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(Received 5 August 2014; accepted 20 October 2014; published online 3 November 2014)

We investigate the dispersion relation for low frequency electromagnetic waves propagating parallel

to the ambient magnetic field, considering that the velocity distributions of ions and electrons can be

either bi-Maxwellian of product bi-kappa distributions. The effect of the anisotropy and non-thermal

features associated to the product-bi-kappa distributions on the firehose instability are numerically

investigated. The general conclusion to be drawn from the results obtained is that the increase in

non-thermal features which is consequence of the decrease of the j indexes in the ion distribution

contributes to increase the instability in magnitude and wave number range, in comparison with bi-

Maxwellian distributions with similar temperature anisotropy, and that the increase of non-thermal

features in the electron distribution contributes to the quenching of the instability, which is neverthe-

less driven by the anisotropy in the ion distribution. Significant differences between results obtained

either considering product-bi-kappa distributions or bi-kappa distributions are also reported.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900766]

I. INTRODUCTION

The ion firehose instability is an instability associated

with velocity dispersion along parallel velocity which is

larger than the velocity dispersion along perpendicular direc-

tion. For plasma particles with bi-Maxwellian velocity distri-

butions, for which the temperature is a measure of the

velocity dispersion, it can be said that the ion firehose insta-

bility is associated with the condition Ti?=Tik < 1, where i
indicates the ion population.1,2 The ion firehose instability

has been traditionally described by considering anisotropic

Maxwellian distributions, as in a previous investigation by

some of us, which has taken into account the presence of

dust.3 The subject has been object of continued interest, par-

ticularly from the community interested in physical proc-

esses in space plasmas. Discussion on the conditions for the

occurrence of the instability, particularly on the constraints

related to the temperature anisotropies, can be easily found

in recent literature.4,5

On the other hand, many observations show that plasma

particles in space conditions frequently display non-thermal

tails and anisotropies which are not well described by

Maxwellian distributions.6–9 It has been realized that these

non-thermal features can be better described by the use of

distributions with power-law tails, generally known as kappa
distributions.10–14 These kappa distributions can be isotropic,

and in that case are usually written in two different forms,

with basic features which can be found, respectively, in

Refs. 10–12 and 13, 14. The abundance of evidence of non-

thermal features in velocity distributions of plasma particles

in spatial environments has lead to a growing interest in the

study of spatial phenomena considering the presence of

kappa distributions.15 For instance, it can be mentioned that

several studies about low-frequency electromagnetic insta-

bilities have been recently made considering the presence of

kappa distributions, either dealing with the ion-cyclotron

instability16,17 or with the ion firehose instability.18–20 The

occurrence of instabilities like these requires the presence of

anisotropic features, which have to be incorporated to the

description of the velocity distribution functions. For the

mentioned studies regarding instabilities, the anisotropy

which drives the instability has been generally described by

the adoption of particle distributions with anisotropic param-

eters related to the temperature, with a single kappa index,

which constitute the use of distributions which are known as

Bi-Kappa (BK) Distributions.16–20 However, the use of BK

distributions is not the only form of introduction of aniso-

tropic features in power-law velocity distributions. A more

general description of anisotropic and non-thermal features

can be made with the use of distributions which, in addition

to anisotropic temperature parameters, are described by ani-

sotropic kappa indexes. These distributions are known as

Product-Bi-Kappa (PBK) distributions. Product-bi-kappa

distributions have been already mentioned in analysis of the

space plasma dynamics and on the limits for the occurrence

of instabilities associated to different forms of the distribu-

tions,21 but they are not yet widely found in studies of the

plasma instabilities, particularly in studies dedicated to the

ion firehose instability. However, as we have argued, PBK

distributions are very flexible with respect to the possibility of

description of anisotropic non thermal features in velocity dis-

tributions, and feature desirable mathematical properties, like

the separability of perpendicular and parallel variables.

Therefore, they can be of utility for fitting observed features in

particle velocity distributions, such as electron distributions

with strahl or double-strahl components, or double-humped

ion distributions.6,7,9 These characteristics are particularly
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difficult to model using bi-Maxwellian or even bi-kappa distri-

butions. The mentioned attractive features of PBK distributions

therefore motivate the present investigation.

In the present paper, we study the dispersion relation for

the ion firehose instability, considering that the velocity distri-

butions of ions and electrons can be either bi-Maxwellian or

product bi-kappa distributions. We obtain the general form of

the dispersion relation and then discuss the numerical solution

considering different situations. The organization of the paper

is as follows: In Sec. II, we briefly describe the theoretical for-

mulation and the dispersion relation for electromagnetic waves

propagating parallel to the ambient magnetic field, considering

the particular cases of plasma particles with product-bi-kappa

and bi-Maxwellian distribution functions. In Sec. III, we pres-

ent and discuss results obtained by numerical solution of the

dispersion relation. Final remarks and a discussion on future

perspectives appear in Sec. IV.

II. THEORETICAL FORMULATION

The general dispersion relation for parallel propagation

follows from the following determinant:

det

1þ vxx � N2
k vxy 0

�vyx 1þ vxx � N2
k 0

0 0 1þ ezz

0
B@

1
CA ¼ 0 ; (1)

where

vxx ¼
1

4

X
b

x2
pb

x2

1

nb0

X
n¼�1;1

J n; 1; 0; fb0ð Þ;

vxy ¼ i
1

4

X
b

x2
pb

x2
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nb0

X
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nJ n; 1; 0; fb0ð Þ ¼ i nxy;
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X

b
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x2

1
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nb0
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and where
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x� nXb � kkvk
;

L ¼ 1�
kkvk
x

� �
@

@v?
þ

kkv?
x

@

@vk

" #
;

L ¼ vk
@

@v?
� v?

