al., 2013) and due to the possibility to
cover areas where current approaches seems to fail to cover. Given the aforementioned,
it is essential that any network management solution that expects to cope current chal-
lenges and to softly adapt to technological shifts addresses issues like frequent connection
disruption and communications with high delays and high fail rates.

Considering classical and novel network management challenges related to the mainte-
nance of infrastructures and services, this dissertation proposes a distributed self-healing
service with generic interfaces to enable developers and systems administrators to cus-
tomize healing activities according to the services their infrastructures provides. Besides
that, the self-healing service proposed provides standardized communication interfaces so
distributed management elements may coordinate their execution.

Also, this dissertation proposes, executes, and discusses the results of an experimental
evaluation of the self-healing service it propose. The evaluations aimed to show the fea-
sibility of the proposal when considered from communication overhead and mean time to
recover perspectives. The evaluation encompassed both classical and challenged networks.

Albeit the results, many self-healing-related challenges still need further investiga-
tion. For instance, efficient autonomic elements’ coordination is not directly tackled in
the present work and therefore the mechanism proposed can be said suited only in the
environments addressed by the experimental evaluation.

Besides that, workplans are proposed as gatherers for Event-Rule-Action scenarios and
also as a mean to abstract coarse-grained and commonplace concepts such as device access-
ing, process handling, and configuration editing. Environments’ specificities are expected
to demand more representativeness and abstraction power than what is proposed here.
Consequently, the suitability of Ponder2-based workplans must be delve into a greater
degree.
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