@
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;

(2)

with

x2
pb ¼

4pnb0q2
b

mb
; Xb ¼

qbB0

mbc
; Nk ¼

ckk
x
:

The dispersion relation for Alfv�en waves is obtained

retaining only the components in the upper left 2 � 2 deter-

minant in Eq. (1), that is, by imposing Ez¼ 0,

ð1þ vxx � N2
kÞ

2 � n2
xy ¼ 0:

By squaring this expression, two possibilities of sign

(s ¼ 61) are obtained, and it is easy to show that the disper-

sion relation becomes s-dependent, as follows:

N2
k ¼ 1þ 1

2

X
b

x2
pb

x2

1

nb0

J s; 1; 0; fb0ð Þ: (3)

For the application to be developed in the present paper,

we consider the case of anisotropic kappa distributions for

electrons and ions, characterized by anisotropic kappa

indexes,

fb;j vk; v?ð Þ ¼
nb0

p3=2jb?j
1=2

bk v2
b?vbk

�
C jb?ð ÞC jbkð Þ

C jb? � 1ð ÞC jbk � 1=2
� �

� 1þ
v2
k

jbkv2
bk

 !�jbk

1þ v2
?

jb?v2
b?

 !�jb?

;

(4)

where

v2
bk ¼

2Tbk
mb

; v2
b? ¼

2Tb?
mb

:

In order to avoid negative arguments in the C functions,

the range of values of the j indexes has to be restricted to

jk > 0:5 and j? > 1:0. Anisotropic distributions like that of

Eq. (4) are also called “product bi-kappa” distributions, to be

distinguished from the distributions characterized by a single

kappa index and anisotropic temperature parameters Tb, which

are called “bi-kappa” or “bi-Lorentzian” distributions.11,18

We define the effective temperature using energy units,

such that the average value of the kinetic energy per unit of

volume, along each degree of liberty, is nTeff/2. The effective

temperatures along parallel and perpendicular directions will

be denoted as hk and h?, respectively.

Therefore, the effective temperatures along parallel and

perpendicular directions, for particles of species b, will be

obtained from

1

2
hbk

hb?

0
@

1
A¼ mb

p1=2jb?j
1=2

bk v2
b?vbk

C jb?ð ÞC jbkð Þ
C jb?�1ð ÞC jbk�1=2

� �

�
ð1
�1

dvk 1þ
v2
k

jbkv2
bk

 !�jbk

�
ð1

0

dv?v? 1þ v2
?

jb?v2
b?

 !�jb? v2
k

v2
?

 !
:

(5)

Upon evaluation of the integral, the outcome is as

follows:

hbk ¼
jbk

jbk � 3=2
� �Tbk; (6)

hb? ¼
jb?

jb? � 2ð Þ
Tb?; (7)
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and therefore, the ratio of effective temperatures is given by

hb?
hbk
¼

jb? jbk � 3=2
� �

jbk jb? � 2ð Þ
Tb?
Tbk

: (8)

In what follows, the quantities hb? and hbk will be

denominated “effective temperatures,” and the quantities

Tb? and Tbk will be denominated “temperatures,” for sim-

plicity. Of course, in the case of a Maxwellian distribution,

when Tb? ¼ Tbk, the quantities Tb? and Tbk represent the

true thermodynamical temperature of the distribution, along

the indicated directions.

It is convenient, at this point, to introduce dimensionless

variables

z ¼ x
X�
; qk ¼

kkv�
X�

; q? ¼
k?v�
X�

;

rb ¼
Xb

X�
; u2

bk ¼
v2
bk
v2
�
; u2

b? ¼
v2
b?
v2
�
;

(9)

where X* and v* are some characteristic angular frequency

and velocity, respectively. For the present application, which

is concerned with the dispersive properties of Alfv�en waves,

we make the convenient choice v*¼ vA, the Alfv�en velocity,

and X*¼Xi, the angular ion cyclotron frequency.

Using the distribution function given by Eq. (4), the in-

tegral defined in Eq. (2) may be evaluated, leading to the

following:22

J s; 1; 0; fb0ð Þ ¼ 2nb0

jb?
jb? � 2

�
�
� jb? � 2

jb?
þ

u2
b?

u2
bk

jbk � 1=2

jbk

þ f0
b � fs

b

� � jb? � 2

jb?
Z 0ð Þ

jbk
fs
b

� �
þ

u2
b?

u2
bk

fs
bZ 1ð Þ

jbk
fs
b

� �	
;

(10)

where

fn
b ¼

z� nrb

qkubk
f0
b ¼

z

qkubk
;

and where we have introduced the plasma dispersion func-

tion of order m, defined for distributions with a j parameter,

Z mð Þ
j nð Þ ¼ 1

p1=2

C jð Þ
j1=2C j� 1=2ð Þ

�
ð1
�1

ds

s� nð Þ 1þ s2=jð Þjþm :

(11)

This plasma dispersion function can be written in terms of

the Gauss hypergeometric function 2F1(a, b, c; z), as follows:

Z mð Þ
j nð Þ ¼ iC jð ÞC jþ mþ 1=2ð Þ

j1=2C j� 1=2ð ÞC jþ mþ 1ð Þ

� 2F1 1; 2jþ 2m; jþ mþ 1;
1

2
1þ in

j1=2

� �� 	
;

(12)

for j>�m � 1/2. For m¼ 1, the plasma dispersion function

given by Eqs. (11) and (12) is the same as the dispersion

function defined by Summers and Thorne (1991) and Mace

and Hellberg (1995).11,12

The value of the integral J for the case of a bi-

Maxwellian distribution function can be obtained as a limit-

ing case of Eq. (10), for j? ! 1; jk ! 1. In this limiting

case the plasma dispersion of order m becomes the well-

known Z function, limj!1 Z
ðmÞ
j ðfÞ ¼ ZðfÞ, and the J integral

becomes

J s; 1; 0; fb0ð Þ ¼ 2nb0

�
�1þ

u2
b?

u2
bk

þ f0
b � fs

b

� �
Z fs

b

� �
þ

u2
b?

u2
bk

fs
bZ fs

b

� �	
:

(13)

When ions and electrons are described by a product-bi-

kappa distribution as given by Eq. (4), the dispersion relation

(3) can be written as follows:

N2
k ¼ 1þ 1

z2

X
b

x2
pb

X2
i

�
� 1þ jb?

jb? � 2

jbk � 1=2

jbk

u2
b?

u2
bk

þ f0
b � fs

b

� �
Z 0ð Þ

jbk
fs
b

� �
þ jb?

jb? � 2

u2
b?

u2
bk

fs
bZ 1ð Þ

jbk
fs
b

� �	
:

(14)

In the limiting case of jb? ! 1; jbk ! 1, the disper-

sion relation becomes that corresponding to bi-Maxwellian

distributions

N2
k ¼ 1þ 1

z2

X
b

x2
pb

X2
i

�
�1þ

u2
b?

u2
bk

þ f0
b � fs

b

� �
Z fs

b

� �
þ

u2
b?

u2
bk

fs
bZ fs

b

� �	
:

(15)

In the case of isotropic temperatures, the dispersion rela-

tion is further simplified and becomes the well-known dis-

persion relation for low-frequency parallel propagating

electromagnetic waves in a thermal plasma

N2
k ¼ 1þ

X
b

x2
pb

x2
f0
b Z fs

b

� �
: (16)

Of course, if one particle species is characterized by a

product-bi-kappa distribution and the other species is charac-

terized by an anisotropic Maxwellian, the dispersion relation

(14) has to be used with a combination of Eqs. (10) and (13).

III. NUMERICAL ANALYSIS

For the numerical analysis which follows, we have consid-

ered vA/c¼ 1.0� 10�4 and bi¼ 2.0, values which have been

used in well-known studies on space plasmas instabilities.1 We

have also considered ion mass equal to proton mass, and ion

charge number Zi¼ 1.0. For all cases which are shown, the

electron temperature has been taken as equal to the ion parallel
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temperature, Te ¼ Tik. We have also added a figure with some

results obtained considering bi¼ 1.0, in order to illustrate the

effect of the change of the b parameter.

We have solved the dispersion relation for different

forms of the distribution functions for electrons and ions. In

the figures, we show the imaginary part of the normalized

frequency, for waves in the whistler branch, investigating the

effect of anisotropy in the effective temperature of the ions

on the ion firehose instability.

In Figure 1, we show the imaginary part of the normal-

ized wave frequency (zi) vs. normalized wave number,

obtained from the solution of the dispersion relation, consid-

ering isotropic Maxwellian distribution for electrons and dif-

ferent forms of the ion distribution. The column to the left

shows the values of the growth rate c, the positive values of

zi, while the right column shows the complete range of val-

ues of zi. Figures 1(a) and 1(e) show the results obtained for

the case in which the ions are described by an anisotropic

Maxwellian distribution, with Ti?=Tik ¼ 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. It is seen that instability only

occurs for temperature ratio less than 0.8. For Ti?=Tik ¼ 0:1,

which is the smaller value of the temperature ratio with results

shown in the figure, the instability starts at q ’ 0.22 and con-

tinues until beyond q¼ 1.8. For larger values of Ti?=Tik the

unstable range decreases and the magnitude of the growth rate

decreases as well, so that for Ti? ¼ 0:5Tik the instability

occurs between q ’ 0.3 and q ’ 0.7, with maximum growth

rate which is slightly below one tenth of the maximum attained

for temperature ratio 0.1. The situation depicted in Figure 1(a)

corresponds to the conventional firehose instability.

Figures 1(b) and 1(f) consider the case in which the ions

are described by a product-bi-kappa distribution, with

jik ¼ ji? ¼ 20, and the same values of Ti?=Tik considered

in the case of Figure 1(a), with Te ¼ Tik. The corresponding

values of the ratio of effective temperatures for the curves

featuring instability are hi?=hik ¼ 0:103, 0.206, 0.308,

0.411, 0.514, 0.617, and 0.719, values which are close to

those of the temperature ratios. The curves representing c
and zi which are shown in Figures 1(b) and 1(f) are very sim-

ilar in shape to those appearing in Figures 1(a) and 1(e), with

two noticeable differences. It is noticed that the values of c
at the peak of the instability are slightly above those obtained

in the Maxwellian case, shown in Figure 1(a), and that the

unstable range is slightly larger than in the Maxwellian case,

starting at a smaller value of q. The similarity between the

results in (a) and (b) is not surprising, since the product bi-

kappa-distribution with jik ¼ ji? ¼ 20, considered in the

case of panel (b), is not very different from a Maxwellian

distribution. Perhaps the most noticeable difference associ-

ated to the lingering non-thermal character of the product-bi-

kappa distribution in this case of high kappa values is the

tendency to extension of the unstable region toward q¼ 0,

for sufficiently small value of the ratio Ti?=Tik.
In Figures 1(c) and 1(g), we depict the results obtained

considering the ions described by a product-bi-kappa distri-

bution, with jk ¼ j? ¼ 5:0 and Te ¼ Tik, and Ti?=Tik rang-

ing between 0.1 and 1.0, the same values of Ti?=Tik used to

obtain Figures 1(a) and 1(b). The corresponding ratios of

effective temperatures are hi?=hik ¼ 0.117, 0.233, 0.350,

0.467, 0.583, 0.700, 0.817, 0.933, 1.050, and 1.167. It is

interesting to notice that the effective anisotropy is reversed

for Ti?=Tik � 0:9, approximately, so that Figure 1(c) shows

only nine curves for which the ratio of effective temperatures

is smaller than 1. The ion distribution function is non-

thermal, already quite different from a bi-Maxwellian with

the same temperatures. Nevertheless, the results shown in

Figure 1(c) are in some respects qualitatively similar to those

appearing in Figure 1(a). However, despite these qualitative

similarities, there are some significant differences. The val-

ues obtained for c in the case of panel (c) show that the insta-

bility is very much increased by the non-thermal feature of

the ion distribution function, as compared to the anisotropic

Maxwellian case shown in Figure 1(a). The range of values

of k which are unstable covers the region unstable in the

Maxwellian case, but is extended toward the region q! 0,

for decreasing temperature ratio, and also seem to have a

slightly extended upper limit. Moreover, it is noticed that the

instability occurs even for temperature ratio 1.0, while for

the Maxwellian case the instability started to appear only for

temperature ratio smaller than 0.70, approximately. As

example of the increase of the magnitude of the growth rates

in the case of ji? ¼ jik ¼ 5:0, we may mention that for

Ti=?=Tik ¼ 0:4 (the magenta line in Figure 2(c)), which cor-

responds to effective temperature ratio 0.467, the maximum

growth rate is about 0.05, a value which was obtained in the

case of anisotropic Maxwellian distribution for the ions only

for the much more anisotropic case of temperature ratio

equal to 0.2, according to the results shown in Figure 1(a).

In Figures 1(d) and 1(h), we depict the results obtained

considering the ions described by a strongly non-thermal

product-bi-kappa distribution, with jk ¼ j? ¼ 2:5 and

Te ¼ Tik, and Ti?=Tik ranging between 0.1 and 1.0, as in pan-

els (a)–(c). The corresponding ratios of effective tempera-

tures are hi?=hik ¼ 0.20, 0.40, 0.60, 0.8, 1.0, 1.2, 1.4, 1.6,

1.8, and 2.0. The effective anisotropy is reversed for

Ti?=Tik � 0:5, so that Figure 1(d) shows only four curves for

which the ratio of effective temperatures is smaller than 1.

The ion distribution function in this case is very different

from a Maxwellian with the same temperature. The values

obtained for c in the case of Figure 1(d) show that the insta-

bility is very much increased by the non-thermal feature of

the ion distribution function for most of the range of q val-

ues, when compared to the case of anisotropic Maxwellian

shown in Figure 1(a). The range of values of k which are

unstable is extended toward the region q ! 0, for the same

temperature ratio, when compared to Figure 1(a), but the upper

limit is decreased. The instability occurs for all values of the

temperature ratio which has been considered, from 0.1 to 1.0,

always with the same wave polarization, despite the fact that

for temperature ratio above 0.5 the anisotropy is reversed in

the ratio of effective temperatures. For the case of maximum

temperature anisotropy which has been considered,

Ti?=Tik ¼ 0:1, which corresponds to ratio of effective temper-

atures equal to 0.2, the maximum growth rate is about 0.17,

while for Ti?=Tik ¼ 0:2 in the Maxwellian case, Figure 1(a),

the maximum growth rate is much smaller, only about 0.08.

The values of the real part of the normalized wave

frequency, zr, corresponding to the values of zi shown in
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Figure 1, are depicted in Figure 2. The panels (a)–(d) of

Figure 2 show the values of zr corresponding to panels (a,e),

(b,f), (c,g), and (d,h) of Figure 1.

Figure 3 analyses the effect of the form of the electron

distribution function on the growth rate of the ion firehose

instability, by showing the values of c for waves in the

FIG. 1. Growth rate of instabilities (c, left), and imaginary part of the normalized frequency (zi, right), for waves in the whistler branch vs. normalized wave number,

considering isotropic Maxwellian distributions for electrons and different forms of the ion distribution function. bi¼ 2.0 and vA/c¼ 1.0� 10�4. (a) and (e)

Anisotropic Maxwellian distribution for ions, for several values of the temperature ratio, Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (b) and (f)

Ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 20, for several values of the ratio Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (c) and

(g) Ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 5:0, for several values of the ratio Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (d) and

(h) Ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 2:5, for several values of the ratio Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.
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whistler branch, obtained by considering a product-bi-kappa

distribution for the ions and two different forms of the elec-

tron distribution function. In Figure 3(a), it is seen a case in

which the electrons are characterized by an isotropic

Maxwellian, and the ions are characterized by a product-bi-

kappa distribution with jik ¼ ji? ¼ 3:0, with Ti?=Tik

FIG. 2. Real part of the normalized frequency (zr), for waves in the whistler branch vs. normalized wave number, considering isotropic Maxwellian distributions for

electrons and different forms of the ion distribution function. The values of zr which appear in this figure are the real counterparts to the values of zi appearing in

Figure 1. (a) Anisotropic Maxwellian distribution for ions, for several values of the temperature ratio, Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (b)

Ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 20, for several values of the ratio Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (c) Ions

with a product-bi-kappa distribution with ji? ¼ jik ¼ 5:0, for several values of the ratio Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (d) Ions with a

product-bi-kappa distribution with ji? ¼ jik ¼ 2:5, for several values of the ratio Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

FIG. 3. Growth rate of instabilities (c) for waves in the whistler branch, vs. normalized wave number. (a) Electrons with an isotropic Maxwellian distribution,

ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 3:0 and several values of the ratio Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0; (b)

Electrons with a product-bi-kappa distribution with je? ¼ jek ¼ 3:0 and Te? ¼ Tek; ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 3:0 and several

values of Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.
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ranging between 0.1 and 1.0. The situation is similar to that

depicted in Figure 1(d), with the difference being the values

of the j indexes. The corresponding ratios of effective tem-

peratures are hi?=hik ¼ 0.15, 0.30, 0.45, 0.60, 0.75, 0.90,

1.05, 1.20, 1.35, and 1.50. In Figure 3(b), we consider a case

in which the ion distribution is equal to that considered for

Figure 3(a), but the electron distribution is also a product-bi-

kappa distribution instead of a Maxwellian. We consider for

Figure 3(b) the case of jek ¼ je? ¼ 3:0, with isotropic tem-

peratures, Te? ¼ Tek. The electron distribution is highly non-

thermal, with extended “tails” along parallel and perpendicular

directions. It is seen that the consequence of the modification

in the electron distribution function is a meaningful decrease in

the instability growth rate. For instance, the comparison

between panels (b) and (a) of Figure 3 shows that, for

Ti? ¼ Tik ¼ 0:1, the maximum growth rate has decreased

from a value close to 0.18 to a value near 0.075, due to the

change of the electron distribution function, from an isotropic

Maxwellian, to a product-bi-kappa distribution with kappa

indexes equal to 3.0, and isotropic temperatures. It is also

noticed a sizable decrease of the unstable interval of wave

numbers, specially for small values of the ratio Ti?=Tik. For

instance, in the case of temperature ratio equal to 0.1, the upper

limit of the unstable range is near q¼ 1.2 for the case of

electrons described by a product-bi-kappa distribution with

kappa index 3.0, and above q¼ 1.8 for the case of electrons

described by a Maxwellian distribution. The inference is that,

despite the fact that the instability is generated by the anisot-

ropy in the ion distribution, the increase in the non-thermal fea-

ture of the electron distribution affects the instability, in this

case reducing the growth rate.

Figure 4 is dedicated to discuss on the differences

between the influences of the anisotropy due to the ratio of

temperatures in the ion distribution and of the anisotropy due

to the difference in the kappa indexes, also in the ion distri-

bution. Figures 4(a) and 4(b) show the values of c, obtained

considering isotropic Maxwellian distribution for electrons

and product-bi-kappa distributions for ions, with ji? ¼ jik,
for the values 3.0, 5.0, 10.0, 15.0, 20.0, and 25.0. Figure 4(a)

shows the case of Ti?=Tik ¼ 0:435, while Figure 3(b) shows

the case of Ti?=Tik ¼ 0:50. The comparison between these

two cases of moderate anisotropy which are close to each

other shows that, for a given value of the j index, the unsta-

ble range of q tends to decrease with the decrease of the tem-

perature anisotropy, and that the growth rates tend to

decrease at each value of q. It is also seen that, for a given

value of the temperature ratio, the maximum growth rate

increases with the value of j, from small j until j ’ 3, and

FIG. 4. Growth rate of instabilities (c) for waves in the whistler branch, vs. normalized wave number. (a) Isotropic Maxwellian distribution for electrons and

product-bi-kappa distribution for ions, with Ti?=Tik ¼ 0:435 and several values of ji? ¼ jik, 2.5, 3.0, 5.0, 10.0, 15.0, 20.0, and 25.0; (b) Isotropic Maxwellian

distribution for electrons and product-bi-kappa distribution for ions, with Ti?=Tik ¼ 0:50 and several values of ji? ¼ jik, 2.5, 3.0, 5.0, 10.0, 15.0, 20.0, and

25.0; (c) Isotropic Maxwellian distribution for electrons and product-bi-kappa distribution for ions, with Ti?=Tik ¼ 1:0, jik ¼ 2:5, and several values of ji?,

2.5, 3.0, 5.0, 10.0, 15.0, 20.0, and 25.0 (values of hi?=hik are 2.0, 1.2, 0.67, 0.50, 0.46, 0.444, and 0.435); (d) Product-bi-kappa distribution for electrons, with

Te?=Tek ¼ 1:0 and jek ¼ je? ¼ 2:5, and product-bi-kappa distribution for ions, with Ti?=Tik ¼ 1:0, jik ¼ 2:5, and several values of ji?, 2.5, 3.0, 5.0, 10.0,

15.0, 20.0, and 25.0.

112102-7 Dos Santos, Ziebell, and Gaelzer Phys. Plasmas 21, 112102 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.54.42.15 On: Tue, 03 Feb 2015 15:29:54



then decreases and tends to a limiting value for very large

value of j, which is smaller than the maximum c for j¼ 3.

In Figure 4(c), we explore the anisotropy due to different

values of ji? and jik, by considering a case in which

Ti?=Tik ¼ 1:0, with jik ¼ 2:5 and ji? ¼ 2.5, 3.0, 5.0, 10.0,

15.0, 20.0, and 25.0, with isotropic Maxwellian for the elec-

trons. The increase in ji?, for small jik, corresponds to a

decrease in perpendicular effective temperature, and therefore

to an increase of the anisotropy in the distribution function (the

corresponding values of hi?=hik are 2.0, 1.2, 0.67, 0.50, 0.46,

0.444, and 0.435). It is seen the tendency of the ratio of effec-

tive temperatures to saturate at 0.4, for ji? !1. In terms of

the effective anisotropy, the dashed blue curve in Figure 4(c),

obtained with jik ¼ 2:5 and ji? ¼ 25:0 (hi?=hik ¼ 0:435),

should be compared to the full line red curve in Figure 4(a),

also obtained with jik ¼ 2:5, but with anisotropy due to

Ti?=Tik ¼ 0:435. It is seen that in panel (c) the instability for

this case occurs from q¼ 0 to q ’ 0.8, with maximum growth

rate c ’ 0.11, while in panel (a) the instability for the compar-

ing case is restricted to the region q� 0.45, with maximum

value c ’ 0.045. The instability is very much increased in

range and magnitude, for anisotropy due to the anisotropic j

parameters, as compared to the case of anisotropy due to aniso-

tropic temperature parameters. This conclusion can also be

drawn from other curves. For instance, the fourth curve in

Figure 4(c), the magenta line, corresponds to hi?=hik ¼ 0:50,

and should be compared with the full red line in Figure 4(b),

obtained for Ti?=Tik ¼ 0:50. It is seen that the instability in

the case of panel (c) extends over a larger interval of q values,

with considerably larger growth rate.

In Figure 4(d), we consider a situation where the ion dis-

tribution function is the same as in Figure 4(c), but the electron

distribution is a product-bi-kappa distribution, with Te? ¼ Tek
and je? ¼ jek ¼ 2:5. The comparison between Figures 4(c)

and 4(d) show that the appearing of non-thermal kappa-like

features in the electron distribution contributes to decrease the

instability, which is caused by the anisotropy in the ion distri-

bution. The situation regarding the effect of the shape of the

electron distribution, in the case of Figure 4, where the anisot-

ropy is due to anisotropic j indexes in the ion distribution, is

similar to the situation depicted in Figure 3(a), in which the an-

isotropy was due to the difference between Ti? and Tik.
In Figure 5, we analyse the effect of the parameter bi, by

considering situations which are similar to those considered

FIG. 5. Growth rate of instabilities (c) for waves in the whistler branch vs. normalized wave number, considering isotropic Maxwellian distributions for electrons

and different forms of the ion distribution function. bi¼ 1.0 and vA/c¼ 1.0� 10�4. (a) Anisotropic Maxwellian distribution for ions, for several values of the tem-

perature ratio, Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0; (b) Ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 20, for several values of

the ratio Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0; (c) Ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 5:0, for several values of the ratio

Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0; (d) Ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 2:5, for several values of the ratio

Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.
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for Figure 1, with the difference that we now use bi¼ 1.0

instead of bi¼ 2.0. The sequence of panels appearing in

Figure 5 shows results which can be qualitatively described

as those of the left panels of Figure 1. However, the decrease

of the factor bi has caused a strong decrease in the magnitude

of the growth rates. For instance, for the case shown in panel

(a) with Ti?=Tik ¼ 0:1, the case of bi¼ 2.0 features maxi-

mum value c ’ 0.076, while the case of bi¼ 1.0 leads to

maximum value of c ’ 0.002. Moreover, it is noticed that

for the smaller value of bi the magnitude of the effect associ-

ated to the non-thermal character of the distribution in

clearly enhanced. For instance, the peak value of c appearing

in Figure 5(b) is about 0.0058, while in Figure 5(a) it is

nearly 0.002, smaller by almost a factor of three. For the

case of bi¼ 2, Figures 1(b) and 1(a) show that the corre-

sponding values are 0.099 and 0.077, a difference less than

30%. Another example can be obtained from the comparison

between panels (d) and (c) in Figure 5. It is seen that the

value at the peak of c in panel (d) is more than twice the

value at the peak in panel (c). It is also seen that the points of

maximum growth are displaced toward smaller q, with the

instability reaching q¼ 0 in panel 5(d). In the case of Figure

1, the maximum values of c in (d) and (c) differ by less than

10%, and the displacement of the instability toward smaller

values of q is less significant than in the case of Figure 5.

Finally, we compare the results obtained from the dis-

persion relation considering product-bi-kappa distributions

with results obtained from the dispersion relation considering

bi-kappa distributions, defined as follows:

f 0ð Þ
b;j vk; v?ð Þ ¼

1

p3=2j3=2

b v2
b?vbk

C jbð Þ
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If all plasma species are described by distribution func-

tions as defined by Eq. (17), the dispersion relation for paral-

lel propagating low frequency electromagnetic waves

becomes as follows:
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If different species are described by different forms or

the distribution function, either Maxwellian, bi-kappa (Eq.

(17)), of product-bi-kappa (Eq. (4)), the dispersion relation

has to be written using a proper combination of terms.

In Figure 6, we show a comparison between the growth

rates associated with product-bi-kappa distributions and

those associated to bi-kappa distributions. In Figure 6(a), we

consider an isotropical Maxwellian distribution for electrons,

and two different forms of the ion distribution function. The

curves with dashed lines in Figure 6(a) are obtained

considering a PBK distribution with ji? ¼ jik ¼ 20 to

describe the ions, for several values of the ion temperature

ratio, Ti?=Tik ¼ 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. These dashed

curves correspond to those of Figure 1(b). The continuous

lines in Figure 6(a) are obtained considering a BK distribu-

tion with ji¼ 20 to describe the ions, for the same values of

the temperature ratios used for the dashed lines. The results

shown in Figure 6(a) show that for large anisotropy (temper-

ature ratio� 0.4) the peak value of the growth rate is larger

in the case of BK distributions than for PBK distributions.

For temperature ratios 0.5 and 0.6, however, the results show

that the situation is reversed. The maximum growth rate is

larger in the case of PBK distribution than in the case of BK

distribution. It is also seen that for these values of the tem-

perature ratio above 0.4 the upper limit of the region of

unstable wave number is smaller in the case of BK distribu-

tion than in the case of PBK distribution, with the difference

increasing with the temperature ratio.

In Figure 6(b) we compare results obtained considering

ions with PBK distributions with ji? ¼ jik ¼ 5 with results

obtained considering ions with BK distributions with ji¼ 5,

with isotropic Maxwellian distribution for the electrons, for

ion temperature ratios 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and

0.9. The dashed curves in Figure 6(b) correspond to those in

Figure 1(c). The comparison between the results shown in

Figures 6(b) and 6(a) shows that the magnitude of the growth

rates increase with the decrease of the kappa values, both for

PBK and for BK distributions. It is also seen that the magni-

tude of the difference between the results obtained with the

two forms of the ion distribution function increases with the

decrease of the kappa indexes. For temperature ratio 0.1 the

maximum growth rate obtained with PBK distribution is

nearly 25% smaller than obtained with BK distribution. For

temperature ratio 0.5 the maximum growth rate is about 0.7

for BK distribution and 0.4 for PBK distribution, about 60%

of the value obtained with the PBK. The situation is reversed

with the increase of the temperature ratio, so that for 0.7 the

maximum growth rate is larger for PBK than for BK, with

much larger range of unstable wavenumbers. For small ani-

sotropy, like in the case of temperature ratio 0.9, the instabil-

ity disappears in the case of BK distribution, but remains in

the case of PBK distribution, for normalized wavenumber

between 0.1 and 0.42.

In Figures 6(c) and 6(d), we further investigate the effect

of the shape of the electron distribution. In the case of Figure

6(c), the ion distributions are the same as in Figure 6(a), but

the electron distribution is a BK with je¼ 20 in the case of

the continuous lines, and a PBK with je? ¼ jek ¼ 20 in the

case of the dashed lines. The comparison between the contin-

uous lines in Figures 6(a) and 6(c) show that in the case of

BK ion distributions the growth rates are not affected by the

change of the electron distribution, from a Maxwellian to a

BK distribution. The dashed lines, on the other hand, show

some reduction of the growth rate obtained with ion PBK

distribution, due to the change in the electron distribution

function. For instance, the dashed lines show that the maxi-

mum value of c in the case of Ti?=Tik ¼ 0:1 is about 0.1 in

panel (a), with Maxwellian electrons, and about 0.09 in panel

(c), with PBK electrons.
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In Figure 6(d), we consider a case in which the ion dis-

tributions are as in Figure 6(b), but the electron distribution

is a BK with je¼ 5 (continuous lines) or a PBK with je? ¼
jek ¼ 5 (dashed lines). As in the case od j¼ 20 shown in

Figure 6(c), the comparison of the continuous line in Figure

6(d) with those of Figure 6(b) show that the increase of the

non-thermal character of the electron distribution, associated

to the BK distribution, does not affect the growth rate of the

instability. On the other hand, the dashed curves in these fig-

ures show that in the case of ions with a PBK distribution the

modification of the electron distribution, from a Maxwellian

distribution to a PBK distribution, makes the growth rate of

the ion firehose instability to be reduced in a significant way.

For instance, the maximum value of c in the case of tempera-

ture ratio 0.1 is about 0.15 if the electron distribution is

Maxwellian, panel (b), and about 0.1 if the electron distribu-

tion is a PBK with je? ¼ jek ¼ 5:0.

The results obtained also have indicated that the insta-

bility is very much increased, in wave number range and in

magnitude, if the anisotropy in the distribution is caused by

FIG. 6. Growth rate of instabilities (c) for waves in the whistler branch vs. normalized wave number, obtained by considering two different forms of the ion

distribution function, for bi¼ 2.0 and vA/c¼ 1.0� 10�4. (a) Dashed lines: Obtained with ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 20, and

isotropical Maxwellian distribution for electrons; continuous lines: Obtained with ions with a bi-kappa distribution with ji¼ 20, and isotropical Maxwellian

distribution for electrons. In both cases, the temperature ratios are Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, and 0.6. (b) Dashed lines: Obtained with ions with a prod-

uct-bi-kappa distribution with ji? ¼ jik ¼ 5, and isotropical Maxwellian distribution for electrons; continuous lines: Obtained with ions with a bi-kappa distri-

bution with ji¼ 5, and isotropical Maxwellian distribution for electrons. In both cases, the temperature ratios are Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

and 0.9. (c) Dashed lines: Obtained with ions with a product-bi-kappa distribution with ji? ¼ jik ¼ 20, and electrons with product-bi-kappa distribution with

je? ¼ jek ¼ 20; continuous lines: Obtained with ions with a bi-kappa distribution with ji? ¼ jik ¼ 20, and electrons with product-bi-kappa distribution with

je? ¼ jek ¼ 20; In both cases, the temperature ratios are Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, and 0.6. (d) Dashed lines: Obtained with ions with a product-bi-

kappa distribution with ji? ¼ jik ¼ 5, and electrons with product-bi-kappa distribution with je? ¼ jek ¼ 5; continuous lines: Obtained with ions with a bi-

kappa distribution with ji? ¼ jik ¼ 5, and electrons with product-bi-kappa distribution with je? ¼ jek ¼ 5; In both cases, the temperature ratios are

Ti?=Tik ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.
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anisotropy in the j indexes, instead of by anisotropy in paral-

lel and perpendicular temperatures.

IV. FINAL REMARKS

In the present paper, we have presented some results ori-

ginated from numerical analysis of the dispersion relation for

low frequency electromagnetic waves propagating parallel to

the ambient magnetic field, considering that the velocity dis-

tributions of ions and electrons can be either bi-Maxwellian

of product bi-kappa distributions. The analysis is centered on

the behavior of waves in the whistler mode and on the so-

called ion firehose instability.

The results obtained show that the ion firehose instabil-

ity is very much increased when the non-thermal feature of

the product-bi-kappa distribution is associated to the plasma

ions, as compared to the results obtained when the ion distri-

bution is an anisotropic Maxwellian distribution. The range

of values of wave number which are unstable covers the

region unstable in the bi-Maxwellian case, but increases to-

ward the region of large wavelengths for decreasing j
indexes, for sufficiently low values of the temperature ratio

Ti?=Tik < 1. According to the numerical analysis which has

been made, these effects associated to the non-thermal char-

acter of the product-bi-kappa ion distribution are clearly

enhanced with the decrease of the plasma parameter bi.

Our results have also shown that in the case of product-

bi-kappa ion distribution the instability occurs even for tem-

perature ratio 1.0 and equal j indexes, ji? ¼ jik, due to the

anisotropy which is inherent to the product-bi-kappa distri-

bution. As it is known, for the bi-Maxwellian case the occur-

rence of the instability requires some degree of anisotropy in

the temperature.

We have also investigated the effect of the electron distri-

bution function on the growth rate of the instability. Our results

have shown that, despite the fact that the ion firehose instabil-

ity is driven by anisotropy in the ion distribution, the increase

in the non-thermal feature of the electron distribution which is

associated to product-bi-kappa distribution affects the instabil-

ity, with significant reduction of the growth rate.

We have also analyzed the effect of different forms of

the non-thermal distribution by comparing results obtained

considering product-bi-kappa distributions with results

obtained considering bi-kappa distributions, with similar val-

ues of the j indexes. The growth rates obtained from the dis-

persion relations show complex behaviour, regarding the

shape of the ion distribution, even if the electron distribution

is considered an isotropical Maxwellian. For small values of

the temperature ratio the growth rate is larger for BK than

for PBK distributions, but the situation is reversed when the

ion temperature ratio approaches unity. Very significant

effects have also been obtained when the electron distribu-

tion has also been considered with non-thermal character. It

has been seen that the adoption of a BK distribution with iso-

tropic temperature for the electrons, instead of a

Maxwellian, does not affect the growth rates of the instabil-

ity, while the adoption of electrons with a PBK distribution,

even with isotropic temperature, contributes do decrease the

intensity of the instability. The magnitude of the effect is

increased with the reduction of the j indexes, so that the

instability is very much quenched in the case of electron dis-

tributions with small j indexes.

These findings relative to the sensitivity of the growth

rates of the ion firehose instability on the detailed form of a

power-law electron distribution can be of consequence on

analysis of the instability threshold in the space plasma envi-

ronment. Although it is already recognized that anisotropies

in the electron distribution can affect the threshold for insta-

bilities which are driven by anisotropies in the ion distribu-

tion,20,23 the analysis of observed data has been generally

made by considering bi-Maxwellian of bi-kappa distribu-

tions, which miss anisotropy features that can be associated

to PBK distributions. As we have seen, these features lead to

relevant effects on the evaluation of the growth rate of the

ion firehose instability.

The results which are shown in the present paper dem-

onstrate that apparently small differences in the distribution

functions of plasma particles can lead to significant differen-

ces in the magnitude of the growth rates and in the range of

wave numbers which feature the so-called ion firehose insta-

bility. The inference is that product-bi-kappa distributions,

with inherent flexibility for modeling due to the possibility

of different values of the parallel and perpendicular j
indexes and of the values of the parallel and perpendicular

temperatures, can be useful for analysis of wave phenomena

in the space environment, frequently made considering com-

binations of Maxwellian distributions.

Analyses similar to those presented here are being per-

formed in order to describe the effect of product-bi-kappa

distribution on other instabilities occurring for low-

frequency electromagnetic waves, as the ion-cyclotron insta-

bility and the electron firehose instability. Corresponding

studies considering the presence of dust are also being per-

formed and shall be reported in a forthcoming publication.
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